LoopSimplify.cpp revision 2d0a91cd6c3df32014d547255d6a615bd1bc84fb
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Indirectbr instructions introduce several complications. If the loop
27// contains or is entered by an indirectbr instruction, it may not be possible
28// to transform the loop and make these guarantees. Client code should check
29// that these conditions are true before relying on them.
30//
31// Note that the simplifycfg pass will clean up blocks which are split out but
32// end up being unnecessary, so usage of this pass should not pessimize
33// generated code.
34//
35// This pass obviously modifies the CFG, but updates loop information and
36// dominator information.
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "loopsimplify"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Constants.h"
43#include "llvm/Instructions.h"
44#include "llvm/Function.h"
45#include "llvm/LLVMContext.h"
46#include "llvm/Type.h"
47#include "llvm/Analysis/AliasAnalysis.h"
48#include "llvm/Analysis/Dominators.h"
49#include "llvm/Analysis/LoopPass.h"
50#include "llvm/Analysis/ScalarEvolution.h"
51#include "llvm/Transforms/Utils/BasicBlockUtils.h"
52#include "llvm/Transforms/Utils/Local.h"
53#include "llvm/Support/CFG.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/ADT/SetOperations.h"
56#include "llvm/ADT/SetVector.h"
57#include "llvm/ADT/Statistic.h"
58#include "llvm/ADT/DepthFirstIterator.h"
59using namespace llvm;
60
61STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
62STATISTIC(NumNested  , "Number of nested loops split out");
63
64namespace {
65  struct LoopSimplify : public LoopPass {
66    static char ID; // Pass identification, replacement for typeid
67    LoopSimplify() : LoopPass(&ID) {}
68
69    // AA - If we have an alias analysis object to update, this is it, otherwise
70    // this is null.
71    AliasAnalysis *AA;
72    LoopInfo *LI;
73    DominatorTree *DT;
74    Loop *L;
75    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
76
77    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78      // We need loop information to identify the loops...
79      AU.addRequiredTransitive<LoopInfo>();
80      AU.addRequiredTransitive<DominatorTree>();
81
82      AU.addPreserved<LoopInfo>();
83      AU.addPreserved<DominatorTree>();
84      AU.addPreserved<DominanceFrontier>();
85      AU.addPreserved<AliasAnalysis>();
86      AU.addPreserved<ScalarEvolution>();
87      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
88    }
89
90    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
91    void verifyAnalysis() const;
92
93  private:
94    bool ProcessLoop(Loop *L, LPPassManager &LPM);
95    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
96    BasicBlock *InsertPreheaderForLoop(Loop *L);
97    Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
98    BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
99    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
100                                  SmallVectorImpl<BasicBlock*> &SplitPreds,
101                                  Loop *L);
102  };
103}
104
105char LoopSimplify::ID = 0;
106static RegisterPass<LoopSimplify>
107X("loopsimplify", "Canonicalize natural loops", true);
108
109// Publically exposed interface to pass...
110const PassInfo *const llvm::LoopSimplifyID = &X;
111Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
112
113/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
114/// it in any convenient order) inserting preheaders...
115///
116bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
117  L = l;
118  bool Changed = false;
119  LI = &getAnalysis<LoopInfo>();
120  AA = getAnalysisIfAvailable<AliasAnalysis>();
121  DT = &getAnalysis<DominatorTree>();
122
123  Changed |= ProcessLoop(L, LPM);
124
125  return Changed;
126}
127
128/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
129/// all loops have preheaders.
130///
131bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
132  bool Changed = false;
133ReprocessLoop:
134
135  // Check to see that no blocks (other than the header) in this loop have
136  // predecessors that are not in the loop.  This is not valid for natural
137  // loops, but can occur if the blocks are unreachable.  Since they are
138  // unreachable we can just shamelessly delete those CFG edges!
139  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
140       BB != E; ++BB) {
141    if (*BB == L->getHeader()) continue;
142
143    SmallPtrSet<BasicBlock *, 4> BadPreds;
144    for (pred_iterator PI = pred_begin(*BB), PE = pred_end(*BB); PI != PE; ++PI)
145      if (!L->contains(*PI))
146        BadPreds.insert(*PI);
147
148    // Delete each unique out-of-loop (and thus dead) predecessor.
149    for (SmallPtrSet<BasicBlock *, 4>::iterator I = BadPreds.begin(),
150         E = BadPreds.end(); I != E; ++I) {
151
152      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor ";
153            WriteAsOperand(dbgs(), *I, false);
154            dbgs() << "\n");
155
156      // Inform each successor of each dead pred.
157      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
158        (*SI)->removePredecessor(*I);
159      // Zap the dead pred's terminator and replace it with unreachable.
160      TerminatorInst *TI = (*I)->getTerminator();
161       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
162      (*I)->getTerminator()->eraseFromParent();
163      new UnreachableInst((*I)->getContext(), *I);
164      Changed = true;
165    }
166  }
167
168  // If there are exiting blocks with branches on undef, resolve the undef in
169  // the direction which will exit the loop. This will help simplify loop
170  // trip count computations.
171  SmallVector<BasicBlock*, 8> ExitingBlocks;
172  L->getExitingBlocks(ExitingBlocks);
173  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
174       E = ExitingBlocks.end(); I != E; ++I)
175    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
176      if (BI->isConditional()) {
177        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
178
179          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in ";
180                WriteAsOperand(dbgs(), *I, false);
181                dbgs() << "\n");
182
183          BI->setCondition(ConstantInt::get(Cond->getType(),
184                                            !L->contains(BI->getSuccessor(0))));
185          Changed = true;
186        }
187      }
188
189  // Does the loop already have a preheader?  If so, don't insert one.
190  BasicBlock *Preheader = L->getLoopPreheader();
191  if (!Preheader) {
192    Preheader = InsertPreheaderForLoop(L);
193    if (Preheader) {
194      NumInserted++;
195      Changed = true;
196    }
197  }
198
199  // Next, check to make sure that all exit nodes of the loop only have
200  // predecessors that are inside of the loop.  This check guarantees that the
201  // loop preheader/header will dominate the exit blocks.  If the exit block has
202  // predecessors from outside of the loop, split the edge now.
203  SmallVector<BasicBlock*, 8> ExitBlocks;
204  L->getExitBlocks(ExitBlocks);
205
206  SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
207                                               ExitBlocks.end());
208  for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
209         E = ExitBlockSet.end(); I != E; ++I) {
210    BasicBlock *ExitBlock = *I;
211    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
212         PI != PE; ++PI)
213      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
214      // allowed.
215      if (!L->contains(*PI)) {
216        if (RewriteLoopExitBlock(L, ExitBlock)) {
217          NumInserted++;
218          Changed = true;
219        }
220        break;
221      }
222  }
223
224  // If the header has more than two predecessors at this point (from the
225  // preheader and from multiple backedges), we must adjust the loop.
226  BasicBlock *LoopLatch = L->getLoopLatch();
227  if (!LoopLatch) {
228    // If this is really a nested loop, rip it out into a child loop.  Don't do
229    // this for loops with a giant number of backedges, just factor them into a
230    // common backedge instead.
231    if (L->getNumBackEdges() < 8) {
232      if (SeparateNestedLoop(L, LPM)) {
233        ++NumNested;
234        // This is a big restructuring change, reprocess the whole loop.
235        Changed = true;
236        // GCC doesn't tail recursion eliminate this.
237        goto ReprocessLoop;
238      }
239    }
240
241    // If we either couldn't, or didn't want to, identify nesting of the loops,
242    // insert a new block that all backedges target, then make it jump to the
243    // loop header.
244    LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
245    if (LoopLatch) {
246      NumInserted++;
247      Changed = true;
248    }
249  }
250
251  // Scan over the PHI nodes in the loop header.  Since they now have only two
252  // incoming values (the loop is canonicalized), we may have simplified the PHI
253  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
254  PHINode *PN;
255  for (BasicBlock::iterator I = L->getHeader()->begin();
256       (PN = dyn_cast<PHINode>(I++)); )
257    if (Value *V = PN->hasConstantValue(DT)) {
258      if (AA) AA->deleteValue(PN);
259      PN->replaceAllUsesWith(V);
260      PN->eraseFromParent();
261    }
262
263  // If this loop has multiple exits and the exits all go to the same
264  // block, attempt to merge the exits. This helps several passes, such
265  // as LoopRotation, which do not support loops with multiple exits.
266  // SimplifyCFG also does this (and this code uses the same utility
267  // function), however this code is loop-aware, where SimplifyCFG is
268  // not. That gives it the advantage of being able to hoist
269  // loop-invariant instructions out of the way to open up more
270  // opportunities, and the disadvantage of having the responsibility
271  // to preserve dominator information.
272  bool UniqueExit = true;
273  if (!ExitBlocks.empty())
274    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
275      if (ExitBlocks[i] != ExitBlocks[0]) {
276        UniqueExit = false;
277        break;
278      }
279  if (UniqueExit) {
280    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
281      BasicBlock *ExitingBlock = ExitingBlocks[i];
282      if (!ExitingBlock->getSinglePredecessor()) continue;
283      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
284      if (!BI || !BI->isConditional()) continue;
285      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
286      if (!CI || CI->getParent() != ExitingBlock) continue;
287
288      // Attempt to hoist out all instructions except for the
289      // comparison and the branch.
290      bool AllInvariant = true;
291      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
292        Instruction *Inst = I++;
293        if (Inst == CI)
294          continue;
295        if (!L->makeLoopInvariant(Inst, Changed,
296                                  Preheader ? Preheader->getTerminator() : 0)) {
297          AllInvariant = false;
298          break;
299        }
300      }
301      if (!AllInvariant) continue;
302
303      // The block has now been cleared of all instructions except for
304      // a comparison and a conditional branch. SimplifyCFG may be able
305      // to fold it now.
306      if (!FoldBranchToCommonDest(BI)) continue;
307
308      // Success. The block is now dead, so remove it from the loop,
309      // update the dominator tree and dominance frontier, and delete it.
310
311      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block ";
312            WriteAsOperand(dbgs(), ExitingBlock, false);
313            dbgs() << "\n");
314
315      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
316      Changed = true;
317      LI->removeBlock(ExitingBlock);
318
319      DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
320      DomTreeNode *Node = DT->getNode(ExitingBlock);
321      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
322        Node->getChildren();
323      while (!Children.empty()) {
324        DomTreeNode *Child = Children.front();
325        DT->changeImmediateDominator(Child, Node->getIDom());
326        if (DF) DF->changeImmediateDominator(Child->getBlock(),
327                                             Node->getIDom()->getBlock(),
328                                             DT);
329      }
330      DT->eraseNode(ExitingBlock);
331      if (DF) DF->removeBlock(ExitingBlock);
332
333      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
334      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
335      ExitingBlock->eraseFromParent();
336    }
337  }
338
339  return Changed;
340}
341
342/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
343/// preheader, this method is called to insert one.  This method has two phases:
344/// preheader insertion and analysis updating.
345///
346BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
347  BasicBlock *Header = L->getHeader();
348
349  // Compute the set of predecessors of the loop that are not in the loop.
350  SmallVector<BasicBlock*, 8> OutsideBlocks;
351  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
352       PI != PE; ++PI)
353    if (!L->contains(*PI)) {         // Coming in from outside the loop?
354      // If the loop is branched to from an indirect branch, we won't
355      // be able to fully transform the loop, because it prohibits
356      // edge splitting.
357      if (isa<IndirectBrInst>((*PI)->getTerminator())) return 0;
358
359      // Keep track of it.
360      OutsideBlocks.push_back(*PI);
361    }
362
363  // Split out the loop pre-header.
364  BasicBlock *NewBB =
365    SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
366                           ".preheader", this);
367
368  DEBUG(dbgs() << "LoopSimplify: Creating pre-header ";
369        WriteAsOperand(dbgs(), NewBB, false);
370        dbgs() << "\n");
371
372  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
373  // code layout too horribly.
374  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
375
376  return NewBB;
377}
378
379/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
380/// blocks.  This method is used to split exit blocks that have predecessors
381/// outside of the loop.
382BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
383  SmallVector<BasicBlock*, 8> LoopBlocks;
384  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
385    if (L->contains(*I)) {
386      // Don't do this if the loop is exited via an indirect branch.
387      if (isa<IndirectBrInst>((*I)->getTerminator())) return 0;
388
389      LoopBlocks.push_back(*I);
390    }
391
392  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
393  BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
394                                             LoopBlocks.size(), ".loopexit",
395                                             this);
396
397  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block ";
398        WriteAsOperand(dbgs(), NewBB, false);
399        dbgs() << "\n");
400
401  return NewBB;
402}
403
404/// AddBlockAndPredsToSet - Add the specified block, and all of its
405/// predecessors, to the specified set, if it's not already in there.  Stop
406/// predecessor traversal when we reach StopBlock.
407static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
408                                  std::set<BasicBlock*> &Blocks) {
409  std::vector<BasicBlock *> WorkList;
410  WorkList.push_back(InputBB);
411  do {
412    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
413    if (Blocks.insert(BB).second && BB != StopBlock)
414      // If BB is not already processed and it is not a stop block then
415      // insert its predecessor in the work list
416      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
417        BasicBlock *WBB = *I;
418        WorkList.push_back(WBB);
419      }
420  } while(!WorkList.empty());
421}
422
423/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
424/// PHI node that tells us how to partition the loops.
425static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
426                                        AliasAnalysis *AA) {
427  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
428    PHINode *PN = cast<PHINode>(I);
429    ++I;
430    if (Value *V = PN->hasConstantValue(DT)) {
431      // This is a degenerate PHI already, don't modify it!
432      PN->replaceAllUsesWith(V);
433      if (AA) AA->deleteValue(PN);
434      PN->eraseFromParent();
435      continue;
436    }
437
438    // Scan this PHI node looking for a use of the PHI node by itself.
439    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
440      if (PN->getIncomingValue(i) == PN &&
441          L->contains(PN->getIncomingBlock(i)))
442        // We found something tasty to remove.
443        return PN;
444  }
445  return 0;
446}
447
448// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
449// right after some 'outside block' block.  This prevents the preheader from
450// being placed inside the loop body, e.g. when the loop hasn't been rotated.
451void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
452                                       SmallVectorImpl<BasicBlock*> &SplitPreds,
453                                            Loop *L) {
454  // Check to see if NewBB is already well placed.
455  Function::iterator BBI = NewBB; --BBI;
456  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
457    if (&*BBI == SplitPreds[i])
458      return;
459  }
460
461  // If it isn't already after an outside block, move it after one.  This is
462  // always good as it makes the uncond branch from the outside block into a
463  // fall-through.
464
465  // Figure out *which* outside block to put this after.  Prefer an outside
466  // block that neighbors a BB actually in the loop.
467  BasicBlock *FoundBB = 0;
468  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
469    Function::iterator BBI = SplitPreds[i];
470    if (++BBI != NewBB->getParent()->end() &&
471        L->contains(BBI)) {
472      FoundBB = SplitPreds[i];
473      break;
474    }
475  }
476
477  // If our heuristic for a *good* bb to place this after doesn't find
478  // anything, just pick something.  It's likely better than leaving it within
479  // the loop.
480  if (!FoundBB)
481    FoundBB = SplitPreds[0];
482  NewBB->moveAfter(FoundBB);
483}
484
485
486/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
487/// them out into a nested loop.  This is important for code that looks like
488/// this:
489///
490///  Loop:
491///     ...
492///     br cond, Loop, Next
493///     ...
494///     br cond2, Loop, Out
495///
496/// To identify this common case, we look at the PHI nodes in the header of the
497/// loop.  PHI nodes with unchanging values on one backedge correspond to values
498/// that change in the "outer" loop, but not in the "inner" loop.
499///
500/// If we are able to separate out a loop, return the new outer loop that was
501/// created.
502///
503Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
504  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
505  if (PN == 0) return 0;  // No known way to partition.
506
507  // Pull out all predecessors that have varying values in the loop.  This
508  // handles the case when a PHI node has multiple instances of itself as
509  // arguments.
510  SmallVector<BasicBlock*, 8> OuterLoopPreds;
511  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
512    if (PN->getIncomingValue(i) != PN ||
513        !L->contains(PN->getIncomingBlock(i))) {
514      // We can't split indirectbr edges.
515      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
516        return 0;
517
518      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
519    }
520
521  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
522
523  BasicBlock *Header = L->getHeader();
524  BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
525                                             OuterLoopPreds.size(),
526                                             ".outer", this);
527
528  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
529  // code layout too horribly.
530  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
531
532  // Create the new outer loop.
533  Loop *NewOuter = new Loop();
534
535  // Change the parent loop to use the outer loop as its child now.
536  if (Loop *Parent = L->getParentLoop())
537    Parent->replaceChildLoopWith(L, NewOuter);
538  else
539    LI->changeTopLevelLoop(L, NewOuter);
540
541  // L is now a subloop of our outer loop.
542  NewOuter->addChildLoop(L);
543
544  // Add the new loop to the pass manager queue.
545  LPM.insertLoopIntoQueue(NewOuter);
546
547  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
548       I != E; ++I)
549    NewOuter->addBlockEntry(*I);
550
551  // Now reset the header in L, which had been moved by
552  // SplitBlockPredecessors for the outer loop.
553  L->moveToHeader(Header);
554
555  // Determine which blocks should stay in L and which should be moved out to
556  // the Outer loop now.
557  std::set<BasicBlock*> BlocksInL;
558  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
559    if (DT->dominates(Header, *PI))
560      AddBlockAndPredsToSet(*PI, Header, BlocksInL);
561
562
563  // Scan all of the loop children of L, moving them to OuterLoop if they are
564  // not part of the inner loop.
565  const std::vector<Loop*> &SubLoops = L->getSubLoops();
566  for (size_t I = 0; I != SubLoops.size(); )
567    if (BlocksInL.count(SubLoops[I]->getHeader()))
568      ++I;   // Loop remains in L
569    else
570      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
571
572  // Now that we know which blocks are in L and which need to be moved to
573  // OuterLoop, move any blocks that need it.
574  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
575    BasicBlock *BB = L->getBlocks()[i];
576    if (!BlocksInL.count(BB)) {
577      // Move this block to the parent, updating the exit blocks sets
578      L->removeBlockFromLoop(BB);
579      if ((*LI)[BB] == L)
580        LI->changeLoopFor(BB, NewOuter);
581      --i;
582    }
583  }
584
585  return NewOuter;
586}
587
588
589
590/// InsertUniqueBackedgeBlock - This method is called when the specified loop
591/// has more than one backedge in it.  If this occurs, revector all of these
592/// backedges to target a new basic block and have that block branch to the loop
593/// header.  This ensures that loops have exactly one backedge.
594///
595BasicBlock *
596LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
597  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
598
599  // Get information about the loop
600  BasicBlock *Header = L->getHeader();
601  Function *F = Header->getParent();
602
603  // Unique backedge insertion currently depends on having a preheader.
604  if (!Preheader)
605    return 0;
606
607  // Figure out which basic blocks contain back-edges to the loop header.
608  std::vector<BasicBlock*> BackedgeBlocks;
609  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
610    if (*I != Preheader) BackedgeBlocks.push_back(*I);
611
612  // Create and insert the new backedge block...
613  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
614                                           Header->getName()+".backedge", F);
615  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
616
617  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block ";
618        WriteAsOperand(dbgs(), BEBlock, false);
619        dbgs() << "\n");
620
621  // Move the new backedge block to right after the last backedge block.
622  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
623  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
624
625  // Now that the block has been inserted into the function, create PHI nodes in
626  // the backedge block which correspond to any PHI nodes in the header block.
627  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
628    PHINode *PN = cast<PHINode>(I);
629    PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
630                                     BETerminator);
631    NewPN->reserveOperandSpace(BackedgeBlocks.size());
632    if (AA) AA->copyValue(PN, NewPN);
633
634    // Loop over the PHI node, moving all entries except the one for the
635    // preheader over to the new PHI node.
636    unsigned PreheaderIdx = ~0U;
637    bool HasUniqueIncomingValue = true;
638    Value *UniqueValue = 0;
639    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
640      BasicBlock *IBB = PN->getIncomingBlock(i);
641      Value *IV = PN->getIncomingValue(i);
642      if (IBB == Preheader) {
643        PreheaderIdx = i;
644      } else {
645        NewPN->addIncoming(IV, IBB);
646        if (HasUniqueIncomingValue) {
647          if (UniqueValue == 0)
648            UniqueValue = IV;
649          else if (UniqueValue != IV)
650            HasUniqueIncomingValue = false;
651        }
652      }
653    }
654
655    // Delete all of the incoming values from the old PN except the preheader's
656    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
657    if (PreheaderIdx != 0) {
658      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
659      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
660    }
661    // Nuke all entries except the zero'th.
662    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
663      PN->removeIncomingValue(e-i, false);
664
665    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
666    PN->addIncoming(NewPN, BEBlock);
667
668    // As an optimization, if all incoming values in the new PhiNode (which is a
669    // subset of the incoming values of the old PHI node) have the same value,
670    // eliminate the PHI Node.
671    if (HasUniqueIncomingValue) {
672      NewPN->replaceAllUsesWith(UniqueValue);
673      if (AA) AA->deleteValue(NewPN);
674      BEBlock->getInstList().erase(NewPN);
675    }
676  }
677
678  // Now that all of the PHI nodes have been inserted and adjusted, modify the
679  // backedge blocks to just to the BEBlock instead of the header.
680  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
681    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
682    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
683      if (TI->getSuccessor(Op) == Header)
684        TI->setSuccessor(Op, BEBlock);
685  }
686
687  //===--- Update all analyses which we must preserve now -----------------===//
688
689  // Update Loop Information - we know that this block is now in the current
690  // loop and all parent loops.
691  L->addBasicBlockToLoop(BEBlock, LI->getBase());
692
693  // Update dominator information
694  DT->splitBlock(BEBlock);
695  if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
696    DF->splitBlock(BEBlock);
697
698  return BEBlock;
699}
700
701void LoopSimplify::verifyAnalysis() const {
702  // It used to be possible to just assert L->isLoopSimplifyForm(), however
703  // with the introduction of indirectbr, there are now cases where it's
704  // not possible to transform a loop as necessary. We can at least check
705  // that there is an indirectbr near any time there's trouble.
706
707  // Indirectbr can interfere with preheader and unique backedge insertion.
708  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
709    bool HasIndBrPred = false;
710    for (pred_iterator PI = pred_begin(L->getHeader()),
711         PE = pred_end(L->getHeader()); PI != PE; ++PI)
712      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
713        HasIndBrPred = true;
714        break;
715      }
716    assert(HasIndBrPred &&
717           "LoopSimplify has no excuse for missing loop header info!");
718  }
719
720  // Indirectbr can interfere with exit block canonicalization.
721  if (!L->hasDedicatedExits()) {
722    bool HasIndBrExiting = false;
723    SmallVector<BasicBlock*, 8> ExitingBlocks;
724    L->getExitingBlocks(ExitingBlocks);
725    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i)
726      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
727        HasIndBrExiting = true;
728        break;
729      }
730    assert(HasIndBrExiting &&
731           "LoopSimplify has no excuse for missing exit block info!");
732  }
733}
734