PPCAsmPrinter.cpp revision 61297ee1185fd267471a1cb1fa28c585b51c5e08
1//===-- PPC32/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal
11// representation of machine-dependent LLVM code to Intel-format
12// assembly language. This printer is the output mechanism used
13// by `llc' and `lli -print-machineinstrs' on X86.
14//
15// Documentation at
16// http://developer.apple.com/documentation/DeveloperTools/
17//   Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "asmprinter"
22#include "PowerPC.h"
23#include "PowerPCInstrInfo.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Module.h"
27#include "llvm/Assembly/Writer.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/Mangler.h"
33#include "Support/CommandLine.h"
34#include "Support/Debug.h"
35#include "Support/Statistic.h"
36#include "Support/StringExtras.h"
37#include <set>
38
39namespace llvm {
40
41namespace {
42  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
43
44  struct Printer : public MachineFunctionPass {
45    /// Output stream on which we're printing assembly code.
46    ///
47    std::ostream &O;
48
49    /// Target machine description which we query for reg. names, data
50    /// layout, etc.
51    ///
52    TargetMachine &TM;
53
54    /// Name-mangler for global names.
55    ///
56    Mangler *Mang;
57    std::set<std::string> Stubs;
58    std::set<std::string> Strings;
59
60    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm), labelNumber(0)
61      { }
62
63    /// Cache of mangled name for current function. This is
64    /// recalculated at the beginning of each call to
65    /// runOnMachineFunction().
66    ///
67    std::string CurrentFnName;
68
69    /// Unique incrementer for label values for referencing
70    /// Global values.
71    ///
72    unsigned int labelNumber;
73
74    virtual const char *getPassName() const {
75      return "PowerPC Assembly Printer";
76    }
77
78    void printMachineInstruction(const MachineInstr *MI);
79    void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
80    void printConstantPool(MachineConstantPool *MCP);
81    bool runOnMachineFunction(MachineFunction &F);
82    bool doInitialization(Module &M);
83    bool doFinalization(Module &M);
84    void emitGlobalConstant(const Constant* CV);
85    void emitConstantValueOnly(const Constant *CV);
86  };
87} // end of anonymous namespace
88
89/// createPPCCodePrinterPass - Returns a pass that prints the PPC
90/// assembly code for a MachineFunction to the given output stream,
91/// using the given target machine description.  This should work
92/// regardless of whether the function is in SSA form.
93///
94FunctionPass *createPPCCodePrinterPass(std::ostream &o,TargetMachine &tm) {
95  return new Printer(o, tm);
96}
97
98/// isStringCompatible - Can we treat the specified array as a string?
99/// Only if it is an array of ubytes or non-negative sbytes.
100///
101static bool isStringCompatible(const ConstantArray *CVA) {
102  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
103  if (ETy == Type::UByteTy) return true;
104  if (ETy != Type::SByteTy) return false;
105
106  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
107    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
108      return false;
109
110  return true;
111}
112
113/// toOctal - Convert the low order bits of X into an octal digit.
114///
115static inline char toOctal(int X) {
116  return (X&7)+'0';
117}
118
119/// getAsCString - Return the specified array as a C compatible
120/// string, only if the predicate isStringCompatible is true.
121///
122static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
123  assert(isStringCompatible(CVA) && "Array is not string compatible!");
124
125  O << "\"";
126  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
127    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
128
129    if (C == '"') {
130      O << "\\\"";
131    } else if (C == '\\') {
132      O << "\\\\";
133    } else if (isprint(C)) {
134      O << C;
135    } else {
136      switch(C) {
137      case '\b': O << "\\b"; break;
138      case '\f': O << "\\f"; break;
139      case '\n': O << "\\n"; break;
140      case '\r': O << "\\r"; break;
141      case '\t': O << "\\t"; break;
142      default:
143        O << '\\';
144        O << toOctal(C >> 6);
145        O << toOctal(C >> 3);
146        O << toOctal(C >> 0);
147        break;
148      }
149    }
150  }
151  O << "\"";
152}
153
154// Print out the specified constant, without a storage class.  Only the
155// constants valid in constant expressions can occur here.
156void Printer::emitConstantValueOnly(const Constant *CV) {
157  if (CV->isNullValue())
158    O << "0";
159  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
160    assert(CB == ConstantBool::True);
161    O << "1";
162  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
163    O << CI->getValue();
164  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
165    O << CI->getValue();
166  else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
167    // This is a constant address for a global variable or function.  Use the
168    // name of the variable or function as the address value.
169    O << Mang->getValueName(CPR->getValue());
170  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
171    const TargetData &TD = TM.getTargetData();
172    switch(CE->getOpcode()) {
173    case Instruction::GetElementPtr: {
174      // generate a symbolic expression for the byte address
175      const Constant *ptrVal = CE->getOperand(0);
176      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
177      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
178        O << "(";
179        emitConstantValueOnly(ptrVal);
180        O << ") + " << Offset;
181      } else {
182        emitConstantValueOnly(ptrVal);
183      }
184      break;
185    }
186    case Instruction::Cast: {
187      // Support only non-converting or widening casts for now, that is, ones
188      // that do not involve a change in value.  This assertion is really gross,
189      // and may not even be a complete check.
190      Constant *Op = CE->getOperand(0);
191      const Type *OpTy = Op->getType(), *Ty = CE->getType();
192
193      // Remember, kids, pointers on x86 can be losslessly converted back and
194      // forth into 32-bit or wider integers, regardless of signedness. :-P
195      assert(((isa<PointerType>(OpTy)
196               && (Ty == Type::LongTy || Ty == Type::ULongTy
197                   || Ty == Type::IntTy || Ty == Type::UIntTy))
198              || (isa<PointerType>(Ty)
199                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
200                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
201              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
202                   && OpTy->isLosslesslyConvertibleTo(Ty))))
203             && "FIXME: Don't yet support this kind of constant cast expr");
204      O << "(";
205      emitConstantValueOnly(Op);
206      O << ")";
207      break;
208    }
209    case Instruction::Add:
210      O << "(";
211      emitConstantValueOnly(CE->getOperand(0));
212      O << ") + (";
213      emitConstantValueOnly(CE->getOperand(1));
214      O << ")";
215      break;
216    default:
217      assert(0 && "Unsupported operator!");
218    }
219  } else {
220    assert(0 && "Unknown constant value!");
221  }
222}
223
224// Print a constant value or values, with the appropriate storage class as a
225// prefix.
226void Printer::emitGlobalConstant(const Constant *CV) {
227  const TargetData &TD = TM.getTargetData();
228
229  if (CV->isNullValue()) {
230    O << "\t.space\t " << TD.getTypeSize(CV->getType()) << "\n";
231    return;
232  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
233    if (isStringCompatible(CVA)) {
234      O << "\t.ascii ";
235      printAsCString(O, CVA);
236      O << "\n";
237    } else { // Not a string.  Print the values in successive locations
238      const std::vector<Use> &constValues = CVA->getValues();
239      for (unsigned i=0; i < constValues.size(); i++)
240        emitGlobalConstant(cast<Constant>(constValues[i].get()));
241    }
242    return;
243  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
244    // Print the fields in successive locations. Pad to align if needed!
245    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
246    const std::vector<Use>& constValues = CVS->getValues();
247    unsigned sizeSoFar = 0;
248    for (unsigned i=0, N = constValues.size(); i < N; i++) {
249      const Constant* field = cast<Constant>(constValues[i].get());
250
251      // Check if padding is needed and insert one or more 0s.
252      unsigned fieldSize = TD.getTypeSize(field->getType());
253      unsigned padSize = ((i == N-1? cvsLayout->StructSize
254                           : cvsLayout->MemberOffsets[i+1])
255                          - cvsLayout->MemberOffsets[i]) - fieldSize;
256      sizeSoFar += fieldSize + padSize;
257
258      // Now print the actual field value
259      emitGlobalConstant(field);
260
261      // Insert the field padding unless it's zero bytes...
262      if (padSize)
263        O << "\t.space\t " << padSize << "\n";
264    }
265    assert(sizeSoFar == cvsLayout->StructSize &&
266           "Layout of constant struct may be incorrect!");
267    return;
268  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
269    // FP Constants are printed as integer constants to avoid losing
270    // precision...
271    double Val = CFP->getValue();
272    switch (CFP->getType()->getTypeID()) {
273    default: assert(0 && "Unknown floating point type!");
274    case Type::FloatTyID: {
275      union FU {                            // Abide by C TBAA rules
276        float FVal;
277        unsigned UVal;
278      } U;
279      U.FVal = Val;
280      O << ".long\t" << U.UVal << "\t; float " << Val << "\n";
281      return;
282    }
283    case Type::DoubleTyID: {
284      union DU {                            // Abide by C TBAA rules
285        double FVal;
286        uint64_t UVal;
287        struct {
288          uint32_t MSWord;
289          uint32_t LSWord;
290        } T;
291      } U;
292      U.FVal = Val;
293
294      O << ".long\t" << U.T.MSWord << "\t; double most significant word "
295        << Val << "\n";
296      O << ".long\t" << U.T.LSWord << "\t; double least significant word"
297        << Val << "\n";
298      return;
299    }
300    }
301  } else if (CV->getType()->getPrimitiveSize() == 64) {
302    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
303      union DU {                            // Abide by C TBAA rules
304        int64_t UVal;
305        struct {
306          uint32_t MSWord;
307          uint32_t LSWord;
308        } T;
309      } U;
310      U.UVal = CI->getRawValue();
311
312      O << ".long\t" << U.T.MSWord << "\t; Double-word most significant word "
313        << U.UVal << "\n";
314      O << ".long\t" << U.T.LSWord << "\t; Double-word least significant word"
315        << U.UVal << "\n";
316      return;
317    }
318  }
319
320  const Type *type = CV->getType();
321  O << "\t";
322  switch (type->getTypeID()) {
323  case Type::UByteTyID: case Type::SByteTyID:
324    O << ".byte";
325    break;
326  case Type::UShortTyID: case Type::ShortTyID:
327    O << ".short";
328    break;
329  case Type::BoolTyID:
330  case Type::PointerTyID:
331  case Type::UIntTyID: case Type::IntTyID:
332    O << ".long";
333    break;
334  case Type::ULongTyID: case Type::LongTyID:
335    assert (0 && "Should have already output double-word constant.");
336  case Type::FloatTyID: case Type::DoubleTyID:
337    assert (0 && "Should have already output floating point constant.");
338  default:
339    assert (0 && "Can't handle printing this type of thing");
340    break;
341  }
342  O << "\t";
343  emitConstantValueOnly(CV);
344  O << "\n";
345}
346
347/// printConstantPool - Print to the current output stream assembly
348/// representations of the constants in the constant pool MCP. This is
349/// used to print out constants which have been "spilled to memory" by
350/// the code generator.
351///
352void Printer::printConstantPool(MachineConstantPool *MCP) {
353  const std::vector<Constant*> &CP = MCP->getConstants();
354  const TargetData &TD = TM.getTargetData();
355
356  if (CP.empty()) return;
357
358  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
359    O << "\t.const\n";
360    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
361      << "\n";
362    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;"
363      << *CP[i] << "\n";
364    emitGlobalConstant(CP[i]);
365  }
366}
367
368/// runOnMachineFunction - This uses the printMachineInstruction()
369/// method to print assembly for each instruction.
370///
371bool Printer::runOnMachineFunction(MachineFunction &MF) {
372  O << "\n\n";
373  // What's my mangled name?
374  CurrentFnName = Mang->getValueName(MF.getFunction());
375
376  // Print out constants referenced by the function
377  printConstantPool(MF.getConstantPool());
378
379  // Print out labels for the function.
380  O << "\t.text\n";
381  O << "\t.globl\t" << CurrentFnName << "\n";
382  O << "\t.align 2\n";
383  O << CurrentFnName << ":\n";
384
385  // Print out code for the function.
386  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
387       I != E; ++I) {
388    // Print a label for the basic block.
389    O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t; "
390      << I->getBasicBlock()->getName() << "\n";
391    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
392      II != E; ++II) {
393      // Print the assembly for the instruction.
394      O << "\t";
395      printMachineInstruction(II);
396    }
397  }
398
399  // We didn't modify anything.
400  return false;
401}
402
403void Printer::printOp(const MachineOperand &MO,
404                      bool elideOffsetKeyword /* = false */) {
405  const MRegisterInfo &RI = *TM.getRegisterInfo();
406  int new_symbol;
407
408  switch (MO.getType()) {
409  case MachineOperand::MO_VirtualRegister:
410    if (Value *V = MO.getVRegValueOrNull()) {
411      O << "<" << V->getName() << ">";
412      return;
413    }
414    // FALLTHROUGH
415  case MachineOperand::MO_MachineRegister:
416    O << LowercaseString(RI.get(MO.getReg()).Name);
417    return;
418
419  case MachineOperand::MO_SignExtendedImmed:
420  case MachineOperand::MO_UnextendedImmed:
421    O << (int)MO.getImmedValue();
422    return;
423  case MachineOperand::MO_MachineBasicBlock: {
424    MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
425    O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
426      << "_" << MBBOp->getNumber() << "\t; "
427      << MBBOp->getBasicBlock()->getName();
428    return;
429  }
430  case MachineOperand::MO_PCRelativeDisp:
431    std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
432    abort();
433    return;
434  case MachineOperand::MO_GlobalAddress:
435    if (!elideOffsetKeyword) {
436      // Dynamically-resolved functions need a stub for the function
437      Function *F = dyn_cast<Function>(MO.getGlobal());
438      if (F && F->isExternal()) {
439        Stubs.insert(Mang->getValueName(MO.getGlobal()));
440        O << "L" << Mang->getValueName(MO.getGlobal()) << "$stub";
441      } else {
442        O << Mang->getValueName(MO.getGlobal());
443      }
444    }
445    return;
446  case MachineOperand::MO_ExternalSymbol:
447    O << MO.getSymbolName();
448    return;
449  default:
450    O << "<unknown operand type>";
451    return;
452  }
453}
454
455#if 0
456static inline
457unsigned int ValidOpcodes(const MachineInstr *MI, unsigned int ArgType[5]) {
458  int i;
459  unsigned int retval = 1;
460
461  for(i = 0; i<5; i++) {
462    switch(ArgType[i]) {
463      case none:
464        break;
465      case Gpr:
466      case Gpr0:
467        Type::UIntTy
468      case Simm16:
469      case Zimm16:
470      case PCRelimm24:
471      case Imm24:
472      case Imm5:
473      case PCRelimm14:
474      case Imm14:
475      case Imm2:
476      case Crf:
477      case Imm3:
478      case Imm1:
479      case Fpr:
480      case Imm4:
481      case Imm8:
482      case Disimm16:
483      case Spr:
484      case Sgr:
485  };
486
487    }
488  }
489}
490#endif
491
492/// printMachineInstruction -- Print out a single PPC32 LLVM instruction
493/// MI in Darwin syntax to the current output stream.
494///
495void Printer::printMachineInstruction(const MachineInstr *MI) {
496  unsigned Opcode = MI->getOpcode();
497  const TargetInstrInfo &TII = *TM.getInstrInfo();
498  const TargetInstrDescriptor &Desc = TII.get(Opcode);
499  unsigned int i;
500
501  unsigned int ArgCount = Desc.TSFlags & PPC32II::ArgCountMask;
502  unsigned int ArgType[] = {
503    (Desc.TSFlags >> PPC32II::Arg0TypeShift) & PPC32II::ArgTypeMask,
504    (Desc.TSFlags >> PPC32II::Arg1TypeShift) & PPC32II::ArgTypeMask,
505    (Desc.TSFlags >> PPC32II::Arg2TypeShift) & PPC32II::ArgTypeMask,
506    (Desc.TSFlags >> PPC32II::Arg3TypeShift) & PPC32II::ArgTypeMask,
507    (Desc.TSFlags >> PPC32II::Arg4TypeShift) & PPC32II::ArgTypeMask
508  };
509  assert(((Desc.TSFlags & PPC32II::VMX) == 0) &&
510         "Instruction requires VMX support");
511  assert(((Desc.TSFlags & PPC32II::PPC64) == 0) &&
512         "Instruction requires 64 bit support");
513  //assert ( ValidOpcodes(MI, ArgType) && "Instruction has invalid inputs");
514  ++EmittedInsts;
515
516  // FIXME: should probably be converted to cout.width and cout.fill
517  if (Opcode == PPC32::MovePCtoLR) {
518    O << "bcl 20,31,\"L0000" << labelNumber << "$pb\"\n";
519    O << "\"L0000" << labelNumber << "$pb\":\n";
520    O << "\tmflr ";
521    printOp(MI->getOperand(0));
522    O << "\n";
523    return;
524  }
525
526  O << TII.getName(MI->getOpcode()) << " ";
527  DEBUG(std::cerr << TII.getName(MI->getOpcode()) << " expects "
528                  << ArgCount << " args\n");
529
530  if (Opcode == PPC32::LOADLoAddr) {
531    printOp(MI->getOperand(0));
532    O << ", lo16(";
533    printOp(MI->getOperand(2));
534    O << "-\"L0000" << labelNumber << "$pb\")";
535    labelNumber++;
536    O << "(";
537    if (MI->getOperand(1).getReg() == PPC32::R0)
538      O << "0";
539    else
540      printOp(MI->getOperand(1));
541    O << ")\n";
542  } else if (Opcode == PPC32::LOADHiAddr) {
543    printOp(MI->getOperand(0));
544    O << ", ";
545    if (MI->getOperand(1).getReg() == PPC32::R0)
546      O << "0";
547    else
548      printOp(MI->getOperand(1));
549    O << ", ha16(" ;
550    printOp(MI->getOperand(2));
551     O << "-\"L0000" << labelNumber << "$pb\")\n";
552  } else if (ArgCount == 3 && ArgType[1] == PPC32II::Disimm16) {
553    printOp(MI->getOperand(0));
554    O << ", ";
555    printOp(MI->getOperand(1));
556    O << "(";
557    if (MI->getOperand(2).getReg() == PPC32::R0)
558      O << "0";
559    else
560      printOp(MI->getOperand(2));
561    O << ")\n";
562  } else {
563    for (i = 0; i < ArgCount; ++i) {
564      if (i == 1 && ArgCount == 3 && ArgType[2] == PPC32II::Simm16 &&
565          MI->getOperand(1).getReg() == PPC32::R0) {
566        O << "0";
567      } else {
568        //std::cout << "DEBUG " << (*(TM.getRegisterInfo())).get(MI->getOperand(i).getReg()).Name << "\n";
569        printOp(MI->getOperand(i));
570      }
571      if (ArgCount - 1 == i)
572        O << "\n";
573      else
574        O << ", ";
575    }
576  }
577}
578
579bool Printer::doInitialization(Module &M) {
580  Mang = new Mangler(M, true);
581  return false; // success
582}
583
584// SwitchSection - Switch to the specified section of the executable if we are
585// not already in it!
586//
587static void SwitchSection(std::ostream &OS, std::string &CurSection,
588                          const char *NewSection) {
589  if (CurSection != NewSection) {
590    CurSection = NewSection;
591    if (!CurSection.empty())
592      OS << "\t" << NewSection << "\n";
593  }
594}
595
596bool Printer::doFinalization(Module &M) {
597  const TargetData &TD = TM.getTargetData();
598  std::string CurSection;
599
600  // Print out module-level global variables here.
601  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
602    if (I->hasInitializer()) {   // External global require no code
603      O << "\n\n";
604      std::string name = Mang->getValueName(I);
605      Constant *C = I->getInitializer();
606      unsigned Size = TD.getTypeSize(C->getType());
607      unsigned Align = TD.getTypeAlignment(C->getType());
608
609      if (C->isNullValue() &&
610          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
611           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
612        SwitchSection(O, CurSection, ".data");
613        if (I->hasInternalLinkage())
614          O << "\t.lcomm " << name << "," << TD.getTypeSize(C->getType())
615            << "," << (unsigned)TD.getTypeAlignment(C->getType());
616        else
617          O << "\t.comm " << name << "," << TD.getTypeSize(C->getType());
618        O << "\t\t; ";
619        WriteAsOperand(O, I, true, true, &M);
620        O << "\n";
621      } else {
622        switch (I->getLinkage()) {
623        case GlobalValue::LinkOnceLinkage:
624        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
625          // Nonnull linkonce -> weak
626          O << "\t.weak " << name << "\n";
627          SwitchSection(O, CurSection, "");
628          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
629          break;
630
631        case GlobalValue::AppendingLinkage:
632          // FIXME: appending linkage variables should go into a section of
633          // their name or something.  For now, just emit them as external.
634        case GlobalValue::ExternalLinkage:
635          // If external or appending, declare as a global symbol
636          O << "\t.globl " << name << "\n";
637          // FALL THROUGH
638        case GlobalValue::InternalLinkage:
639          SwitchSection(O, CurSection, ".data");
640          break;
641        }
642
643        O << "\t.align " << Align << "\n";
644        O << name << ":\t\t\t\t; ";
645        WriteAsOperand(O, I, true, true, &M);
646        O << " = ";
647        WriteAsOperand(O, C, false, false, &M);
648        O << "\n";
649        emitGlobalConstant(C);
650      }
651    }
652
653  for(std::set<std::string>::iterator i = Stubs.begin(); i != Stubs.end(); ++i)
654  {
655    O << "\t.picsymbol_stub\n";
656    O << "L" << *i << "$stub:\n";
657    O << "\t.indirect_symbol " << *i << "\n";
658    O << "\tmflr r0\n";
659    O << "\tbcl 20,31,L0$" << *i << "\n";
660    O << "L0$" << *i << ":\n";
661    O << "\tmflr r11\n";
662    O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n";
663    O << "\tmtlr r0\n";
664    O << "\tlwz r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n";
665    O << "\tmtctr r12\n";
666    O << "\taddi r11,r11,lo16(L" << *i << "$lazy_ptr - L0$" << *i << ")\n";
667    O << "\tbctr\n";
668    O << ".data\n";
669    O << ".lazy_symbol_pointer\n";
670    O << "L" << *i << "$lazy_ptr:\n";
671    O << ".indirect_symbol " << *i << "\n";
672    O << ".long dyld_stub_binding_helper\n";
673  }
674
675  delete Mang;
676  return false; // success
677}
678
679} // End llvm namespace
680