MergeFunctions.cpp revision 0b8c9a80f20772c3793201ab5b251d3520b9cea3
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found the functions are folded. If both functions are
21// overridable, we move the functionality into a new internal function and
22// leave two overridable thunks to it.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * virtual functions.
29//
30// Many functions have their address taken by the virtual function table for
31// the object they belong to. However, as long as it's only used for a lookup
32// and call, this is irrelevant, and we'd like to fold such functions.
33//
34// * switch from n^2 pair-wise comparisons to an n-way comparison for each
35// bucket.
36//
37// * be smarter about bitcasts.
38//
39// In order to fold functions, we will sometimes add either bitcast instructions
40// or bitcast constant expressions. Unfortunately, this can confound further
41// analysis since the two functions differ where one has a bitcast and the
42// other doesn't. We should learn to look through bitcasts.
43//
44//===----------------------------------------------------------------------===//
45
46#define DEBUG_TYPE "mergefunc"
47#include "llvm/Transforms/IPO.h"
48#include "llvm/ADT/DenseSet.h"
49#include "llvm/ADT/FoldingSet.h"
50#include "llvm/ADT/STLExtras.h"
51#include "llvm/ADT/SmallSet.h"
52#include "llvm/ADT/Statistic.h"
53#include "llvm/IR/Constants.h"
54#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/IRBuilder.h"
56#include "llvm/IR/InlineAsm.h"
57#include "llvm/IR/Instructions.h"
58#include "llvm/IR/LLVMContext.h"
59#include "llvm/IR/Module.h"
60#include "llvm/IR/Operator.h"
61#include "llvm/Pass.h"
62#include "llvm/Support/CallSite.h"
63#include "llvm/Support/Debug.h"
64#include "llvm/Support/ErrorHandling.h"
65#include "llvm/Support/ValueHandle.h"
66#include "llvm/Support/raw_ostream.h"
67#include <vector>
68using namespace llvm;
69
70STATISTIC(NumFunctionsMerged, "Number of functions merged");
71STATISTIC(NumThunksWritten, "Number of thunks generated");
72STATISTIC(NumAliasesWritten, "Number of aliases generated");
73STATISTIC(NumDoubleWeak, "Number of new functions created");
74
75/// Creates a hash-code for the function which is the same for any two
76/// functions that will compare equal, without looking at the instructions
77/// inside the function.
78static unsigned profileFunction(const Function *F) {
79  FunctionType *FTy = F->getFunctionType();
80
81  FoldingSetNodeID ID;
82  ID.AddInteger(F->size());
83  ID.AddInteger(F->getCallingConv());
84  ID.AddBoolean(F->hasGC());
85  ID.AddBoolean(FTy->isVarArg());
86  ID.AddInteger(FTy->getReturnType()->getTypeID());
87  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
88    ID.AddInteger(FTy->getParamType(i)->getTypeID());
89  return ID.ComputeHash();
90}
91
92namespace {
93
94/// ComparableFunction - A struct that pairs together functions with a
95/// DataLayout so that we can keep them together as elements in the DenseSet.
96class ComparableFunction {
97public:
98  static const ComparableFunction EmptyKey;
99  static const ComparableFunction TombstoneKey;
100  static DataLayout * const LookupOnly;
101
102  ComparableFunction(Function *Func, DataLayout *TD)
103    : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
104
105  Function *getFunc() const { return Func; }
106  unsigned getHash() const { return Hash; }
107  DataLayout *getTD() const { return TD; }
108
109  // Drops AssertingVH reference to the function. Outside of debug mode, this
110  // does nothing.
111  void release() {
112    assert(Func &&
113           "Attempted to release function twice, or release empty/tombstone!");
114    Func = NULL;
115  }
116
117private:
118  explicit ComparableFunction(unsigned Hash)
119    : Func(NULL), Hash(Hash), TD(NULL) {}
120
121  AssertingVH<Function> Func;
122  unsigned Hash;
123  DataLayout *TD;
124};
125
126const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
127const ComparableFunction ComparableFunction::TombstoneKey =
128    ComparableFunction(1);
129DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1);
130
131}
132
133namespace llvm {
134  template <>
135  struct DenseMapInfo<ComparableFunction> {
136    static ComparableFunction getEmptyKey() {
137      return ComparableFunction::EmptyKey;
138    }
139    static ComparableFunction getTombstoneKey() {
140      return ComparableFunction::TombstoneKey;
141    }
142    static unsigned getHashValue(const ComparableFunction &CF) {
143      return CF.getHash();
144    }
145    static bool isEqual(const ComparableFunction &LHS,
146                        const ComparableFunction &RHS);
147  };
148}
149
150namespace {
151
152/// FunctionComparator - Compares two functions to determine whether or not
153/// they will generate machine code with the same behaviour. DataLayout is
154/// used if available. The comparator always fails conservatively (erring on the
155/// side of claiming that two functions are different).
156class FunctionComparator {
157public:
158  FunctionComparator(const DataLayout *TD, const Function *F1,
159                     const Function *F2)
160    : F1(F1), F2(F2), TD(TD) {}
161
162  /// Test whether the two functions have equivalent behaviour.
163  bool compare();
164
165private:
166  /// Test whether two basic blocks have equivalent behaviour.
167  bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
168
169  /// Assign or look up previously assigned numbers for the two values, and
170  /// return whether the numbers are equal. Numbers are assigned in the order
171  /// visited.
172  bool enumerate(const Value *V1, const Value *V2);
173
174  /// Compare two Instructions for equivalence, similar to
175  /// Instruction::isSameOperationAs but with modifications to the type
176  /// comparison.
177  bool isEquivalentOperation(const Instruction *I1,
178                             const Instruction *I2) const;
179
180  /// Compare two GEPs for equivalent pointer arithmetic.
181  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
182  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
183                       const GetElementPtrInst *GEP2) {
184    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
185  }
186
187  /// Compare two Types, treating all pointer types as equal.
188  bool isEquivalentType(Type *Ty1, Type *Ty2) const;
189
190  // The two functions undergoing comparison.
191  const Function *F1, *F2;
192
193  const DataLayout *TD;
194
195  DenseMap<const Value *, const Value *> id_map;
196  DenseSet<const Value *> seen_values;
197};
198
199}
200
201// Any two pointers in the same address space are equivalent, intptr_t and
202// pointers are equivalent. Otherwise, standard type equivalence rules apply.
203bool FunctionComparator::isEquivalentType(Type *Ty1,
204                                          Type *Ty2) const {
205  if (Ty1 == Ty2)
206    return true;
207  if (Ty1->getTypeID() != Ty2->getTypeID()) {
208    if (TD) {
209      LLVMContext &Ctx = Ty1->getContext();
210      if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
211      if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
212    }
213    return false;
214  }
215
216  switch (Ty1->getTypeID()) {
217  default:
218    llvm_unreachable("Unknown type!");
219    // Fall through in Release mode.
220  case Type::IntegerTyID:
221  case Type::VectorTyID:
222    // Ty1 == Ty2 would have returned true earlier.
223    return false;
224
225  case Type::VoidTyID:
226  case Type::FloatTyID:
227  case Type::DoubleTyID:
228  case Type::X86_FP80TyID:
229  case Type::FP128TyID:
230  case Type::PPC_FP128TyID:
231  case Type::LabelTyID:
232  case Type::MetadataTyID:
233    return true;
234
235  case Type::PointerTyID: {
236    PointerType *PTy1 = cast<PointerType>(Ty1);
237    PointerType *PTy2 = cast<PointerType>(Ty2);
238    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
239  }
240
241  case Type::StructTyID: {
242    StructType *STy1 = cast<StructType>(Ty1);
243    StructType *STy2 = cast<StructType>(Ty2);
244    if (STy1->getNumElements() != STy2->getNumElements())
245      return false;
246
247    if (STy1->isPacked() != STy2->isPacked())
248      return false;
249
250    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
251      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
252        return false;
253    }
254    return true;
255  }
256
257  case Type::FunctionTyID: {
258    FunctionType *FTy1 = cast<FunctionType>(Ty1);
259    FunctionType *FTy2 = cast<FunctionType>(Ty2);
260    if (FTy1->getNumParams() != FTy2->getNumParams() ||
261        FTy1->isVarArg() != FTy2->isVarArg())
262      return false;
263
264    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
265      return false;
266
267    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
268      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
269        return false;
270    }
271    return true;
272  }
273
274  case Type::ArrayTyID: {
275    ArrayType *ATy1 = cast<ArrayType>(Ty1);
276    ArrayType *ATy2 = cast<ArrayType>(Ty2);
277    return ATy1->getNumElements() == ATy2->getNumElements() &&
278           isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
279  }
280  }
281}
282
283// Determine whether the two operations are the same except that pointer-to-A
284// and pointer-to-B are equivalent. This should be kept in sync with
285// Instruction::isSameOperationAs.
286bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
287                                               const Instruction *I2) const {
288  // Differences from Instruction::isSameOperationAs:
289  //  * replace type comparison with calls to isEquivalentType.
290  //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
291  //  * because of the above, we don't test for the tail bit on calls later on
292  if (I1->getOpcode() != I2->getOpcode() ||
293      I1->getNumOperands() != I2->getNumOperands() ||
294      !isEquivalentType(I1->getType(), I2->getType()) ||
295      !I1->hasSameSubclassOptionalData(I2))
296    return false;
297
298  // We have two instructions of identical opcode and #operands.  Check to see
299  // if all operands are the same type
300  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
301    if (!isEquivalentType(I1->getOperand(i)->getType(),
302                          I2->getOperand(i)->getType()))
303      return false;
304
305  // Check special state that is a part of some instructions.
306  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
307    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
308           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
309           LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
310           LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
311  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
312    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
313           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
314           SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
315           SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
316  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
317    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
318  if (const CallInst *CI = dyn_cast<CallInst>(I1))
319    return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
320           CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
321  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
322    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
323           CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
324  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
325    return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
326  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
327    return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
328  if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
329    return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
330           FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
331  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
332    return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
333           CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
334           CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
335  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
336    return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
337           RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
338           RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
339           RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
340
341  return true;
342}
343
344// Determine whether two GEP operations perform the same underlying arithmetic.
345bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
346                                         const GEPOperator *GEP2) {
347  // When we have target data, we can reduce the GEP down to the value in bytes
348  // added to the address.
349  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 1;
350  APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0);
351  if (TD &&
352      GEP1->accumulateConstantOffset(*TD, Offset1) &&
353      GEP2->accumulateConstantOffset(*TD, Offset2)) {
354    return Offset1 == Offset2;
355  }
356
357  if (GEP1->getPointerOperand()->getType() !=
358      GEP2->getPointerOperand()->getType())
359    return false;
360
361  if (GEP1->getNumOperands() != GEP2->getNumOperands())
362    return false;
363
364  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
365    if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
366      return false;
367  }
368
369  return true;
370}
371
372// Compare two values used by the two functions under pair-wise comparison. If
373// this is the first time the values are seen, they're added to the mapping so
374// that we will detect mismatches on next use.
375bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
376  // Check for function @f1 referring to itself and function @f2 referring to
377  // itself, or referring to each other, or both referring to either of them.
378  // They're all equivalent if the two functions are otherwise equivalent.
379  if (V1 == F1 && V2 == F2)
380    return true;
381  if (V1 == F2 && V2 == F1)
382    return true;
383
384  if (const Constant *C1 = dyn_cast<Constant>(V1)) {
385    if (V1 == V2) return true;
386    const Constant *C2 = dyn_cast<Constant>(V2);
387    if (!C2) return false;
388    // TODO: constant expressions with GEP or references to F1 or F2.
389    if (C1->isNullValue() && C2->isNullValue() &&
390        isEquivalentType(C1->getType(), C2->getType()))
391      return true;
392    // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
393    // then they must have equal bit patterns.
394    return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
395      C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
396  }
397
398  if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
399    return V1 == V2;
400
401  // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
402  // check whether it's equal to V2. When there is no mapping then we need to
403  // ensure that V2 isn't already equivalent to something else. For this
404  // purpose, we track the V2 values in a set.
405
406  const Value *&map_elem = id_map[V1];
407  if (map_elem)
408    return map_elem == V2;
409  if (!seen_values.insert(V2).second)
410    return false;
411  map_elem = V2;
412  return true;
413}
414
415// Test whether two basic blocks have equivalent behaviour.
416bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
417  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
418  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
419
420  do {
421    if (!enumerate(F1I, F2I))
422      return false;
423
424    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
425      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
426      if (!GEP2)
427        return false;
428
429      if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
430        return false;
431
432      if (!isEquivalentGEP(GEP1, GEP2))
433        return false;
434    } else {
435      if (!isEquivalentOperation(F1I, F2I))
436        return false;
437
438      assert(F1I->getNumOperands() == F2I->getNumOperands());
439      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
440        Value *OpF1 = F1I->getOperand(i);
441        Value *OpF2 = F2I->getOperand(i);
442
443        if (!enumerate(OpF1, OpF2))
444          return false;
445
446        if (OpF1->getValueID() != OpF2->getValueID() ||
447            !isEquivalentType(OpF1->getType(), OpF2->getType()))
448          return false;
449      }
450    }
451
452    ++F1I, ++F2I;
453  } while (F1I != F1E && F2I != F2E);
454
455  return F1I == F1E && F2I == F2E;
456}
457
458// Test whether the two functions have equivalent behaviour.
459bool FunctionComparator::compare() {
460  // We need to recheck everything, but check the things that weren't included
461  // in the hash first.
462
463  if (F1->getAttributes() != F2->getAttributes())
464    return false;
465
466  if (F1->hasGC() != F2->hasGC())
467    return false;
468
469  if (F1->hasGC() && F1->getGC() != F2->getGC())
470    return false;
471
472  if (F1->hasSection() != F2->hasSection())
473    return false;
474
475  if (F1->hasSection() && F1->getSection() != F2->getSection())
476    return false;
477
478  if (F1->isVarArg() != F2->isVarArg())
479    return false;
480
481  // TODO: if it's internal and only used in direct calls, we could handle this
482  // case too.
483  if (F1->getCallingConv() != F2->getCallingConv())
484    return false;
485
486  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
487    return false;
488
489  assert(F1->arg_size() == F2->arg_size() &&
490         "Identically typed functions have different numbers of args!");
491
492  // Visit the arguments so that they get enumerated in the order they're
493  // passed in.
494  for (Function::const_arg_iterator f1i = F1->arg_begin(),
495         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
496    if (!enumerate(f1i, f2i))
497      llvm_unreachable("Arguments repeat!");
498  }
499
500  // We do a CFG-ordered walk since the actual ordering of the blocks in the
501  // linked list is immaterial. Our walk starts at the entry block for both
502  // functions, then takes each block from each terminator in order. As an
503  // artifact, this also means that unreachable blocks are ignored.
504  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
505  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
506
507  F1BBs.push_back(&F1->getEntryBlock());
508  F2BBs.push_back(&F2->getEntryBlock());
509
510  VisitedBBs.insert(F1BBs[0]);
511  while (!F1BBs.empty()) {
512    const BasicBlock *F1BB = F1BBs.pop_back_val();
513    const BasicBlock *F2BB = F2BBs.pop_back_val();
514
515    if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
516      return false;
517
518    const TerminatorInst *F1TI = F1BB->getTerminator();
519    const TerminatorInst *F2TI = F2BB->getTerminator();
520
521    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
522    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
523      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
524        continue;
525
526      F1BBs.push_back(F1TI->getSuccessor(i));
527      F2BBs.push_back(F2TI->getSuccessor(i));
528    }
529  }
530  return true;
531}
532
533namespace {
534
535/// MergeFunctions finds functions which will generate identical machine code,
536/// by considering all pointer types to be equivalent. Once identified,
537/// MergeFunctions will fold them by replacing a call to one to a call to a
538/// bitcast of the other.
539///
540class MergeFunctions : public ModulePass {
541public:
542  static char ID;
543  MergeFunctions()
544    : ModulePass(ID), HasGlobalAliases(false) {
545    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
546  }
547
548  bool runOnModule(Module &M);
549
550private:
551  typedef DenseSet<ComparableFunction> FnSetType;
552
553  /// A work queue of functions that may have been modified and should be
554  /// analyzed again.
555  std::vector<WeakVH> Deferred;
556
557  /// Insert a ComparableFunction into the FnSet, or merge it away if it's
558  /// equal to one that's already present.
559  bool insert(ComparableFunction &NewF);
560
561  /// Remove a Function from the FnSet and queue it up for a second sweep of
562  /// analysis.
563  void remove(Function *F);
564
565  /// Find the functions that use this Value and remove them from FnSet and
566  /// queue the functions.
567  void removeUsers(Value *V);
568
569  /// Replace all direct calls of Old with calls of New. Will bitcast New if
570  /// necessary to make types match.
571  void replaceDirectCallers(Function *Old, Function *New);
572
573  /// Merge two equivalent functions. Upon completion, G may be deleted, or may
574  /// be converted into a thunk. In either case, it should never be visited
575  /// again.
576  void mergeTwoFunctions(Function *F, Function *G);
577
578  /// Replace G with a thunk or an alias to F. Deletes G.
579  void writeThunkOrAlias(Function *F, Function *G);
580
581  /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
582  /// of G with bitcast(F). Deletes G.
583  void writeThunk(Function *F, Function *G);
584
585  /// Replace G with an alias to F. Deletes G.
586  void writeAlias(Function *F, Function *G);
587
588  /// The set of all distinct functions. Use the insert() and remove() methods
589  /// to modify it.
590  FnSetType FnSet;
591
592  /// DataLayout for more accurate GEP comparisons. May be NULL.
593  DataLayout *TD;
594
595  /// Whether or not the target supports global aliases.
596  bool HasGlobalAliases;
597};
598
599}  // end anonymous namespace
600
601char MergeFunctions::ID = 0;
602INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
603
604ModulePass *llvm::createMergeFunctionsPass() {
605  return new MergeFunctions();
606}
607
608bool MergeFunctions::runOnModule(Module &M) {
609  bool Changed = false;
610  TD = getAnalysisIfAvailable<DataLayout>();
611
612  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
613    if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
614      Deferred.push_back(WeakVH(I));
615  }
616  FnSet.resize(Deferred.size());
617
618  do {
619    std::vector<WeakVH> Worklist;
620    Deferred.swap(Worklist);
621
622    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
623    DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
624
625    // Insert only strong functions and merge them. Strong function merging
626    // always deletes one of them.
627    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
628           E = Worklist.end(); I != E; ++I) {
629      if (!*I) continue;
630      Function *F = cast<Function>(*I);
631      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
632          !F->mayBeOverridden()) {
633        ComparableFunction CF = ComparableFunction(F, TD);
634        Changed |= insert(CF);
635      }
636    }
637
638    // Insert only weak functions and merge them. By doing these second we
639    // create thunks to the strong function when possible. When two weak
640    // functions are identical, we create a new strong function with two weak
641    // weak thunks to it which are identical but not mergable.
642    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
643           E = Worklist.end(); I != E; ++I) {
644      if (!*I) continue;
645      Function *F = cast<Function>(*I);
646      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
647          F->mayBeOverridden()) {
648        ComparableFunction CF = ComparableFunction(F, TD);
649        Changed |= insert(CF);
650      }
651    }
652    DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
653  } while (!Deferred.empty());
654
655  FnSet.clear();
656
657  return Changed;
658}
659
660bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
661                                               const ComparableFunction &RHS) {
662  if (LHS.getFunc() == RHS.getFunc() &&
663      LHS.getHash() == RHS.getHash())
664    return true;
665  if (!LHS.getFunc() || !RHS.getFunc())
666    return false;
667
668  // One of these is a special "underlying pointer comparison only" object.
669  if (LHS.getTD() == ComparableFunction::LookupOnly ||
670      RHS.getTD() == ComparableFunction::LookupOnly)
671    return false;
672
673  assert(LHS.getTD() == RHS.getTD() &&
674         "Comparing functions for different targets");
675
676  return FunctionComparator(LHS.getTD(), LHS.getFunc(),
677                            RHS.getFunc()).compare();
678}
679
680// Replace direct callers of Old with New.
681void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
682  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
683  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
684       UI != UE;) {
685    Value::use_iterator TheIter = UI;
686    ++UI;
687    CallSite CS(*TheIter);
688    if (CS && CS.isCallee(TheIter)) {
689      remove(CS.getInstruction()->getParent()->getParent());
690      TheIter.getUse().set(BitcastNew);
691    }
692  }
693}
694
695// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
696void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
697  if (HasGlobalAliases && G->hasUnnamedAddr()) {
698    if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
699        G->hasWeakLinkage()) {
700      writeAlias(F, G);
701      return;
702    }
703  }
704
705  writeThunk(F, G);
706}
707
708// Replace G with a simple tail call to bitcast(F). Also replace direct uses
709// of G with bitcast(F). Deletes G.
710void MergeFunctions::writeThunk(Function *F, Function *G) {
711  if (!G->mayBeOverridden()) {
712    // Redirect direct callers of G to F.
713    replaceDirectCallers(G, F);
714  }
715
716  // If G was internal then we may have replaced all uses of G with F. If so,
717  // stop here and delete G. There's no need for a thunk.
718  if (G->hasLocalLinkage() && G->use_empty()) {
719    G->eraseFromParent();
720    return;
721  }
722
723  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
724                                    G->getParent());
725  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
726  IRBuilder<false> Builder(BB);
727
728  SmallVector<Value *, 16> Args;
729  unsigned i = 0;
730  FunctionType *FFTy = F->getFunctionType();
731  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
732       AI != AE; ++AI) {
733    Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
734    ++i;
735  }
736
737  CallInst *CI = Builder.CreateCall(F, Args);
738  CI->setTailCall();
739  CI->setCallingConv(F->getCallingConv());
740  if (NewG->getReturnType()->isVoidTy()) {
741    Builder.CreateRetVoid();
742  } else {
743    Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
744  }
745
746  NewG->copyAttributesFrom(G);
747  NewG->takeName(G);
748  removeUsers(G);
749  G->replaceAllUsesWith(NewG);
750  G->eraseFromParent();
751
752  DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
753  ++NumThunksWritten;
754}
755
756// Replace G with an alias to F and delete G.
757void MergeFunctions::writeAlias(Function *F, Function *G) {
758  Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
759  GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
760                                    BitcastF, G->getParent());
761  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
762  GA->takeName(G);
763  GA->setVisibility(G->getVisibility());
764  removeUsers(G);
765  G->replaceAllUsesWith(GA);
766  G->eraseFromParent();
767
768  DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
769  ++NumAliasesWritten;
770}
771
772// Merge two equivalent functions. Upon completion, Function G is deleted.
773void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
774  if (F->mayBeOverridden()) {
775    assert(G->mayBeOverridden());
776
777    if (HasGlobalAliases) {
778      // Make them both thunks to the same internal function.
779      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
780                                     F->getParent());
781      H->copyAttributesFrom(F);
782      H->takeName(F);
783      removeUsers(F);
784      F->replaceAllUsesWith(H);
785
786      unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
787
788      writeAlias(F, G);
789      writeAlias(F, H);
790
791      F->setAlignment(MaxAlignment);
792      F->setLinkage(GlobalValue::PrivateLinkage);
793    } else {
794      // We can't merge them. Instead, pick one and update all direct callers
795      // to call it and hope that we improve the instruction cache hit rate.
796      replaceDirectCallers(G, F);
797    }
798
799    ++NumDoubleWeak;
800  } else {
801    writeThunkOrAlias(F, G);
802  }
803
804  ++NumFunctionsMerged;
805}
806
807// Insert a ComparableFunction into the FnSet, or merge it away if equal to one
808// that was already inserted.
809bool MergeFunctions::insert(ComparableFunction &NewF) {
810  std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
811  if (Result.second) {
812    DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
813    return false;
814  }
815
816  const ComparableFunction &OldF = *Result.first;
817
818  // Never thunk a strong function to a weak function.
819  assert(!OldF.getFunc()->mayBeOverridden() ||
820         NewF.getFunc()->mayBeOverridden());
821
822  DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
823               << NewF.getFunc()->getName() << '\n');
824
825  Function *DeleteF = NewF.getFunc();
826  NewF.release();
827  mergeTwoFunctions(OldF.getFunc(), DeleteF);
828  return true;
829}
830
831// Remove a function from FnSet. If it was already in FnSet, add it to Deferred
832// so that we'll look at it in the next round.
833void MergeFunctions::remove(Function *F) {
834  // We need to make sure we remove F, not a function "equal" to F per the
835  // function equality comparator.
836  //
837  // The special "lookup only" ComparableFunction bypasses the expensive
838  // function comparison in favour of a pointer comparison on the underlying
839  // Function*'s.
840  ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
841  if (FnSet.erase(CF)) {
842    DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
843    Deferred.push_back(F);
844  }
845}
846
847// For each instruction used by the value, remove() the function that contains
848// the instruction. This should happen right before a call to RAUW.
849void MergeFunctions::removeUsers(Value *V) {
850  std::vector<Value *> Worklist;
851  Worklist.push_back(V);
852  while (!Worklist.empty()) {
853    Value *V = Worklist.back();
854    Worklist.pop_back();
855
856    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
857         UI != UE; ++UI) {
858      Use &U = UI.getUse();
859      if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
860        remove(I->getParent()->getParent());
861      } else if (isa<GlobalValue>(U.getUser())) {
862        // do nothing
863      } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
864        for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
865             CUI != CUE; ++CUI)
866          Worklist.push_back(*CUI);
867      }
868    }
869  }
870}
871