MemCpyOptimizer.cpp revision 49c7e3e290e4633971cbeac996d8cffbe2aedc1d
1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Instructions.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/MemoryDependenceAnalysis.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetData.h"
29#include <list>
30using namespace llvm;
31
32STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
33STATISTIC(NumMemSetInfer, "Number of memsets inferred");
34STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
35STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
36
37/// isBytewiseValue - If the specified value can be set by repeating the same
38/// byte in memory, return the i8 value that it is represented with.  This is
39/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
40/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
41/// byte store (e.g. i16 0x1234), return null.
42static Value *isBytewiseValue(Value *V) {
43  // All byte-wide stores are splatable, even of arbitrary variables.
44  if (V->getType()->isIntegerTy(8)) return V;
45
46  // Constant float and double values can be handled as integer values if the
47  // corresponding integer value is "byteable".  An important case is 0.0.
48  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
49    if (CFP->getType()->isFloatTy())
50      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
51    if (CFP->getType()->isDoubleTy())
52      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
53    // Don't handle long double formats, which have strange constraints.
54  }
55
56  // We can handle constant integers that are power of two in size and a
57  // multiple of 8 bits.
58  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
59    unsigned Width = CI->getBitWidth();
60    if (isPowerOf2_32(Width) && Width > 8) {
61      // We can handle this value if the recursive binary decomposition is the
62      // same at all levels.
63      APInt Val = CI->getValue();
64      APInt Val2;
65      while (Val.getBitWidth() != 8) {
66        unsigned NextWidth = Val.getBitWidth()/2;
67        Val2  = Val.lshr(NextWidth);
68        Val2 = Val2.trunc(Val.getBitWidth()/2);
69        Val = Val.trunc(Val.getBitWidth()/2);
70
71        // If the top/bottom halves aren't the same, reject it.
72        if (Val != Val2)
73          return 0;
74      }
75      return ConstantInt::get(V->getContext(), Val);
76    }
77  }
78
79  // A ConstantArray is splatable if all its members are equal and also
80  // splatable.
81  if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
82    if (CA->getNumOperands() == 0)
83      return 0;
84
85    Value *Val = isBytewiseValue(CA->getOperand(0));
86    if (!Val)
87      return 0;
88
89    for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
90      if (CA->getOperand(I-1) != CA->getOperand(I))
91        return 0;
92
93    return Val;
94  }
95
96  // Conceptually, we could handle things like:
97  //   %a = zext i8 %X to i16
98  //   %b = shl i16 %a, 8
99  //   %c = or i16 %a, %b
100  // but until there is an example that actually needs this, it doesn't seem
101  // worth worrying about.
102  return 0;
103}
104
105static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
106                                  bool &VariableIdxFound, TargetData &TD) {
107  // Skip over the first indices.
108  gep_type_iterator GTI = gep_type_begin(GEP);
109  for (unsigned i = 1; i != Idx; ++i, ++GTI)
110    /*skip along*/;
111
112  // Compute the offset implied by the rest of the indices.
113  int64_t Offset = 0;
114  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
115    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
116    if (OpC == 0)
117      return VariableIdxFound = true;
118    if (OpC->isZero()) continue;  // No offset.
119
120    // Handle struct indices, which add their field offset to the pointer.
121    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
122      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
123      continue;
124    }
125
126    // Otherwise, we have a sequential type like an array or vector.  Multiply
127    // the index by the ElementSize.
128    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
129    Offset += Size*OpC->getSExtValue();
130  }
131
132  return Offset;
133}
134
135/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
136/// constant offset, and return that constant offset.  For example, Ptr1 might
137/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
138static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
139                            TargetData &TD) {
140  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
141  // base.  After that base, they may have some number of common (and
142  // potentially variable) indices.  After that they handle some constant
143  // offset, which determines their offset from each other.  At this point, we
144  // handle no other case.
145  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
146  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
147  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
148    return false;
149
150  // Skip any common indices and track the GEP types.
151  unsigned Idx = 1;
152  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
153    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
154      break;
155
156  bool VariableIdxFound = false;
157  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
158  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
159  if (VariableIdxFound) return false;
160
161  Offset = Offset2-Offset1;
162  return true;
163}
164
165
166/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
167/// This allows us to analyze stores like:
168///   store 0 -> P+1
169///   store 0 -> P+0
170///   store 0 -> P+3
171///   store 0 -> P+2
172/// which sometimes happens with stores to arrays of structs etc.  When we see
173/// the first store, we make a range [1, 2).  The second store extends the range
174/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
175/// two ranges into [0, 3) which is memset'able.
176namespace {
177struct MemsetRange {
178  // Start/End - A semi range that describes the span that this range covers.
179  // The range is closed at the start and open at the end: [Start, End).
180  int64_t Start, End;
181
182  /// StartPtr - The getelementptr instruction that points to the start of the
183  /// range.
184  Value *StartPtr;
185
186  /// Alignment - The known alignment of the first store.
187  unsigned Alignment;
188
189  /// TheStores - The actual stores that make up this range.
190  SmallVector<StoreInst*, 16> TheStores;
191
192  bool isProfitableToUseMemset(const TargetData &TD) const;
193
194};
195} // end anon namespace
196
197bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
198  // If we found more than 8 stores to merge or 64 bytes, use memset.
199  if (TheStores.size() >= 8 || End-Start >= 64) return true;
200
201  // Assume that the code generator is capable of merging pairs of stores
202  // together if it wants to.
203  if (TheStores.size() <= 2) return false;
204
205  // If we have fewer than 8 stores, it can still be worthwhile to do this.
206  // For example, merging 4 i8 stores into an i32 store is useful almost always.
207  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
208  // memset will be split into 2 32-bit stores anyway) and doing so can
209  // pessimize the llvm optimizer.
210  //
211  // Since we don't have perfect knowledge here, make some assumptions: assume
212  // the maximum GPR width is the same size as the pointer size and assume that
213  // this width can be stored.  If so, check to see whether we will end up
214  // actually reducing the number of stores used.
215  unsigned Bytes = unsigned(End-Start);
216  unsigned NumPointerStores = Bytes/TD.getPointerSize();
217
218  // Assume the remaining bytes if any are done a byte at a time.
219  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
220
221  // If we will reduce the # stores (according to this heuristic), do the
222  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
223  // etc.
224  return TheStores.size() > NumPointerStores+NumByteStores;
225}
226
227
228namespace {
229class MemsetRanges {
230  /// Ranges - A sorted list of the memset ranges.  We use std::list here
231  /// because each element is relatively large and expensive to copy.
232  std::list<MemsetRange> Ranges;
233  typedef std::list<MemsetRange>::iterator range_iterator;
234  TargetData &TD;
235public:
236  MemsetRanges(TargetData &td) : TD(td) {}
237
238  typedef std::list<MemsetRange>::const_iterator const_iterator;
239  const_iterator begin() const { return Ranges.begin(); }
240  const_iterator end() const { return Ranges.end(); }
241  bool empty() const { return Ranges.empty(); }
242
243  void addStore(int64_t OffsetFromFirst, StoreInst *SI);
244};
245
246} // end anon namespace
247
248
249/// addStore - Add a new store to the MemsetRanges data structure.  This adds a
250/// new range for the specified store at the specified offset, merging into
251/// existing ranges as appropriate.
252void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
253  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
254
255  // Do a linear search of the ranges to see if this can be joined and/or to
256  // find the insertion point in the list.  We keep the ranges sorted for
257  // simplicity here.  This is a linear search of a linked list, which is ugly,
258  // however the number of ranges is limited, so this won't get crazy slow.
259  range_iterator I = Ranges.begin(), E = Ranges.end();
260
261  while (I != E && Start > I->End)
262    ++I;
263
264  // We now know that I == E, in which case we didn't find anything to merge
265  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
266  // to insert a new range.  Handle this now.
267  if (I == E || End < I->Start) {
268    MemsetRange &R = *Ranges.insert(I, MemsetRange());
269    R.Start        = Start;
270    R.End          = End;
271    R.StartPtr     = SI->getPointerOperand();
272    R.Alignment    = SI->getAlignment();
273    R.TheStores.push_back(SI);
274    return;
275  }
276
277  // This store overlaps with I, add it.
278  I->TheStores.push_back(SI);
279
280  // At this point, we may have an interval that completely contains our store.
281  // If so, just add it to the interval and return.
282  if (I->Start <= Start && I->End >= End)
283    return;
284
285  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
286  // but is not entirely contained within the range.
287
288  // See if the range extends the start of the range.  In this case, it couldn't
289  // possibly cause it to join the prior range, because otherwise we would have
290  // stopped on *it*.
291  if (Start < I->Start) {
292    I->Start = Start;
293    I->StartPtr = SI->getPointerOperand();
294    I->Alignment = SI->getAlignment();
295  }
296
297  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
298  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
299  // End.
300  if (End > I->End) {
301    I->End = End;
302    range_iterator NextI = I;
303    while (++NextI != E && End >= NextI->Start) {
304      // Merge the range in.
305      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
306      if (NextI->End > I->End)
307        I->End = NextI->End;
308      Ranges.erase(NextI);
309      NextI = I;
310    }
311  }
312}
313
314//===----------------------------------------------------------------------===//
315//                         MemCpyOpt Pass
316//===----------------------------------------------------------------------===//
317
318namespace {
319  class MemCpyOpt : public FunctionPass {
320    MemoryDependenceAnalysis *MD;
321    bool runOnFunction(Function &F);
322  public:
323    static char ID; // Pass identification, replacement for typeid
324    MemCpyOpt() : FunctionPass(ID) {
325      initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
326      MD = 0;
327    }
328
329  private:
330    // This transformation requires dominator postdominator info
331    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
332      AU.setPreservesCFG();
333      AU.addRequired<DominatorTree>();
334      AU.addRequired<MemoryDependenceAnalysis>();
335      AU.addRequired<AliasAnalysis>();
336      AU.addPreserved<AliasAnalysis>();
337      AU.addPreserved<MemoryDependenceAnalysis>();
338    }
339
340    // Helper fuctions
341    bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
342    bool processMemCpy(MemCpyInst *M);
343    bool processMemMove(MemMoveInst *M);
344    bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
345                              uint64_t cpyLen, CallInst *C);
346    bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
347                                       uint64_t MSize);
348    bool processByValArgument(CallSite CS, unsigned ArgNo);
349    bool iterateOnFunction(Function &F);
350  };
351
352  char MemCpyOpt::ID = 0;
353}
354
355// createMemCpyOptPass - The public interface to this file...
356FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
357
358INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
359                      false, false)
360INITIALIZE_PASS_DEPENDENCY(DominatorTree)
361INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
362INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
363INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
364                    false, false)
365
366/// processStore - When GVN is scanning forward over instructions, we look for
367/// some other patterns to fold away.  In particular, this looks for stores to
368/// neighboring locations of memory.  If it sees enough consequtive ones
369/// (currently 4) it attempts to merge them together into a memcpy/memset.
370bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
371  if (SI->isVolatile()) return false;
372
373  TargetData *TD = getAnalysisIfAvailable<TargetData>();
374  if (!TD) return false;
375
376  // Detect cases where we're performing call slot forwarding, but
377  // happen to be using a load-store pair to implement it, rather than
378  // a memcpy.
379  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
380    if (!LI->isVolatile() && LI->hasOneUse()) {
381      MemDepResult dep = MD->getDependency(LI);
382      CallInst *C = 0;
383      if (dep.isClobber() && !isa<MemCpyInst>(dep.getInst()))
384        C = dyn_cast<CallInst>(dep.getInst());
385
386      if (C) {
387        bool changed = performCallSlotOptzn(LI,
388                        SI->getPointerOperand()->stripPointerCasts(),
389                        LI->getPointerOperand()->stripPointerCasts(),
390                        TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
391        if (changed) {
392          MD->removeInstruction(SI);
393          SI->eraseFromParent();
394          LI->eraseFromParent();
395          ++NumMemCpyInstr;
396          return true;
397        }
398      }
399    }
400  }
401
402  LLVMContext &Context = SI->getContext();
403
404  // There are two cases that are interesting for this code to handle: memcpy
405  // and memset.  Right now we only handle memset.
406
407  // Ensure that the value being stored is something that can be memset'able a
408  // byte at a time like "0" or "-1" or any width, as well as things like
409  // 0xA0A0A0A0 and 0.0.
410  Value *ByteVal = isBytewiseValue(SI->getOperand(0));
411  if (!ByteVal)
412    return false;
413
414  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
415  Module *M = SI->getParent()->getParent()->getParent();
416
417  // Okay, so we now have a single store that can be splatable.  Scan to find
418  // all subsequent stores of the same value to offset from the same pointer.
419  // Join these together into ranges, so we can decide whether contiguous blocks
420  // are stored.
421  MemsetRanges Ranges(*TD);
422
423  Value *StartPtr = SI->getPointerOperand();
424
425  BasicBlock::iterator BI = SI;
426  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
427    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
428      // If the call is readnone, ignore it, otherwise bail out.  We don't even
429      // allow readonly here because we don't want something like:
430      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
431      if (AA.getModRefBehavior(CallSite(BI)) ==
432            AliasAnalysis::DoesNotAccessMemory)
433        continue;
434
435      // TODO: If this is a memset, try to join it in.
436
437      break;
438    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
439      break;
440
441    // If this is a non-store instruction it is fine, ignore it.
442    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
443    if (NextStore == 0) continue;
444
445    // If this is a store, see if we can merge it in.
446    if (NextStore->isVolatile()) break;
447
448    // Check to see if this stored value is of the same byte-splattable value.
449    if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
450      break;
451
452    // Check to see if this store is to a constant offset from the start ptr.
453    int64_t Offset;
454    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
455      break;
456
457    Ranges.addStore(Offset, NextStore);
458  }
459
460  // If we have no ranges, then we just had a single store with nothing that
461  // could be merged in.  This is a very common case of course.
462  if (Ranges.empty())
463    return false;
464
465  // If we had at least one store that could be merged in, add the starting
466  // store as well.  We try to avoid this unless there is at least something
467  // interesting as a small compile-time optimization.
468  Ranges.addStore(0, SI);
469
470
471  // Now that we have full information about ranges, loop over the ranges and
472  // emit memset's for anything big enough to be worthwhile.
473  bool MadeChange = false;
474  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
475       I != E; ++I) {
476    const MemsetRange &Range = *I;
477
478    if (Range.TheStores.size() == 1) continue;
479
480    // If it is profitable to lower this range to memset, do so now.
481    if (!Range.isProfitableToUseMemset(*TD))
482      continue;
483
484    // Otherwise, we do want to transform this!  Create a new memset.  We put
485    // the memset right before the first instruction that isn't part of this
486    // memset block.  This ensure that the memset is dominated by any addressing
487    // instruction needed by the start of the block.
488    BasicBlock::iterator InsertPt = BI;
489
490    // Get the starting pointer of the block.
491    StartPtr = Range.StartPtr;
492
493    // Determine alignment
494    unsigned Alignment = Range.Alignment;
495    if (Alignment == 0) {
496      const Type *EltType =
497         cast<PointerType>(StartPtr->getType())->getElementType();
498      Alignment = TD->getABITypeAlignment(EltType);
499    }
500
501    // Cast the start ptr to be i8* as memset requires.
502    const PointerType* StartPTy = cast<PointerType>(StartPtr->getType());
503    const PointerType *i8Ptr = Type::getInt8PtrTy(Context,
504                                                  StartPTy->getAddressSpace());
505    if (StartPTy!= i8Ptr)
506      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
507                                 InsertPt);
508
509    Value *Ops[] = {
510      StartPtr, ByteVal,   // Start, value
511      // size
512      ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
513      // align
514      ConstantInt::get(Type::getInt32Ty(Context), Alignment),
515      // volatile
516      ConstantInt::getFalse(Context),
517    };
518    const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
519
520    Function *MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
521
522    Value *C = CallInst::Create(MemSetF, Ops, Ops+5, "", InsertPt);
523    DEBUG(dbgs() << "Replace stores:\n";
524          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
525            dbgs() << *Range.TheStores[i] << '\n';
526          dbgs() << "With: " << *C << '\n'); (void)C;
527
528    // Don't invalidate the iterator
529    BBI = BI;
530
531    // Zap all the stores.
532    for (SmallVector<StoreInst*, 16>::const_iterator
533         SI = Range.TheStores.begin(),
534         SE = Range.TheStores.end(); SI != SE; ++SI)
535      (*SI)->eraseFromParent();
536    ++NumMemSetInfer;
537    MadeChange = true;
538  }
539
540  return MadeChange;
541}
542
543
544/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
545/// and checks for the possibility of a call slot optimization by having
546/// the call write its result directly into the destination of the memcpy.
547bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
548                                     Value *cpyDest, Value *cpySrc,
549                                     uint64_t cpyLen, CallInst *C) {
550  // The general transformation to keep in mind is
551  //
552  //   call @func(..., src, ...)
553  //   memcpy(dest, src, ...)
554  //
555  // ->
556  //
557  //   memcpy(dest, src, ...)
558  //   call @func(..., dest, ...)
559  //
560  // Since moving the memcpy is technically awkward, we additionally check that
561  // src only holds uninitialized values at the moment of the call, meaning that
562  // the memcpy can be discarded rather than moved.
563
564  // Deliberately get the source and destination with bitcasts stripped away,
565  // because we'll need to do type comparisons based on the underlying type.
566  CallSite CS(C);
567
568  // Require that src be an alloca.  This simplifies the reasoning considerably.
569  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
570  if (!srcAlloca)
571    return false;
572
573  // Check that all of src is copied to dest.
574  TargetData *TD = getAnalysisIfAvailable<TargetData>();
575  if (!TD) return false;
576
577  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
578  if (!srcArraySize)
579    return false;
580
581  uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
582    srcArraySize->getZExtValue();
583
584  if (cpyLen < srcSize)
585    return false;
586
587  // Check that accessing the first srcSize bytes of dest will not cause a
588  // trap.  Otherwise the transform is invalid since it might cause a trap
589  // to occur earlier than it otherwise would.
590  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
591    // The destination is an alloca.  Check it is larger than srcSize.
592    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
593    if (!destArraySize)
594      return false;
595
596    uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
597      destArraySize->getZExtValue();
598
599    if (destSize < srcSize)
600      return false;
601  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
602    // If the destination is an sret parameter then only accesses that are
603    // outside of the returned struct type can trap.
604    if (!A->hasStructRetAttr())
605      return false;
606
607    const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
608    uint64_t destSize = TD->getTypeAllocSize(StructTy);
609
610    if (destSize < srcSize)
611      return false;
612  } else {
613    return false;
614  }
615
616  // Check that src is not accessed except via the call and the memcpy.  This
617  // guarantees that it holds only undefined values when passed in (so the final
618  // memcpy can be dropped), that it is not read or written between the call and
619  // the memcpy, and that writing beyond the end of it is undefined.
620  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
621                                   srcAlloca->use_end());
622  while (!srcUseList.empty()) {
623    User *UI = srcUseList.pop_back_val();
624
625    if (isa<BitCastInst>(UI)) {
626      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
627           I != E; ++I)
628        srcUseList.push_back(*I);
629    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
630      if (G->hasAllZeroIndices())
631        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
632             I != E; ++I)
633          srcUseList.push_back(*I);
634      else
635        return false;
636    } else if (UI != C && UI != cpy) {
637      return false;
638    }
639  }
640
641  // Since we're changing the parameter to the callsite, we need to make sure
642  // that what would be the new parameter dominates the callsite.
643  DominatorTree &DT = getAnalysis<DominatorTree>();
644  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
645    if (!DT.dominates(cpyDestInst, C))
646      return false;
647
648  // In addition to knowing that the call does not access src in some
649  // unexpected manner, for example via a global, which we deduce from
650  // the use analysis, we also need to know that it does not sneakily
651  // access dest.  We rely on AA to figure this out for us.
652  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
653  if (AA.getModRefInfo(C, cpyDest, srcSize) !=
654      AliasAnalysis::NoModRef)
655    return false;
656
657  // All the checks have passed, so do the transformation.
658  bool changedArgument = false;
659  for (unsigned i = 0; i < CS.arg_size(); ++i)
660    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
661      if (cpySrc->getType() != cpyDest->getType())
662        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
663                                              cpyDest->getName(), C);
664      changedArgument = true;
665      if (CS.getArgument(i)->getType() == cpyDest->getType())
666        CS.setArgument(i, cpyDest);
667      else
668        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
669                          CS.getArgument(i)->getType(), cpyDest->getName(), C));
670    }
671
672  if (!changedArgument)
673    return false;
674
675  // Drop any cached information about the call, because we may have changed
676  // its dependence information by changing its parameter.
677  MD->removeInstruction(C);
678
679  // Remove the memcpy.
680  MD->removeInstruction(cpy);
681  ++NumMemCpyInstr;
682
683  return true;
684}
685
686/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
687/// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
688/// copy from MDep's input if we can.  MSize is the size of M's copy.
689///
690bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
691                                              uint64_t MSize) {
692  // We can only transforms memcpy's where the dest of one is the source of the
693  // other.
694  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
695    return false;
696
697  // If dep instruction is reading from our current input, then it is a noop
698  // transfer and substituting the input won't change this instruction.  Just
699  // ignore the input and let someone else zap MDep.  This handles cases like:
700  //    memcpy(a <- a)
701  //    memcpy(b <- a)
702  if (M->getSource() == MDep->getSource())
703    return false;
704
705  // Second, the length of the memcpy's must be the same, or the preceeding one
706  // must be larger than the following one.
707  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
708  if (!C1) return false;
709
710  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
711
712  // Verify that the copied-from memory doesn't change in between the two
713  // transfers.  For example, in:
714  //    memcpy(a <- b)
715  //    *b = 42;
716  //    memcpy(c <- a)
717  // It would be invalid to transform the second memcpy into memcpy(c <- b).
718  //
719  // TODO: If the code between M and MDep is transparent to the destination "c",
720  // then we could still perform the xform by moving M up to the first memcpy.
721  //
722  // NOTE: This is conservative, it will stop on any read from the source loc,
723  // not just the defining memcpy.
724  MemDepResult SourceDep =
725    MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
726                                 false, M, M->getParent());
727  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
728    return false;
729
730  // If the dest of the second might alias the source of the first, then the
731  // source and dest might overlap.  We still want to eliminate the intermediate
732  // value, but we have to generate a memmove instead of memcpy.
733  Intrinsic::ID ResultFn = Intrinsic::memcpy;
734  if (AA.alias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)) !=
735      AliasAnalysis::NoAlias)
736    ResultFn = Intrinsic::memmove;
737
738  // If all checks passed, then we can transform M.
739  const Type *ArgTys[3] = {
740    M->getRawDest()->getType(),
741    MDep->getRawSource()->getType(),
742    M->getLength()->getType()
743  };
744  Function *MemCpyFun =
745    Intrinsic::getDeclaration(MDep->getParent()->getParent()->getParent(),
746                              ResultFn, ArgTys, 3);
747
748  // Make sure to use the lesser of the alignment of the source and the dest
749  // since we're changing where we're reading from, but don't want to increase
750  // the alignment past what can be read from or written to.
751  // TODO: Is this worth it if we're creating a less aligned memcpy? For
752  // example we could be moving from movaps -> movq on x86.
753  unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
754  Value *Args[5] = {
755    M->getRawDest(),
756    MDep->getRawSource(),
757    M->getLength(),
758    ConstantInt::get(Type::getInt32Ty(MemCpyFun->getContext()), Align),
759    M->getVolatileCst()
760  };
761  CallInst::Create(MemCpyFun, Args, Args+5, "", M);
762
763  // Remove the instruction we're replacing.
764  MD->removeInstruction(M);
765  M->eraseFromParent();
766  ++NumMemCpyInstr;
767  return true;
768}
769
770
771/// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
772/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
773/// B to be a memcpy from X to Z (or potentially a memmove, depending on
774/// circumstances). This allows later passes to remove the first memcpy
775/// altogether.
776bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
777  // We can only optimize statically-sized memcpy's that are non-volatile.
778  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
779  if (CopySize == 0 || M->isVolatile()) return false;
780
781  // If the source and destination of the memcpy are the same, then zap it.
782  if (M->getSource() == M->getDest()) {
783    MD->removeInstruction(M);
784    M->eraseFromParent();
785    return false;
786  }
787
788  // If copying from a constant, try to turn the memcpy into a memset.
789  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
790    if (!GV->mayBeOverridden() && GV->isConstant() && GV->hasInitializer())
791      if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
792        Value *Ops[] = {
793          M->getRawDest(), ByteVal,               // Start, value
794          CopySize,                               // Size
795          M->getAlignmentCst(),                   // Alignment
796          ConstantInt::getFalse(M->getContext()), // volatile
797        };
798        const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
799        Module *Mod = M->getParent()->getParent()->getParent();
800        Function *MemSetF = Intrinsic::getDeclaration(Mod, Intrinsic::memset,
801                                                      Tys, 2);
802        CallInst::Create(MemSetF, Ops, Ops+5, "", M);
803        MD->removeInstruction(M);
804        M->eraseFromParent();
805        ++NumCpyToSet;
806        return true;
807      }
808
809  // The are two possible optimizations we can do for memcpy:
810  //   a) memcpy-memcpy xform which exposes redundance for DSE.
811  //   b) call-memcpy xform for return slot optimization.
812  MemDepResult DepInfo = MD->getDependency(M);
813  if (!DepInfo.isClobber())
814    return false;
815
816  if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()))
817    return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
818
819  if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
820    if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
821                             CopySize->getZExtValue(), C)) {
822      M->eraseFromParent();
823      return true;
824    }
825  }
826  return false;
827}
828
829/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
830/// are guaranteed not to alias.
831bool MemCpyOpt::processMemMove(MemMoveInst *M) {
832  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
833
834  // See if the pointers alias.
835  if (AA.alias(AA.getLocationForDest(M),
836               AA.getLocationForSource(M)) !=
837      AliasAnalysis::NoAlias)
838    return false;
839
840  DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
841
842  // If not, then we know we can transform this.
843  Module *Mod = M->getParent()->getParent()->getParent();
844  const Type *ArgTys[3] = { M->getRawDest()->getType(),
845                            M->getRawSource()->getType(),
846                            M->getLength()->getType() };
847  M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
848                                                 ArgTys, 3));
849
850  // MemDep may have over conservative information about this instruction, just
851  // conservatively flush it from the cache.
852  MD->removeInstruction(M);
853
854  ++NumMoveToCpy;
855  return true;
856}
857
858/// processByValArgument - This is called on every byval argument in call sites.
859bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
860  TargetData *TD = getAnalysisIfAvailable<TargetData>();
861  if (!TD) return false;
862
863  // Find out what feeds this byval argument.
864  Value *ByValArg = CS.getArgument(ArgNo);
865  const Type *ByValTy =cast<PointerType>(ByValArg->getType())->getElementType();
866  uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
867  MemDepResult DepInfo =
868    MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
869                                 true, CS.getInstruction(),
870                                 CS.getInstruction()->getParent());
871  if (!DepInfo.isClobber())
872    return false;
873
874  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
875  // a memcpy, see if we can byval from the source of the memcpy instead of the
876  // result.
877  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
878  if (MDep == 0 || MDep->isVolatile() ||
879      ByValArg->stripPointerCasts() != MDep->getDest())
880    return false;
881
882  // The length of the memcpy must be larger or equal to the size of the byval.
883  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
884  if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
885    return false;
886
887  // Get the alignment of the byval.  If it is greater than the memcpy, then we
888  // can't do the substitution.  If the call doesn't specify the alignment, then
889  // it is some target specific value that we can't know.
890  unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
891  if (ByValAlign == 0 || MDep->getAlignment() < ByValAlign)
892    return false;
893
894  // Verify that the copied-from memory doesn't change in between the memcpy and
895  // the byval call.
896  //    memcpy(a <- b)
897  //    *b = 42;
898  //    foo(*a)
899  // It would be invalid to transform the second memcpy into foo(*b).
900  //
901  // NOTE: This is conservative, it will stop on any read from the source loc,
902  // not just the defining memcpy.
903  MemDepResult SourceDep =
904    MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
905                                 false, CS.getInstruction(), MDep->getParent());
906  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
907    return false;
908
909  Value *TmpCast = MDep->getSource();
910  if (MDep->getSource()->getType() != ByValArg->getType())
911    TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
912                              "tmpcast", CS.getInstruction());
913
914  DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
915               << "  " << *MDep << "\n"
916               << "  " << *CS.getInstruction() << "\n");
917
918  // Otherwise we're good!  Update the byval argument.
919  CS.setArgument(ArgNo, TmpCast);
920  ++NumMemCpyInstr;
921  return true;
922}
923
924/// iterateOnFunction - Executes one iteration of MemCpyOpt.
925bool MemCpyOpt::iterateOnFunction(Function &F) {
926  bool MadeChange = false;
927
928  // Walk all instruction in the function.
929  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
930    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
931      // Avoid invalidating the iterator.
932      Instruction *I = BI++;
933
934      bool RepeatInstruction = false;
935
936      if (StoreInst *SI = dyn_cast<StoreInst>(I))
937        MadeChange |= processStore(SI, BI);
938      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) {
939        RepeatInstruction = processMemCpy(M);
940      } else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
941        RepeatInstruction = processMemMove(M);
942      } else if (CallSite CS = (Value*)I) {
943        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
944          if (CS.paramHasAttr(i+1, Attribute::ByVal))
945            MadeChange |= processByValArgument(CS, i);
946      }
947
948      // Reprocess the instruction if desired.
949      if (RepeatInstruction) {
950        --BI;
951        MadeChange = true;
952      }
953    }
954  }
955
956  return MadeChange;
957}
958
959// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
960// function.
961//
962bool MemCpyOpt::runOnFunction(Function &F) {
963  bool MadeChange = false;
964  MD = &getAnalysis<MemoryDependenceAnalysis>();
965  while (1) {
966    if (!iterateOnFunction(F))
967      break;
968    MadeChange = true;
969  }
970
971  MD = 0;
972  return MadeChange;
973}
974