MemCpyOptimizer.cpp revision 7d3056b16038a6a09c452c0dfcc3c8f4e421506a
1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Instructions.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/MemoryDependenceAnalysis.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetData.h"
29#include <list>
30using namespace llvm;
31
32STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
33STATISTIC(NumMemSetInfer, "Number of memsets inferred");
34STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
35
36/// isBytewiseValue - If the specified value can be set by repeating the same
37/// byte in memory, return the i8 value that it is represented with.  This is
38/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
39/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
40/// byte store (e.g. i16 0x1234), return null.
41static Value *isBytewiseValue(Value *V) {
42  LLVMContext &Context = V->getContext();
43
44  // All byte-wide stores are splatable, even of arbitrary variables.
45  if (V->getType()->isIntegerTy(8)) return V;
46
47  // Constant float and double values can be handled as integer values if the
48  // corresponding integer value is "byteable".  An important case is 0.0.
49  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
50    if (CFP->getType()->isFloatTy())
51      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(Context));
52    if (CFP->getType()->isDoubleTy())
53      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(Context));
54    // Don't handle long double formats, which have strange constraints.
55  }
56
57  // We can handle constant integers that are power of two in size and a
58  // multiple of 8 bits.
59  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
60    unsigned Width = CI->getBitWidth();
61    if (isPowerOf2_32(Width) && Width > 8) {
62      // We can handle this value if the recursive binary decomposition is the
63      // same at all levels.
64      APInt Val = CI->getValue();
65      APInt Val2;
66      while (Val.getBitWidth() != 8) {
67        unsigned NextWidth = Val.getBitWidth()/2;
68        Val2  = Val.lshr(NextWidth);
69        Val2.trunc(Val.getBitWidth()/2);
70        Val.trunc(Val.getBitWidth()/2);
71
72        // If the top/bottom halves aren't the same, reject it.
73        if (Val != Val2)
74          return 0;
75      }
76      return ConstantInt::get(Context, Val);
77    }
78  }
79
80  // Conceptually, we could handle things like:
81  //   %a = zext i8 %X to i16
82  //   %b = shl i16 %a, 8
83  //   %c = or i16 %a, %b
84  // but until there is an example that actually needs this, it doesn't seem
85  // worth worrying about.
86  return 0;
87}
88
89static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
90                                  bool &VariableIdxFound, TargetData &TD) {
91  // Skip over the first indices.
92  gep_type_iterator GTI = gep_type_begin(GEP);
93  for (unsigned i = 1; i != Idx; ++i, ++GTI)
94    /*skip along*/;
95
96  // Compute the offset implied by the rest of the indices.
97  int64_t Offset = 0;
98  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
99    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
100    if (OpC == 0)
101      return VariableIdxFound = true;
102    if (OpC->isZero()) continue;  // No offset.
103
104    // Handle struct indices, which add their field offset to the pointer.
105    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
106      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
107      continue;
108    }
109
110    // Otherwise, we have a sequential type like an array or vector.  Multiply
111    // the index by the ElementSize.
112    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
113    Offset += Size*OpC->getSExtValue();
114  }
115
116  return Offset;
117}
118
119/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
120/// constant offset, and return that constant offset.  For example, Ptr1 might
121/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
122static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
123                            TargetData &TD) {
124  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
125  // base.  After that base, they may have some number of common (and
126  // potentially variable) indices.  After that they handle some constant
127  // offset, which determines their offset from each other.  At this point, we
128  // handle no other case.
129  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
130  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
131  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
132    return false;
133
134  // Skip any common indices and track the GEP types.
135  unsigned Idx = 1;
136  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
137    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
138      break;
139
140  bool VariableIdxFound = false;
141  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
142  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
143  if (VariableIdxFound) return false;
144
145  Offset = Offset2-Offset1;
146  return true;
147}
148
149
150/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
151/// This allows us to analyze stores like:
152///   store 0 -> P+1
153///   store 0 -> P+0
154///   store 0 -> P+3
155///   store 0 -> P+2
156/// which sometimes happens with stores to arrays of structs etc.  When we see
157/// the first store, we make a range [1, 2).  The second store extends the range
158/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
159/// two ranges into [0, 3) which is memset'able.
160namespace {
161struct MemsetRange {
162  // Start/End - A semi range that describes the span that this range covers.
163  // The range is closed at the start and open at the end: [Start, End).
164  int64_t Start, End;
165
166  /// StartPtr - The getelementptr instruction that points to the start of the
167  /// range.
168  Value *StartPtr;
169
170  /// Alignment - The known alignment of the first store.
171  unsigned Alignment;
172
173  /// TheStores - The actual stores that make up this range.
174  SmallVector<StoreInst*, 16> TheStores;
175
176  bool isProfitableToUseMemset(const TargetData &TD) const;
177
178};
179} // end anon namespace
180
181bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
182  // If we found more than 8 stores to merge or 64 bytes, use memset.
183  if (TheStores.size() >= 8 || End-Start >= 64) return true;
184
185  // Assume that the code generator is capable of merging pairs of stores
186  // together if it wants to.
187  if (TheStores.size() <= 2) return false;
188
189  // If we have fewer than 8 stores, it can still be worthwhile to do this.
190  // For example, merging 4 i8 stores into an i32 store is useful almost always.
191  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
192  // memset will be split into 2 32-bit stores anyway) and doing so can
193  // pessimize the llvm optimizer.
194  //
195  // Since we don't have perfect knowledge here, make some assumptions: assume
196  // the maximum GPR width is the same size as the pointer size and assume that
197  // this width can be stored.  If so, check to see whether we will end up
198  // actually reducing the number of stores used.
199  unsigned Bytes = unsigned(End-Start);
200  unsigned NumPointerStores = Bytes/TD.getPointerSize();
201
202  // Assume the remaining bytes if any are done a byte at a time.
203  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
204
205  // If we will reduce the # stores (according to this heuristic), do the
206  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
207  // etc.
208  return TheStores.size() > NumPointerStores+NumByteStores;
209}
210
211
212namespace {
213class MemsetRanges {
214  /// Ranges - A sorted list of the memset ranges.  We use std::list here
215  /// because each element is relatively large and expensive to copy.
216  std::list<MemsetRange> Ranges;
217  typedef std::list<MemsetRange>::iterator range_iterator;
218  TargetData &TD;
219public:
220  MemsetRanges(TargetData &td) : TD(td) {}
221
222  typedef std::list<MemsetRange>::const_iterator const_iterator;
223  const_iterator begin() const { return Ranges.begin(); }
224  const_iterator end() const { return Ranges.end(); }
225  bool empty() const { return Ranges.empty(); }
226
227  void addStore(int64_t OffsetFromFirst, StoreInst *SI);
228};
229
230} // end anon namespace
231
232
233/// addStore - Add a new store to the MemsetRanges data structure.  This adds a
234/// new range for the specified store at the specified offset, merging into
235/// existing ranges as appropriate.
236void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
237  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
238
239  // Do a linear search of the ranges to see if this can be joined and/or to
240  // find the insertion point in the list.  We keep the ranges sorted for
241  // simplicity here.  This is a linear search of a linked list, which is ugly,
242  // however the number of ranges is limited, so this won't get crazy slow.
243  range_iterator I = Ranges.begin(), E = Ranges.end();
244
245  while (I != E && Start > I->End)
246    ++I;
247
248  // We now know that I == E, in which case we didn't find anything to merge
249  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
250  // to insert a new range.  Handle this now.
251  if (I == E || End < I->Start) {
252    MemsetRange &R = *Ranges.insert(I, MemsetRange());
253    R.Start        = Start;
254    R.End          = End;
255    R.StartPtr     = SI->getPointerOperand();
256    R.Alignment    = SI->getAlignment();
257    R.TheStores.push_back(SI);
258    return;
259  }
260
261  // This store overlaps with I, add it.
262  I->TheStores.push_back(SI);
263
264  // At this point, we may have an interval that completely contains our store.
265  // If so, just add it to the interval and return.
266  if (I->Start <= Start && I->End >= End)
267    return;
268
269  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
270  // but is not entirely contained within the range.
271
272  // See if the range extends the start of the range.  In this case, it couldn't
273  // possibly cause it to join the prior range, because otherwise we would have
274  // stopped on *it*.
275  if (Start < I->Start) {
276    I->Start = Start;
277    I->StartPtr = SI->getPointerOperand();
278    I->Alignment = SI->getAlignment();
279  }
280
281  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
282  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
283  // End.
284  if (End > I->End) {
285    I->End = End;
286    range_iterator NextI = I;
287    while (++NextI != E && End >= NextI->Start) {
288      // Merge the range in.
289      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
290      if (NextI->End > I->End)
291        I->End = NextI->End;
292      Ranges.erase(NextI);
293      NextI = I;
294    }
295  }
296}
297
298//===----------------------------------------------------------------------===//
299//                         MemCpyOpt Pass
300//===----------------------------------------------------------------------===//
301
302namespace {
303  class MemCpyOpt : public FunctionPass {
304    bool runOnFunction(Function &F);
305  public:
306    static char ID; // Pass identification, replacement for typeid
307    MemCpyOpt() : FunctionPass(&ID) {}
308
309  private:
310    // This transformation requires dominator postdominator info
311    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
312      AU.setPreservesCFG();
313      AU.addRequired<DominatorTree>();
314      AU.addRequired<MemoryDependenceAnalysis>();
315      AU.addRequired<AliasAnalysis>();
316      AU.addPreserved<AliasAnalysis>();
317      AU.addPreserved<MemoryDependenceAnalysis>();
318    }
319
320    // Helper fuctions
321    bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
322    bool processMemCpy(MemCpyInst *M);
323    bool processMemMove(MemMoveInst *M);
324    bool performCallSlotOptzn(MemCpyInst *cpy, CallInst *C);
325    bool iterateOnFunction(Function &F);
326  };
327
328  char MemCpyOpt::ID = 0;
329}
330
331// createMemCpyOptPass - The public interface to this file...
332FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
333
334INITIALIZE_PASS(MemCpyOpt, "memcpyopt", "MemCpy Optimization", false, false);
335
336
337
338/// processStore - When GVN is scanning forward over instructions, we look for
339/// some other patterns to fold away.  In particular, this looks for stores to
340/// neighboring locations of memory.  If it sees enough consequtive ones
341/// (currently 4) it attempts to merge them together into a memcpy/memset.
342bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
343  if (SI->isVolatile()) return false;
344
345  LLVMContext &Context = SI->getContext();
346
347  // There are two cases that are interesting for this code to handle: memcpy
348  // and memset.  Right now we only handle memset.
349
350  // Ensure that the value being stored is something that can be memset'able a
351  // byte at a time like "0" or "-1" or any width, as well as things like
352  // 0xA0A0A0A0 and 0.0.
353  Value *ByteVal = isBytewiseValue(SI->getOperand(0));
354  if (!ByteVal)
355    return false;
356
357  TargetData *TD = getAnalysisIfAvailable<TargetData>();
358  if (!TD) return false;
359  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
360  Module *M = SI->getParent()->getParent()->getParent();
361
362  // Okay, so we now have a single store that can be splatable.  Scan to find
363  // all subsequent stores of the same value to offset from the same pointer.
364  // Join these together into ranges, so we can decide whether contiguous blocks
365  // are stored.
366  MemsetRanges Ranges(*TD);
367
368  Value *StartPtr = SI->getPointerOperand();
369
370  BasicBlock::iterator BI = SI;
371  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
372    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
373      // If the call is readnone, ignore it, otherwise bail out.  We don't even
374      // allow readonly here because we don't want something like:
375      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
376      if (AA.getModRefBehavior(CallSite(BI)) ==
377            AliasAnalysis::DoesNotAccessMemory)
378        continue;
379
380      // TODO: If this is a memset, try to join it in.
381
382      break;
383    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
384      break;
385
386    // If this is a non-store instruction it is fine, ignore it.
387    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
388    if (NextStore == 0) continue;
389
390    // If this is a store, see if we can merge it in.
391    if (NextStore->isVolatile()) break;
392
393    // Check to see if this stored value is of the same byte-splattable value.
394    if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
395      break;
396
397    // Check to see if this store is to a constant offset from the start ptr.
398    int64_t Offset;
399    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
400      break;
401
402    Ranges.addStore(Offset, NextStore);
403  }
404
405  // If we have no ranges, then we just had a single store with nothing that
406  // could be merged in.  This is a very common case of course.
407  if (Ranges.empty())
408    return false;
409
410  // If we had at least one store that could be merged in, add the starting
411  // store as well.  We try to avoid this unless there is at least something
412  // interesting as a small compile-time optimization.
413  Ranges.addStore(0, SI);
414
415
416  // Now that we have full information about ranges, loop over the ranges and
417  // emit memset's for anything big enough to be worthwhile.
418  bool MadeChange = false;
419  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
420       I != E; ++I) {
421    const MemsetRange &Range = *I;
422
423    if (Range.TheStores.size() == 1) continue;
424
425    // If it is profitable to lower this range to memset, do so now.
426    if (!Range.isProfitableToUseMemset(*TD))
427      continue;
428
429    // Otherwise, we do want to transform this!  Create a new memset.  We put
430    // the memset right before the first instruction that isn't part of this
431    // memset block.  This ensure that the memset is dominated by any addressing
432    // instruction needed by the start of the block.
433    BasicBlock::iterator InsertPt = BI;
434
435    // Get the starting pointer of the block.
436    StartPtr = Range.StartPtr;
437
438    // Determine alignment
439    unsigned Alignment = Range.Alignment;
440    if (Alignment == 0) {
441      const Type *EltType =
442         cast<PointerType>(StartPtr->getType())->getElementType();
443      Alignment = TD->getABITypeAlignment(EltType);
444    }
445
446    // Cast the start ptr to be i8* as memset requires.
447    const PointerType* StartPTy = cast<PointerType>(StartPtr->getType());
448    const PointerType *i8Ptr = Type::getInt8PtrTy(Context,
449                                                  StartPTy->getAddressSpace());
450    if (StartPTy!= i8Ptr)
451      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
452                                 InsertPt);
453
454    Value *Ops[] = {
455      StartPtr, ByteVal,   // Start, value
456      // size
457      ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
458      // align
459      ConstantInt::get(Type::getInt32Ty(Context), Alignment),
460      // volatile
461      ConstantInt::get(Type::getInt1Ty(Context), 0),
462    };
463    const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
464
465    Function *MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
466
467    Value *C = CallInst::Create(MemSetF, Ops, Ops+5, "", InsertPt);
468    DEBUG(dbgs() << "Replace stores:\n";
469          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
470            dbgs() << *Range.TheStores[i];
471          dbgs() << "With: " << *C); C=C;
472
473    // Don't invalidate the iterator
474    BBI = BI;
475
476    // Zap all the stores.
477    for (SmallVector<StoreInst*, 16>::const_iterator
478         SI = Range.TheStores.begin(),
479         SE = Range.TheStores.end(); SI != SE; ++SI)
480      (*SI)->eraseFromParent();
481    ++NumMemSetInfer;
482    MadeChange = true;
483  }
484
485  return MadeChange;
486}
487
488
489/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
490/// and checks for the possibility of a call slot optimization by having
491/// the call write its result directly into the destination of the memcpy.
492bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
493  // The general transformation to keep in mind is
494  //
495  //   call @func(..., src, ...)
496  //   memcpy(dest, src, ...)
497  //
498  // ->
499  //
500  //   memcpy(dest, src, ...)
501  //   call @func(..., dest, ...)
502  //
503  // Since moving the memcpy is technically awkward, we additionally check that
504  // src only holds uninitialized values at the moment of the call, meaning that
505  // the memcpy can be discarded rather than moved.
506
507  // Deliberately get the source and destination with bitcasts stripped away,
508  // because we'll need to do type comparisons based on the underlying type.
509  Value *cpyDest = cpy->getDest();
510  Value *cpySrc = cpy->getSource();
511  CallSite CS(C);
512
513  // We need to be able to reason about the size of the memcpy, so we require
514  // that it be a constant.
515  ConstantInt *cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
516  if (!cpyLength)
517    return false;
518
519  // Require that src be an alloca.  This simplifies the reasoning considerably.
520  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
521  if (!srcAlloca)
522    return false;
523
524  // Check that all of src is copied to dest.
525  TargetData *TD = getAnalysisIfAvailable<TargetData>();
526  if (!TD) return false;
527
528  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
529  if (!srcArraySize)
530    return false;
531
532  uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
533    srcArraySize->getZExtValue();
534
535  if (cpyLength->getZExtValue() < srcSize)
536    return false;
537
538  // Check that accessing the first srcSize bytes of dest will not cause a
539  // trap.  Otherwise the transform is invalid since it might cause a trap
540  // to occur earlier than it otherwise would.
541  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
542    // The destination is an alloca.  Check it is larger than srcSize.
543    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
544    if (!destArraySize)
545      return false;
546
547    uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
548      destArraySize->getZExtValue();
549
550    if (destSize < srcSize)
551      return false;
552  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
553    // If the destination is an sret parameter then only accesses that are
554    // outside of the returned struct type can trap.
555    if (!A->hasStructRetAttr())
556      return false;
557
558    const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
559    uint64_t destSize = TD->getTypeAllocSize(StructTy);
560
561    if (destSize < srcSize)
562      return false;
563  } else {
564    return false;
565  }
566
567  // Check that src is not accessed except via the call and the memcpy.  This
568  // guarantees that it holds only undefined values when passed in (so the final
569  // memcpy can be dropped), that it is not read or written between the call and
570  // the memcpy, and that writing beyond the end of it is undefined.
571  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
572                                   srcAlloca->use_end());
573  while (!srcUseList.empty()) {
574    User *UI = srcUseList.pop_back_val();
575
576    if (isa<BitCastInst>(UI)) {
577      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
578           I != E; ++I)
579        srcUseList.push_back(*I);
580    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
581      if (G->hasAllZeroIndices())
582        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
583             I != E; ++I)
584          srcUseList.push_back(*I);
585      else
586        return false;
587    } else if (UI != C && UI != cpy) {
588      return false;
589    }
590  }
591
592  // Since we're changing the parameter to the callsite, we need to make sure
593  // that what would be the new parameter dominates the callsite.
594  DominatorTree &DT = getAnalysis<DominatorTree>();
595  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
596    if (!DT.dominates(cpyDestInst, C))
597      return false;
598
599  // In addition to knowing that the call does not access src in some
600  // unexpected manner, for example via a global, which we deduce from
601  // the use analysis, we also need to know that it does not sneakily
602  // access dest.  We rely on AA to figure this out for us.
603  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
604  if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
605      AliasAnalysis::NoModRef)
606    return false;
607
608  // All the checks have passed, so do the transformation.
609  bool changedArgument = false;
610  for (unsigned i = 0; i < CS.arg_size(); ++i)
611    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
612      if (cpySrc->getType() != cpyDest->getType())
613        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
614                                              cpyDest->getName(), C);
615      changedArgument = true;
616      if (CS.getArgument(i)->getType() == cpyDest->getType())
617        CS.setArgument(i, cpyDest);
618      else
619        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
620                          CS.getArgument(i)->getType(), cpyDest->getName(), C));
621    }
622
623  if (!changedArgument)
624    return false;
625
626  // Drop any cached information about the call, because we may have changed
627  // its dependence information by changing its parameter.
628  MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
629  MD.removeInstruction(C);
630
631  // Remove the memcpy
632  MD.removeInstruction(cpy);
633  cpy->eraseFromParent();
634  ++NumMemCpyInstr;
635
636  return true;
637}
638
639/// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
640/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
641/// B to be a memcpy from X to Z (or potentially a memmove, depending on
642/// circumstances). This allows later passes to remove the first memcpy
643/// altogether.
644bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
645  MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
646
647  // The are two possible optimizations we can do for memcpy:
648  //   a) memcpy-memcpy xform which exposes redundance for DSE.
649  //   b) call-memcpy xform for return slot optimization.
650  MemDepResult dep = MD.getDependency(M);
651  if (!dep.isClobber())
652    return false;
653  if (!isa<MemCpyInst>(dep.getInst())) {
654    if (CallInst *C = dyn_cast<CallInst>(dep.getInst()))
655      return performCallSlotOptzn(M, C);
656    return false;
657  }
658
659  MemCpyInst *MDep = cast<MemCpyInst>(dep.getInst());
660
661  // We can only transforms memcpy's where the dest of one is the source of the
662  // other
663  if (M->getSource() != MDep->getDest())
664    return false;
665
666  // Second, the length of the memcpy's must be the same, or the preceeding one
667  // must be larger than the following one.
668  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
669  ConstantInt *C2 = dyn_cast<ConstantInt>(M->getLength());
670  if (!C1 || !C2)
671    return false;
672
673  uint64_t DepSize = C1->getValue().getZExtValue();
674  uint64_t CpySize = C2->getValue().getZExtValue();
675
676  if (DepSize < CpySize)
677    return false;
678
679  // Finally, we have to make sure that the dest of the second does not
680  // alias the source of the first
681  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
682  if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
683      AliasAnalysis::NoAlias)
684    return false;
685  else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
686           AliasAnalysis::NoAlias)
687    return false;
688  else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
689           != AliasAnalysis::NoAlias)
690    return false;
691
692  // If all checks passed, then we can transform these memcpy's
693  const Type *ArgTys[3] = { M->getRawDest()->getType(),
694                            MDep->getRawSource()->getType(),
695                            M->getLength()->getType() };
696  Function *MemCpyFun = Intrinsic::getDeclaration(
697                                 M->getParent()->getParent()->getParent(),
698                                 M->getIntrinsicID(), ArgTys, 3);
699
700  Value *Args[5] = {
701    M->getRawDest(), MDep->getRawSource(), M->getLength(),
702    M->getAlignmentCst(), M->getVolatileCst()
703  };
704
705  CallInst *C = CallInst::Create(MemCpyFun, Args, Args+5, "", M);
706
707
708  // If C and M don't interfere, then this is a valid transformation.  If they
709  // did, this would mean that the two sources overlap, which would be bad.
710  if (MD.getDependency(C) == dep) {
711    MD.removeInstruction(M);
712    M->eraseFromParent();
713    ++NumMemCpyInstr;
714    return true;
715  }
716
717  // Otherwise, there was no point in doing this, so we remove the call we
718  // inserted and act like nothing happened.
719  MD.removeInstruction(C);
720  C->eraseFromParent();
721  return false;
722}
723
724/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
725/// are guaranteed not to alias.
726bool MemCpyOpt::processMemMove(MemMoveInst *M) {
727  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
728
729  // If the memmove is a constant size, use it for the alias query, this allows
730  // us to optimize things like: memmove(P, P+64, 64);
731  uint64_t MemMoveSize = ~0ULL;
732  if (ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength()))
733    MemMoveSize = Len->getZExtValue();
734
735  // See if the pointers alias.
736  if (AA.alias(M->getRawDest(), MemMoveSize, M->getRawSource(), MemMoveSize) !=
737      AliasAnalysis::NoAlias)
738    return false;
739
740  DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
741
742  // If not, then we know we can transform this.
743  Module *Mod = M->getParent()->getParent()->getParent();
744  const Type *ArgTys[3] = { M->getRawDest()->getType(),
745                            M->getRawSource()->getType(),
746                            M->getLength()->getType() };
747  M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
748                                                 ArgTys, 3));
749
750  // MemDep may have over conservative information about this instruction, just
751  // conservatively flush it from the cache.
752  getAnalysis<MemoryDependenceAnalysis>().removeInstruction(M);
753
754  ++NumMoveToCpy;
755  return true;
756}
757
758
759// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN.
760bool MemCpyOpt::iterateOnFunction(Function &F) {
761  bool MadeChange = false;
762
763  // Walk all instruction in the function.
764  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
765    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
766         BI != BE;) {
767      // Avoid invalidating the iterator.
768      Instruction *I = BI++;
769
770      if (StoreInst *SI = dyn_cast<StoreInst>(I))
771        MadeChange |= processStore(SI, BI);
772      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
773        MadeChange |= processMemCpy(M);
774      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
775        if (processMemMove(M)) {
776          --BI;         // Reprocess the new memcpy.
777          MadeChange = true;
778        }
779      }
780    }
781  }
782
783  return MadeChange;
784}
785
786// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
787// function.
788//
789bool MemCpyOpt::runOnFunction(Function &F) {
790  bool MadeChange = false;
791  while (1) {
792    if (!iterateOnFunction(F))
793      break;
794    MadeChange = true;
795  }
796
797  return MadeChange;
798}
799
800
801
802