LoopSimplify.cpp revision 551ccae044b0ff658fe629dd67edd5ffe75d10e8
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Note that the simplifycfg pass will clean up blocks which are split out but
27// end up being unnecessary, so usage of this pass should not pessimize
28// generated code.
29//
30// This pass obviously modifies the CFG, but updates loop information and
31// dominator information.
32//
33//===----------------------------------------------------------------------===//
34
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constant.h"
37#include "llvm/Instructions.h"
38#include "llvm/Function.h"
39#include "llvm/Type.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include "llvm/ADT/SetOperations.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/DepthFirstIterator.h"
48using namespace llvm;
49
50namespace {
51  Statistic<>
52  NumInserted("loopsimplify", "Number of pre-header or exit blocks inserted");
53  Statistic<>
54  NumNested("loopsimplify", "Number of nested loops split out");
55
56  struct LoopSimplify : public FunctionPass {
57    virtual bool runOnFunction(Function &F);
58
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60      // We need loop information to identify the loops...
61      AU.addRequired<LoopInfo>();
62      AU.addRequired<DominatorSet>();
63      AU.addRequired<DominatorTree>();
64
65      AU.addPreserved<LoopInfo>();
66      AU.addPreserved<DominatorSet>();
67      AU.addPreserved<ImmediateDominators>();
68      AU.addPreserved<DominatorTree>();
69      AU.addPreserved<DominanceFrontier>();
70      AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
71    }
72  private:
73    bool ProcessLoop(Loop *L);
74    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
75                                       const std::vector<BasicBlock*> &Preds);
76    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
77    void InsertPreheaderForLoop(Loop *L);
78    Loop *SeparateNestedLoop(Loop *L);
79    void InsertUniqueBackedgeBlock(Loop *L);
80
81    void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
82                                         std::vector<BasicBlock*> &PredBlocks);
83  };
84
85  RegisterOpt<LoopSimplify>
86  X("loopsimplify", "Canonicalize natural loops", true);
87}
88
89// Publically exposed interface to pass...
90const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
91Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
92
93/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
94/// it in any convenient order) inserting preheaders...
95///
96bool LoopSimplify::runOnFunction(Function &F) {
97  bool Changed = false;
98  LoopInfo &LI = getAnalysis<LoopInfo>();
99
100  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
101    Changed |= ProcessLoop(*I);
102
103  return Changed;
104}
105
106
107/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
108/// all loops have preheaders.
109///
110bool LoopSimplify::ProcessLoop(Loop *L) {
111  bool Changed = false;
112
113  // Check to see that no blocks (other than the header) in the loop have
114  // predecessors that are not in the loop.  This is not valid for natural
115  // loops, but can occur if the blocks are unreachable.  Since they are
116  // unreachable we can just shamelessly destroy their terminators to make them
117  // not branch into the loop!
118  assert(L->getBlocks()[0] == L->getHeader() &&
119         "Header isn't first block in loop?");
120  for (unsigned i = 1, e = L->getBlocks().size(); i != e; ++i) {
121    BasicBlock *LoopBB = L->getBlocks()[i];
122  Retry:
123    for (pred_iterator PI = pred_begin(LoopBB), E = pred_end(LoopBB);
124         PI != E; ++PI)
125      if (!L->contains(*PI)) {
126        // This predecessor is not in the loop.  Kill its terminator!
127        BasicBlock *DeadBlock = *PI;
128        for (succ_iterator SI = succ_begin(DeadBlock), E = succ_end(DeadBlock);
129             SI != E; ++SI)
130          (*SI)->removePredecessor(DeadBlock);  // Remove PHI node entries
131
132        // Delete the dead terminator.
133        DeadBlock->getInstList().pop_back();
134
135        Value *RetVal = 0;
136        if (LoopBB->getParent()->getReturnType() != Type::VoidTy)
137          RetVal = Constant::getNullValue(LoopBB->getParent()->getReturnType());
138        new ReturnInst(RetVal, DeadBlock);
139        goto Retry;  // We just invalidated the pred_iterator.  Retry.
140      }
141  }
142
143  // Does the loop already have a preheader?  If so, don't modify the loop...
144  if (L->getLoopPreheader() == 0) {
145    InsertPreheaderForLoop(L);
146    NumInserted++;
147    Changed = true;
148  }
149
150  // Next, check to make sure that all exit nodes of the loop only have
151  // predecessors that are inside of the loop.  This check guarantees that the
152  // loop preheader/header will dominate the exit blocks.  If the exit block has
153  // predecessors from outside of the loop, split the edge now.
154  std::vector<BasicBlock*> ExitBlocks;
155  L->getExitBlocks(ExitBlocks);
156
157  SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
158  for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
159         E = ExitBlockSet.end(); I != E; ++I) {
160    BasicBlock *ExitBlock = *I;
161    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
162         PI != PE; ++PI)
163      if (!L->contains(*PI)) {
164        RewriteLoopExitBlock(L, ExitBlock);
165        NumInserted++;
166        Changed = true;
167        break;
168      }
169  }
170
171  // If the header has more than two predecessors at this point (from the
172  // preheader and from multiple backedges), we must adjust the loop.
173  if (L->getNumBackEdges() != 1) {
174    // If this is really a nested loop, rip it out into a child loop.
175    if (Loop *NL = SeparateNestedLoop(L)) {
176      ++NumNested;
177      // This is a big restructuring change, reprocess the whole loop.
178      ProcessLoop(NL);
179      return true;
180    }
181
182    InsertUniqueBackedgeBlock(L);
183    NumInserted++;
184    Changed = true;
185  }
186
187  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
188    Changed |= ProcessLoop(*I);
189  return Changed;
190}
191
192/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
193/// to move the predecessors specified in the Preds list to point to the new
194/// block, leaving the remaining predecessors pointing to BB.  This method
195/// updates the SSA PHINode's, but no other analyses.
196///
197BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
198                                                 const char *Suffix,
199                                       const std::vector<BasicBlock*> &Preds) {
200
201  // Create new basic block, insert right before the original block...
202  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
203
204  // The preheader first gets an unconditional branch to the loop header...
205  BranchInst *BI = new BranchInst(BB, NewBB);
206
207  // For every PHI node in the block, insert a PHI node into NewBB where the
208  // incoming values from the out of loop edges are moved to NewBB.  We have two
209  // possible cases here.  If the loop is dead, we just insert dummy entries
210  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
211  // incoming edges in BB into new PHI nodes in NewBB.
212  //
213  if (!Preds.empty()) {  // Is the loop not obviously dead?
214    // Check to see if the values being merged into the new block need PHI
215    // nodes.  If so, insert them.
216    for (BasicBlock::iterator I = BB->begin();
217         PHINode *PN = dyn_cast<PHINode>(I); ) {
218      ++I;
219
220      // Check to see if all of the values coming in are the same.  If so, we
221      // don't need to create a new PHI node.
222      Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
223      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
224        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
225          InVal = 0;
226          break;
227        }
228
229      // If the values coming into the block are not the same, we need a PHI.
230      if (InVal == 0) {
231        // Create the new PHI node, insert it into NewBB at the end of the block
232        PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
233
234        // Move all of the edges from blocks outside the loop to the new PHI
235        for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
236          Value *V = PN->removeIncomingValue(Preds[i], false);
237          NewPHI->addIncoming(V, Preds[i]);
238        }
239        InVal = NewPHI;
240      } else {
241        // Remove all of the edges coming into the PHI nodes from outside of the
242        // block.
243        for (unsigned i = 0, e = Preds.size(); i != e; ++i)
244          PN->removeIncomingValue(Preds[i], false);
245      }
246
247      // Add an incoming value to the PHI node in the loop for the preheader
248      // edge.
249      PN->addIncoming(InVal, NewBB);
250
251      // Can we eliminate this phi node now?
252      if (Value *V = hasConstantValue(PN)) {
253        PN->replaceAllUsesWith(V);
254        BB->getInstList().erase(PN);
255      }
256    }
257
258    // Now that the PHI nodes are updated, actually move the edges from
259    // Preds to point to NewBB instead of BB.
260    //
261    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
262      TerminatorInst *TI = Preds[i]->getTerminator();
263      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
264        if (TI->getSuccessor(s) == BB)
265          TI->setSuccessor(s, NewBB);
266    }
267
268  } else {                       // Otherwise the loop is dead...
269    for (BasicBlock::iterator I = BB->begin();
270         PHINode *PN = dyn_cast<PHINode>(I); ++I)
271      // Insert dummy values as the incoming value...
272      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
273  }
274  return NewBB;
275}
276
277/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
278/// preheader, this method is called to insert one.  This method has two phases:
279/// preheader insertion and analysis updating.
280///
281void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
282  BasicBlock *Header = L->getHeader();
283
284  // Compute the set of predecessors of the loop that are not in the loop.
285  std::vector<BasicBlock*> OutsideBlocks;
286  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
287       PI != PE; ++PI)
288      if (!L->contains(*PI))           // Coming in from outside the loop?
289        OutsideBlocks.push_back(*PI);  // Keep track of it...
290
291  // Split out the loop pre-header
292  BasicBlock *NewBB =
293    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
294
295  //===--------------------------------------------------------------------===//
296  //  Update analysis results now that we have performed the transformation
297  //
298
299  // We know that we have loop information to update... update it now.
300  if (Loop *Parent = L->getParentLoop())
301    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
302
303  // If the header for the loop used to be an exit node for another loop, then
304  // we need to update this to know that the loop-preheader is now the exit
305  // node.  Note that the only loop that could have our header as an exit node
306  // is a sibling loop, ie, one with the same parent loop, or one if it's
307  // children.
308  //
309  LoopInfo::iterator ParentLoops, ParentLoopsE;
310  if (Loop *Parent = L->getParentLoop()) {
311    ParentLoops = Parent->begin();
312    ParentLoopsE = Parent->end();
313  } else {      // Must check top-level loops...
314    ParentLoops = getAnalysis<LoopInfo>().begin();
315    ParentLoopsE = getAnalysis<LoopInfo>().end();
316  }
317
318  DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
319  DominatorTree &DT = getAnalysis<DominatorTree>();
320
321
322  // Update the dominator tree information.
323  // The immediate dominator of the preheader is the immediate dominator of
324  // the old header.
325  DominatorTree::Node *PHDomTreeNode =
326    DT.createNewNode(NewBB, DT.getNode(Header)->getIDom());
327
328  // Change the header node so that PNHode is the new immediate dominator
329  DT.changeImmediateDominator(DT.getNode(Header), PHDomTreeNode);
330
331  {
332    // The blocks that dominate NewBB are the blocks that dominate Header,
333    // minus Header, plus NewBB.
334    DominatorSet::DomSetType DomSet = DS.getDominators(Header);
335    DomSet.erase(Header);  // Header does not dominate us...
336    DS.addBasicBlock(NewBB, DomSet);
337
338    // The newly created basic block dominates all nodes dominated by Header.
339    for (df_iterator<DominatorTree::Node*> DFI = df_begin(PHDomTreeNode),
340           E = df_end(PHDomTreeNode); DFI != E; ++DFI)
341      DS.addDominator((*DFI)->getBlock(), NewBB);
342  }
343
344  // Update immediate dominator information if we have it...
345  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
346    // Whatever i-dominated the header node now immediately dominates NewBB
347    ID->addNewBlock(NewBB, ID->get(Header));
348
349    // The preheader now is the immediate dominator for the header node...
350    ID->setImmediateDominator(Header, NewBB);
351  }
352
353  // Update dominance frontier information...
354  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
355    // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
356    // everything that Header does, and it strictly dominates Header in
357    // addition.
358    assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
359    DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
360    NewDFSet.erase(Header);
361    DF->addBasicBlock(NewBB, NewDFSet);
362
363    // Now we must loop over all of the dominance frontiers in the function,
364    // replacing occurrences of Header with NewBB in some cases.  If a block
365    // dominates a (now) predecessor of NewBB, but did not strictly dominate
366    // Header, it will have Header in it's DF set, but should now have NewBB in
367    // its set.
368    for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
369      // Get all of the dominators of the predecessor...
370      const DominatorSet::DomSetType &PredDoms =
371        DS.getDominators(OutsideBlocks[i]);
372      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
373             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
374        BasicBlock *PredDom = *PDI;
375        // If the loop header is in DF(PredDom), then PredDom didn't dominate
376        // the header but did dominate a predecessor outside of the loop.  Now
377        // we change this entry to include the preheader in the DF instead of
378        // the header.
379        DominanceFrontier::iterator DFI = DF->find(PredDom);
380        assert(DFI != DF->end() && "No dominance frontier for node?");
381        if (DFI->second.count(Header)) {
382          DF->removeFromFrontier(DFI, Header);
383          DF->addToFrontier(DFI, NewBB);
384        }
385      }
386    }
387  }
388}
389
390/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
391/// blocks.  This method is used to split exit blocks that have predecessors
392/// outside of the loop.
393BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
394  DominatorSet &DS = getAnalysis<DominatorSet>();
395
396  std::vector<BasicBlock*> LoopBlocks;
397  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
398    if (L->contains(*I))
399      LoopBlocks.push_back(*I);
400
401  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
402  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
403
404  // Update Loop Information - we know that the new block will be in the parent
405  // loop of L.
406  if (Loop *Parent = L->getParentLoop())
407    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
408
409  // Update dominator information (set, immdom, domtree, and domfrontier)
410  UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
411  return NewBB;
412}
413
414/// AddBlockAndPredsToSet - Add the specified block, and all of its
415/// predecessors, to the specified set, if it's not already in there.  Stop
416/// predecessor traversal when we reach StopBlock.
417static void AddBlockAndPredsToSet(BasicBlock *BB, BasicBlock *StopBlock,
418                                  std::set<BasicBlock*> &Blocks) {
419  if (!Blocks.insert(BB).second) return;  // already processed.
420  if (BB == StopBlock) return;  // Stop here!
421
422  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
423    AddBlockAndPredsToSet(*I, StopBlock, Blocks);
424}
425
426/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
427/// PHI node that tells us how to partition the loops.
428static PHINode *FindPHIToPartitionLoops(Loop *L) {
429  for (BasicBlock::iterator I = L->getHeader()->begin();
430       PHINode *PN = dyn_cast<PHINode>(I); ) {
431    ++I;
432    if (Value *V = hasConstantValue(PN)) {
433      // This is a degenerate PHI already, don't modify it!
434      PN->replaceAllUsesWith(V);
435      PN->getParent()->getInstList().erase(PN);
436    } else {
437      // Scan this PHI node looking for a use of the PHI node by itself.
438      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
439        if (PN->getIncomingValue(i) == PN &&
440            L->contains(PN->getIncomingBlock(i)))
441          // We found something tasty to remove.
442          return PN;
443    }
444  }
445  return 0;
446}
447
448/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
449/// them out into a nested loop.  This is important for code that looks like
450/// this:
451///
452///  Loop:
453///     ...
454///     br cond, Loop, Next
455///     ...
456///     br cond2, Loop, Out
457///
458/// To identify this common case, we look at the PHI nodes in the header of the
459/// loop.  PHI nodes with unchanging values on one backedge correspond to values
460/// that change in the "outer" loop, but not in the "inner" loop.
461///
462/// If we are able to separate out a loop, return the new outer loop that was
463/// created.
464///
465Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
466  PHINode *PN = FindPHIToPartitionLoops(L);
467  if (PN == 0) return 0;  // No known way to partition.
468
469  // Pull out all predecessors that have varying values in the loop.  This
470  // handles the case when a PHI node has multiple instances of itself as
471  // arguments.
472  std::vector<BasicBlock*> OuterLoopPreds;
473  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
474    if (PN->getIncomingValue(i) != PN ||
475        !L->contains(PN->getIncomingBlock(i)))
476      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
477
478  BasicBlock *Header = L->getHeader();
479  BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
480
481  // Update dominator information (set, immdom, domtree, and domfrontier)
482  UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds);
483
484  // Create the new outer loop.
485  Loop *NewOuter = new Loop();
486
487  LoopInfo &LI = getAnalysis<LoopInfo>();
488
489  // Change the parent loop to use the outer loop as its child now.
490  if (Loop *Parent = L->getParentLoop())
491    Parent->replaceChildLoopWith(L, NewOuter);
492  else
493    LI.changeTopLevelLoop(L, NewOuter);
494
495  // This block is going to be our new header block: add it to this loop and all
496  // parent loops.
497  NewOuter->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
498
499  // L is now a subloop of our outer loop.
500  NewOuter->addChildLoop(L);
501
502  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
503    NewOuter->addBlockEntry(L->getBlocks()[i]);
504
505  // Determine which blocks should stay in L and which should be moved out to
506  // the Outer loop now.
507  DominatorSet &DS = getAnalysis<DominatorSet>();
508  std::set<BasicBlock*> BlocksInL;
509  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
510    if (DS.dominates(Header, *PI))
511      AddBlockAndPredsToSet(*PI, Header, BlocksInL);
512
513
514  // Scan all of the loop children of L, moving them to OuterLoop if they are
515  // not part of the inner loop.
516  for (Loop::iterator I = L->begin(); I != L->end(); )
517    if (BlocksInL.count((*I)->getHeader()))
518      ++I;   // Loop remains in L
519    else
520      NewOuter->addChildLoop(L->removeChildLoop(I));
521
522  // Now that we know which blocks are in L and which need to be moved to
523  // OuterLoop, move any blocks that need it.
524  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
525    BasicBlock *BB = L->getBlocks()[i];
526    if (!BlocksInL.count(BB)) {
527      // Move this block to the parent, updating the exit blocks sets
528      L->removeBlockFromLoop(BB);
529      if (LI[BB] == L)
530        LI.changeLoopFor(BB, NewOuter);
531      --i;
532    }
533  }
534
535  return NewOuter;
536}
537
538
539
540/// InsertUniqueBackedgeBlock - This method is called when the specified loop
541/// has more than one backedge in it.  If this occurs, revector all of these
542/// backedges to target a new basic block and have that block branch to the loop
543/// header.  This ensures that loops have exactly one backedge.
544///
545void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
546  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
547
548  // Get information about the loop
549  BasicBlock *Preheader = L->getLoopPreheader();
550  BasicBlock *Header = L->getHeader();
551  Function *F = Header->getParent();
552
553  // Figure out which basic blocks contain back-edges to the loop header.
554  std::vector<BasicBlock*> BackedgeBlocks;
555  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
556    if (*I != Preheader) BackedgeBlocks.push_back(*I);
557
558  // Create and insert the new backedge block...
559  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
560  BranchInst *BETerminator = new BranchInst(Header, BEBlock);
561
562  // Move the new backedge block to right after the last backedge block.
563  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
564  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
565
566  // Now that the block has been inserted into the function, create PHI nodes in
567  // the backedge block which correspond to any PHI nodes in the header block.
568  for (BasicBlock::iterator I = Header->begin();
569       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
570    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
571                                 BETerminator);
572    NewPN->op_reserve(2*BackedgeBlocks.size());
573
574    // Loop over the PHI node, moving all entries except the one for the
575    // preheader over to the new PHI node.
576    unsigned PreheaderIdx = ~0U;
577    bool HasUniqueIncomingValue = true;
578    Value *UniqueValue = 0;
579    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
580      BasicBlock *IBB = PN->getIncomingBlock(i);
581      Value *IV = PN->getIncomingValue(i);
582      if (IBB == Preheader) {
583        PreheaderIdx = i;
584      } else {
585        NewPN->addIncoming(IV, IBB);
586        if (HasUniqueIncomingValue) {
587          if (UniqueValue == 0)
588            UniqueValue = IV;
589          else if (UniqueValue != IV)
590            HasUniqueIncomingValue = false;
591        }
592      }
593    }
594
595    // Delete all of the incoming values from the old PN except the preheader's
596    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
597    if (PreheaderIdx != 0) {
598      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
599      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
600    }
601    PN->op_erase(PN->op_begin()+2, PN->op_end());
602
603    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
604    PN->addIncoming(NewPN, BEBlock);
605
606    // As an optimization, if all incoming values in the new PhiNode (which is a
607    // subset of the incoming values of the old PHI node) have the same value,
608    // eliminate the PHI Node.
609    if (HasUniqueIncomingValue) {
610      NewPN->replaceAllUsesWith(UniqueValue);
611      BEBlock->getInstList().erase(NewPN);
612    }
613  }
614
615  // Now that all of the PHI nodes have been inserted and adjusted, modify the
616  // backedge blocks to just to the BEBlock instead of the header.
617  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
618    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
619    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
620      if (TI->getSuccessor(Op) == Header)
621        TI->setSuccessor(Op, BEBlock);
622  }
623
624  //===--- Update all analyses which we must preserve now -----------------===//
625
626  // Update Loop Information - we know that this block is now in the current
627  // loop and all parent loops.
628  L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());
629
630  // Update dominator information (set, immdom, domtree, and domfrontier)
631  UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
632}
633
634/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
635/// different kinds of dominator information (dominator sets, immediate
636/// dominators, dominator trees, and dominance frontiers) after a new block has
637/// been added to the CFG.
638///
639/// This only supports the case when an existing block (known as "NewBBSucc"),
640/// had some of its predecessors factored into a new basic block.  This
641/// transformation inserts a new basic block ("NewBB"), with a single
642/// unconditional branch to NewBBSucc, and moves some predecessors of
643/// "NewBBSucc" to now branch to NewBB.  These predecessors are listed in
644/// PredBlocks, even though they are the same as
645/// pred_begin(NewBB)/pred_end(NewBB).
646///
647void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
648                                         std::vector<BasicBlock*> &PredBlocks) {
649  assert(!PredBlocks.empty() && "No predblocks??");
650  assert(succ_begin(NewBB) != succ_end(NewBB) &&
651         ++succ_begin(NewBB) == succ_end(NewBB) &&
652         "NewBB should have a single successor!");
653  BasicBlock *NewBBSucc = *succ_begin(NewBB);
654  DominatorSet &DS = getAnalysis<DominatorSet>();
655
656  // Update dominator information...  The blocks that dominate NewBB are the
657  // intersection of the dominators of predecessors, plus the block itself.
658  //
659  DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
660  for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
661    set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
662  NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
663  DS.addBasicBlock(NewBB, NewBBDomSet);
664
665  // The newly inserted basic block will dominate existing basic blocks iff the
666  // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
667  // the non-pred blocks, then they all must be the same block!
668  //
669  bool NewBBDominatesNewBBSucc = true;
670  {
671    BasicBlock *OnePred = PredBlocks[0];
672    for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
673      if (PredBlocks[i] != OnePred) {
674        NewBBDominatesNewBBSucc = false;
675        break;
676      }
677
678    if (NewBBDominatesNewBBSucc)
679      for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
680           PI != E; ++PI)
681        if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
682          NewBBDominatesNewBBSucc = false;
683          break;
684        }
685  }
686
687  // The other scenario where the new block can dominate its successors are when
688  // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
689  // already.
690  if (!NewBBDominatesNewBBSucc) {
691    NewBBDominatesNewBBSucc = true;
692    for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
693         PI != E; ++PI)
694      if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
695        NewBBDominatesNewBBSucc = false;
696        break;
697      }
698  }
699
700  // If NewBB dominates some blocks, then it will dominate all blocks that
701  // NewBBSucc does.
702  if (NewBBDominatesNewBBSucc) {
703    BasicBlock *PredBlock = PredBlocks[0];
704    Function *F = NewBB->getParent();
705    for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
706      if (DS.dominates(NewBBSucc, I))
707        DS.addDominator(I, NewBB);
708  }
709
710  // Update immediate dominator information if we have it...
711  BasicBlock *NewBBIDom = 0;
712  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
713    // To find the immediate dominator of the new exit node, we trace up the
714    // immediate dominators of a predecessor until we find a basic block that
715    // dominates the exit block.
716    //
717    BasicBlock *Dom = PredBlocks[0];  // Some random predecessor...
718    while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
719      assert(Dom != 0 && "No shared dominator found???");
720      Dom = ID->get(Dom);
721    }
722
723    // Set the immediate dominator now...
724    ID->addNewBlock(NewBB, Dom);
725    NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
726
727    // If NewBB strictly dominates other blocks, we need to update their idom's
728    // now.  The only block that need adjustment is the NewBBSucc block, whose
729    // idom should currently be set to PredBlocks[0].
730    if (NewBBDominatesNewBBSucc)
731      ID->setImmediateDominator(NewBBSucc, NewBB);
732  }
733
734  // Update DominatorTree information if it is active.
735  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
736    // If we don't have ImmediateDominator info around, calculate the idom as
737    // above.
738    DominatorTree::Node *NewBBIDomNode;
739    if (NewBBIDom) {
740      NewBBIDomNode = DT->getNode(NewBBIDom);
741    } else {
742      NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
743      while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
744        NewBBIDomNode = NewBBIDomNode->getIDom();
745        assert(NewBBIDomNode && "No shared dominator found??");
746      }
747    }
748
749    // Create the new dominator tree node... and set the idom of NewBB.
750    DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
751
752    // If NewBB strictly dominates other blocks, then it is now the immediate
753    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
754    if (NewBBDominatesNewBBSucc) {
755      DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
756      DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
757    }
758  }
759
760  // Update dominance frontier information...
761  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
762    // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
763    // DF(PredBlocks[0]) without the stuff that the new block does not dominate
764    // a predecessor of.
765    if (NewBBDominatesNewBBSucc) {
766      DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
767      if (DFI != DF->end()) {
768        DominanceFrontier::DomSetType Set = DFI->second;
769        // Filter out stuff in Set that we do not dominate a predecessor of.
770        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
771               E = Set.end(); SetI != E;) {
772          bool DominatesPred = false;
773          for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
774               PI != E; ++PI)
775            if (DS.dominates(NewBB, *PI))
776              DominatesPred = true;
777          if (!DominatesPred)
778            Set.erase(SetI++);
779          else
780            ++SetI;
781        }
782
783        DF->addBasicBlock(NewBB, Set);
784      }
785
786    } else {
787      // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
788      // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
789      // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
790      DominanceFrontier::DomSetType NewDFSet;
791      NewDFSet.insert(NewBBSucc);
792      DF->addBasicBlock(NewBB, NewDFSet);
793    }
794
795    // Now we must loop over all of the dominance frontiers in the function,
796    // replacing occurrences of NewBBSucc with NewBB in some cases.  All
797    // blocks that dominate a block in PredBlocks and contained NewBBSucc in
798    // their dominance frontier must be updated to contain NewBB instead.
799    //
800    for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
801      BasicBlock *Pred = PredBlocks[i];
802      // Get all of the dominators of the predecessor...
803      const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
804      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
805             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
806        BasicBlock *PredDom = *PDI;
807
808        // If the NewBBSucc node is in DF(PredDom), then PredDom didn't
809        // dominate NewBBSucc but did dominate a predecessor of it.  Now we
810        // change this entry to include NewBB in the DF instead of NewBBSucc.
811        DominanceFrontier::iterator DFI = DF->find(PredDom);
812        assert(DFI != DF->end() && "No dominance frontier for node?");
813        if (DFI->second.count(NewBBSucc)) {
814          // If NewBBSucc should not stay in our dominator frontier, remove it.
815          // We remove it unless there is a predecessor of NewBBSucc that we
816          // dominate, but we don't strictly dominate NewBBSucc.
817          bool ShouldRemove = true;
818          if (PredDom == NewBBSucc || !DS.dominates(PredDom, NewBBSucc)) {
819            // Okay, we know that PredDom does not strictly dominate NewBBSucc.
820            // Check to see if it dominates any predecessors of NewBBSucc.
821            for (pred_iterator PI = pred_begin(NewBBSucc),
822                   E = pred_end(NewBBSucc); PI != E; ++PI)
823              if (DS.dominates(PredDom, *PI)) {
824                ShouldRemove = false;
825                break;
826              }
827          }
828
829          if (ShouldRemove)
830            DF->removeFromFrontier(DFI, NewBBSucc);
831          DF->addToFrontier(DFI, NewBB);
832        }
833      }
834    }
835  }
836}
837
838