MemCpyOptimizer.cpp revision 8a629577f89869f9810065dc61afd7e4302d3e46
1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Instructions.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/MemoryDependenceAnalysis.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/IRBuilder.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Target/TargetData.h"
31#include <list>
32using namespace llvm;
33
34STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
35STATISTIC(NumMemSetInfer, "Number of memsets inferred");
36STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
37STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
38
39static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
40                                  bool &VariableIdxFound, const TargetData &TD){
41  // Skip over the first indices.
42  gep_type_iterator GTI = gep_type_begin(GEP);
43  for (unsigned i = 1; i != Idx; ++i, ++GTI)
44    /*skip along*/;
45
46  // Compute the offset implied by the rest of the indices.
47  int64_t Offset = 0;
48  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
49    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
50    if (OpC == 0)
51      return VariableIdxFound = true;
52    if (OpC->isZero()) continue;  // No offset.
53
54    // Handle struct indices, which add their field offset to the pointer.
55    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
56      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
57      continue;
58    }
59
60    // Otherwise, we have a sequential type like an array or vector.  Multiply
61    // the index by the ElementSize.
62    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
63    Offset += Size*OpC->getSExtValue();
64  }
65
66  return Offset;
67}
68
69/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
70/// constant offset, and return that constant offset.  For example, Ptr1 might
71/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
72static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
73                            const TargetData &TD) {
74  Ptr1 = Ptr1->stripPointerCasts();
75  Ptr2 = Ptr2->stripPointerCasts();
76  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
77  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
78
79  bool VariableIdxFound = false;
80
81  // If one pointer is a GEP and the other isn't, then see if the GEP is a
82  // constant offset from the base, as in "P" and "gep P, 1".
83  if (GEP1 && GEP2 == 0 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
84    Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
85    return !VariableIdxFound;
86  }
87
88  if (GEP2 && GEP1 == 0 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
89    Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
90    return !VariableIdxFound;
91  }
92
93  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
94  // base.  After that base, they may have some number of common (and
95  // potentially variable) indices.  After that they handle some constant
96  // offset, which determines their offset from each other.  At this point, we
97  // handle no other case.
98  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
99    return false;
100
101  // Skip any common indices and track the GEP types.
102  unsigned Idx = 1;
103  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
104    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
105      break;
106
107  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
108  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
109  if (VariableIdxFound) return false;
110
111  Offset = Offset2-Offset1;
112  return true;
113}
114
115
116/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
117/// This allows us to analyze stores like:
118///   store 0 -> P+1
119///   store 0 -> P+0
120///   store 0 -> P+3
121///   store 0 -> P+2
122/// which sometimes happens with stores to arrays of structs etc.  When we see
123/// the first store, we make a range [1, 2).  The second store extends the range
124/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
125/// two ranges into [0, 3) which is memset'able.
126namespace {
127struct MemsetRange {
128  // Start/End - A semi range that describes the span that this range covers.
129  // The range is closed at the start and open at the end: [Start, End).
130  int64_t Start, End;
131
132  /// StartPtr - The getelementptr instruction that points to the start of the
133  /// range.
134  Value *StartPtr;
135
136  /// Alignment - The known alignment of the first store.
137  unsigned Alignment;
138
139  /// TheStores - The actual stores that make up this range.
140  SmallVector<Instruction*, 16> TheStores;
141
142  bool isProfitableToUseMemset(const TargetData &TD) const;
143
144};
145} // end anon namespace
146
147bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
148  // If we found more than 8 stores to merge or 64 bytes, use memset.
149  if (TheStores.size() >= 8 || End-Start >= 64) return true;
150
151  // If there is nothing to merge, don't do anything.
152  if (TheStores.size() < 2) return false;
153
154  // If any of the stores are a memset, then it is always good to extend the
155  // memset.
156  for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
157    if (!isa<StoreInst>(TheStores[i]))
158      return true;
159
160  // Assume that the code generator is capable of merging pairs of stores
161  // together if it wants to.
162  if (TheStores.size() == 2) return false;
163
164  // If we have fewer than 8 stores, it can still be worthwhile to do this.
165  // For example, merging 4 i8 stores into an i32 store is useful almost always.
166  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
167  // memset will be split into 2 32-bit stores anyway) and doing so can
168  // pessimize the llvm optimizer.
169  //
170  // Since we don't have perfect knowledge here, make some assumptions: assume
171  // the maximum GPR width is the same size as the pointer size and assume that
172  // this width can be stored.  If so, check to see whether we will end up
173  // actually reducing the number of stores used.
174  unsigned Bytes = unsigned(End-Start);
175  unsigned NumPointerStores = Bytes/TD.getPointerSize();
176
177  // Assume the remaining bytes if any are done a byte at a time.
178  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
179
180  // If we will reduce the # stores (according to this heuristic), do the
181  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
182  // etc.
183  return TheStores.size() > NumPointerStores+NumByteStores;
184}
185
186
187namespace {
188class MemsetRanges {
189  /// Ranges - A sorted list of the memset ranges.  We use std::list here
190  /// because each element is relatively large and expensive to copy.
191  std::list<MemsetRange> Ranges;
192  typedef std::list<MemsetRange>::iterator range_iterator;
193  const TargetData &TD;
194public:
195  MemsetRanges(const TargetData &td) : TD(td) {}
196
197  typedef std::list<MemsetRange>::const_iterator const_iterator;
198  const_iterator begin() const { return Ranges.begin(); }
199  const_iterator end() const { return Ranges.end(); }
200  bool empty() const { return Ranges.empty(); }
201
202  void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
203    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
204      addStore(OffsetFromFirst, SI);
205    else
206      addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
207  }
208
209  void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
210    int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
211
212    addRange(OffsetFromFirst, StoreSize,
213             SI->getPointerOperand(), SI->getAlignment(), SI);
214  }
215
216  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
217    int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
218    addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
219  }
220
221  void addRange(int64_t Start, int64_t Size, Value *Ptr,
222                unsigned Alignment, Instruction *Inst);
223
224};
225
226} // end anon namespace
227
228
229/// addRange - Add a new store to the MemsetRanges data structure.  This adds a
230/// new range for the specified store at the specified offset, merging into
231/// existing ranges as appropriate.
232///
233/// Do a linear search of the ranges to see if this can be joined and/or to
234/// find the insertion point in the list.  We keep the ranges sorted for
235/// simplicity here.  This is a linear search of a linked list, which is ugly,
236/// however the number of ranges is limited, so this won't get crazy slow.
237void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
238                            unsigned Alignment, Instruction *Inst) {
239  int64_t End = Start+Size;
240  range_iterator I = Ranges.begin(), E = Ranges.end();
241
242  while (I != E && Start > I->End)
243    ++I;
244
245  // We now know that I == E, in which case we didn't find anything to merge
246  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
247  // to insert a new range.  Handle this now.
248  if (I == E || End < I->Start) {
249    MemsetRange &R = *Ranges.insert(I, MemsetRange());
250    R.Start        = Start;
251    R.End          = End;
252    R.StartPtr     = Ptr;
253    R.Alignment    = Alignment;
254    R.TheStores.push_back(Inst);
255    return;
256  }
257
258  // This store overlaps with I, add it.
259  I->TheStores.push_back(Inst);
260
261  // At this point, we may have an interval that completely contains our store.
262  // If so, just add it to the interval and return.
263  if (I->Start <= Start && I->End >= End)
264    return;
265
266  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
267  // but is not entirely contained within the range.
268
269  // See if the range extends the start of the range.  In this case, it couldn't
270  // possibly cause it to join the prior range, because otherwise we would have
271  // stopped on *it*.
272  if (Start < I->Start) {
273    I->Start = Start;
274    I->StartPtr = Ptr;
275    I->Alignment = Alignment;
276  }
277
278  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
279  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
280  // End.
281  if (End > I->End) {
282    I->End = End;
283    range_iterator NextI = I;
284    while (++NextI != E && End >= NextI->Start) {
285      // Merge the range in.
286      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
287      if (NextI->End > I->End)
288        I->End = NextI->End;
289      Ranges.erase(NextI);
290      NextI = I;
291    }
292  }
293}
294
295//===----------------------------------------------------------------------===//
296//                         MemCpyOpt Pass
297//===----------------------------------------------------------------------===//
298
299namespace {
300  class MemCpyOpt : public FunctionPass {
301    MemoryDependenceAnalysis *MD;
302    const TargetData *TD;
303  public:
304    static char ID; // Pass identification, replacement for typeid
305    MemCpyOpt() : FunctionPass(ID) {
306      initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
307      MD = 0;
308    }
309
310    bool runOnFunction(Function &F);
311
312  private:
313    // This transformation requires dominator postdominator info
314    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
315      AU.setPreservesCFG();
316      AU.addRequired<DominatorTree>();
317      AU.addRequired<MemoryDependenceAnalysis>();
318      AU.addRequired<AliasAnalysis>();
319      AU.addPreserved<AliasAnalysis>();
320      AU.addPreserved<MemoryDependenceAnalysis>();
321    }
322
323    // Helper fuctions
324    bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
325    bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
326    bool processMemCpy(MemCpyInst *M);
327    bool processMemMove(MemMoveInst *M);
328    bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
329                              uint64_t cpyLen, CallInst *C);
330    bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
331                                       uint64_t MSize);
332    bool processByValArgument(CallSite CS, unsigned ArgNo);
333    Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
334                                      Value *ByteVal);
335
336    bool iterateOnFunction(Function &F);
337  };
338
339  char MemCpyOpt::ID = 0;
340}
341
342// createMemCpyOptPass - The public interface to this file...
343FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
344
345INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
346                      false, false)
347INITIALIZE_PASS_DEPENDENCY(DominatorTree)
348INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
349INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
350INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
351                    false, false)
352
353/// tryMergingIntoMemset - When scanning forward over instructions, we look for
354/// some other patterns to fold away.  In particular, this looks for stores to
355/// neighboring locations of memory.  If it sees enough consequtive ones, it
356/// attempts to merge them together into a memcpy/memset.
357Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
358                                             Value *StartPtr, Value *ByteVal) {
359  if (TD == 0) return 0;
360
361  // Okay, so we now have a single store that can be splatable.  Scan to find
362  // all subsequent stores of the same value to offset from the same pointer.
363  // Join these together into ranges, so we can decide whether contiguous blocks
364  // are stored.
365  MemsetRanges Ranges(*TD);
366
367  BasicBlock::iterator BI = StartInst;
368  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
369    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
370      // If the instruction is readnone, ignore it, otherwise bail out.  We
371      // don't even allow readonly here because we don't want something like:
372      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
373      if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
374        break;
375      continue;
376    }
377
378    if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
379      // If this is a store, see if we can merge it in.
380      if (NextStore->isVolatile()) break;
381
382      // Check to see if this stored value is of the same byte-splattable value.
383      if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
384        break;
385
386      // Check to see if this store is to a constant offset from the start ptr.
387      int64_t Offset;
388      if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
389        break;
390
391      Ranges.addStore(Offset, NextStore);
392    } else {
393      MemSetInst *MSI = cast<MemSetInst>(BI);
394
395      if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
396          !isa<ConstantInt>(MSI->getLength()))
397        break;
398
399      // Check to see if this store is to a constant offset from the start ptr.
400      int64_t Offset;
401      if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD))
402        break;
403
404      Ranges.addMemSet(Offset, MSI);
405    }
406  }
407
408  // If we have no ranges, then we just had a single store with nothing that
409  // could be merged in.  This is a very common case of course.
410  if (Ranges.empty())
411    return 0;
412
413  // If we had at least one store that could be merged in, add the starting
414  // store as well.  We try to avoid this unless there is at least something
415  // interesting as a small compile-time optimization.
416  Ranges.addInst(0, StartInst);
417
418  // If we create any memsets, we put it right before the first instruction that
419  // isn't part of the memset block.  This ensure that the memset is dominated
420  // by any addressing instruction needed by the start of the block.
421  IRBuilder<> Builder(BI);
422
423  // Now that we have full information about ranges, loop over the ranges and
424  // emit memset's for anything big enough to be worthwhile.
425  Instruction *AMemSet = 0;
426  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
427       I != E; ++I) {
428    const MemsetRange &Range = *I;
429
430    if (Range.TheStores.size() == 1) continue;
431
432    // If it is profitable to lower this range to memset, do so now.
433    if (!Range.isProfitableToUseMemset(*TD))
434      continue;
435
436    // Otherwise, we do want to transform this!  Create a new memset.
437    // Get the starting pointer of the block.
438    StartPtr = Range.StartPtr;
439
440    // Determine alignment
441    unsigned Alignment = Range.Alignment;
442    if (Alignment == 0) {
443      const Type *EltType =
444        cast<PointerType>(StartPtr->getType())->getElementType();
445      Alignment = TD->getABITypeAlignment(EltType);
446    }
447
448    AMemSet =
449      Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
450
451    DEBUG(dbgs() << "Replace stores:\n";
452          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
453            dbgs() << *Range.TheStores[i] << '\n';
454          dbgs() << "With: " << *AMemSet << '\n');
455
456    // Zap all the stores.
457    for (SmallVector<Instruction*, 16>::const_iterator
458         SI = Range.TheStores.begin(),
459         SE = Range.TheStores.end(); SI != SE; ++SI) {
460      MD->removeInstruction(*SI);
461      (*SI)->eraseFromParent();
462    }
463    ++NumMemSetInfer;
464  }
465
466  return AMemSet;
467}
468
469
470bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
471  if (SI->isVolatile()) return false;
472
473  if (TD == 0) return false;
474
475  // Detect cases where we're performing call slot forwarding, but
476  // happen to be using a load-store pair to implement it, rather than
477  // a memcpy.
478  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
479    if (!LI->isVolatile() && LI->hasOneUse()) {
480      MemDepResult dep = MD->getDependency(LI);
481      CallInst *C = 0;
482      if (dep.isClobber() && !isa<MemCpyInst>(dep.getInst()))
483        C = dyn_cast<CallInst>(dep.getInst());
484
485      if (C) {
486        bool changed = performCallSlotOptzn(LI,
487                        SI->getPointerOperand()->stripPointerCasts(),
488                        LI->getPointerOperand()->stripPointerCasts(),
489                        TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
490        if (changed) {
491          MD->removeInstruction(SI);
492          SI->eraseFromParent();
493          LI->eraseFromParent();
494          ++NumMemCpyInstr;
495          return true;
496        }
497      }
498    }
499  }
500
501  // There are two cases that are interesting for this code to handle: memcpy
502  // and memset.  Right now we only handle memset.
503
504  // Ensure that the value being stored is something that can be memset'able a
505  // byte at a time like "0" or "-1" or any width, as well as things like
506  // 0xA0A0A0A0 and 0.0.
507  if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
508    if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
509                                              ByteVal)) {
510      BBI = I;  // Don't invalidate iterator.
511      return true;
512    }
513
514  return false;
515}
516
517bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
518  // See if there is another memset or store neighboring this memset which
519  // allows us to widen out the memset to do a single larger store.
520  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
521    if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
522                                              MSI->getValue())) {
523      BBI = I;  // Don't invalidate iterator.
524      return true;
525    }
526  return false;
527}
528
529
530/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
531/// and checks for the possibility of a call slot optimization by having
532/// the call write its result directly into the destination of the memcpy.
533bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
534                                     Value *cpyDest, Value *cpySrc,
535                                     uint64_t cpyLen, CallInst *C) {
536  // The general transformation to keep in mind is
537  //
538  //   call @func(..., src, ...)
539  //   memcpy(dest, src, ...)
540  //
541  // ->
542  //
543  //   memcpy(dest, src, ...)
544  //   call @func(..., dest, ...)
545  //
546  // Since moving the memcpy is technically awkward, we additionally check that
547  // src only holds uninitialized values at the moment of the call, meaning that
548  // the memcpy can be discarded rather than moved.
549
550  // Deliberately get the source and destination with bitcasts stripped away,
551  // because we'll need to do type comparisons based on the underlying type.
552  CallSite CS(C);
553
554  // Require that src be an alloca.  This simplifies the reasoning considerably.
555  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
556  if (!srcAlloca)
557    return false;
558
559  // Check that all of src is copied to dest.
560  if (TD == 0) return false;
561
562  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
563  if (!srcArraySize)
564    return false;
565
566  uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
567    srcArraySize->getZExtValue();
568
569  if (cpyLen < srcSize)
570    return false;
571
572  // Check that accessing the first srcSize bytes of dest will not cause a
573  // trap.  Otherwise the transform is invalid since it might cause a trap
574  // to occur earlier than it otherwise would.
575  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
576    // The destination is an alloca.  Check it is larger than srcSize.
577    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
578    if (!destArraySize)
579      return false;
580
581    uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
582      destArraySize->getZExtValue();
583
584    if (destSize < srcSize)
585      return false;
586  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
587    // If the destination is an sret parameter then only accesses that are
588    // outside of the returned struct type can trap.
589    if (!A->hasStructRetAttr())
590      return false;
591
592    const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
593    uint64_t destSize = TD->getTypeAllocSize(StructTy);
594
595    if (destSize < srcSize)
596      return false;
597  } else {
598    return false;
599  }
600
601  // Check that src is not accessed except via the call and the memcpy.  This
602  // guarantees that it holds only undefined values when passed in (so the final
603  // memcpy can be dropped), that it is not read or written between the call and
604  // the memcpy, and that writing beyond the end of it is undefined.
605  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
606                                   srcAlloca->use_end());
607  while (!srcUseList.empty()) {
608    User *UI = srcUseList.pop_back_val();
609
610    if (isa<BitCastInst>(UI)) {
611      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
612           I != E; ++I)
613        srcUseList.push_back(*I);
614    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
615      if (G->hasAllZeroIndices())
616        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
617             I != E; ++I)
618          srcUseList.push_back(*I);
619      else
620        return false;
621    } else if (UI != C && UI != cpy) {
622      return false;
623    }
624  }
625
626  // Since we're changing the parameter to the callsite, we need to make sure
627  // that what would be the new parameter dominates the callsite.
628  DominatorTree &DT = getAnalysis<DominatorTree>();
629  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
630    if (!DT.dominates(cpyDestInst, C))
631      return false;
632
633  // In addition to knowing that the call does not access src in some
634  // unexpected manner, for example via a global, which we deduce from
635  // the use analysis, we also need to know that it does not sneakily
636  // access dest.  We rely on AA to figure this out for us.
637  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
638  if (AA.getModRefInfo(C, cpyDest, srcSize) != AliasAnalysis::NoModRef)
639    return false;
640
641  // All the checks have passed, so do the transformation.
642  bool changedArgument = false;
643  for (unsigned i = 0; i < CS.arg_size(); ++i)
644    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
645      if (cpySrc->getType() != cpyDest->getType())
646        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
647                                              cpyDest->getName(), C);
648      changedArgument = true;
649      if (CS.getArgument(i)->getType() == cpyDest->getType())
650        CS.setArgument(i, cpyDest);
651      else
652        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
653                          CS.getArgument(i)->getType(), cpyDest->getName(), C));
654    }
655
656  if (!changedArgument)
657    return false;
658
659  // Drop any cached information about the call, because we may have changed
660  // its dependence information by changing its parameter.
661  MD->removeInstruction(C);
662
663  // Remove the memcpy.
664  MD->removeInstruction(cpy);
665  ++NumMemCpyInstr;
666
667  return true;
668}
669
670/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
671/// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
672/// copy from MDep's input if we can.  MSize is the size of M's copy.
673///
674bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
675                                              uint64_t MSize) {
676  // We can only transforms memcpy's where the dest of one is the source of the
677  // other.
678  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
679    return false;
680
681  // If dep instruction is reading from our current input, then it is a noop
682  // transfer and substituting the input won't change this instruction.  Just
683  // ignore the input and let someone else zap MDep.  This handles cases like:
684  //    memcpy(a <- a)
685  //    memcpy(b <- a)
686  if (M->getSource() == MDep->getSource())
687    return false;
688
689  // Second, the length of the memcpy's must be the same, or the preceeding one
690  // must be larger than the following one.
691  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
692  if (!C1) return false;
693
694  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
695
696  // Verify that the copied-from memory doesn't change in between the two
697  // transfers.  For example, in:
698  //    memcpy(a <- b)
699  //    *b = 42;
700  //    memcpy(c <- a)
701  // It would be invalid to transform the second memcpy into memcpy(c <- b).
702  //
703  // TODO: If the code between M and MDep is transparent to the destination "c",
704  // then we could still perform the xform by moving M up to the first memcpy.
705  //
706  // NOTE: This is conservative, it will stop on any read from the source loc,
707  // not just the defining memcpy.
708  MemDepResult SourceDep =
709    MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
710                                 false, M, M->getParent());
711  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
712    return false;
713
714  // If the dest of the second might alias the source of the first, then the
715  // source and dest might overlap.  We still want to eliminate the intermediate
716  // value, but we have to generate a memmove instead of memcpy.
717  bool UseMemMove = false;
718  if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
719    UseMemMove = true;
720
721  // If all checks passed, then we can transform M.
722
723  // Make sure to use the lesser of the alignment of the source and the dest
724  // since we're changing where we're reading from, but don't want to increase
725  // the alignment past what can be read from or written to.
726  // TODO: Is this worth it if we're creating a less aligned memcpy? For
727  // example we could be moving from movaps -> movq on x86.
728  unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
729
730  IRBuilder<> Builder(M);
731  if (UseMemMove)
732    Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
733                          Align, M->isVolatile());
734  else
735    Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
736                         Align, M->isVolatile());
737
738  // Remove the instruction we're replacing.
739  MD->removeInstruction(M);
740  M->eraseFromParent();
741  ++NumMemCpyInstr;
742  return true;
743}
744
745
746/// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
747/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
748/// B to be a memcpy from X to Z (or potentially a memmove, depending on
749/// circumstances). This allows later passes to remove the first memcpy
750/// altogether.
751bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
752  // We can only optimize statically-sized memcpy's that are non-volatile.
753  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
754  if (CopySize == 0 || M->isVolatile()) return false;
755
756  // If the source and destination of the memcpy are the same, then zap it.
757  if (M->getSource() == M->getDest()) {
758    MD->removeInstruction(M);
759    M->eraseFromParent();
760    return false;
761  }
762
763  // If copying from a constant, try to turn the memcpy into a memset.
764  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
765    if (GV->isConstant() && GV->hasDefinitiveInitializer())
766      if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
767        IRBuilder<> Builder(M);
768        Builder.CreateMemSet(M->getRawDest(), ByteVal, CopySize,
769                             M->getAlignment(), false);
770        MD->removeInstruction(M);
771        M->eraseFromParent();
772        ++NumCpyToSet;
773        return true;
774      }
775
776  // The are two possible optimizations we can do for memcpy:
777  //   a) memcpy-memcpy xform which exposes redundance for DSE.
778  //   b) call-memcpy xform for return slot optimization.
779  MemDepResult DepInfo = MD->getDependency(M);
780  if (!DepInfo.isClobber())
781    return false;
782
783  if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()))
784    return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
785
786  if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
787    if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
788                             CopySize->getZExtValue(), C)) {
789      M->eraseFromParent();
790      return true;
791    }
792  }
793
794  return false;
795}
796
797/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
798/// are guaranteed not to alias.
799bool MemCpyOpt::processMemMove(MemMoveInst *M) {
800  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
801
802  // See if the pointers alias.
803  if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
804    return false;
805
806  DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
807
808  // If not, then we know we can transform this.
809  Module *Mod = M->getParent()->getParent()->getParent();
810  const Type *ArgTys[3] = { M->getRawDest()->getType(),
811                            M->getRawSource()->getType(),
812                            M->getLength()->getType() };
813  M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
814                                                 ArgTys, 3));
815
816  // MemDep may have over conservative information about this instruction, just
817  // conservatively flush it from the cache.
818  MD->removeInstruction(M);
819
820  ++NumMoveToCpy;
821  return true;
822}
823
824/// processByValArgument - This is called on every byval argument in call sites.
825bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
826  if (TD == 0) return false;
827
828  // Find out what feeds this byval argument.
829  Value *ByValArg = CS.getArgument(ArgNo);
830  const Type *ByValTy =cast<PointerType>(ByValArg->getType())->getElementType();
831  uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
832  MemDepResult DepInfo =
833    MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
834                                 true, CS.getInstruction(),
835                                 CS.getInstruction()->getParent());
836  if (!DepInfo.isClobber())
837    return false;
838
839  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
840  // a memcpy, see if we can byval from the source of the memcpy instead of the
841  // result.
842  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
843  if (MDep == 0 || MDep->isVolatile() ||
844      ByValArg->stripPointerCasts() != MDep->getDest())
845    return false;
846
847  // The length of the memcpy must be larger or equal to the size of the byval.
848  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
849  if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
850    return false;
851
852  // Get the alignment of the byval.  If it is greater than the memcpy, then we
853  // can't do the substitution.  If the call doesn't specify the alignment, then
854  // it is some target specific value that we can't know.
855  unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
856  if (ByValAlign == 0 || MDep->getAlignment() < ByValAlign)
857    return false;
858
859  // Verify that the copied-from memory doesn't change in between the memcpy and
860  // the byval call.
861  //    memcpy(a <- b)
862  //    *b = 42;
863  //    foo(*a)
864  // It would be invalid to transform the second memcpy into foo(*b).
865  //
866  // NOTE: This is conservative, it will stop on any read from the source loc,
867  // not just the defining memcpy.
868  MemDepResult SourceDep =
869    MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
870                                 false, CS.getInstruction(), MDep->getParent());
871  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
872    return false;
873
874  Value *TmpCast = MDep->getSource();
875  if (MDep->getSource()->getType() != ByValArg->getType())
876    TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
877                              "tmpcast", CS.getInstruction());
878
879  DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
880               << "  " << *MDep << "\n"
881               << "  " << *CS.getInstruction() << "\n");
882
883  // Otherwise we're good!  Update the byval argument.
884  CS.setArgument(ArgNo, TmpCast);
885  ++NumMemCpyInstr;
886  return true;
887}
888
889/// iterateOnFunction - Executes one iteration of MemCpyOpt.
890bool MemCpyOpt::iterateOnFunction(Function &F) {
891  bool MadeChange = false;
892
893  // Walk all instruction in the function.
894  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
895    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
896      // Avoid invalidating the iterator.
897      Instruction *I = BI++;
898
899      bool RepeatInstruction = false;
900
901      if (StoreInst *SI = dyn_cast<StoreInst>(I))
902        MadeChange |= processStore(SI, BI);
903      else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
904        RepeatInstruction = processMemSet(M, BI);
905      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
906        RepeatInstruction = processMemCpy(M);
907      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
908        RepeatInstruction = processMemMove(M);
909      else if (CallSite CS = (Value*)I) {
910        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
911          if (CS.paramHasAttr(i+1, Attribute::ByVal))
912            MadeChange |= processByValArgument(CS, i);
913      }
914
915      // Reprocess the instruction if desired.
916      if (RepeatInstruction) {
917        if (BI != BB->begin()) --BI;
918        MadeChange = true;
919      }
920    }
921  }
922
923  return MadeChange;
924}
925
926// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
927// function.
928//
929bool MemCpyOpt::runOnFunction(Function &F) {
930  bool MadeChange = false;
931  MD = &getAnalysis<MemoryDependenceAnalysis>();
932  TD = getAnalysisIfAvailable<TargetData>();
933  while (1) {
934    if (!iterateOnFunction(F))
935      break;
936    MadeChange = true;
937  }
938
939  MD = 0;
940  return MadeChange;
941}
942