MergeFunctions.cpp revision aa76e9e2cf50af190de90bc778b7f7e42ef9ceff
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found the functions are folded. If both functions are
21// overridable, we move the functionality into a new internal function and
22// leave two overridable thunks to it.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * virtual functions.
29//
30// Many functions have their address taken by the virtual function table for
31// the object they belong to. However, as long as it's only used for a lookup
32// and call, this is irrelevant, and we'd like to fold such functions.
33//
34// * switch from n^2 pair-wise comparisons to an n-way comparison for each
35// bucket.
36//
37// * be smarter about bitcasts.
38//
39// In order to fold functions, we will sometimes add either bitcast instructions
40// or bitcast constant expressions. Unfortunately, this can confound further
41// analysis since the two functions differ where one has a bitcast and the
42// other doesn't. We should learn to look through bitcasts.
43//
44//===----------------------------------------------------------------------===//
45
46#define DEBUG_TYPE "mergefunc"
47#include "llvm/Transforms/IPO.h"
48#include "llvm/Constants.h"
49#include "llvm/IRBuilder.h"
50#include "llvm/InlineAsm.h"
51#include "llvm/Instructions.h"
52#include "llvm/LLVMContext.h"
53#include "llvm/Module.h"
54#include "llvm/Operator.h"
55#include "llvm/Pass.h"
56#include "llvm/ADT/DenseSet.h"
57#include "llvm/ADT/FoldingSet.h"
58#include "llvm/ADT/STLExtras.h"
59#include "llvm/ADT/SmallSet.h"
60#include "llvm/ADT/Statistic.h"
61#include "llvm/Support/CallSite.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/ValueHandle.h"
65#include "llvm/Support/raw_ostream.h"
66#include "llvm/DataLayout.h"
67#include <vector>
68using namespace llvm;
69
70STATISTIC(NumFunctionsMerged, "Number of functions merged");
71STATISTIC(NumThunksWritten, "Number of thunks generated");
72STATISTIC(NumAliasesWritten, "Number of aliases generated");
73STATISTIC(NumDoubleWeak, "Number of new functions created");
74
75/// Creates a hash-code for the function which is the same for any two
76/// functions that will compare equal, without looking at the instructions
77/// inside the function.
78static unsigned profileFunction(const Function *F) {
79  FunctionType *FTy = F->getFunctionType();
80
81  FoldingSetNodeID ID;
82  ID.AddInteger(F->size());
83  ID.AddInteger(F->getCallingConv());
84  ID.AddBoolean(F->hasGC());
85  ID.AddBoolean(FTy->isVarArg());
86  ID.AddInteger(FTy->getReturnType()->getTypeID());
87  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
88    ID.AddInteger(FTy->getParamType(i)->getTypeID());
89  return ID.ComputeHash();
90}
91
92namespace {
93
94/// ComparableFunction - A struct that pairs together functions with a
95/// DataLayout so that we can keep them together as elements in the DenseSet.
96class ComparableFunction {
97public:
98  static const ComparableFunction EmptyKey;
99  static const ComparableFunction TombstoneKey;
100  static DataLayout * const LookupOnly;
101
102  ComparableFunction(Function *Func, DataLayout *TD)
103    : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
104
105  Function *getFunc() const { return Func; }
106  unsigned getHash() const { return Hash; }
107  DataLayout *getTD() const { return TD; }
108
109  // Drops AssertingVH reference to the function. Outside of debug mode, this
110  // does nothing.
111  void release() {
112    assert(Func &&
113           "Attempted to release function twice, or release empty/tombstone!");
114    Func = NULL;
115  }
116
117private:
118  explicit ComparableFunction(unsigned Hash)
119    : Func(NULL), Hash(Hash), TD(NULL) {}
120
121  AssertingVH<Function> Func;
122  unsigned Hash;
123  DataLayout *TD;
124};
125
126const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
127const ComparableFunction ComparableFunction::TombstoneKey =
128    ComparableFunction(1);
129DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1);
130
131}
132
133namespace llvm {
134  template <>
135  struct DenseMapInfo<ComparableFunction> {
136    static ComparableFunction getEmptyKey() {
137      return ComparableFunction::EmptyKey;
138    }
139    static ComparableFunction getTombstoneKey() {
140      return ComparableFunction::TombstoneKey;
141    }
142    static unsigned getHashValue(const ComparableFunction &CF) {
143      return CF.getHash();
144    }
145    static bool isEqual(const ComparableFunction &LHS,
146                        const ComparableFunction &RHS);
147  };
148}
149
150namespace {
151
152/// FunctionComparator - Compares two functions to determine whether or not
153/// they will generate machine code with the same behaviour. DataLayout is
154/// used if available. The comparator always fails conservatively (erring on the
155/// side of claiming that two functions are different).
156class FunctionComparator {
157public:
158  FunctionComparator(const DataLayout *TD, const Function *F1,
159                     const Function *F2)
160    : F1(F1), F2(F2), TD(TD) {}
161
162  /// Test whether the two functions have equivalent behaviour.
163  bool compare();
164
165private:
166  /// Test whether two basic blocks have equivalent behaviour.
167  bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
168
169  /// Assign or look up previously assigned numbers for the two values, and
170  /// return whether the numbers are equal. Numbers are assigned in the order
171  /// visited.
172  bool enumerate(const Value *V1, const Value *V2);
173
174  /// Compare two Instructions for equivalence, similar to
175  /// Instruction::isSameOperationAs but with modifications to the type
176  /// comparison.
177  bool isEquivalentOperation(const Instruction *I1,
178                             const Instruction *I2) const;
179
180  /// Compare two GEPs for equivalent pointer arithmetic.
181  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
182  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
183                       const GetElementPtrInst *GEP2) {
184    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
185  }
186
187  /// Compare two Types, treating all pointer types as equal.
188  bool isEquivalentType(Type *Ty1, Type *Ty2) const;
189
190  // The two functions undergoing comparison.
191  const Function *F1, *F2;
192
193  const DataLayout *TD;
194
195  DenseMap<const Value *, const Value *> id_map;
196  DenseSet<const Value *> seen_values;
197};
198
199}
200
201// Any two pointers in the same address space are equivalent, intptr_t and
202// pointers are equivalent. Otherwise, standard type equivalence rules apply.
203bool FunctionComparator::isEquivalentType(Type *Ty1,
204                                          Type *Ty2) const {
205  if (Ty1 == Ty2)
206    return true;
207  if (Ty1->getTypeID() != Ty2->getTypeID()) {
208    if (TD) {
209      if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ty1)) return true;
210      if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ty2)) return true;
211    }
212    return false;
213  }
214
215  switch (Ty1->getTypeID()) {
216  default:
217    llvm_unreachable("Unknown type!");
218    // Fall through in Release mode.
219  case Type::IntegerTyID:
220  case Type::VectorTyID:
221    // Ty1 == Ty2 would have returned true earlier.
222    return false;
223
224  case Type::VoidTyID:
225  case Type::FloatTyID:
226  case Type::DoubleTyID:
227  case Type::X86_FP80TyID:
228  case Type::FP128TyID:
229  case Type::PPC_FP128TyID:
230  case Type::LabelTyID:
231  case Type::MetadataTyID:
232    return true;
233
234  case Type::PointerTyID: {
235    PointerType *PTy1 = cast<PointerType>(Ty1);
236    PointerType *PTy2 = cast<PointerType>(Ty2);
237    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
238  }
239
240  case Type::StructTyID: {
241    StructType *STy1 = cast<StructType>(Ty1);
242    StructType *STy2 = cast<StructType>(Ty2);
243    if (STy1->getNumElements() != STy2->getNumElements())
244      return false;
245
246    if (STy1->isPacked() != STy2->isPacked())
247      return false;
248
249    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
250      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
251        return false;
252    }
253    return true;
254  }
255
256  case Type::FunctionTyID: {
257    FunctionType *FTy1 = cast<FunctionType>(Ty1);
258    FunctionType *FTy2 = cast<FunctionType>(Ty2);
259    if (FTy1->getNumParams() != FTy2->getNumParams() ||
260        FTy1->isVarArg() != FTy2->isVarArg())
261      return false;
262
263    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
264      return false;
265
266    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
267      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
268        return false;
269    }
270    return true;
271  }
272
273  case Type::ArrayTyID: {
274    ArrayType *ATy1 = cast<ArrayType>(Ty1);
275    ArrayType *ATy2 = cast<ArrayType>(Ty2);
276    return ATy1->getNumElements() == ATy2->getNumElements() &&
277           isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
278  }
279  }
280}
281
282// Determine whether the two operations are the same except that pointer-to-A
283// and pointer-to-B are equivalent. This should be kept in sync with
284// Instruction::isSameOperationAs.
285bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
286                                               const Instruction *I2) const {
287  // Differences from Instruction::isSameOperationAs:
288  //  * replace type comparison with calls to isEquivalentType.
289  //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
290  //  * because of the above, we don't test for the tail bit on calls later on
291  if (I1->getOpcode() != I2->getOpcode() ||
292      I1->getNumOperands() != I2->getNumOperands() ||
293      !isEquivalentType(I1->getType(), I2->getType()) ||
294      !I1->hasSameSubclassOptionalData(I2))
295    return false;
296
297  // We have two instructions of identical opcode and #operands.  Check to see
298  // if all operands are the same type
299  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
300    if (!isEquivalentType(I1->getOperand(i)->getType(),
301                          I2->getOperand(i)->getType()))
302      return false;
303
304  // Check special state that is a part of some instructions.
305  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
306    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
307           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
308           LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
309           LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
310  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
311    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
312           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
313           SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
314           SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
315  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
316    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
317  if (const CallInst *CI = dyn_cast<CallInst>(I1))
318    return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
319           CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
320  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
321    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
322           CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
323  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
324    return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
325  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
326    return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
327  if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
328    return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
329           FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
330  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
331    return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
332           CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
333           CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
334  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
335    return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
336           RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
337           RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
338           RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
339
340  return true;
341}
342
343// Determine whether two GEP operations perform the same underlying arithmetic.
344bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
345                                         const GEPOperator *GEP2) {
346  // When we have target data, we can reduce the GEP down to the value in bytes
347  // added to the address.
348  if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
349    SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
350    SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
351    uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
352                                            Indices1);
353    uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
354                                            Indices2);
355    return Offset1 == Offset2;
356  }
357
358  if (GEP1->getPointerOperand()->getType() !=
359      GEP2->getPointerOperand()->getType())
360    return false;
361
362  if (GEP1->getNumOperands() != GEP2->getNumOperands())
363    return false;
364
365  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
366    if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
367      return false;
368  }
369
370  return true;
371}
372
373// Compare two values used by the two functions under pair-wise comparison. If
374// this is the first time the values are seen, they're added to the mapping so
375// that we will detect mismatches on next use.
376bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
377  // Check for function @f1 referring to itself and function @f2 referring to
378  // itself, or referring to each other, or both referring to either of them.
379  // They're all equivalent if the two functions are otherwise equivalent.
380  if (V1 == F1 && V2 == F2)
381    return true;
382  if (V1 == F2 && V2 == F1)
383    return true;
384
385  if (const Constant *C1 = dyn_cast<Constant>(V1)) {
386    if (V1 == V2) return true;
387    const Constant *C2 = dyn_cast<Constant>(V2);
388    if (!C2) return false;
389    // TODO: constant expressions with GEP or references to F1 or F2.
390    if (C1->isNullValue() && C2->isNullValue() &&
391        isEquivalentType(C1->getType(), C2->getType()))
392      return true;
393    // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
394    // then they must have equal bit patterns.
395    return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
396      C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
397  }
398
399  if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
400    return V1 == V2;
401
402  // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
403  // check whether it's equal to V2. When there is no mapping then we need to
404  // ensure that V2 isn't already equivalent to something else. For this
405  // purpose, we track the V2 values in a set.
406
407  const Value *&map_elem = id_map[V1];
408  if (map_elem)
409    return map_elem == V2;
410  if (!seen_values.insert(V2).second)
411    return false;
412  map_elem = V2;
413  return true;
414}
415
416// Test whether two basic blocks have equivalent behaviour.
417bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
418  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
419  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
420
421  do {
422    if (!enumerate(F1I, F2I))
423      return false;
424
425    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
426      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
427      if (!GEP2)
428        return false;
429
430      if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
431        return false;
432
433      if (!isEquivalentGEP(GEP1, GEP2))
434        return false;
435    } else {
436      if (!isEquivalentOperation(F1I, F2I))
437        return false;
438
439      assert(F1I->getNumOperands() == F2I->getNumOperands());
440      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
441        Value *OpF1 = F1I->getOperand(i);
442        Value *OpF2 = F2I->getOperand(i);
443
444        if (!enumerate(OpF1, OpF2))
445          return false;
446
447        if (OpF1->getValueID() != OpF2->getValueID() ||
448            !isEquivalentType(OpF1->getType(), OpF2->getType()))
449          return false;
450      }
451    }
452
453    ++F1I, ++F2I;
454  } while (F1I != F1E && F2I != F2E);
455
456  return F1I == F1E && F2I == F2E;
457}
458
459// Test whether the two functions have equivalent behaviour.
460bool FunctionComparator::compare() {
461  // We need to recheck everything, but check the things that weren't included
462  // in the hash first.
463
464  if (F1->getAttributes() != F2->getAttributes())
465    return false;
466
467  if (F1->hasGC() != F2->hasGC())
468    return false;
469
470  if (F1->hasGC() && F1->getGC() != F2->getGC())
471    return false;
472
473  if (F1->hasSection() != F2->hasSection())
474    return false;
475
476  if (F1->hasSection() && F1->getSection() != F2->getSection())
477    return false;
478
479  if (F1->isVarArg() != F2->isVarArg())
480    return false;
481
482  // TODO: if it's internal and only used in direct calls, we could handle this
483  // case too.
484  if (F1->getCallingConv() != F2->getCallingConv())
485    return false;
486
487  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
488    return false;
489
490  assert(F1->arg_size() == F2->arg_size() &&
491         "Identically typed functions have different numbers of args!");
492
493  // Visit the arguments so that they get enumerated in the order they're
494  // passed in.
495  for (Function::const_arg_iterator f1i = F1->arg_begin(),
496         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
497    if (!enumerate(f1i, f2i))
498      llvm_unreachable("Arguments repeat!");
499  }
500
501  // We do a CFG-ordered walk since the actual ordering of the blocks in the
502  // linked list is immaterial. Our walk starts at the entry block for both
503  // functions, then takes each block from each terminator in order. As an
504  // artifact, this also means that unreachable blocks are ignored.
505  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
506  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
507
508  F1BBs.push_back(&F1->getEntryBlock());
509  F2BBs.push_back(&F2->getEntryBlock());
510
511  VisitedBBs.insert(F1BBs[0]);
512  while (!F1BBs.empty()) {
513    const BasicBlock *F1BB = F1BBs.pop_back_val();
514    const BasicBlock *F2BB = F2BBs.pop_back_val();
515
516    if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
517      return false;
518
519    const TerminatorInst *F1TI = F1BB->getTerminator();
520    const TerminatorInst *F2TI = F2BB->getTerminator();
521
522    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
523    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
524      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
525        continue;
526
527      F1BBs.push_back(F1TI->getSuccessor(i));
528      F2BBs.push_back(F2TI->getSuccessor(i));
529    }
530  }
531  return true;
532}
533
534namespace {
535
536/// MergeFunctions finds functions which will generate identical machine code,
537/// by considering all pointer types to be equivalent. Once identified,
538/// MergeFunctions will fold them by replacing a call to one to a call to a
539/// bitcast of the other.
540///
541class MergeFunctions : public ModulePass {
542public:
543  static char ID;
544  MergeFunctions()
545    : ModulePass(ID), HasGlobalAliases(false) {
546    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
547  }
548
549  bool runOnModule(Module &M);
550
551private:
552  typedef DenseSet<ComparableFunction> FnSetType;
553
554  /// A work queue of functions that may have been modified and should be
555  /// analyzed again.
556  std::vector<WeakVH> Deferred;
557
558  /// Insert a ComparableFunction into the FnSet, or merge it away if it's
559  /// equal to one that's already present.
560  bool insert(ComparableFunction &NewF);
561
562  /// Remove a Function from the FnSet and queue it up for a second sweep of
563  /// analysis.
564  void remove(Function *F);
565
566  /// Find the functions that use this Value and remove them from FnSet and
567  /// queue the functions.
568  void removeUsers(Value *V);
569
570  /// Replace all direct calls of Old with calls of New. Will bitcast New if
571  /// necessary to make types match.
572  void replaceDirectCallers(Function *Old, Function *New);
573
574  /// Merge two equivalent functions. Upon completion, G may be deleted, or may
575  /// be converted into a thunk. In either case, it should never be visited
576  /// again.
577  void mergeTwoFunctions(Function *F, Function *G);
578
579  /// Replace G with a thunk or an alias to F. Deletes G.
580  void writeThunkOrAlias(Function *F, Function *G);
581
582  /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
583  /// of G with bitcast(F). Deletes G.
584  void writeThunk(Function *F, Function *G);
585
586  /// Replace G with an alias to F. Deletes G.
587  void writeAlias(Function *F, Function *G);
588
589  /// The set of all distinct functions. Use the insert() and remove() methods
590  /// to modify it.
591  FnSetType FnSet;
592
593  /// DataLayout for more accurate GEP comparisons. May be NULL.
594  DataLayout *TD;
595
596  /// Whether or not the target supports global aliases.
597  bool HasGlobalAliases;
598};
599
600}  // end anonymous namespace
601
602char MergeFunctions::ID = 0;
603INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
604
605ModulePass *llvm::createMergeFunctionsPass() {
606  return new MergeFunctions();
607}
608
609bool MergeFunctions::runOnModule(Module &M) {
610  bool Changed = false;
611  TD = getAnalysisIfAvailable<DataLayout>();
612
613  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
614    if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
615      Deferred.push_back(WeakVH(I));
616  }
617  FnSet.resize(Deferred.size());
618
619  do {
620    std::vector<WeakVH> Worklist;
621    Deferred.swap(Worklist);
622
623    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
624    DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
625
626    // Insert only strong functions and merge them. Strong function merging
627    // always deletes one of them.
628    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
629           E = Worklist.end(); I != E; ++I) {
630      if (!*I) continue;
631      Function *F = cast<Function>(*I);
632      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
633          !F->mayBeOverridden()) {
634        ComparableFunction CF = ComparableFunction(F, TD);
635        Changed |= insert(CF);
636      }
637    }
638
639    // Insert only weak functions and merge them. By doing these second we
640    // create thunks to the strong function when possible. When two weak
641    // functions are identical, we create a new strong function with two weak
642    // weak thunks to it which are identical but not mergable.
643    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
644           E = Worklist.end(); I != E; ++I) {
645      if (!*I) continue;
646      Function *F = cast<Function>(*I);
647      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
648          F->mayBeOverridden()) {
649        ComparableFunction CF = ComparableFunction(F, TD);
650        Changed |= insert(CF);
651      }
652    }
653    DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
654  } while (!Deferred.empty());
655
656  FnSet.clear();
657
658  return Changed;
659}
660
661bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
662                                               const ComparableFunction &RHS) {
663  if (LHS.getFunc() == RHS.getFunc() &&
664      LHS.getHash() == RHS.getHash())
665    return true;
666  if (!LHS.getFunc() || !RHS.getFunc())
667    return false;
668
669  // One of these is a special "underlying pointer comparison only" object.
670  if (LHS.getTD() == ComparableFunction::LookupOnly ||
671      RHS.getTD() == ComparableFunction::LookupOnly)
672    return false;
673
674  assert(LHS.getTD() == RHS.getTD() &&
675         "Comparing functions for different targets");
676
677  return FunctionComparator(LHS.getTD(), LHS.getFunc(),
678                            RHS.getFunc()).compare();
679}
680
681// Replace direct callers of Old with New.
682void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
683  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
684  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
685       UI != UE;) {
686    Value::use_iterator TheIter = UI;
687    ++UI;
688    CallSite CS(*TheIter);
689    if (CS && CS.isCallee(TheIter)) {
690      remove(CS.getInstruction()->getParent()->getParent());
691      TheIter.getUse().set(BitcastNew);
692    }
693  }
694}
695
696// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
697void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
698  if (HasGlobalAliases && G->hasUnnamedAddr()) {
699    if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
700        G->hasWeakLinkage()) {
701      writeAlias(F, G);
702      return;
703    }
704  }
705
706  writeThunk(F, G);
707}
708
709// Replace G with a simple tail call to bitcast(F). Also replace direct uses
710// of G with bitcast(F). Deletes G.
711void MergeFunctions::writeThunk(Function *F, Function *G) {
712  if (!G->mayBeOverridden()) {
713    // Redirect direct callers of G to F.
714    replaceDirectCallers(G, F);
715  }
716
717  // If G was internal then we may have replaced all uses of G with F. If so,
718  // stop here and delete G. There's no need for a thunk.
719  if (G->hasLocalLinkage() && G->use_empty()) {
720    G->eraseFromParent();
721    return;
722  }
723
724  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
725                                    G->getParent());
726  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
727  IRBuilder<false> Builder(BB);
728
729  SmallVector<Value *, 16> Args;
730  unsigned i = 0;
731  FunctionType *FFTy = F->getFunctionType();
732  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
733       AI != AE; ++AI) {
734    Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
735    ++i;
736  }
737
738  CallInst *CI = Builder.CreateCall(F, Args);
739  CI->setTailCall();
740  CI->setCallingConv(F->getCallingConv());
741  if (NewG->getReturnType()->isVoidTy()) {
742    Builder.CreateRetVoid();
743  } else {
744    Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
745  }
746
747  NewG->copyAttributesFrom(G);
748  NewG->takeName(G);
749  removeUsers(G);
750  G->replaceAllUsesWith(NewG);
751  G->eraseFromParent();
752
753  DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
754  ++NumThunksWritten;
755}
756
757// Replace G with an alias to F and delete G.
758void MergeFunctions::writeAlias(Function *F, Function *G) {
759  Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
760  GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
761                                    BitcastF, G->getParent());
762  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
763  GA->takeName(G);
764  GA->setVisibility(G->getVisibility());
765  removeUsers(G);
766  G->replaceAllUsesWith(GA);
767  G->eraseFromParent();
768
769  DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
770  ++NumAliasesWritten;
771}
772
773// Merge two equivalent functions. Upon completion, Function G is deleted.
774void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
775  if (F->mayBeOverridden()) {
776    assert(G->mayBeOverridden());
777
778    if (HasGlobalAliases) {
779      // Make them both thunks to the same internal function.
780      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
781                                     F->getParent());
782      H->copyAttributesFrom(F);
783      H->takeName(F);
784      removeUsers(F);
785      F->replaceAllUsesWith(H);
786
787      unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
788
789      writeAlias(F, G);
790      writeAlias(F, H);
791
792      F->setAlignment(MaxAlignment);
793      F->setLinkage(GlobalValue::PrivateLinkage);
794    } else {
795      // We can't merge them. Instead, pick one and update all direct callers
796      // to call it and hope that we improve the instruction cache hit rate.
797      replaceDirectCallers(G, F);
798    }
799
800    ++NumDoubleWeak;
801  } else {
802    writeThunkOrAlias(F, G);
803  }
804
805  ++NumFunctionsMerged;
806}
807
808// Insert a ComparableFunction into the FnSet, or merge it away if equal to one
809// that was already inserted.
810bool MergeFunctions::insert(ComparableFunction &NewF) {
811  std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
812  if (Result.second) {
813    DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
814    return false;
815  }
816
817  const ComparableFunction &OldF = *Result.first;
818
819  // Never thunk a strong function to a weak function.
820  assert(!OldF.getFunc()->mayBeOverridden() ||
821         NewF.getFunc()->mayBeOverridden());
822
823  DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
824               << NewF.getFunc()->getName() << '\n');
825
826  Function *DeleteF = NewF.getFunc();
827  NewF.release();
828  mergeTwoFunctions(OldF.getFunc(), DeleteF);
829  return true;
830}
831
832// Remove a function from FnSet. If it was already in FnSet, add it to Deferred
833// so that we'll look at it in the next round.
834void MergeFunctions::remove(Function *F) {
835  // We need to make sure we remove F, not a function "equal" to F per the
836  // function equality comparator.
837  //
838  // The special "lookup only" ComparableFunction bypasses the expensive
839  // function comparison in favour of a pointer comparison on the underlying
840  // Function*'s.
841  ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
842  if (FnSet.erase(CF)) {
843    DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
844    Deferred.push_back(F);
845  }
846}
847
848// For each instruction used by the value, remove() the function that contains
849// the instruction. This should happen right before a call to RAUW.
850void MergeFunctions::removeUsers(Value *V) {
851  std::vector<Value *> Worklist;
852  Worklist.push_back(V);
853  while (!Worklist.empty()) {
854    Value *V = Worklist.back();
855    Worklist.pop_back();
856
857    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
858         UI != UE; ++UI) {
859      Use &U = UI.getUse();
860      if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
861        remove(I->getParent()->getParent());
862      } else if (isa<GlobalValue>(U.getUser())) {
863        // do nothing
864      } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
865        for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
866             CUI != CUE; ++CUI)
867          Worklist.push_back(*CUI);
868      }
869    }
870  }
871}
872