MemCpyOptimizer.cpp revision b90584ae78a7acc4ac92e3ad52121a10c520b980
1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Instructions.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/MemoryDependenceAnalysis.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/IRBuilder.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/Target/TargetLibraryInfo.h"
32#include <list>
33using namespace llvm;
34
35STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
36STATISTIC(NumMemSetInfer, "Number of memsets inferred");
37STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
38STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
39
40static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
41                                  bool &VariableIdxFound, const TargetData &TD){
42  // Skip over the first indices.
43  gep_type_iterator GTI = gep_type_begin(GEP);
44  for (unsigned i = 1; i != Idx; ++i, ++GTI)
45    /*skip along*/;
46
47  // Compute the offset implied by the rest of the indices.
48  int64_t Offset = 0;
49  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
50    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
51    if (OpC == 0)
52      return VariableIdxFound = true;
53    if (OpC->isZero()) continue;  // No offset.
54
55    // Handle struct indices, which add their field offset to the pointer.
56    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
57      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
58      continue;
59    }
60
61    // Otherwise, we have a sequential type like an array or vector.  Multiply
62    // the index by the ElementSize.
63    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
64    Offset += Size*OpC->getSExtValue();
65  }
66
67  return Offset;
68}
69
70/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
71/// constant offset, and return that constant offset.  For example, Ptr1 might
72/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
73static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
74                            const TargetData &TD) {
75  Ptr1 = Ptr1->stripPointerCasts();
76  Ptr2 = Ptr2->stripPointerCasts();
77  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
78  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
79
80  bool VariableIdxFound = false;
81
82  // If one pointer is a GEP and the other isn't, then see if the GEP is a
83  // constant offset from the base, as in "P" and "gep P, 1".
84  if (GEP1 && GEP2 == 0 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
85    Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
86    return !VariableIdxFound;
87  }
88
89  if (GEP2 && GEP1 == 0 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
90    Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
91    return !VariableIdxFound;
92  }
93
94  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
95  // base.  After that base, they may have some number of common (and
96  // potentially variable) indices.  After that they handle some constant
97  // offset, which determines their offset from each other.  At this point, we
98  // handle no other case.
99  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
100    return false;
101
102  // Skip any common indices and track the GEP types.
103  unsigned Idx = 1;
104  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
105    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
106      break;
107
108  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
109  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
110  if (VariableIdxFound) return false;
111
112  Offset = Offset2-Offset1;
113  return true;
114}
115
116
117/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
118/// This allows us to analyze stores like:
119///   store 0 -> P+1
120///   store 0 -> P+0
121///   store 0 -> P+3
122///   store 0 -> P+2
123/// which sometimes happens with stores to arrays of structs etc.  When we see
124/// the first store, we make a range [1, 2).  The second store extends the range
125/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
126/// two ranges into [0, 3) which is memset'able.
127namespace {
128struct MemsetRange {
129  // Start/End - A semi range that describes the span that this range covers.
130  // The range is closed at the start and open at the end: [Start, End).
131  int64_t Start, End;
132
133  /// StartPtr - The getelementptr instruction that points to the start of the
134  /// range.
135  Value *StartPtr;
136
137  /// Alignment - The known alignment of the first store.
138  unsigned Alignment;
139
140  /// TheStores - The actual stores that make up this range.
141  SmallVector<Instruction*, 16> TheStores;
142
143  bool isProfitableToUseMemset(const TargetData &TD) const;
144
145};
146} // end anon namespace
147
148bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
149  // If we found more than 8 stores to merge or 64 bytes, use memset.
150  if (TheStores.size() >= 8 || End-Start >= 64) return true;
151
152  // If there is nothing to merge, don't do anything.
153  if (TheStores.size() < 2) return false;
154
155  // If any of the stores are a memset, then it is always good to extend the
156  // memset.
157  for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
158    if (!isa<StoreInst>(TheStores[i]))
159      return true;
160
161  // Assume that the code generator is capable of merging pairs of stores
162  // together if it wants to.
163  if (TheStores.size() == 2) return false;
164
165  // If we have fewer than 8 stores, it can still be worthwhile to do this.
166  // For example, merging 4 i8 stores into an i32 store is useful almost always.
167  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
168  // memset will be split into 2 32-bit stores anyway) and doing so can
169  // pessimize the llvm optimizer.
170  //
171  // Since we don't have perfect knowledge here, make some assumptions: assume
172  // the maximum GPR width is the same size as the pointer size and assume that
173  // this width can be stored.  If so, check to see whether we will end up
174  // actually reducing the number of stores used.
175  unsigned Bytes = unsigned(End-Start);
176  unsigned NumPointerStores = Bytes/TD.getPointerSize();
177
178  // Assume the remaining bytes if any are done a byte at a time.
179  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
180
181  // If we will reduce the # stores (according to this heuristic), do the
182  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
183  // etc.
184  return TheStores.size() > NumPointerStores+NumByteStores;
185}
186
187
188namespace {
189class MemsetRanges {
190  /// Ranges - A sorted list of the memset ranges.  We use std::list here
191  /// because each element is relatively large and expensive to copy.
192  std::list<MemsetRange> Ranges;
193  typedef std::list<MemsetRange>::iterator range_iterator;
194  const TargetData &TD;
195public:
196  MemsetRanges(const TargetData &td) : TD(td) {}
197
198  typedef std::list<MemsetRange>::const_iterator const_iterator;
199  const_iterator begin() const { return Ranges.begin(); }
200  const_iterator end() const { return Ranges.end(); }
201  bool empty() const { return Ranges.empty(); }
202
203  void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
204    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
205      addStore(OffsetFromFirst, SI);
206    else
207      addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
208  }
209
210  void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
211    int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
212
213    addRange(OffsetFromFirst, StoreSize,
214             SI->getPointerOperand(), SI->getAlignment(), SI);
215  }
216
217  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
218    int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
219    addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
220  }
221
222  void addRange(int64_t Start, int64_t Size, Value *Ptr,
223                unsigned Alignment, Instruction *Inst);
224
225};
226
227} // end anon namespace
228
229
230/// addRange - Add a new store to the MemsetRanges data structure.  This adds a
231/// new range for the specified store at the specified offset, merging into
232/// existing ranges as appropriate.
233///
234/// Do a linear search of the ranges to see if this can be joined and/or to
235/// find the insertion point in the list.  We keep the ranges sorted for
236/// simplicity here.  This is a linear search of a linked list, which is ugly,
237/// however the number of ranges is limited, so this won't get crazy slow.
238void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
239                            unsigned Alignment, Instruction *Inst) {
240  int64_t End = Start+Size;
241  range_iterator I = Ranges.begin(), E = Ranges.end();
242
243  while (I != E && Start > I->End)
244    ++I;
245
246  // We now know that I == E, in which case we didn't find anything to merge
247  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
248  // to insert a new range.  Handle this now.
249  if (I == E || End < I->Start) {
250    MemsetRange &R = *Ranges.insert(I, MemsetRange());
251    R.Start        = Start;
252    R.End          = End;
253    R.StartPtr     = Ptr;
254    R.Alignment    = Alignment;
255    R.TheStores.push_back(Inst);
256    return;
257  }
258
259  // This store overlaps with I, add it.
260  I->TheStores.push_back(Inst);
261
262  // At this point, we may have an interval that completely contains our store.
263  // If so, just add it to the interval and return.
264  if (I->Start <= Start && I->End >= End)
265    return;
266
267  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
268  // but is not entirely contained within the range.
269
270  // See if the range extends the start of the range.  In this case, it couldn't
271  // possibly cause it to join the prior range, because otherwise we would have
272  // stopped on *it*.
273  if (Start < I->Start) {
274    I->Start = Start;
275    I->StartPtr = Ptr;
276    I->Alignment = Alignment;
277  }
278
279  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
280  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
281  // End.
282  if (End > I->End) {
283    I->End = End;
284    range_iterator NextI = I;
285    while (++NextI != E && End >= NextI->Start) {
286      // Merge the range in.
287      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
288      if (NextI->End > I->End)
289        I->End = NextI->End;
290      Ranges.erase(NextI);
291      NextI = I;
292    }
293  }
294}
295
296//===----------------------------------------------------------------------===//
297//                         MemCpyOpt Pass
298//===----------------------------------------------------------------------===//
299
300namespace {
301  class MemCpyOpt : public FunctionPass {
302    MemoryDependenceAnalysis *MD;
303    TargetLibraryInfo *TLI;
304    const TargetData *TD;
305  public:
306    static char ID; // Pass identification, replacement for typeid
307    MemCpyOpt() : FunctionPass(ID) {
308      initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
309      MD = 0;
310      TLI = 0;
311      TD = 0;
312    }
313
314    bool runOnFunction(Function &F);
315
316  private:
317    // This transformation requires dominator postdominator info
318    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
319      AU.setPreservesCFG();
320      AU.addRequired<DominatorTree>();
321      AU.addRequired<MemoryDependenceAnalysis>();
322      AU.addRequired<AliasAnalysis>();
323      AU.addRequired<TargetLibraryInfo>();
324      AU.addPreserved<AliasAnalysis>();
325      AU.addPreserved<MemoryDependenceAnalysis>();
326    }
327
328    // Helper fuctions
329    bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
330    bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
331    bool processMemCpy(MemCpyInst *M);
332    bool processMemMove(MemMoveInst *M);
333    bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
334                              uint64_t cpyLen, CallInst *C);
335    bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
336                                       uint64_t MSize);
337    bool processByValArgument(CallSite CS, unsigned ArgNo);
338    Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
339                                      Value *ByteVal);
340
341    bool iterateOnFunction(Function &F);
342  };
343
344  char MemCpyOpt::ID = 0;
345}
346
347// createMemCpyOptPass - The public interface to this file...
348FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
349
350INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
351                      false, false)
352INITIALIZE_PASS_DEPENDENCY(DominatorTree)
353INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
354INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
355INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
356INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
357                    false, false)
358
359/// tryMergingIntoMemset - When scanning forward over instructions, we look for
360/// some other patterns to fold away.  In particular, this looks for stores to
361/// neighboring locations of memory.  If it sees enough consecutive ones, it
362/// attempts to merge them together into a memcpy/memset.
363Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
364                                             Value *StartPtr, Value *ByteVal) {
365  if (TD == 0) return 0;
366
367  // Okay, so we now have a single store that can be splatable.  Scan to find
368  // all subsequent stores of the same value to offset from the same pointer.
369  // Join these together into ranges, so we can decide whether contiguous blocks
370  // are stored.
371  MemsetRanges Ranges(*TD);
372
373  BasicBlock::iterator BI = StartInst;
374  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
375    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
376      // If the instruction is readnone, ignore it, otherwise bail out.  We
377      // don't even allow readonly here because we don't want something like:
378      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
379      if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
380        break;
381      continue;
382    }
383
384    if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
385      // If this is a store, see if we can merge it in.
386      if (NextStore->isVolatile()) break;
387
388      // Check to see if this stored value is of the same byte-splattable value.
389      if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
390        break;
391
392      // Check to see if this store is to a constant offset from the start ptr.
393      int64_t Offset;
394      if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
395                           Offset, *TD))
396        break;
397
398      Ranges.addStore(Offset, NextStore);
399    } else {
400      MemSetInst *MSI = cast<MemSetInst>(BI);
401
402      if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
403          !isa<ConstantInt>(MSI->getLength()))
404        break;
405
406      // Check to see if this store is to a constant offset from the start ptr.
407      int64_t Offset;
408      if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD))
409        break;
410
411      Ranges.addMemSet(Offset, MSI);
412    }
413  }
414
415  // If we have no ranges, then we just had a single store with nothing that
416  // could be merged in.  This is a very common case of course.
417  if (Ranges.empty())
418    return 0;
419
420  // If we had at least one store that could be merged in, add the starting
421  // store as well.  We try to avoid this unless there is at least something
422  // interesting as a small compile-time optimization.
423  Ranges.addInst(0, StartInst);
424
425  // If we create any memsets, we put it right before the first instruction that
426  // isn't part of the memset block.  This ensure that the memset is dominated
427  // by any addressing instruction needed by the start of the block.
428  IRBuilder<> Builder(BI);
429
430  // Now that we have full information about ranges, loop over the ranges and
431  // emit memset's for anything big enough to be worthwhile.
432  Instruction *AMemSet = 0;
433  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
434       I != E; ++I) {
435    const MemsetRange &Range = *I;
436
437    if (Range.TheStores.size() == 1) continue;
438
439    // If it is profitable to lower this range to memset, do so now.
440    if (!Range.isProfitableToUseMemset(*TD))
441      continue;
442
443    // Otherwise, we do want to transform this!  Create a new memset.
444    // Get the starting pointer of the block.
445    StartPtr = Range.StartPtr;
446
447    // Determine alignment
448    unsigned Alignment = Range.Alignment;
449    if (Alignment == 0) {
450      const Type *EltType =
451        cast<PointerType>(StartPtr->getType())->getElementType();
452      Alignment = TD->getABITypeAlignment(EltType);
453    }
454
455    AMemSet =
456      Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
457
458    DEBUG(dbgs() << "Replace stores:\n";
459          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
460            dbgs() << *Range.TheStores[i] << '\n';
461          dbgs() << "With: " << *AMemSet << '\n');
462
463    if (!Range.TheStores.empty())
464      AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
465
466    // Zap all the stores.
467    for (SmallVector<Instruction*, 16>::const_iterator
468         SI = Range.TheStores.begin(),
469         SE = Range.TheStores.end(); SI != SE; ++SI) {
470      MD->removeInstruction(*SI);
471      (*SI)->eraseFromParent();
472    }
473    ++NumMemSetInfer;
474  }
475
476  return AMemSet;
477}
478
479
480bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
481  if (SI->isVolatile()) return false;
482
483  if (TD == 0) return false;
484
485  // Detect cases where we're performing call slot forwarding, but
486  // happen to be using a load-store pair to implement it, rather than
487  // a memcpy.
488  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
489    if (!LI->isVolatile() && LI->hasOneUse()) {
490      MemDepResult dep = MD->getDependency(LI);
491      CallInst *C = 0;
492      if (dep.isClobber() && !isa<MemCpyInst>(dep.getInst()))
493        C = dyn_cast<CallInst>(dep.getInst());
494
495      if (C) {
496        bool changed = performCallSlotOptzn(LI,
497                        SI->getPointerOperand()->stripPointerCasts(),
498                        LI->getPointerOperand()->stripPointerCasts(),
499                        TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
500        if (changed) {
501          MD->removeInstruction(SI);
502          SI->eraseFromParent();
503          MD->removeInstruction(LI);
504          LI->eraseFromParent();
505          ++NumMemCpyInstr;
506          return true;
507        }
508      }
509    }
510  }
511
512  // There are two cases that are interesting for this code to handle: memcpy
513  // and memset.  Right now we only handle memset.
514
515  // Ensure that the value being stored is something that can be memset'able a
516  // byte at a time like "0" or "-1" or any width, as well as things like
517  // 0xA0A0A0A0 and 0.0.
518  if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
519    if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
520                                              ByteVal)) {
521      BBI = I;  // Don't invalidate iterator.
522      return true;
523    }
524
525  return false;
526}
527
528bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
529  // See if there is another memset or store neighboring this memset which
530  // allows us to widen out the memset to do a single larger store.
531  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
532    if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
533                                              MSI->getValue())) {
534      BBI = I;  // Don't invalidate iterator.
535      return true;
536    }
537  return false;
538}
539
540
541/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
542/// and checks for the possibility of a call slot optimization by having
543/// the call write its result directly into the destination of the memcpy.
544bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
545                                     Value *cpyDest, Value *cpySrc,
546                                     uint64_t cpyLen, CallInst *C) {
547  // The general transformation to keep in mind is
548  //
549  //   call @func(..., src, ...)
550  //   memcpy(dest, src, ...)
551  //
552  // ->
553  //
554  //   memcpy(dest, src, ...)
555  //   call @func(..., dest, ...)
556  //
557  // Since moving the memcpy is technically awkward, we additionally check that
558  // src only holds uninitialized values at the moment of the call, meaning that
559  // the memcpy can be discarded rather than moved.
560
561  // Deliberately get the source and destination with bitcasts stripped away,
562  // because we'll need to do type comparisons based on the underlying type.
563  CallSite CS(C);
564
565  // Require that src be an alloca.  This simplifies the reasoning considerably.
566  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
567  if (!srcAlloca)
568    return false;
569
570  // Check that all of src is copied to dest.
571  if (TD == 0) return false;
572
573  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
574  if (!srcArraySize)
575    return false;
576
577  uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
578    srcArraySize->getZExtValue();
579
580  if (cpyLen < srcSize)
581    return false;
582
583  // Check that accessing the first srcSize bytes of dest will not cause a
584  // trap.  Otherwise the transform is invalid since it might cause a trap
585  // to occur earlier than it otherwise would.
586  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
587    // The destination is an alloca.  Check it is larger than srcSize.
588    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
589    if (!destArraySize)
590      return false;
591
592    uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
593      destArraySize->getZExtValue();
594
595    if (destSize < srcSize)
596      return false;
597  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
598    // If the destination is an sret parameter then only accesses that are
599    // outside of the returned struct type can trap.
600    if (!A->hasStructRetAttr())
601      return false;
602
603    const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
604    uint64_t destSize = TD->getTypeAllocSize(StructTy);
605
606    if (destSize < srcSize)
607      return false;
608  } else {
609    return false;
610  }
611
612  // Check that src is not accessed except via the call and the memcpy.  This
613  // guarantees that it holds only undefined values when passed in (so the final
614  // memcpy can be dropped), that it is not read or written between the call and
615  // the memcpy, and that writing beyond the end of it is undefined.
616  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
617                                   srcAlloca->use_end());
618  while (!srcUseList.empty()) {
619    User *UI = srcUseList.pop_back_val();
620
621    if (isa<BitCastInst>(UI)) {
622      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
623           I != E; ++I)
624        srcUseList.push_back(*I);
625    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
626      if (G->hasAllZeroIndices())
627        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
628             I != E; ++I)
629          srcUseList.push_back(*I);
630      else
631        return false;
632    } else if (UI != C && UI != cpy) {
633      return false;
634    }
635  }
636
637  // Since we're changing the parameter to the callsite, we need to make sure
638  // that what would be the new parameter dominates the callsite.
639  DominatorTree &DT = getAnalysis<DominatorTree>();
640  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
641    if (!DT.dominates(cpyDestInst, C))
642      return false;
643
644  // In addition to knowing that the call does not access src in some
645  // unexpected manner, for example via a global, which we deduce from
646  // the use analysis, we also need to know that it does not sneakily
647  // access dest.  We rely on AA to figure this out for us.
648  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
649  if (AA.getModRefInfo(C, cpyDest, srcSize) != AliasAnalysis::NoModRef)
650    return false;
651
652  // All the checks have passed, so do the transformation.
653  bool changedArgument = false;
654  for (unsigned i = 0; i < CS.arg_size(); ++i)
655    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
656      if (cpySrc->getType() != cpyDest->getType())
657        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
658                                              cpyDest->getName(), C);
659      changedArgument = true;
660      if (CS.getArgument(i)->getType() == cpyDest->getType())
661        CS.setArgument(i, cpyDest);
662      else
663        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
664                          CS.getArgument(i)->getType(), cpyDest->getName(), C));
665    }
666
667  if (!changedArgument)
668    return false;
669
670  // Drop any cached information about the call, because we may have changed
671  // its dependence information by changing its parameter.
672  MD->removeInstruction(C);
673
674  // Remove the memcpy.
675  MD->removeInstruction(cpy);
676  ++NumMemCpyInstr;
677
678  return true;
679}
680
681/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
682/// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
683/// copy from MDep's input if we can.  MSize is the size of M's copy.
684///
685bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
686                                              uint64_t MSize) {
687  // We can only transforms memcpy's where the dest of one is the source of the
688  // other.
689  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
690    return false;
691
692  // If dep instruction is reading from our current input, then it is a noop
693  // transfer and substituting the input won't change this instruction.  Just
694  // ignore the input and let someone else zap MDep.  This handles cases like:
695  //    memcpy(a <- a)
696  //    memcpy(b <- a)
697  if (M->getSource() == MDep->getSource())
698    return false;
699
700  // Second, the length of the memcpy's must be the same, or the preceding one
701  // must be larger than the following one.
702  ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
703  ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
704  if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
705    return false;
706
707  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
708
709  // Verify that the copied-from memory doesn't change in between the two
710  // transfers.  For example, in:
711  //    memcpy(a <- b)
712  //    *b = 42;
713  //    memcpy(c <- a)
714  // It would be invalid to transform the second memcpy into memcpy(c <- b).
715  //
716  // TODO: If the code between M and MDep is transparent to the destination "c",
717  // then we could still perform the xform by moving M up to the first memcpy.
718  //
719  // NOTE: This is conservative, it will stop on any read from the source loc,
720  // not just the defining memcpy.
721  MemDepResult SourceDep =
722    MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
723                                 false, M, M->getParent());
724  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
725    return false;
726
727  // If the dest of the second might alias the source of the first, then the
728  // source and dest might overlap.  We still want to eliminate the intermediate
729  // value, but we have to generate a memmove instead of memcpy.
730  bool UseMemMove = false;
731  if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
732    UseMemMove = true;
733
734  // If all checks passed, then we can transform M.
735
736  // Make sure to use the lesser of the alignment of the source and the dest
737  // since we're changing where we're reading from, but don't want to increase
738  // the alignment past what can be read from or written to.
739  // TODO: Is this worth it if we're creating a less aligned memcpy? For
740  // example we could be moving from movaps -> movq on x86.
741  unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
742
743  IRBuilder<> Builder(M);
744  if (UseMemMove)
745    Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
746                          Align, M->isVolatile());
747  else
748    Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
749                         Align, M->isVolatile());
750
751  // Remove the instruction we're replacing.
752  MD->removeInstruction(M);
753  M->eraseFromParent();
754  ++NumMemCpyInstr;
755  return true;
756}
757
758
759/// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
760/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
761/// B to be a memcpy from X to Z (or potentially a memmove, depending on
762/// circumstances). This allows later passes to remove the first memcpy
763/// altogether.
764bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
765  // We can only optimize statically-sized memcpy's that are non-volatile.
766  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
767  if (CopySize == 0 || M->isVolatile()) return false;
768
769  // If the source and destination of the memcpy are the same, then zap it.
770  if (M->getSource() == M->getDest()) {
771    MD->removeInstruction(M);
772    M->eraseFromParent();
773    return false;
774  }
775
776  // If copying from a constant, try to turn the memcpy into a memset.
777  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
778    if (GV->isConstant() && GV->hasDefinitiveInitializer())
779      if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
780        IRBuilder<> Builder(M);
781        Builder.CreateMemSet(M->getRawDest(), ByteVal, CopySize,
782                             M->getAlignment(), false);
783        MD->removeInstruction(M);
784        M->eraseFromParent();
785        ++NumCpyToSet;
786        return true;
787      }
788
789  // The are two possible optimizations we can do for memcpy:
790  //   a) memcpy-memcpy xform which exposes redundance for DSE.
791  //   b) call-memcpy xform for return slot optimization.
792  MemDepResult DepInfo = MD->getDependency(M);
793  if (!DepInfo.isClobber())
794    return false;
795
796  if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()))
797    return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
798
799  if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
800    if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
801                             CopySize->getZExtValue(), C)) {
802      MD->removeInstruction(M);
803      M->eraseFromParent();
804      return true;
805    }
806  }
807
808  return false;
809}
810
811/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
812/// are guaranteed not to alias.
813bool MemCpyOpt::processMemMove(MemMoveInst *M) {
814  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
815
816  if (!TLI->has(LibFunc::memmove))
817    return false;
818
819  // See if the pointers alias.
820  if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
821    return false;
822
823  DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
824
825  // If not, then we know we can transform this.
826  Module *Mod = M->getParent()->getParent()->getParent();
827  const Type *ArgTys[3] = { M->getRawDest()->getType(),
828                            M->getRawSource()->getType(),
829                            M->getLength()->getType() };
830  M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
831                                                 ArgTys, 3));
832
833  // MemDep may have over conservative information about this instruction, just
834  // conservatively flush it from the cache.
835  MD->removeInstruction(M);
836
837  ++NumMoveToCpy;
838  return true;
839}
840
841/// processByValArgument - This is called on every byval argument in call sites.
842bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
843  if (TD == 0) return false;
844
845  // Find out what feeds this byval argument.
846  Value *ByValArg = CS.getArgument(ArgNo);
847  const Type *ByValTy =cast<PointerType>(ByValArg->getType())->getElementType();
848  uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
849  MemDepResult DepInfo =
850    MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
851                                 true, CS.getInstruction(),
852                                 CS.getInstruction()->getParent());
853  if (!DepInfo.isClobber())
854    return false;
855
856  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
857  // a memcpy, see if we can byval from the source of the memcpy instead of the
858  // result.
859  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
860  if (MDep == 0 || MDep->isVolatile() ||
861      ByValArg->stripPointerCasts() != MDep->getDest())
862    return false;
863
864  // The length of the memcpy must be larger or equal to the size of the byval.
865  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
866  if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
867    return false;
868
869  // Get the alignment of the byval.  If it is greater than the memcpy, then we
870  // can't do the substitution.  If the call doesn't specify the alignment, then
871  // it is some target specific value that we can't know.
872  unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
873  if (ByValAlign == 0 || MDep->getAlignment() < ByValAlign)
874    return false;
875
876  // Verify that the copied-from memory doesn't change in between the memcpy and
877  // the byval call.
878  //    memcpy(a <- b)
879  //    *b = 42;
880  //    foo(*a)
881  // It would be invalid to transform the second memcpy into foo(*b).
882  //
883  // NOTE: This is conservative, it will stop on any read from the source loc,
884  // not just the defining memcpy.
885  MemDepResult SourceDep =
886    MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
887                                 false, CS.getInstruction(), MDep->getParent());
888  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
889    return false;
890
891  Value *TmpCast = MDep->getSource();
892  if (MDep->getSource()->getType() != ByValArg->getType())
893    TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
894                              "tmpcast", CS.getInstruction());
895
896  DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
897               << "  " << *MDep << "\n"
898               << "  " << *CS.getInstruction() << "\n");
899
900  // Otherwise we're good!  Update the byval argument.
901  CS.setArgument(ArgNo, TmpCast);
902  ++NumMemCpyInstr;
903  return true;
904}
905
906/// iterateOnFunction - Executes one iteration of MemCpyOpt.
907bool MemCpyOpt::iterateOnFunction(Function &F) {
908  bool MadeChange = false;
909
910  // Walk all instruction in the function.
911  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
912    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
913      // Avoid invalidating the iterator.
914      Instruction *I = BI++;
915
916      bool RepeatInstruction = false;
917
918      if (StoreInst *SI = dyn_cast<StoreInst>(I))
919        MadeChange |= processStore(SI, BI);
920      else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
921        RepeatInstruction = processMemSet(M, BI);
922      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
923        RepeatInstruction = processMemCpy(M);
924      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
925        RepeatInstruction = processMemMove(M);
926      else if (CallSite CS = (Value*)I) {
927        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
928          if (CS.paramHasAttr(i+1, Attribute::ByVal))
929            MadeChange |= processByValArgument(CS, i);
930      }
931
932      // Reprocess the instruction if desired.
933      if (RepeatInstruction) {
934        if (BI != BB->begin()) --BI;
935        MadeChange = true;
936      }
937    }
938  }
939
940  return MadeChange;
941}
942
943// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
944// function.
945//
946bool MemCpyOpt::runOnFunction(Function &F) {
947  bool MadeChange = false;
948  MD = &getAnalysis<MemoryDependenceAnalysis>();
949  TD = getAnalysisIfAvailable<TargetData>();
950  TLI = &getAnalysis<TargetLibraryInfo>();
951
952  // If we don't have at least memset and memcpy, there is little point of doing
953  // anything here.  These are required by a freestanding implementation, so if
954  // even they are disabled, there is no point in trying hard.
955  if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
956    return false;
957
958  while (1) {
959    if (!iterateOnFunction(F))
960      break;
961    MadeChange = true;
962  }
963
964  MD = 0;
965  return MadeChange;
966}
967