MemCpyOptimizer.cpp revision 8e68c3873549ca31533e2e3e40dda3a43cb79566
1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Instructions.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/Dominators.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/MemoryDependenceAnalysis.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/GetElementPtrTypeIterator.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetData.h"
28#include <list>
29using namespace llvm;
30
31STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
32STATISTIC(NumMemSetInfer, "Number of memsets inferred");
33STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
34
35/// isBytewiseValue - If the specified value can be set by repeating the same
36/// byte in memory, return the i8 value that it is represented with.  This is
37/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
38/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
39/// byte store (e.g. i16 0x1234), return null.
40static Value *isBytewiseValue(Value *V) {
41  // All byte-wide stores are splatable, even of arbitrary variables.
42  if (V->getType()->isIntegerTy(8)) return V;
43
44  // Constant float and double values can be handled as integer values if the
45  // corresponding integer value is "byteable".  An important case is 0.0.
46  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
47    if (CFP->getType()->isFloatTy())
48      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
49    if (CFP->getType()->isDoubleTy())
50      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
51    // Don't handle long double formats, which have strange constraints.
52  }
53
54  // We can handle constant integers that are power of two in size and a
55  // multiple of 8 bits.
56  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
57    unsigned Width = CI->getBitWidth();
58    if (isPowerOf2_32(Width) && Width > 8) {
59      // We can handle this value if the recursive binary decomposition is the
60      // same at all levels.
61      APInt Val = CI->getValue();
62      APInt Val2;
63      while (Val.getBitWidth() != 8) {
64        unsigned NextWidth = Val.getBitWidth()/2;
65        Val2  = Val.lshr(NextWidth);
66        Val2 = Val2.trunc(Val.getBitWidth()/2);
67        Val = Val.trunc(Val.getBitWidth()/2);
68
69        // If the top/bottom halves aren't the same, reject it.
70        if (Val != Val2)
71          return 0;
72      }
73      return ConstantInt::get(V->getContext(), Val);
74    }
75  }
76
77  // Conceptually, we could handle things like:
78  //   %a = zext i8 %X to i16
79  //   %b = shl i16 %a, 8
80  //   %c = or i16 %a, %b
81  // but until there is an example that actually needs this, it doesn't seem
82  // worth worrying about.
83  return 0;
84}
85
86static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
87                                  bool &VariableIdxFound, TargetData &TD) {
88  // Skip over the first indices.
89  gep_type_iterator GTI = gep_type_begin(GEP);
90  for (unsigned i = 1; i != Idx; ++i, ++GTI)
91    /*skip along*/;
92
93  // Compute the offset implied by the rest of the indices.
94  int64_t Offset = 0;
95  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
96    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
97    if (OpC == 0)
98      return VariableIdxFound = true;
99    if (OpC->isZero()) continue;  // No offset.
100
101    // Handle struct indices, which add their field offset to the pointer.
102    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
103      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
104      continue;
105    }
106
107    // Otherwise, we have a sequential type like an array or vector.  Multiply
108    // the index by the ElementSize.
109    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
110    Offset += Size*OpC->getSExtValue();
111  }
112
113  return Offset;
114}
115
116/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
117/// constant offset, and return that constant offset.  For example, Ptr1 might
118/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
119static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
120                            TargetData &TD) {
121  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
122  // base.  After that base, they may have some number of common (and
123  // potentially variable) indices.  After that they handle some constant
124  // offset, which determines their offset from each other.  At this point, we
125  // handle no other case.
126  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
127  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
128  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
129    return false;
130
131  // Skip any common indices and track the GEP types.
132  unsigned Idx = 1;
133  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
134    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
135      break;
136
137  bool VariableIdxFound = false;
138  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
139  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
140  if (VariableIdxFound) return false;
141
142  Offset = Offset2-Offset1;
143  return true;
144}
145
146
147/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
148/// This allows us to analyze stores like:
149///   store 0 -> P+1
150///   store 0 -> P+0
151///   store 0 -> P+3
152///   store 0 -> P+2
153/// which sometimes happens with stores to arrays of structs etc.  When we see
154/// the first store, we make a range [1, 2).  The second store extends the range
155/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
156/// two ranges into [0, 3) which is memset'able.
157namespace {
158struct MemsetRange {
159  // Start/End - A semi range that describes the span that this range covers.
160  // The range is closed at the start and open at the end: [Start, End).
161  int64_t Start, End;
162
163  /// StartPtr - The getelementptr instruction that points to the start of the
164  /// range.
165  Value *StartPtr;
166
167  /// Alignment - The known alignment of the first store.
168  unsigned Alignment;
169
170  /// TheStores - The actual stores that make up this range.
171  SmallVector<StoreInst*, 16> TheStores;
172
173  bool isProfitableToUseMemset(const TargetData &TD) const;
174
175};
176} // end anon namespace
177
178bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
179  // If we found more than 8 stores to merge or 64 bytes, use memset.
180  if (TheStores.size() >= 8 || End-Start >= 64) return true;
181
182  // Assume that the code generator is capable of merging pairs of stores
183  // together if it wants to.
184  if (TheStores.size() <= 2) return false;
185
186  // If we have fewer than 8 stores, it can still be worthwhile to do this.
187  // For example, merging 4 i8 stores into an i32 store is useful almost always.
188  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
189  // memset will be split into 2 32-bit stores anyway) and doing so can
190  // pessimize the llvm optimizer.
191  //
192  // Since we don't have perfect knowledge here, make some assumptions: assume
193  // the maximum GPR width is the same size as the pointer size and assume that
194  // this width can be stored.  If so, check to see whether we will end up
195  // actually reducing the number of stores used.
196  unsigned Bytes = unsigned(End-Start);
197  unsigned NumPointerStores = Bytes/TD.getPointerSize();
198
199  // Assume the remaining bytes if any are done a byte at a time.
200  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
201
202  // If we will reduce the # stores (according to this heuristic), do the
203  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
204  // etc.
205  return TheStores.size() > NumPointerStores+NumByteStores;
206}
207
208
209namespace {
210class MemsetRanges {
211  /// Ranges - A sorted list of the memset ranges.  We use std::list here
212  /// because each element is relatively large and expensive to copy.
213  std::list<MemsetRange> Ranges;
214  typedef std::list<MemsetRange>::iterator range_iterator;
215  TargetData &TD;
216public:
217  MemsetRanges(TargetData &td) : TD(td) {}
218
219  typedef std::list<MemsetRange>::const_iterator const_iterator;
220  const_iterator begin() const { return Ranges.begin(); }
221  const_iterator end() const { return Ranges.end(); }
222  bool empty() const { return Ranges.empty(); }
223
224  void addStore(int64_t OffsetFromFirst, StoreInst *SI);
225};
226
227} // end anon namespace
228
229
230/// addStore - Add a new store to the MemsetRanges data structure.  This adds a
231/// new range for the specified store at the specified offset, merging into
232/// existing ranges as appropriate.
233void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
234  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
235
236  // Do a linear search of the ranges to see if this can be joined and/or to
237  // find the insertion point in the list.  We keep the ranges sorted for
238  // simplicity here.  This is a linear search of a linked list, which is ugly,
239  // however the number of ranges is limited, so this won't get crazy slow.
240  range_iterator I = Ranges.begin(), E = Ranges.end();
241
242  while (I != E && Start > I->End)
243    ++I;
244
245  // We now know that I == E, in which case we didn't find anything to merge
246  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
247  // to insert a new range.  Handle this now.
248  if (I == E || End < I->Start) {
249    MemsetRange &R = *Ranges.insert(I, MemsetRange());
250    R.Start        = Start;
251    R.End          = End;
252    R.StartPtr     = SI->getPointerOperand();
253    R.Alignment    = SI->getAlignment();
254    R.TheStores.push_back(SI);
255    return;
256  }
257
258  // This store overlaps with I, add it.
259  I->TheStores.push_back(SI);
260
261  // At this point, we may have an interval that completely contains our store.
262  // If so, just add it to the interval and return.
263  if (I->Start <= Start && I->End >= End)
264    return;
265
266  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
267  // but is not entirely contained within the range.
268
269  // See if the range extends the start of the range.  In this case, it couldn't
270  // possibly cause it to join the prior range, because otherwise we would have
271  // stopped on *it*.
272  if (Start < I->Start) {
273    I->Start = Start;
274    I->StartPtr = SI->getPointerOperand();
275    I->Alignment = SI->getAlignment();
276  }
277
278  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
279  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
280  // End.
281  if (End > I->End) {
282    I->End = End;
283    range_iterator NextI = I;
284    while (++NextI != E && End >= NextI->Start) {
285      // Merge the range in.
286      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
287      if (NextI->End > I->End)
288        I->End = NextI->End;
289      Ranges.erase(NextI);
290      NextI = I;
291    }
292  }
293}
294
295//===----------------------------------------------------------------------===//
296//                         MemCpyOpt Pass
297//===----------------------------------------------------------------------===//
298
299namespace {
300  class MemCpyOpt : public FunctionPass {
301    MemoryDependenceAnalysis *MD;
302    bool runOnFunction(Function &F);
303  public:
304    static char ID; // Pass identification, replacement for typeid
305    MemCpyOpt() : FunctionPass(ID) {
306      initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
307      MD = 0;
308    }
309
310  private:
311    // This transformation requires dominator postdominator info
312    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
313      AU.setPreservesCFG();
314      AU.addRequired<DominatorTree>();
315      AU.addRequired<MemoryDependenceAnalysis>();
316      AU.addRequired<AliasAnalysis>();
317      AU.addPreserved<AliasAnalysis>();
318      AU.addPreserved<MemoryDependenceAnalysis>();
319    }
320
321    // Helper fuctions
322    bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
323    bool processMemCpy(MemCpyInst *M);
324    bool processMemMove(MemMoveInst *M);
325    bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
326                              uint64_t cpyLen, CallInst *C);
327    bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
328                                       uint64_t MSize);
329    bool processByValArgument(CallSite CS, unsigned ArgNo);
330    bool iterateOnFunction(Function &F);
331  };
332
333  char MemCpyOpt::ID = 0;
334}
335
336// createMemCpyOptPass - The public interface to this file...
337FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
338
339INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
340                      false, false)
341INITIALIZE_PASS_DEPENDENCY(DominatorTree)
342INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
343INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
344INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
345                    false, false)
346
347/// processStore - When GVN is scanning forward over instructions, we look for
348/// some other patterns to fold away.  In particular, this looks for stores to
349/// neighboring locations of memory.  If it sees enough consequtive ones
350/// (currently 4) it attempts to merge them together into a memcpy/memset.
351bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
352  if (SI->isVolatile()) return false;
353
354  TargetData *TD = getAnalysisIfAvailable<TargetData>();
355  if (!TD) return false;
356
357  // Detect cases where we're performing call slot forwarding, but
358  // happen to be using a load-store pair to implement it, rather than
359  // a memcpy.
360  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
361    if (!LI->isVolatile() && LI->hasOneUse()) {
362      MemDepResult dep = MD->getDependency(LI);
363      CallInst *C = 0;
364      if (dep.isClobber() && !isa<MemCpyInst>(dep.getInst()))
365        C = dyn_cast<CallInst>(dep.getInst());
366
367      if (C) {
368        bool changed = performCallSlotOptzn(LI,
369                        SI->getPointerOperand()->stripPointerCasts(),
370                        LI->getPointerOperand()->stripPointerCasts(),
371                        TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
372        if (changed) {
373          MD->removeInstruction(SI);
374          SI->eraseFromParent();
375          LI->eraseFromParent();
376          ++NumMemCpyInstr;
377          return true;
378        }
379      }
380    }
381  }
382
383  LLVMContext &Context = SI->getContext();
384
385  // There are two cases that are interesting for this code to handle: memcpy
386  // and memset.  Right now we only handle memset.
387
388  // Ensure that the value being stored is something that can be memset'able a
389  // byte at a time like "0" or "-1" or any width, as well as things like
390  // 0xA0A0A0A0 and 0.0.
391  Value *ByteVal = isBytewiseValue(SI->getOperand(0));
392  if (!ByteVal)
393    return false;
394
395  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
396  Module *M = SI->getParent()->getParent()->getParent();
397
398  // Okay, so we now have a single store that can be splatable.  Scan to find
399  // all subsequent stores of the same value to offset from the same pointer.
400  // Join these together into ranges, so we can decide whether contiguous blocks
401  // are stored.
402  MemsetRanges Ranges(*TD);
403
404  Value *StartPtr = SI->getPointerOperand();
405
406  BasicBlock::iterator BI = SI;
407  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
408    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
409      // If the call is readnone, ignore it, otherwise bail out.  We don't even
410      // allow readonly here because we don't want something like:
411      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
412      if (AA.getModRefBehavior(CallSite(BI)) ==
413            AliasAnalysis::DoesNotAccessMemory)
414        continue;
415
416      // TODO: If this is a memset, try to join it in.
417
418      break;
419    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
420      break;
421
422    // If this is a non-store instruction it is fine, ignore it.
423    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
424    if (NextStore == 0) continue;
425
426    // If this is a store, see if we can merge it in.
427    if (NextStore->isVolatile()) break;
428
429    // Check to see if this stored value is of the same byte-splattable value.
430    if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
431      break;
432
433    // Check to see if this store is to a constant offset from the start ptr.
434    int64_t Offset;
435    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
436      break;
437
438    Ranges.addStore(Offset, NextStore);
439  }
440
441  // If we have no ranges, then we just had a single store with nothing that
442  // could be merged in.  This is a very common case of course.
443  if (Ranges.empty())
444    return false;
445
446  // If we had at least one store that could be merged in, add the starting
447  // store as well.  We try to avoid this unless there is at least something
448  // interesting as a small compile-time optimization.
449  Ranges.addStore(0, SI);
450
451
452  // Now that we have full information about ranges, loop over the ranges and
453  // emit memset's for anything big enough to be worthwhile.
454  bool MadeChange = false;
455  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
456       I != E; ++I) {
457    const MemsetRange &Range = *I;
458
459    if (Range.TheStores.size() == 1) continue;
460
461    // If it is profitable to lower this range to memset, do so now.
462    if (!Range.isProfitableToUseMemset(*TD))
463      continue;
464
465    // Otherwise, we do want to transform this!  Create a new memset.  We put
466    // the memset right before the first instruction that isn't part of this
467    // memset block.  This ensure that the memset is dominated by any addressing
468    // instruction needed by the start of the block.
469    BasicBlock::iterator InsertPt = BI;
470
471    // Get the starting pointer of the block.
472    StartPtr = Range.StartPtr;
473
474    // Determine alignment
475    unsigned Alignment = Range.Alignment;
476    if (Alignment == 0) {
477      const Type *EltType =
478         cast<PointerType>(StartPtr->getType())->getElementType();
479      Alignment = TD->getABITypeAlignment(EltType);
480    }
481
482    // Cast the start ptr to be i8* as memset requires.
483    const PointerType* StartPTy = cast<PointerType>(StartPtr->getType());
484    const PointerType *i8Ptr = Type::getInt8PtrTy(Context,
485                                                  StartPTy->getAddressSpace());
486    if (StartPTy!= i8Ptr)
487      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
488                                 InsertPt);
489
490    Value *Ops[] = {
491      StartPtr, ByteVal,   // Start, value
492      // size
493      ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
494      // align
495      ConstantInt::get(Type::getInt32Ty(Context), Alignment),
496      // volatile
497      ConstantInt::getFalse(Context),
498    };
499    const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
500
501    Function *MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
502
503    Value *C = CallInst::Create(MemSetF, Ops, Ops+5, "", InsertPt);
504    DEBUG(dbgs() << "Replace stores:\n";
505          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
506            dbgs() << *Range.TheStores[i] << '\n';
507          dbgs() << "With: " << *C << '\n'); (void)C;
508
509    // Don't invalidate the iterator
510    BBI = BI;
511
512    // Zap all the stores.
513    for (SmallVector<StoreInst*, 16>::const_iterator
514         SI = Range.TheStores.begin(),
515         SE = Range.TheStores.end(); SI != SE; ++SI)
516      (*SI)->eraseFromParent();
517    ++NumMemSetInfer;
518    MadeChange = true;
519  }
520
521  return MadeChange;
522}
523
524
525/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
526/// and checks for the possibility of a call slot optimization by having
527/// the call write its result directly into the destination of the memcpy.
528bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
529                                     Value *cpyDest, Value *cpySrc,
530                                     uint64_t cpyLen, CallInst *C) {
531  // The general transformation to keep in mind is
532  //
533  //   call @func(..., src, ...)
534  //   memcpy(dest, src, ...)
535  //
536  // ->
537  //
538  //   memcpy(dest, src, ...)
539  //   call @func(..., dest, ...)
540  //
541  // Since moving the memcpy is technically awkward, we additionally check that
542  // src only holds uninitialized values at the moment of the call, meaning that
543  // the memcpy can be discarded rather than moved.
544
545  // Deliberately get the source and destination with bitcasts stripped away,
546  // because we'll need to do type comparisons based on the underlying type.
547  CallSite CS(C);
548
549  // Require that src be an alloca.  This simplifies the reasoning considerably.
550  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
551  if (!srcAlloca)
552    return false;
553
554  // Check that all of src is copied to dest.
555  TargetData *TD = getAnalysisIfAvailable<TargetData>();
556  if (!TD) return false;
557
558  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
559  if (!srcArraySize)
560    return false;
561
562  uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
563    srcArraySize->getZExtValue();
564
565  if (cpyLen < srcSize)
566    return false;
567
568  // Check that accessing the first srcSize bytes of dest will not cause a
569  // trap.  Otherwise the transform is invalid since it might cause a trap
570  // to occur earlier than it otherwise would.
571  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
572    // The destination is an alloca.  Check it is larger than srcSize.
573    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
574    if (!destArraySize)
575      return false;
576
577    uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
578      destArraySize->getZExtValue();
579
580    if (destSize < srcSize)
581      return false;
582  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
583    // If the destination is an sret parameter then only accesses that are
584    // outside of the returned struct type can trap.
585    if (!A->hasStructRetAttr())
586      return false;
587
588    const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
589    uint64_t destSize = TD->getTypeAllocSize(StructTy);
590
591    if (destSize < srcSize)
592      return false;
593  } else {
594    return false;
595  }
596
597  // Check that src is not accessed except via the call and the memcpy.  This
598  // guarantees that it holds only undefined values when passed in (so the final
599  // memcpy can be dropped), that it is not read or written between the call and
600  // the memcpy, and that writing beyond the end of it is undefined.
601  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
602                                   srcAlloca->use_end());
603  while (!srcUseList.empty()) {
604    User *UI = srcUseList.pop_back_val();
605
606    if (isa<BitCastInst>(UI)) {
607      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
608           I != E; ++I)
609        srcUseList.push_back(*I);
610    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
611      if (G->hasAllZeroIndices())
612        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
613             I != E; ++I)
614          srcUseList.push_back(*I);
615      else
616        return false;
617    } else if (UI != C && UI != cpy) {
618      return false;
619    }
620  }
621
622  // Since we're changing the parameter to the callsite, we need to make sure
623  // that what would be the new parameter dominates the callsite.
624  DominatorTree &DT = getAnalysis<DominatorTree>();
625  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
626    if (!DT.dominates(cpyDestInst, C))
627      return false;
628
629  // In addition to knowing that the call does not access src in some
630  // unexpected manner, for example via a global, which we deduce from
631  // the use analysis, we also need to know that it does not sneakily
632  // access dest.  We rely on AA to figure this out for us.
633  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
634  if (AA.getModRefInfo(C, cpyDest, srcSize) !=
635      AliasAnalysis::NoModRef)
636    return false;
637
638  // All the checks have passed, so do the transformation.
639  bool changedArgument = false;
640  for (unsigned i = 0; i < CS.arg_size(); ++i)
641    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
642      if (cpySrc->getType() != cpyDest->getType())
643        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
644                                              cpyDest->getName(), C);
645      changedArgument = true;
646      if (CS.getArgument(i)->getType() == cpyDest->getType())
647        CS.setArgument(i, cpyDest);
648      else
649        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
650                          CS.getArgument(i)->getType(), cpyDest->getName(), C));
651    }
652
653  if (!changedArgument)
654    return false;
655
656  // Drop any cached information about the call, because we may have changed
657  // its dependence information by changing its parameter.
658  MD->removeInstruction(C);
659
660  // Remove the memcpy.
661  MD->removeInstruction(cpy);
662  ++NumMemCpyInstr;
663
664  return true;
665}
666
667/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
668/// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
669/// copy from MDep's input if we can.  MSize is the size of M's copy.
670///
671bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
672                                              uint64_t MSize) {
673  // We can only transforms memcpy's where the dest of one is the source of the
674  // other.
675  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
676    return false;
677
678  // If dep instruction is reading from our current input, then it is a noop
679  // transfer and substituting the input won't change this instruction.  Just
680  // ignore the input and let someone else zap MDep.  This handles cases like:
681  //    memcpy(a <- a)
682  //    memcpy(b <- a)
683  if (M->getSource() == MDep->getSource())
684    return false;
685
686  // Second, the length of the memcpy's must be the same, or the preceeding one
687  // must be larger than the following one.
688  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
689  if (!C1) return false;
690
691  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
692
693  // Verify that the copied-from memory doesn't change in between the two
694  // transfers.  For example, in:
695  //    memcpy(a <- b)
696  //    *b = 42;
697  //    memcpy(c <- a)
698  // It would be invalid to transform the second memcpy into memcpy(c <- b).
699  //
700  // TODO: If the code between M and MDep is transparent to the destination "c",
701  // then we could still perform the xform by moving M up to the first memcpy.
702  //
703  // NOTE: This is conservative, it will stop on any read from the source loc,
704  // not just the defining memcpy.
705  MemDepResult SourceDep =
706    MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
707                                 false, M, M->getParent());
708  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
709    return false;
710
711  // If the dest of the second might alias the source of the first, then the
712  // source and dest might overlap.  We still want to eliminate the intermediate
713  // value, but we have to generate a memmove instead of memcpy.
714  Intrinsic::ID ResultFn = Intrinsic::memcpy;
715  if (AA.alias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)) !=
716      AliasAnalysis::NoAlias)
717    ResultFn = Intrinsic::memmove;
718
719  // If all checks passed, then we can transform M.
720  const Type *ArgTys[3] = {
721    M->getRawDest()->getType(),
722    MDep->getRawSource()->getType(),
723    M->getLength()->getType()
724  };
725  Function *MemCpyFun =
726    Intrinsic::getDeclaration(MDep->getParent()->getParent()->getParent(),
727                              ResultFn, ArgTys, 3);
728
729  // Make sure to use the lesser of the alignment of the source and the dest
730  // since we're changing where we're reading from, but don't want to increase
731  // the alignment past what can be read from or written to.
732  // TODO: Is this worth it if we're creating a less aligned memcpy? For
733  // example we could be moving from movaps -> movq on x86.
734  unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
735  Value *Args[5] = {
736    M->getRawDest(),
737    MDep->getRawSource(),
738    M->getLength(),
739    ConstantInt::get(Type::getInt32Ty(MemCpyFun->getContext()), Align),
740    M->getVolatileCst()
741  };
742  CallInst::Create(MemCpyFun, Args, Args+5, "", M);
743
744  // Remove the instruction we're replacing.
745  MD->removeInstruction(M);
746  M->eraseFromParent();
747  ++NumMemCpyInstr;
748  return true;
749}
750
751
752/// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
753/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
754/// B to be a memcpy from X to Z (or potentially a memmove, depending on
755/// circumstances). This allows later passes to remove the first memcpy
756/// altogether.
757bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
758  // We can only optimize statically-sized memcpy's that are non-volatile.
759  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
760  if (CopySize == 0 || M->isVolatile()) return false;
761
762  // If the source and destination of the memcpy are the same, then zap it.
763  if (M->getSource() == M->getDest()) {
764    MD->removeInstruction(M);
765    M->eraseFromParent();
766    return false;
767  }
768
769
770  // The are two possible optimizations we can do for memcpy:
771  //   a) memcpy-memcpy xform which exposes redundance for DSE.
772  //   b) call-memcpy xform for return slot optimization.
773  MemDepResult DepInfo = MD->getDependency(M);
774  if (!DepInfo.isClobber())
775    return false;
776
777  if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()))
778    return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
779
780  if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
781    if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
782                             CopySize->getZExtValue(), C)) {
783      M->eraseFromParent();
784      return true;
785    }
786  }
787  return false;
788}
789
790/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
791/// are guaranteed not to alias.
792bool MemCpyOpt::processMemMove(MemMoveInst *M) {
793  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
794
795  // See if the pointers alias.
796  if (AA.alias(AA.getLocationForDest(M),
797               AA.getLocationForSource(M)) !=
798      AliasAnalysis::NoAlias)
799    return false;
800
801  DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
802
803  // If not, then we know we can transform this.
804  Module *Mod = M->getParent()->getParent()->getParent();
805  const Type *ArgTys[3] = { M->getRawDest()->getType(),
806                            M->getRawSource()->getType(),
807                            M->getLength()->getType() };
808  M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
809                                                 ArgTys, 3));
810
811  // MemDep may have over conservative information about this instruction, just
812  // conservatively flush it from the cache.
813  MD->removeInstruction(M);
814
815  ++NumMoveToCpy;
816  return true;
817}
818
819/// processByValArgument - This is called on every byval argument in call sites.
820bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
821  TargetData *TD = getAnalysisIfAvailable<TargetData>();
822  if (!TD) return false;
823
824  // Find out what feeds this byval argument.
825  Value *ByValArg = CS.getArgument(ArgNo);
826  const Type *ByValTy =cast<PointerType>(ByValArg->getType())->getElementType();
827  uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
828  MemDepResult DepInfo =
829    MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
830                                 true, CS.getInstruction(),
831                                 CS.getInstruction()->getParent());
832  if (!DepInfo.isClobber())
833    return false;
834
835  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
836  // a memcpy, see if we can byval from the source of the memcpy instead of the
837  // result.
838  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
839  if (MDep == 0 || MDep->isVolatile() ||
840      ByValArg->stripPointerCasts() != MDep->getDest())
841    return false;
842
843  // The length of the memcpy must be larger or equal to the size of the byval.
844  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
845  if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
846    return false;
847
848  // Get the alignment of the byval.  If it is greater than the memcpy, then we
849  // can't do the substitution.  If the call doesn't specify the alignment, then
850  // it is some target specific value that we can't know.
851  unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
852  if (ByValAlign == 0 || MDep->getAlignment() < ByValAlign)
853    return false;
854
855  // Verify that the copied-from memory doesn't change in between the memcpy and
856  // the byval call.
857  //    memcpy(a <- b)
858  //    *b = 42;
859  //    foo(*a)
860  // It would be invalid to transform the second memcpy into foo(*b).
861  //
862  // NOTE: This is conservative, it will stop on any read from the source loc,
863  // not just the defining memcpy.
864  MemDepResult SourceDep =
865    MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
866                                 false, CS.getInstruction(), MDep->getParent());
867  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
868    return false;
869
870  Value *TmpCast = MDep->getSource();
871  if (MDep->getSource()->getType() != ByValArg->getType())
872    TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
873                              "tmpcast", CS.getInstruction());
874
875  DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
876               << "  " << *MDep << "\n"
877               << "  " << *CS.getInstruction() << "\n");
878
879  // Otherwise we're good!  Update the byval argument.
880  CS.setArgument(ArgNo, TmpCast);
881  ++NumMemCpyInstr;
882  return true;
883}
884
885/// iterateOnFunction - Executes one iteration of MemCpyOpt.
886bool MemCpyOpt::iterateOnFunction(Function &F) {
887  bool MadeChange = false;
888
889  // Walk all instruction in the function.
890  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
891    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
892      // Avoid invalidating the iterator.
893      Instruction *I = BI++;
894
895      bool RepeatInstruction = false;
896
897      if (StoreInst *SI = dyn_cast<StoreInst>(I))
898        MadeChange |= processStore(SI, BI);
899      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) {
900        RepeatInstruction = processMemCpy(M);
901      } else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
902        RepeatInstruction = processMemMove(M);
903      } else if (CallSite CS = (Value*)I) {
904        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
905          if (CS.paramHasAttr(i+1, Attribute::ByVal))
906            MadeChange |= processByValArgument(CS, i);
907      }
908
909      // Reprocess the instruction if desired.
910      if (RepeatInstruction) {
911        --BI;
912        MadeChange = true;
913      }
914    }
915  }
916
917  return MadeChange;
918}
919
920// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
921// function.
922//
923bool MemCpyOpt::runOnFunction(Function &F) {
924  bool MadeChange = false;
925  MD = &getAnalysis<MemoryDependenceAnalysis>();
926  while (1) {
927    if (!iterateOnFunction(F))
928      break;
929    MadeChange = true;
930  }
931
932  MD = 0;
933  return MadeChange;
934}
935