MemCpyOptimizer.cpp revision 2c39b15073db81d93bb629303915b7d7e5d088dc
1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/IRBuilder.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/MemoryDependenceAnalysis.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/GetElementPtrTypeIterator.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/DataLayout.h"
31#include "llvm/Target/TargetLibraryInfo.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include <list>
34using namespace llvm;
35
36STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
37STATISTIC(NumMemSetInfer, "Number of memsets inferred");
38STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
39STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
40
41static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
42                                  bool &VariableIdxFound, const DataLayout &TD){
43  // Skip over the first indices.
44  gep_type_iterator GTI = gep_type_begin(GEP);
45  for (unsigned i = 1; i != Idx; ++i, ++GTI)
46    /*skip along*/;
47
48  // Compute the offset implied by the rest of the indices.
49  int64_t Offset = 0;
50  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
51    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
52    if (OpC == 0)
53      return VariableIdxFound = true;
54    if (OpC->isZero()) continue;  // No offset.
55
56    // Handle struct indices, which add their field offset to the pointer.
57    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
58      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
59      continue;
60    }
61
62    // Otherwise, we have a sequential type like an array or vector.  Multiply
63    // the index by the ElementSize.
64    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
65    Offset += Size*OpC->getSExtValue();
66  }
67
68  return Offset;
69}
70
71/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
72/// constant offset, and return that constant offset.  For example, Ptr1 might
73/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
74static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
75                            const DataLayout &TD) {
76  Ptr1 = Ptr1->stripPointerCasts();
77  Ptr2 = Ptr2->stripPointerCasts();
78  GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
79  GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
80
81  bool VariableIdxFound = false;
82
83  // If one pointer is a GEP and the other isn't, then see if the GEP is a
84  // constant offset from the base, as in "P" and "gep P, 1".
85  if (GEP1 && GEP2 == 0 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
86    Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
87    return !VariableIdxFound;
88  }
89
90  if (GEP2 && GEP1 == 0 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
91    Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
92    return !VariableIdxFound;
93  }
94
95  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
96  // base.  After that base, they may have some number of common (and
97  // potentially variable) indices.  After that they handle some constant
98  // offset, which determines their offset from each other.  At this point, we
99  // handle no other case.
100  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
101    return false;
102
103  // Skip any common indices and track the GEP types.
104  unsigned Idx = 1;
105  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
106    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
107      break;
108
109  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
110  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
111  if (VariableIdxFound) return false;
112
113  Offset = Offset2-Offset1;
114  return true;
115}
116
117
118/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
119/// This allows us to analyze stores like:
120///   store 0 -> P+1
121///   store 0 -> P+0
122///   store 0 -> P+3
123///   store 0 -> P+2
124/// which sometimes happens with stores to arrays of structs etc.  When we see
125/// the first store, we make a range [1, 2).  The second store extends the range
126/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
127/// two ranges into [0, 3) which is memset'able.
128namespace {
129struct MemsetRange {
130  // Start/End - A semi range that describes the span that this range covers.
131  // The range is closed at the start and open at the end: [Start, End).
132  int64_t Start, End;
133
134  /// StartPtr - The getelementptr instruction that points to the start of the
135  /// range.
136  Value *StartPtr;
137
138  /// Alignment - The known alignment of the first store.
139  unsigned Alignment;
140
141  /// TheStores - The actual stores that make up this range.
142  SmallVector<Instruction*, 16> TheStores;
143
144  bool isProfitableToUseMemset(const DataLayout &TD) const;
145
146};
147} // end anon namespace
148
149bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const {
150  // If we found more than 4 stores to merge or 16 bytes, use memset.
151  if (TheStores.size() >= 4 || End-Start >= 16) return true;
152
153  // If there is nothing to merge, don't do anything.
154  if (TheStores.size() < 2) return false;
155
156  // If any of the stores are a memset, then it is always good to extend the
157  // memset.
158  for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
159    if (!isa<StoreInst>(TheStores[i]))
160      return true;
161
162  // Assume that the code generator is capable of merging pairs of stores
163  // together if it wants to.
164  if (TheStores.size() == 2) return false;
165
166  // If we have fewer than 8 stores, it can still be worthwhile to do this.
167  // For example, merging 4 i8 stores into an i32 store is useful almost always.
168  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
169  // memset will be split into 2 32-bit stores anyway) and doing so can
170  // pessimize the llvm optimizer.
171  //
172  // Since we don't have perfect knowledge here, make some assumptions: assume
173  // the maximum GPR width is the same size as the pointer size and assume that
174  // this width can be stored.  If so, check to see whether we will end up
175  // actually reducing the number of stores used.
176  unsigned Bytes = unsigned(End-Start);
177  unsigned AS = cast<StoreInst>(TheStores[0])->getPointerAddressSpace();
178  unsigned NumPointerStores = Bytes/TD.getPointerSize(AS);
179
180  // Assume the remaining bytes if any are done a byte at a time.
181  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize(AS);
182
183  // If we will reduce the # stores (according to this heuristic), do the
184  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
185  // etc.
186  return TheStores.size() > NumPointerStores+NumByteStores;
187}
188
189
190namespace {
191class MemsetRanges {
192  /// Ranges - A sorted list of the memset ranges.  We use std::list here
193  /// because each element is relatively large and expensive to copy.
194  std::list<MemsetRange> Ranges;
195  typedef std::list<MemsetRange>::iterator range_iterator;
196  const DataLayout &TD;
197public:
198  MemsetRanges(const DataLayout &td) : TD(td) {}
199
200  typedef std::list<MemsetRange>::const_iterator const_iterator;
201  const_iterator begin() const { return Ranges.begin(); }
202  const_iterator end() const { return Ranges.end(); }
203  bool empty() const { return Ranges.empty(); }
204
205  void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
206    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
207      addStore(OffsetFromFirst, SI);
208    else
209      addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
210  }
211
212  void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
213    int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
214
215    addRange(OffsetFromFirst, StoreSize,
216             SI->getPointerOperand(), SI->getAlignment(), SI);
217  }
218
219  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
220    int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
221    addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
222  }
223
224  void addRange(int64_t Start, int64_t Size, Value *Ptr,
225                unsigned Alignment, Instruction *Inst);
226
227};
228
229} // end anon namespace
230
231
232/// addRange - Add a new store to the MemsetRanges data structure.  This adds a
233/// new range for the specified store at the specified offset, merging into
234/// existing ranges as appropriate.
235///
236/// Do a linear search of the ranges to see if this can be joined and/or to
237/// find the insertion point in the list.  We keep the ranges sorted for
238/// simplicity here.  This is a linear search of a linked list, which is ugly,
239/// however the number of ranges is limited, so this won't get crazy slow.
240void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
241                            unsigned Alignment, Instruction *Inst) {
242  int64_t End = Start+Size;
243  range_iterator I = Ranges.begin(), E = Ranges.end();
244
245  while (I != E && Start > I->End)
246    ++I;
247
248  // We now know that I == E, in which case we didn't find anything to merge
249  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
250  // to insert a new range.  Handle this now.
251  if (I == E || End < I->Start) {
252    MemsetRange &R = *Ranges.insert(I, MemsetRange());
253    R.Start        = Start;
254    R.End          = End;
255    R.StartPtr     = Ptr;
256    R.Alignment    = Alignment;
257    R.TheStores.push_back(Inst);
258    return;
259  }
260
261  // This store overlaps with I, add it.
262  I->TheStores.push_back(Inst);
263
264  // At this point, we may have an interval that completely contains our store.
265  // If so, just add it to the interval and return.
266  if (I->Start <= Start && I->End >= End)
267    return;
268
269  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
270  // but is not entirely contained within the range.
271
272  // See if the range extends the start of the range.  In this case, it couldn't
273  // possibly cause it to join the prior range, because otherwise we would have
274  // stopped on *it*.
275  if (Start < I->Start) {
276    I->Start = Start;
277    I->StartPtr = Ptr;
278    I->Alignment = Alignment;
279  }
280
281  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
282  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
283  // End.
284  if (End > I->End) {
285    I->End = End;
286    range_iterator NextI = I;
287    while (++NextI != E && End >= NextI->Start) {
288      // Merge the range in.
289      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
290      if (NextI->End > I->End)
291        I->End = NextI->End;
292      Ranges.erase(NextI);
293      NextI = I;
294    }
295  }
296}
297
298//===----------------------------------------------------------------------===//
299//                         MemCpyOpt Pass
300//===----------------------------------------------------------------------===//
301
302namespace {
303  class MemCpyOpt : public FunctionPass {
304    MemoryDependenceAnalysis *MD;
305    TargetLibraryInfo *TLI;
306    const DataLayout *TD;
307  public:
308    static char ID; // Pass identification, replacement for typeid
309    MemCpyOpt() : FunctionPass(ID) {
310      initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
311      MD = 0;
312      TLI = 0;
313      TD = 0;
314    }
315
316    bool runOnFunction(Function &F);
317
318  private:
319    // This transformation requires dominator postdominator info
320    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
321      AU.setPreservesCFG();
322      AU.addRequired<DominatorTree>();
323      AU.addRequired<MemoryDependenceAnalysis>();
324      AU.addRequired<AliasAnalysis>();
325      AU.addRequired<TargetLibraryInfo>();
326      AU.addPreserved<AliasAnalysis>();
327      AU.addPreserved<MemoryDependenceAnalysis>();
328    }
329
330    // Helper fuctions
331    bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
332    bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
333    bool processMemCpy(MemCpyInst *M);
334    bool processMemMove(MemMoveInst *M);
335    bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
336                              uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
337    bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
338                                       uint64_t MSize);
339    bool processByValArgument(CallSite CS, unsigned ArgNo);
340    Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
341                                      Value *ByteVal);
342
343    bool iterateOnFunction(Function &F);
344  };
345
346  char MemCpyOpt::ID = 0;
347}
348
349// createMemCpyOptPass - The public interface to this file...
350FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
351
352INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
353                      false, false)
354INITIALIZE_PASS_DEPENDENCY(DominatorTree)
355INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
356INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
357INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
358INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
359                    false, false)
360
361/// tryMergingIntoMemset - When scanning forward over instructions, we look for
362/// some other patterns to fold away.  In particular, this looks for stores to
363/// neighboring locations of memory.  If it sees enough consecutive ones, it
364/// attempts to merge them together into a memcpy/memset.
365Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
366                                             Value *StartPtr, Value *ByteVal) {
367  if (TD == 0) return 0;
368
369  // Okay, so we now have a single store that can be splatable.  Scan to find
370  // all subsequent stores of the same value to offset from the same pointer.
371  // Join these together into ranges, so we can decide whether contiguous blocks
372  // are stored.
373  MemsetRanges Ranges(*TD);
374
375  BasicBlock::iterator BI = StartInst;
376  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
377    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
378      // If the instruction is readnone, ignore it, otherwise bail out.  We
379      // don't even allow readonly here because we don't want something like:
380      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
381      if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
382        break;
383      continue;
384    }
385
386    if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
387      // If this is a store, see if we can merge it in.
388      if (!NextStore->isSimple()) break;
389
390      // Check to see if this stored value is of the same byte-splattable value.
391      if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
392        break;
393
394      // Check to see if this store is to a constant offset from the start ptr.
395      int64_t Offset;
396      if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
397                           Offset, *TD))
398        break;
399
400      Ranges.addStore(Offset, NextStore);
401    } else {
402      MemSetInst *MSI = cast<MemSetInst>(BI);
403
404      if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
405          !isa<ConstantInt>(MSI->getLength()))
406        break;
407
408      // Check to see if this store is to a constant offset from the start ptr.
409      int64_t Offset;
410      if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD))
411        break;
412
413      Ranges.addMemSet(Offset, MSI);
414    }
415  }
416
417  // If we have no ranges, then we just had a single store with nothing that
418  // could be merged in.  This is a very common case of course.
419  if (Ranges.empty())
420    return 0;
421
422  // If we had at least one store that could be merged in, add the starting
423  // store as well.  We try to avoid this unless there is at least something
424  // interesting as a small compile-time optimization.
425  Ranges.addInst(0, StartInst);
426
427  // If we create any memsets, we put it right before the first instruction that
428  // isn't part of the memset block.  This ensure that the memset is dominated
429  // by any addressing instruction needed by the start of the block.
430  IRBuilder<> Builder(BI);
431
432  // Now that we have full information about ranges, loop over the ranges and
433  // emit memset's for anything big enough to be worthwhile.
434  Instruction *AMemSet = 0;
435  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
436       I != E; ++I) {
437    const MemsetRange &Range = *I;
438
439    if (Range.TheStores.size() == 1) continue;
440
441    // If it is profitable to lower this range to memset, do so now.
442    if (!Range.isProfitableToUseMemset(*TD))
443      continue;
444
445    // Otherwise, we do want to transform this!  Create a new memset.
446    // Get the starting pointer of the block.
447    StartPtr = Range.StartPtr;
448
449    // Determine alignment
450    unsigned Alignment = Range.Alignment;
451    if (Alignment == 0) {
452      Type *EltType =
453        cast<PointerType>(StartPtr->getType())->getElementType();
454      Alignment = TD->getABITypeAlignment(EltType);
455    }
456
457    AMemSet =
458      Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
459
460    DEBUG(dbgs() << "Replace stores:\n";
461          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
462            dbgs() << *Range.TheStores[i] << '\n';
463          dbgs() << "With: " << *AMemSet << '\n');
464
465    if (!Range.TheStores.empty())
466      AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
467
468    // Zap all the stores.
469    for (SmallVector<Instruction*, 16>::const_iterator
470         SI = Range.TheStores.begin(),
471         SE = Range.TheStores.end(); SI != SE; ++SI) {
472      MD->removeInstruction(*SI);
473      (*SI)->eraseFromParent();
474    }
475    ++NumMemSetInfer;
476  }
477
478  return AMemSet;
479}
480
481
482bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
483  if (!SI->isSimple()) return false;
484
485  if (TD == 0) return false;
486
487  // Detect cases where we're performing call slot forwarding, but
488  // happen to be using a load-store pair to implement it, rather than
489  // a memcpy.
490  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
491    if (LI->isSimple() && LI->hasOneUse() &&
492        LI->getParent() == SI->getParent()) {
493      MemDepResult ldep = MD->getDependency(LI);
494      CallInst *C = 0;
495      if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
496        C = dyn_cast<CallInst>(ldep.getInst());
497
498      if (C) {
499        // Check that nothing touches the dest of the "copy" between
500        // the call and the store.
501        AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
502        AliasAnalysis::Location StoreLoc = AA.getLocation(SI);
503        for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
504                                  E = C; I != E; --I) {
505          if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
506            C = 0;
507            break;
508          }
509        }
510      }
511
512      if (C) {
513        unsigned storeAlign = SI->getAlignment();
514        if (!storeAlign)
515          storeAlign = TD->getABITypeAlignment(SI->getOperand(0)->getType());
516        unsigned loadAlign = LI->getAlignment();
517        if (!loadAlign)
518          loadAlign = TD->getABITypeAlignment(LI->getType());
519
520        bool changed = performCallSlotOptzn(LI,
521                        SI->getPointerOperand()->stripPointerCasts(),
522                        LI->getPointerOperand()->stripPointerCasts(),
523                        TD->getTypeStoreSize(SI->getOperand(0)->getType()),
524                        std::min(storeAlign, loadAlign), C);
525        if (changed) {
526          MD->removeInstruction(SI);
527          SI->eraseFromParent();
528          MD->removeInstruction(LI);
529          LI->eraseFromParent();
530          ++NumMemCpyInstr;
531          return true;
532        }
533      }
534    }
535  }
536
537  // There are two cases that are interesting for this code to handle: memcpy
538  // and memset.  Right now we only handle memset.
539
540  // Ensure that the value being stored is something that can be memset'able a
541  // byte at a time like "0" or "-1" or any width, as well as things like
542  // 0xA0A0A0A0 and 0.0.
543  if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
544    if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
545                                              ByteVal)) {
546      BBI = I;  // Don't invalidate iterator.
547      return true;
548    }
549
550  return false;
551}
552
553bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
554  // See if there is another memset or store neighboring this memset which
555  // allows us to widen out the memset to do a single larger store.
556  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
557    if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
558                                              MSI->getValue())) {
559      BBI = I;  // Don't invalidate iterator.
560      return true;
561    }
562  return false;
563}
564
565
566/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
567/// and checks for the possibility of a call slot optimization by having
568/// the call write its result directly into the destination of the memcpy.
569bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
570                                     Value *cpyDest, Value *cpySrc,
571                                     uint64_t cpyLen, unsigned cpyAlign,
572                                     CallInst *C) {
573  // The general transformation to keep in mind is
574  //
575  //   call @func(..., src, ...)
576  //   memcpy(dest, src, ...)
577  //
578  // ->
579  //
580  //   memcpy(dest, src, ...)
581  //   call @func(..., dest, ...)
582  //
583  // Since moving the memcpy is technically awkward, we additionally check that
584  // src only holds uninitialized values at the moment of the call, meaning that
585  // the memcpy can be discarded rather than moved.
586
587  // Deliberately get the source and destination with bitcasts stripped away,
588  // because we'll need to do type comparisons based on the underlying type.
589  CallSite CS(C);
590
591  // Require that src be an alloca.  This simplifies the reasoning considerably.
592  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
593  if (!srcAlloca)
594    return false;
595
596  // Check that all of src is copied to dest.
597  if (TD == 0) return false;
598
599  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
600  if (!srcArraySize)
601    return false;
602
603  uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
604    srcArraySize->getZExtValue();
605
606  if (cpyLen < srcSize)
607    return false;
608
609  // Check that accessing the first srcSize bytes of dest will not cause a
610  // trap.  Otherwise the transform is invalid since it might cause a trap
611  // to occur earlier than it otherwise would.
612  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
613    // The destination is an alloca.  Check it is larger than srcSize.
614    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
615    if (!destArraySize)
616      return false;
617
618    uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
619      destArraySize->getZExtValue();
620
621    if (destSize < srcSize)
622      return false;
623  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
624    // If the destination is an sret parameter then only accesses that are
625    // outside of the returned struct type can trap.
626    if (!A->hasStructRetAttr())
627      return false;
628
629    Type *StructTy = cast<PointerType>(A->getType())->getElementType();
630    uint64_t destSize = TD->getTypeAllocSize(StructTy);
631
632    if (destSize < srcSize)
633      return false;
634  } else {
635    return false;
636  }
637
638  // Check that dest points to memory that is at least as aligned as src.
639  unsigned srcAlign = srcAlloca->getAlignment();
640  if (!srcAlign)
641    srcAlign = TD->getABITypeAlignment(srcAlloca->getAllocatedType());
642  bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
643  // If dest is not aligned enough and we can't increase its alignment then
644  // bail out.
645  if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
646    return false;
647
648  // Check that src is not accessed except via the call and the memcpy.  This
649  // guarantees that it holds only undefined values when passed in (so the final
650  // memcpy can be dropped), that it is not read or written between the call and
651  // the memcpy, and that writing beyond the end of it is undefined.
652  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
653                                   srcAlloca->use_end());
654  while (!srcUseList.empty()) {
655    User *UI = srcUseList.pop_back_val();
656
657    if (isa<BitCastInst>(UI)) {
658      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
659           I != E; ++I)
660        srcUseList.push_back(*I);
661    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
662      if (G->hasAllZeroIndices())
663        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
664             I != E; ++I)
665          srcUseList.push_back(*I);
666      else
667        return false;
668    } else if (UI != C && UI != cpy) {
669      return false;
670    }
671  }
672
673  // Since we're changing the parameter to the callsite, we need to make sure
674  // that what would be the new parameter dominates the callsite.
675  DominatorTree &DT = getAnalysis<DominatorTree>();
676  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
677    if (!DT.dominates(cpyDestInst, C))
678      return false;
679
680  // In addition to knowing that the call does not access src in some
681  // unexpected manner, for example via a global, which we deduce from
682  // the use analysis, we also need to know that it does not sneakily
683  // access dest.  We rely on AA to figure this out for us.
684  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
685  AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize);
686  // If necessary, perform additional analysis.
687  if (MR != AliasAnalysis::NoModRef)
688    MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
689  if (MR != AliasAnalysis::NoModRef)
690    return false;
691
692  // All the checks have passed, so do the transformation.
693  bool changedArgument = false;
694  for (unsigned i = 0; i < CS.arg_size(); ++i)
695    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
696      Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
697        : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
698                                      cpyDest->getName(), C);
699      changedArgument = true;
700      if (CS.getArgument(i)->getType() == Dest->getType())
701        CS.setArgument(i, Dest);
702      else
703        CS.setArgument(i, CastInst::CreatePointerCast(Dest,
704                          CS.getArgument(i)->getType(), Dest->getName(), C));
705    }
706
707  if (!changedArgument)
708    return false;
709
710  // If the destination wasn't sufficiently aligned then increase its alignment.
711  if (!isDestSufficientlyAligned) {
712    assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
713    cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
714  }
715
716  // Drop any cached information about the call, because we may have changed
717  // its dependence information by changing its parameter.
718  MD->removeInstruction(C);
719
720  // Remove the memcpy.
721  MD->removeInstruction(cpy);
722  ++NumMemCpyInstr;
723
724  return true;
725}
726
727/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
728/// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
729/// copy from MDep's input if we can.  MSize is the size of M's copy.
730///
731bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
732                                              uint64_t MSize) {
733  // We can only transforms memcpy's where the dest of one is the source of the
734  // other.
735  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
736    return false;
737
738  // If dep instruction is reading from our current input, then it is a noop
739  // transfer and substituting the input won't change this instruction.  Just
740  // ignore the input and let someone else zap MDep.  This handles cases like:
741  //    memcpy(a <- a)
742  //    memcpy(b <- a)
743  if (M->getSource() == MDep->getSource())
744    return false;
745
746  // Second, the length of the memcpy's must be the same, or the preceding one
747  // must be larger than the following one.
748  ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
749  ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
750  if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
751    return false;
752
753  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
754
755  // Verify that the copied-from memory doesn't change in between the two
756  // transfers.  For example, in:
757  //    memcpy(a <- b)
758  //    *b = 42;
759  //    memcpy(c <- a)
760  // It would be invalid to transform the second memcpy into memcpy(c <- b).
761  //
762  // TODO: If the code between M and MDep is transparent to the destination "c",
763  // then we could still perform the xform by moving M up to the first memcpy.
764  //
765  // NOTE: This is conservative, it will stop on any read from the source loc,
766  // not just the defining memcpy.
767  MemDepResult SourceDep =
768    MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
769                                 false, M, M->getParent());
770  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
771    return false;
772
773  // If the dest of the second might alias the source of the first, then the
774  // source and dest might overlap.  We still want to eliminate the intermediate
775  // value, but we have to generate a memmove instead of memcpy.
776  bool UseMemMove = false;
777  if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
778    UseMemMove = true;
779
780  // If all checks passed, then we can transform M.
781
782  // Make sure to use the lesser of the alignment of the source and the dest
783  // since we're changing where we're reading from, but don't want to increase
784  // the alignment past what can be read from or written to.
785  // TODO: Is this worth it if we're creating a less aligned memcpy? For
786  // example we could be moving from movaps -> movq on x86.
787  unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
788
789  IRBuilder<> Builder(M);
790  if (UseMemMove)
791    Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
792                          Align, M->isVolatile());
793  else
794    Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
795                         Align, M->isVolatile());
796
797  // Remove the instruction we're replacing.
798  MD->removeInstruction(M);
799  M->eraseFromParent();
800  ++NumMemCpyInstr;
801  return true;
802}
803
804
805/// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
806/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
807/// B to be a memcpy from X to Z (or potentially a memmove, depending on
808/// circumstances). This allows later passes to remove the first memcpy
809/// altogether.
810bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
811  // We can only optimize statically-sized memcpy's that are non-volatile.
812  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
813  if (CopySize == 0 || M->isVolatile()) return false;
814
815  // If the source and destination of the memcpy are the same, then zap it.
816  if (M->getSource() == M->getDest()) {
817    MD->removeInstruction(M);
818    M->eraseFromParent();
819    return false;
820  }
821
822  // If copying from a constant, try to turn the memcpy into a memset.
823  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
824    if (GV->isConstant() && GV->hasDefinitiveInitializer())
825      if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
826        IRBuilder<> Builder(M);
827        Builder.CreateMemSet(M->getRawDest(), ByteVal, CopySize,
828                             M->getAlignment(), false);
829        MD->removeInstruction(M);
830        M->eraseFromParent();
831        ++NumCpyToSet;
832        return true;
833      }
834
835  // The are two possible optimizations we can do for memcpy:
836  //   a) memcpy-memcpy xform which exposes redundance for DSE.
837  //   b) call-memcpy xform for return slot optimization.
838  MemDepResult DepInfo = MD->getDependency(M);
839  if (DepInfo.isClobber()) {
840    if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
841      if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
842                               CopySize->getZExtValue(), M->getAlignment(),
843                               C)) {
844        MD->removeInstruction(M);
845        M->eraseFromParent();
846        return true;
847      }
848    }
849  }
850
851  AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M);
852  MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true,
853                                                         M, M->getParent());
854  if (SrcDepInfo.isClobber()) {
855    if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
856      return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
857  }
858
859  return false;
860}
861
862/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
863/// are guaranteed not to alias.
864bool MemCpyOpt::processMemMove(MemMoveInst *M) {
865  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
866
867  if (!TLI->has(LibFunc::memmove))
868    return false;
869
870  // See if the pointers alias.
871  if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
872    return false;
873
874  DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
875
876  // If not, then we know we can transform this.
877  Module *Mod = M->getParent()->getParent()->getParent();
878  Type *ArgTys[3] = { M->getRawDest()->getType(),
879                      M->getRawSource()->getType(),
880                      M->getLength()->getType() };
881  M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
882                                                 ArgTys));
883
884  // MemDep may have over conservative information about this instruction, just
885  // conservatively flush it from the cache.
886  MD->removeInstruction(M);
887
888  ++NumMoveToCpy;
889  return true;
890}
891
892/// processByValArgument - This is called on every byval argument in call sites.
893bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
894  if (TD == 0) return false;
895
896  // Find out what feeds this byval argument.
897  Value *ByValArg = CS.getArgument(ArgNo);
898  Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
899  uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
900  MemDepResult DepInfo =
901    MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
902                                 true, CS.getInstruction(),
903                                 CS.getInstruction()->getParent());
904  if (!DepInfo.isClobber())
905    return false;
906
907  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
908  // a memcpy, see if we can byval from the source of the memcpy instead of the
909  // result.
910  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
911  if (MDep == 0 || MDep->isVolatile() ||
912      ByValArg->stripPointerCasts() != MDep->getDest())
913    return false;
914
915  // The length of the memcpy must be larger or equal to the size of the byval.
916  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
917  if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
918    return false;
919
920  // Get the alignment of the byval.  If the call doesn't specify the alignment,
921  // then it is some target specific value that we can't know.
922  unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
923  if (ByValAlign == 0) return false;
924
925  // If it is greater than the memcpy, then we check to see if we can force the
926  // source of the memcpy to the alignment we need.  If we fail, we bail out.
927  if (MDep->getAlignment() < ByValAlign &&
928      getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, TD) < ByValAlign)
929    return false;
930
931  // Verify that the copied-from memory doesn't change in between the memcpy and
932  // the byval call.
933  //    memcpy(a <- b)
934  //    *b = 42;
935  //    foo(*a)
936  // It would be invalid to transform the second memcpy into foo(*b).
937  //
938  // NOTE: This is conservative, it will stop on any read from the source loc,
939  // not just the defining memcpy.
940  MemDepResult SourceDep =
941    MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
942                                 false, CS.getInstruction(), MDep->getParent());
943  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
944    return false;
945
946  Value *TmpCast = MDep->getSource();
947  if (MDep->getSource()->getType() != ByValArg->getType())
948    TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
949                              "tmpcast", CS.getInstruction());
950
951  DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
952               << "  " << *MDep << "\n"
953               << "  " << *CS.getInstruction() << "\n");
954
955  // Otherwise we're good!  Update the byval argument.
956  CS.setArgument(ArgNo, TmpCast);
957  ++NumMemCpyInstr;
958  return true;
959}
960
961/// iterateOnFunction - Executes one iteration of MemCpyOpt.
962bool MemCpyOpt::iterateOnFunction(Function &F) {
963  bool MadeChange = false;
964
965  // Walk all instruction in the function.
966  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
967    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
968      // Avoid invalidating the iterator.
969      Instruction *I = BI++;
970
971      bool RepeatInstruction = false;
972
973      if (StoreInst *SI = dyn_cast<StoreInst>(I))
974        MadeChange |= processStore(SI, BI);
975      else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
976        RepeatInstruction = processMemSet(M, BI);
977      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
978        RepeatInstruction = processMemCpy(M);
979      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
980        RepeatInstruction = processMemMove(M);
981      else if (CallSite CS = (Value*)I) {
982        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
983          if (CS.isByValArgument(i))
984            MadeChange |= processByValArgument(CS, i);
985      }
986
987      // Reprocess the instruction if desired.
988      if (RepeatInstruction) {
989        if (BI != BB->begin()) --BI;
990        MadeChange = true;
991      }
992    }
993  }
994
995  return MadeChange;
996}
997
998// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
999// function.
1000//
1001bool MemCpyOpt::runOnFunction(Function &F) {
1002  bool MadeChange = false;
1003  MD = &getAnalysis<MemoryDependenceAnalysis>();
1004  TD = getAnalysisIfAvailable<DataLayout>();
1005  TLI = &getAnalysis<TargetLibraryInfo>();
1006
1007  // If we don't have at least memset and memcpy, there is little point of doing
1008  // anything here.  These are required by a freestanding implementation, so if
1009  // even they are disabled, there is no point in trying hard.
1010  if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
1011    return false;
1012
1013  while (1) {
1014    if (!iterateOnFunction(F))
1015      break;
1016    MadeChange = true;
1017  }
1018
1019  MD = 0;
1020  return MadeChange;
1021}
1022