MemCpyOptimizer.cpp revision 1d0be15f89cb5056e20e2d24faa8d6afb1573bca
1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Instructions.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/MemoryDependenceAnalysis.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Target/TargetData.h"
28#include <list>
29using namespace llvm;
30
31STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
32STATISTIC(NumMemSetInfer, "Number of memsets inferred");
33
34/// isBytewiseValue - If the specified value can be set by repeating the same
35/// byte in memory, return the i8 value that it is represented with.  This is
36/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
37/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
38/// byte store (e.g. i16 0x1234), return null.
39static Value *isBytewiseValue(Value *V, LLVMContext& Context) {
40  // All byte-wide stores are splatable, even of arbitrary variables.
41  if (V->getType() == Type::getInt8Ty(Context)) return V;
42
43  // Constant float and double values can be handled as integer values if the
44  // corresponding integer value is "byteable".  An important case is 0.0.
45  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
46    if (CFP->getType() == Type::getFloatTy(Context))
47      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(Context));
48    if (CFP->getType() == Type::getDoubleTy(Context))
49      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(Context));
50    // Don't handle long double formats, which have strange constraints.
51  }
52
53  // We can handle constant integers that are power of two in size and a
54  // multiple of 8 bits.
55  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
56    unsigned Width = CI->getBitWidth();
57    if (isPowerOf2_32(Width) && Width > 8) {
58      // We can handle this value if the recursive binary decomposition is the
59      // same at all levels.
60      APInt Val = CI->getValue();
61      APInt Val2;
62      while (Val.getBitWidth() != 8) {
63        unsigned NextWidth = Val.getBitWidth()/2;
64        Val2  = Val.lshr(NextWidth);
65        Val2.trunc(Val.getBitWidth()/2);
66        Val.trunc(Val.getBitWidth()/2);
67
68        // If the top/bottom halves aren't the same, reject it.
69        if (Val != Val2)
70          return 0;
71      }
72      return ConstantInt::get(Context, Val);
73    }
74  }
75
76  // Conceptually, we could handle things like:
77  //   %a = zext i8 %X to i16
78  //   %b = shl i16 %a, 8
79  //   %c = or i16 %a, %b
80  // but until there is an example that actually needs this, it doesn't seem
81  // worth worrying about.
82  return 0;
83}
84
85static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
86                                  bool &VariableIdxFound, TargetData &TD) {
87  // Skip over the first indices.
88  gep_type_iterator GTI = gep_type_begin(GEP);
89  for (unsigned i = 1; i != Idx; ++i, ++GTI)
90    /*skip along*/;
91
92  // Compute the offset implied by the rest of the indices.
93  int64_t Offset = 0;
94  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
95    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
96    if (OpC == 0)
97      return VariableIdxFound = true;
98    if (OpC->isZero()) continue;  // No offset.
99
100    // Handle struct indices, which add their field offset to the pointer.
101    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
102      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
103      continue;
104    }
105
106    // Otherwise, we have a sequential type like an array or vector.  Multiply
107    // the index by the ElementSize.
108    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
109    Offset += Size*OpC->getSExtValue();
110  }
111
112  return Offset;
113}
114
115/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
116/// constant offset, and return that constant offset.  For example, Ptr1 might
117/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
118static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
119                            TargetData &TD) {
120  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
121  // base.  After that base, they may have some number of common (and
122  // potentially variable) indices.  After that they handle some constant
123  // offset, which determines their offset from each other.  At this point, we
124  // handle no other case.
125  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
126  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
127  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
128    return false;
129
130  // Skip any common indices and track the GEP types.
131  unsigned Idx = 1;
132  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
133    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
134      break;
135
136  bool VariableIdxFound = false;
137  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
138  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
139  if (VariableIdxFound) return false;
140
141  Offset = Offset2-Offset1;
142  return true;
143}
144
145
146/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
147/// This allows us to analyze stores like:
148///   store 0 -> P+1
149///   store 0 -> P+0
150///   store 0 -> P+3
151///   store 0 -> P+2
152/// which sometimes happens with stores to arrays of structs etc.  When we see
153/// the first store, we make a range [1, 2).  The second store extends the range
154/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
155/// two ranges into [0, 3) which is memset'able.
156namespace {
157struct MemsetRange {
158  // Start/End - A semi range that describes the span that this range covers.
159  // The range is closed at the start and open at the end: [Start, End).
160  int64_t Start, End;
161
162  /// StartPtr - The getelementptr instruction that points to the start of the
163  /// range.
164  Value *StartPtr;
165
166  /// Alignment - The known alignment of the first store.
167  unsigned Alignment;
168
169  /// TheStores - The actual stores that make up this range.
170  SmallVector<StoreInst*, 16> TheStores;
171
172  bool isProfitableToUseMemset(const TargetData &TD) const;
173
174};
175} // end anon namespace
176
177bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
178  // If we found more than 8 stores to merge or 64 bytes, use memset.
179  if (TheStores.size() >= 8 || End-Start >= 64) return true;
180
181  // Assume that the code generator is capable of merging pairs of stores
182  // together if it wants to.
183  if (TheStores.size() <= 2) return false;
184
185  // If we have fewer than 8 stores, it can still be worthwhile to do this.
186  // For example, merging 4 i8 stores into an i32 store is useful almost always.
187  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
188  // memset will be split into 2 32-bit stores anyway) and doing so can
189  // pessimize the llvm optimizer.
190  //
191  // Since we don't have perfect knowledge here, make some assumptions: assume
192  // the maximum GPR width is the same size as the pointer size and assume that
193  // this width can be stored.  If so, check to see whether we will end up
194  // actually reducing the number of stores used.
195  unsigned Bytes = unsigned(End-Start);
196  unsigned NumPointerStores = Bytes/TD.getPointerSize();
197
198  // Assume the remaining bytes if any are done a byte at a time.
199  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
200
201  // If we will reduce the # stores (according to this heuristic), do the
202  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
203  // etc.
204  return TheStores.size() > NumPointerStores+NumByteStores;
205}
206
207
208namespace {
209class MemsetRanges {
210  /// Ranges - A sorted list of the memset ranges.  We use std::list here
211  /// because each element is relatively large and expensive to copy.
212  std::list<MemsetRange> Ranges;
213  typedef std::list<MemsetRange>::iterator range_iterator;
214  TargetData &TD;
215public:
216  MemsetRanges(TargetData &td) : TD(td) {}
217
218  typedef std::list<MemsetRange>::const_iterator const_iterator;
219  const_iterator begin() const { return Ranges.begin(); }
220  const_iterator end() const { return Ranges.end(); }
221  bool empty() const { return Ranges.empty(); }
222
223  void addStore(int64_t OffsetFromFirst, StoreInst *SI);
224};
225
226} // end anon namespace
227
228
229/// addStore - Add a new store to the MemsetRanges data structure.  This adds a
230/// new range for the specified store at the specified offset, merging into
231/// existing ranges as appropriate.
232void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
233  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
234
235  // Do a linear search of the ranges to see if this can be joined and/or to
236  // find the insertion point in the list.  We keep the ranges sorted for
237  // simplicity here.  This is a linear search of a linked list, which is ugly,
238  // however the number of ranges is limited, so this won't get crazy slow.
239  range_iterator I = Ranges.begin(), E = Ranges.end();
240
241  while (I != E && Start > I->End)
242    ++I;
243
244  // We now know that I == E, in which case we didn't find anything to merge
245  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
246  // to insert a new range.  Handle this now.
247  if (I == E || End < I->Start) {
248    MemsetRange &R = *Ranges.insert(I, MemsetRange());
249    R.Start        = Start;
250    R.End          = End;
251    R.StartPtr     = SI->getPointerOperand();
252    R.Alignment    = SI->getAlignment();
253    R.TheStores.push_back(SI);
254    return;
255  }
256
257  // This store overlaps with I, add it.
258  I->TheStores.push_back(SI);
259
260  // At this point, we may have an interval that completely contains our store.
261  // If so, just add it to the interval and return.
262  if (I->Start <= Start && I->End >= End)
263    return;
264
265  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
266  // but is not entirely contained within the range.
267
268  // See if the range extends the start of the range.  In this case, it couldn't
269  // possibly cause it to join the prior range, because otherwise we would have
270  // stopped on *it*.
271  if (Start < I->Start) {
272    I->Start = Start;
273    I->StartPtr = SI->getPointerOperand();
274  }
275
276  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
277  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
278  // End.
279  if (End > I->End) {
280    I->End = End;
281    range_iterator NextI = I;
282    while (++NextI != E && End >= NextI->Start) {
283      // Merge the range in.
284      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
285      if (NextI->End > I->End)
286        I->End = NextI->End;
287      Ranges.erase(NextI);
288      NextI = I;
289    }
290  }
291}
292
293//===----------------------------------------------------------------------===//
294//                         MemCpyOpt Pass
295//===----------------------------------------------------------------------===//
296
297namespace {
298
299  class VISIBILITY_HIDDEN MemCpyOpt : public FunctionPass {
300    bool runOnFunction(Function &F);
301  public:
302    static char ID; // Pass identification, replacement for typeid
303    MemCpyOpt() : FunctionPass(&ID) {}
304
305  private:
306    // This transformation requires dominator postdominator info
307    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
308      AU.setPreservesCFG();
309      AU.addRequired<DominatorTree>();
310      AU.addRequired<MemoryDependenceAnalysis>();
311      AU.addRequired<AliasAnalysis>();
312      AU.addRequired<TargetData>();
313      AU.addPreserved<AliasAnalysis>();
314      AU.addPreserved<MemoryDependenceAnalysis>();
315      AU.addPreserved<TargetData>();
316    }
317
318    // Helper fuctions
319    bool processStore(StoreInst *SI, BasicBlock::iterator& BBI);
320    bool processMemCpy(MemCpyInst* M);
321    bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C);
322    bool iterateOnFunction(Function &F);
323  };
324
325  char MemCpyOpt::ID = 0;
326}
327
328// createMemCpyOptPass - The public interface to this file...
329FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
330
331static RegisterPass<MemCpyOpt> X("memcpyopt",
332                                 "MemCpy Optimization");
333
334
335
336/// processStore - When GVN is scanning forward over instructions, we look for
337/// some other patterns to fold away.  In particular, this looks for stores to
338/// neighboring locations of memory.  If it sees enough consequtive ones
339/// (currently 4) it attempts to merge them together into a memcpy/memset.
340bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
341  if (SI->isVolatile()) return false;
342
343  // There are two cases that are interesting for this code to handle: memcpy
344  // and memset.  Right now we only handle memset.
345
346  // Ensure that the value being stored is something that can be memset'able a
347  // byte at a time like "0" or "-1" or any width, as well as things like
348  // 0xA0A0A0A0 and 0.0.
349  Value *ByteVal = isBytewiseValue(SI->getOperand(0), SI->getContext());
350  if (!ByteVal)
351    return false;
352
353  TargetData &TD = getAnalysis<TargetData>();
354  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
355  Module *M = SI->getParent()->getParent()->getParent();
356
357  // Okay, so we now have a single store that can be splatable.  Scan to find
358  // all subsequent stores of the same value to offset from the same pointer.
359  // Join these together into ranges, so we can decide whether contiguous blocks
360  // are stored.
361  MemsetRanges Ranges(TD);
362
363  Value *StartPtr = SI->getPointerOperand();
364
365  BasicBlock::iterator BI = SI;
366  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
367    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
368      // If the call is readnone, ignore it, otherwise bail out.  We don't even
369      // allow readonly here because we don't want something like:
370      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
371      if (AA.getModRefBehavior(CallSite::get(BI)) ==
372            AliasAnalysis::DoesNotAccessMemory)
373        continue;
374
375      // TODO: If this is a memset, try to join it in.
376
377      break;
378    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
379      break;
380
381    // If this is a non-store instruction it is fine, ignore it.
382    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
383    if (NextStore == 0) continue;
384
385    // If this is a store, see if we can merge it in.
386    if (NextStore->isVolatile()) break;
387
388    // Check to see if this stored value is of the same byte-splattable value.
389    if (ByteVal != isBytewiseValue(NextStore->getOperand(0),
390                                   NextStore->getContext()))
391      break;
392
393    // Check to see if this store is to a constant offset from the start ptr.
394    int64_t Offset;
395    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, TD))
396      break;
397
398    Ranges.addStore(Offset, NextStore);
399  }
400
401  // If we have no ranges, then we just had a single store with nothing that
402  // could be merged in.  This is a very common case of course.
403  if (Ranges.empty())
404    return false;
405
406  // If we had at least one store that could be merged in, add the starting
407  // store as well.  We try to avoid this unless there is at least something
408  // interesting as a small compile-time optimization.
409  Ranges.addStore(0, SI);
410
411
412  Function *MemSetF = 0;
413
414  // Now that we have full information about ranges, loop over the ranges and
415  // emit memset's for anything big enough to be worthwhile.
416  bool MadeChange = false;
417  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
418       I != E; ++I) {
419    const MemsetRange &Range = *I;
420
421    if (Range.TheStores.size() == 1) continue;
422
423    // If it is profitable to lower this range to memset, do so now.
424    if (!Range.isProfitableToUseMemset(TD))
425      continue;
426
427    // Otherwise, we do want to transform this!  Create a new memset.  We put
428    // the memset right before the first instruction that isn't part of this
429    // memset block.  This ensure that the memset is dominated by any addressing
430    // instruction needed by the start of the block.
431    BasicBlock::iterator InsertPt = BI;
432
433    if (MemSetF == 0) {
434      const Type *Tys[] = {Type::getInt64Ty(SI->getContext())};
435      MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset,
436                                          Tys, 1);
437   }
438
439    // Get the starting pointer of the block.
440    StartPtr = Range.StartPtr;
441
442    // Cast the start ptr to be i8* as memset requires.
443    const Type *i8Ptr =
444          PointerType::getUnqual(Type::getInt8Ty(SI->getContext()));
445    if (StartPtr->getType() != i8Ptr)
446      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
447                                 InsertPt);
448
449    Value *Ops[] = {
450      StartPtr, ByteVal,   // Start, value
451      // size
452      ConstantInt::get(Type::getInt64Ty(SI->getContext()),
453                       Range.End-Range.Start),
454      // align
455      ConstantInt::get(Type::getInt32Ty(SI->getContext()), Range.Alignment)
456    };
457    Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt);
458    DEBUG(cerr << "Replace stores:\n";
459          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
460            cerr << *Range.TheStores[i];
461          cerr << "With: " << *C); C=C;
462
463    // Don't invalidate the iterator
464    BBI = BI;
465
466    // Zap all the stores.
467    for (SmallVector<StoreInst*, 16>::const_iterator SI = Range.TheStores.begin(),
468         SE = Range.TheStores.end(); SI != SE; ++SI)
469      (*SI)->eraseFromParent();
470    ++NumMemSetInfer;
471    MadeChange = true;
472  }
473
474  return MadeChange;
475}
476
477
478/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
479/// and checks for the possibility of a call slot optimization by having
480/// the call write its result directly into the destination of the memcpy.
481bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
482  // The general transformation to keep in mind is
483  //
484  //   call @func(..., src, ...)
485  //   memcpy(dest, src, ...)
486  //
487  // ->
488  //
489  //   memcpy(dest, src, ...)
490  //   call @func(..., dest, ...)
491  //
492  // Since moving the memcpy is technically awkward, we additionally check that
493  // src only holds uninitialized values at the moment of the call, meaning that
494  // the memcpy can be discarded rather than moved.
495
496  // Deliberately get the source and destination with bitcasts stripped away,
497  // because we'll need to do type comparisons based on the underlying type.
498  Value* cpyDest = cpy->getDest();
499  Value* cpySrc = cpy->getSource();
500  CallSite CS = CallSite::get(C);
501
502  // We need to be able to reason about the size of the memcpy, so we require
503  // that it be a constant.
504  ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
505  if (!cpyLength)
506    return false;
507
508  // Require that src be an alloca.  This simplifies the reasoning considerably.
509  AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc);
510  if (!srcAlloca)
511    return false;
512
513  // Check that all of src is copied to dest.
514  TargetData& TD = getAnalysis<TargetData>();
515
516  ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
517  if (!srcArraySize)
518    return false;
519
520  uint64_t srcSize = TD.getTypeAllocSize(srcAlloca->getAllocatedType()) *
521    srcArraySize->getZExtValue();
522
523  if (cpyLength->getZExtValue() < srcSize)
524    return false;
525
526  // Check that accessing the first srcSize bytes of dest will not cause a
527  // trap.  Otherwise the transform is invalid since it might cause a trap
528  // to occur earlier than it otherwise would.
529  if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) {
530    // The destination is an alloca.  Check it is larger than srcSize.
531    ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
532    if (!destArraySize)
533      return false;
534
535    uint64_t destSize = TD.getTypeAllocSize(A->getAllocatedType()) *
536      destArraySize->getZExtValue();
537
538    if (destSize < srcSize)
539      return false;
540  } else if (Argument* A = dyn_cast<Argument>(cpyDest)) {
541    // If the destination is an sret parameter then only accesses that are
542    // outside of the returned struct type can trap.
543    if (!A->hasStructRetAttr())
544      return false;
545
546    const Type* StructTy = cast<PointerType>(A->getType())->getElementType();
547    uint64_t destSize = TD.getTypeAllocSize(StructTy);
548
549    if (destSize < srcSize)
550      return false;
551  } else {
552    return false;
553  }
554
555  // Check that src is not accessed except via the call and the memcpy.  This
556  // guarantees that it holds only undefined values when passed in (so the final
557  // memcpy can be dropped), that it is not read or written between the call and
558  // the memcpy, and that writing beyond the end of it is undefined.
559  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
560                                   srcAlloca->use_end());
561  while (!srcUseList.empty()) {
562    User* UI = srcUseList.back();
563    srcUseList.pop_back();
564
565    if (isa<BitCastInst>(UI)) {
566      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
567           I != E; ++I)
568        srcUseList.push_back(*I);
569    } else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(UI)) {
570      if (G->hasAllZeroIndices())
571        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
572             I != E; ++I)
573          srcUseList.push_back(*I);
574      else
575        return false;
576    } else if (UI != C && UI != cpy) {
577      return false;
578    }
579  }
580
581  // Since we're changing the parameter to the callsite, we need to make sure
582  // that what would be the new parameter dominates the callsite.
583  DominatorTree& DT = getAnalysis<DominatorTree>();
584  if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest))
585    if (!DT.dominates(cpyDestInst, C))
586      return false;
587
588  // In addition to knowing that the call does not access src in some
589  // unexpected manner, for example via a global, which we deduce from
590  // the use analysis, we also need to know that it does not sneakily
591  // access dest.  We rely on AA to figure this out for us.
592  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
593  if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
594      AliasAnalysis::NoModRef)
595    return false;
596
597  // All the checks have passed, so do the transformation.
598  bool changedArgument = false;
599  for (unsigned i = 0; i < CS.arg_size(); ++i)
600    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
601      if (cpySrc->getType() != cpyDest->getType())
602        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
603                                              cpyDest->getName(), C);
604      changedArgument = true;
605      if (CS.getArgument(i)->getType() != cpyDest->getType())
606        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
607                       CS.getArgument(i)->getType(), cpyDest->getName(), C));
608      else
609        CS.setArgument(i, cpyDest);
610    }
611
612  if (!changedArgument)
613    return false;
614
615  // Drop any cached information about the call, because we may have changed
616  // its dependence information by changing its parameter.
617  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
618  MD.removeInstruction(C);
619
620  // Remove the memcpy
621  MD.removeInstruction(cpy);
622  cpy->eraseFromParent();
623  NumMemCpyInstr++;
624
625  return true;
626}
627
628/// processMemCpy - perform simplication of memcpy's.  If we have memcpy A which
629/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
630/// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
631///  This allows later passes to remove the first memcpy altogether.
632bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
633  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
634
635  // The are two possible optimizations we can do for memcpy:
636  //   a) memcpy-memcpy xform which exposes redundance for DSE
637  //   b) call-memcpy xform for return slot optimization
638  MemDepResult dep = MD.getDependency(M);
639  if (!dep.isClobber())
640    return false;
641  if (!isa<MemCpyInst>(dep.getInst())) {
642    if (CallInst* C = dyn_cast<CallInst>(dep.getInst()))
643      return performCallSlotOptzn(M, C);
644    return false;
645  }
646
647  MemCpyInst* MDep = cast<MemCpyInst>(dep.getInst());
648
649  // We can only transforms memcpy's where the dest of one is the source of the
650  // other
651  if (M->getSource() != MDep->getDest())
652    return false;
653
654  // Second, the length of the memcpy's must be the same, or the preceeding one
655  // must be larger than the following one.
656  ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength());
657  ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength());
658  if (!C1 || !C2)
659    return false;
660
661  uint64_t DepSize = C1->getValue().getZExtValue();
662  uint64_t CpySize = C2->getValue().getZExtValue();
663
664  if (DepSize < CpySize)
665    return false;
666
667  // Finally, we have to make sure that the dest of the second does not
668  // alias the source of the first
669  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
670  if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
671      AliasAnalysis::NoAlias)
672    return false;
673  else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
674           AliasAnalysis::NoAlias)
675    return false;
676  else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
677           != AliasAnalysis::NoAlias)
678    return false;
679
680  // If all checks passed, then we can transform these memcpy's
681  const Type *Tys[1];
682  Tys[0] = M->getLength()->getType();
683  Function* MemCpyFun = Intrinsic::getDeclaration(
684                                 M->getParent()->getParent()->getParent(),
685                                 M->getIntrinsicID(), Tys, 1);
686
687  Value *Args[4] = {
688    M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst()
689  };
690
691  CallInst* C = CallInst::Create(MemCpyFun, Args, Args+4, "", M);
692
693
694  // If C and M don't interfere, then this is a valid transformation.  If they
695  // did, this would mean that the two sources overlap, which would be bad.
696  if (MD.getDependency(C) == dep) {
697    MD.removeInstruction(M);
698    M->eraseFromParent();
699    NumMemCpyInstr++;
700    return true;
701  }
702
703  // Otherwise, there was no point in doing this, so we remove the call we
704  // inserted and act like nothing happened.
705  MD.removeInstruction(C);
706  C->eraseFromParent();
707  return false;
708}
709
710// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
711// function.
712//
713bool MemCpyOpt::runOnFunction(Function& F) {
714
715  bool changed = false;
716  bool shouldContinue = true;
717
718  while (shouldContinue) {
719    shouldContinue = iterateOnFunction(F);
720    changed |= shouldContinue;
721  }
722
723  return changed;
724}
725
726
727// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN
728bool MemCpyOpt::iterateOnFunction(Function &F) {
729  bool changed_function = false;
730
731  // Walk all instruction in the function
732  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
733    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
734         BI != BE;) {
735      // Avoid invalidating the iterator
736      Instruction* I = BI++;
737
738      if (StoreInst *SI = dyn_cast<StoreInst>(I))
739        changed_function |= processStore(SI, BI);
740      else if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
741        changed_function |= processMemCpy(M);
742      }
743    }
744  }
745
746  return changed_function;
747}
748