LoopSimplify.cpp revision 59fb87d469b9b38b0f4c1e31a2f34fa8f09b981d
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Note that the simplifycfg pass will clean up blocks which are split out but
27// end up being unnecessary, so usage of this pass should not pessimize
28// generated code.
29//
30// This pass obviously modifies the CFG, but updates loop information and
31// dominator information.
32//
33//===----------------------------------------------------------------------===//
34
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constant.h"
37#include "llvm/iTerminators.h"
38#include "llvm/iPHINode.h"
39#include "llvm/Function.h"
40#include "llvm/Type.h"
41#include "llvm/Analysis/Dominators.h"
42#include "llvm/Analysis/LoopInfo.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "Support/SetOperations.h"
46#include "Support/Statistic.h"
47#include "Support/DepthFirstIterator.h"
48using namespace llvm;
49
50namespace {
51  Statistic<>
52  NumInserted("loopsimplify", "Number of pre-header or exit blocks inserted");
53  Statistic<>
54  NumNested("loopsimplify", "Number of nested loops split out");
55
56  struct LoopSimplify : public FunctionPass {
57    virtual bool runOnFunction(Function &F);
58
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60      // We need loop information to identify the loops...
61      AU.addRequired<LoopInfo>();
62      AU.addRequired<DominatorSet>();
63      AU.addRequired<DominatorTree>();
64
65      AU.addPreserved<LoopInfo>();
66      AU.addPreserved<DominatorSet>();
67      AU.addPreserved<ImmediateDominators>();
68      AU.addPreserved<DominatorTree>();
69      AU.addPreserved<DominanceFrontier>();
70      AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
71    }
72  private:
73    bool ProcessLoop(Loop *L);
74    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
75                                       const std::vector<BasicBlock*> &Preds);
76    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
77    void InsertPreheaderForLoop(Loop *L);
78    Loop *SeparateNestedLoop(Loop *L);
79    void InsertUniqueBackedgeBlock(Loop *L);
80
81    void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
82                                         std::vector<BasicBlock*> &PredBlocks);
83  };
84
85  RegisterOpt<LoopSimplify>
86  X("loopsimplify", "Canonicalize natural loops", true);
87}
88
89// Publically exposed interface to pass...
90const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
91Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
92
93/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
94/// it in any convenient order) inserting preheaders...
95///
96bool LoopSimplify::runOnFunction(Function &F) {
97  bool Changed = false;
98  LoopInfo &LI = getAnalysis<LoopInfo>();
99
100  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
101    Changed |= ProcessLoop(*I);
102
103  return Changed;
104}
105
106
107/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
108/// all loops have preheaders.
109///
110bool LoopSimplify::ProcessLoop(Loop *L) {
111  bool Changed = false;
112
113  // Check to see that no blocks (other than the header) in the loop have
114  // predecessors that are not in the loop.  This is not valid for natural
115  // loops, but can occur if the blocks are unreachable.  Since they are
116  // unreachable we can just shamelessly destroy their terminators to make them
117  // not branch into the loop!
118  assert(L->getBlocks()[0] == L->getHeader() &&
119         "Header isn't first block in loop?");
120  for (unsigned i = 1, e = L->getBlocks().size(); i != e; ++i) {
121    BasicBlock *LoopBB = L->getBlocks()[i];
122  Retry:
123    for (pred_iterator PI = pred_begin(LoopBB), E = pred_end(LoopBB);
124         PI != E; ++PI)
125      if (!L->contains(*PI)) {
126        // This predecessor is not in the loop.  Kill its terminator!
127        BasicBlock *DeadBlock = *PI;
128        for (succ_iterator SI = succ_begin(DeadBlock), E = succ_end(DeadBlock);
129             SI != E; ++SI)
130          (*SI)->removePredecessor(DeadBlock);  // Remove PHI node entries
131
132        // Delete the dead terminator.
133        DeadBlock->getInstList().pop_back();
134
135        Value *RetVal = 0;
136        if (LoopBB->getParent()->getReturnType() != Type::VoidTy)
137          RetVal = Constant::getNullValue(LoopBB->getParent()->getReturnType());
138        new ReturnInst(RetVal, DeadBlock);
139        goto Retry;  // We just invalidated the pred_iterator.  Retry.
140      }
141  }
142
143  // Does the loop already have a preheader?  If so, don't modify the loop...
144  if (L->getLoopPreheader() == 0) {
145    InsertPreheaderForLoop(L);
146    NumInserted++;
147    Changed = true;
148  }
149
150  // Next, check to make sure that all exit nodes of the loop only have
151  // predecessors that are inside of the loop.  This check guarantees that the
152  // loop preheader/header will dominate the exit blocks.  If the exit block has
153  // predecessors from outside of the loop, split the edge now.
154  std::vector<BasicBlock*> ExitBlocks;
155  L->getExitBlocks(ExitBlocks);
156  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
157    BasicBlock *ExitBlock = ExitBlocks[i];
158    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
159         PI != PE; ++PI)
160      if (!L->contains(*PI)) {
161        BasicBlock *NewBB = RewriteLoopExitBlock(L, ExitBlock);
162        for (unsigned j = i; j != ExitBlocks.size(); ++j)
163          if (ExitBlocks[j] == ExitBlock)
164            ExitBlocks[j] = NewBB;
165
166        NumInserted++;
167        Changed = true;
168        break;
169      }
170    }
171
172  // If the header has more than two predecessors at this point (from the
173  // preheader and from multiple backedges), we must adjust the loop.
174  if (L->getNumBackEdges() != 1) {
175    // If this is really a nested loop, rip it out into a child loop.
176    if (Loop *NL = SeparateNestedLoop(L)) {
177      ++NumNested;
178      // This is a big restructuring change, reprocess the whole loop.
179      ProcessLoop(NL);
180      return true;
181    }
182
183    InsertUniqueBackedgeBlock(L);
184    NumInserted++;
185    Changed = true;
186  }
187
188  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
189    Changed |= ProcessLoop(*I);
190  return Changed;
191}
192
193/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
194/// to move the predecessors specified in the Preds list to point to the new
195/// block, leaving the remaining predecessors pointing to BB.  This method
196/// updates the SSA PHINode's, but no other analyses.
197///
198BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
199                                                 const char *Suffix,
200                                       const std::vector<BasicBlock*> &Preds) {
201
202  // Create new basic block, insert right before the original block...
203  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
204
205  // The preheader first gets an unconditional branch to the loop header...
206  BranchInst *BI = new BranchInst(BB, NewBB);
207
208  // For every PHI node in the block, insert a PHI node into NewBB where the
209  // incoming values from the out of loop edges are moved to NewBB.  We have two
210  // possible cases here.  If the loop is dead, we just insert dummy entries
211  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
212  // incoming edges in BB into new PHI nodes in NewBB.
213  //
214  if (!Preds.empty()) {  // Is the loop not obviously dead?
215    // Check to see if the values being merged into the new block need PHI
216    // nodes.  If so, insert them.
217    for (BasicBlock::iterator I = BB->begin();
218         PHINode *PN = dyn_cast<PHINode>(I); ) {
219      ++I;
220
221      // Check to see if all of the values coming in are the same.  If so, we
222      // don't need to create a new PHI node.
223      Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
224      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
225        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
226          InVal = 0;
227          break;
228        }
229
230      // If the values coming into the block are not the same, we need a PHI.
231      if (InVal == 0) {
232        // Create the new PHI node, insert it into NewBB at the end of the block
233        PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
234
235        // Move all of the edges from blocks outside the loop to the new PHI
236        for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
237          Value *V = PN->removeIncomingValue(Preds[i], false);
238          NewPHI->addIncoming(V, Preds[i]);
239        }
240        InVal = NewPHI;
241      } else {
242        // Remove all of the edges coming into the PHI nodes from outside of the
243        // block.
244        for (unsigned i = 0, e = Preds.size(); i != e; ++i)
245          PN->removeIncomingValue(Preds[i], false);
246      }
247
248      // Add an incoming value to the PHI node in the loop for the preheader
249      // edge.
250      PN->addIncoming(InVal, NewBB);
251
252      // Can we eliminate this phi node now?
253      if (Value *V = hasConstantValue(PN)) {
254        PN->replaceAllUsesWith(V);
255        BB->getInstList().erase(PN);
256      }
257    }
258
259    // Now that the PHI nodes are updated, actually move the edges from
260    // Preds to point to NewBB instead of BB.
261    //
262    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
263      TerminatorInst *TI = Preds[i]->getTerminator();
264      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
265        if (TI->getSuccessor(s) == BB)
266          TI->setSuccessor(s, NewBB);
267    }
268
269  } else {                       // Otherwise the loop is dead...
270    for (BasicBlock::iterator I = BB->begin();
271         PHINode *PN = dyn_cast<PHINode>(I); ++I)
272      // Insert dummy values as the incoming value...
273      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
274  }
275  return NewBB;
276}
277
278/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
279/// preheader, this method is called to insert one.  This method has two phases:
280/// preheader insertion and analysis updating.
281///
282void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
283  BasicBlock *Header = L->getHeader();
284
285  // Compute the set of predecessors of the loop that are not in the loop.
286  std::vector<BasicBlock*> OutsideBlocks;
287  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
288       PI != PE; ++PI)
289      if (!L->contains(*PI))           // Coming in from outside the loop?
290        OutsideBlocks.push_back(*PI);  // Keep track of it...
291
292  // Split out the loop pre-header
293  BasicBlock *NewBB =
294    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
295
296  //===--------------------------------------------------------------------===//
297  //  Update analysis results now that we have performed the transformation
298  //
299
300  // We know that we have loop information to update... update it now.
301  if (Loop *Parent = L->getParentLoop())
302    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
303
304  // If the header for the loop used to be an exit node for another loop, then
305  // we need to update this to know that the loop-preheader is now the exit
306  // node.  Note that the only loop that could have our header as an exit node
307  // is a sibling loop, ie, one with the same parent loop, or one if it's
308  // children.
309  //
310  LoopInfo::iterator ParentLoops, ParentLoopsE;
311  if (Loop *Parent = L->getParentLoop()) {
312    ParentLoops = Parent->begin();
313    ParentLoopsE = Parent->end();
314  } else {      // Must check top-level loops...
315    ParentLoops = getAnalysis<LoopInfo>().begin();
316    ParentLoopsE = getAnalysis<LoopInfo>().end();
317  }
318
319  DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
320  DominatorTree &DT = getAnalysis<DominatorTree>();
321
322
323  // Update the dominator tree information.
324  // The immediate dominator of the preheader is the immediate dominator of
325  // the old header.
326  DominatorTree::Node *PHDomTreeNode =
327    DT.createNewNode(NewBB, DT.getNode(Header)->getIDom());
328
329  // Change the header node so that PNHode is the new immediate dominator
330  DT.changeImmediateDominator(DT.getNode(Header), PHDomTreeNode);
331
332  {
333    // The blocks that dominate NewBB are the blocks that dominate Header,
334    // minus Header, plus NewBB.
335    DominatorSet::DomSetType DomSet = DS.getDominators(Header);
336    DomSet.erase(Header);  // Header does not dominate us...
337    DS.addBasicBlock(NewBB, DomSet);
338
339    // The newly created basic block dominates all nodes dominated by Header.
340    for (df_iterator<DominatorTree::Node*> DFI = df_begin(PHDomTreeNode),
341           E = df_end(PHDomTreeNode); DFI != E; ++DFI)
342      DS.addDominator((*DFI)->getBlock(), NewBB);
343  }
344
345  // Update immediate dominator information if we have it...
346  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
347    // Whatever i-dominated the header node now immediately dominates NewBB
348    ID->addNewBlock(NewBB, ID->get(Header));
349
350    // The preheader now is the immediate dominator for the header node...
351    ID->setImmediateDominator(Header, NewBB);
352  }
353
354  // Update dominance frontier information...
355  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
356    // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
357    // everything that Header does, and it strictly dominates Header in
358    // addition.
359    assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
360    DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
361    NewDFSet.erase(Header);
362    DF->addBasicBlock(NewBB, NewDFSet);
363
364    // Now we must loop over all of the dominance frontiers in the function,
365    // replacing occurrences of Header with NewBB in some cases.  If a block
366    // dominates a (now) predecessor of NewBB, but did not strictly dominate
367    // Header, it will have Header in it's DF set, but should now have NewBB in
368    // its set.
369    for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
370      // Get all of the dominators of the predecessor...
371      const DominatorSet::DomSetType &PredDoms =
372        DS.getDominators(OutsideBlocks[i]);
373      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
374             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
375        BasicBlock *PredDom = *PDI;
376        // If the loop header is in DF(PredDom), then PredDom didn't dominate
377        // the header but did dominate a predecessor outside of the loop.  Now
378        // we change this entry to include the preheader in the DF instead of
379        // the header.
380        DominanceFrontier::iterator DFI = DF->find(PredDom);
381        assert(DFI != DF->end() && "No dominance frontier for node?");
382        if (DFI->second.count(Header)) {
383          DF->removeFromFrontier(DFI, Header);
384          DF->addToFrontier(DFI, NewBB);
385        }
386      }
387    }
388  }
389}
390
391/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
392/// blocks.  This method is used to split exit blocks that have predecessors
393/// outside of the loop.
394BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
395  DominatorSet &DS = getAnalysis<DominatorSet>();
396
397  std::vector<BasicBlock*> LoopBlocks;
398  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
399    if (L->contains(*I))
400      LoopBlocks.push_back(*I);
401
402  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
403  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
404
405  // Update Loop Information - we know that the new block will be in the parent
406  // loop of L.
407  if (Loop *Parent = L->getParentLoop())
408    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
409
410  // Update dominator information (set, immdom, domtree, and domfrontier)
411  UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
412  return NewBB;
413}
414
415/// AddBlockAndPredsToSet - Add the specified block, and all of its
416/// predecessors, to the specified set, if it's not already in there.  Stop
417/// predecessor traversal when we reach StopBlock.
418static void AddBlockAndPredsToSet(BasicBlock *BB, BasicBlock *StopBlock,
419                                  std::set<BasicBlock*> &Blocks) {
420  if (!Blocks.insert(BB).second) return;  // already processed.
421  if (BB == StopBlock) return;  // Stop here!
422
423  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
424    AddBlockAndPredsToSet(*I, StopBlock, Blocks);
425}
426
427/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
428/// PHI node that tells us how to partition the loops.
429static PHINode *FindPHIToPartitionLoops(Loop *L) {
430  for (BasicBlock::iterator I = L->getHeader()->begin();
431       PHINode *PN = dyn_cast<PHINode>(I); ) {
432    ++I;
433    if (Value *V = hasConstantValue(PN)) {
434      // This is a degenerate PHI already, don't modify it!
435      PN->replaceAllUsesWith(V);
436      PN->getParent()->getInstList().erase(PN);
437    } else {
438      // Scan this PHI node looking for a use of the PHI node by itself.
439      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
440        if (PN->getIncomingValue(i) == PN &&
441            L->contains(PN->getIncomingBlock(i)))
442          // We found something tasty to remove.
443          return PN;
444    }
445  }
446  return 0;
447}
448
449/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
450/// them out into a nested loop.  This is important for code that looks like
451/// this:
452///
453///  Loop:
454///     ...
455///     br cond, Loop, Next
456///     ...
457///     br cond2, Loop, Out
458///
459/// To identify this common case, we look at the PHI nodes in the header of the
460/// loop.  PHI nodes with unchanging values on one backedge correspond to values
461/// that change in the "outer" loop, but not in the "inner" loop.
462///
463/// If we are able to separate out a loop, return the new outer loop that was
464/// created.
465///
466Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
467  PHINode *PN = FindPHIToPartitionLoops(L);
468  if (PN == 0) return 0;  // No known way to partition.
469
470  // Pull out all predecessors that have varying values in the loop.  This
471  // handles the case when a PHI node has multiple instances of itself as
472  // arguments.
473  std::vector<BasicBlock*> OuterLoopPreds;
474  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
475    if (PN->getIncomingValue(i) != PN ||
476        !L->contains(PN->getIncomingBlock(i)))
477      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
478
479  BasicBlock *Header = L->getHeader();
480  BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
481
482  // Update dominator information (set, immdom, domtree, and domfrontier)
483  UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds);
484
485  // Create the new outer loop.
486  Loop *NewOuter = new Loop();
487
488  LoopInfo &LI = getAnalysis<LoopInfo>();
489
490  // Change the parent loop to use the outer loop as its child now.
491  if (Loop *Parent = L->getParentLoop())
492    Parent->replaceChildLoopWith(L, NewOuter);
493  else
494    LI.changeTopLevelLoop(L, NewOuter);
495
496  // This block is going to be our new header block: add it to this loop and all
497  // parent loops.
498  NewOuter->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
499
500  // L is now a subloop of our outer loop.
501  NewOuter->addChildLoop(L);
502
503  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
504    NewOuter->addBlockEntry(L->getBlocks()[i]);
505
506  // Determine which blocks should stay in L and which should be moved out to
507  // the Outer loop now.
508  DominatorSet &DS = getAnalysis<DominatorSet>();
509  std::set<BasicBlock*> BlocksInL;
510  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
511    if (DS.dominates(Header, *PI))
512      AddBlockAndPredsToSet(*PI, Header, BlocksInL);
513
514
515  // Scan all of the loop children of L, moving them to OuterLoop if they are
516  // not part of the inner loop.
517  for (Loop::iterator I = L->begin(); I != L->end(); )
518    if (BlocksInL.count((*I)->getHeader()))
519      ++I;   // Loop remains in L
520    else
521      NewOuter->addChildLoop(L->removeChildLoop(I));
522
523  // Now that we know which blocks are in L and which need to be moved to
524  // OuterLoop, move any blocks that need it.
525  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
526    BasicBlock *BB = L->getBlocks()[i];
527    if (!BlocksInL.count(BB)) {
528      // Move this block to the parent, updating the exit blocks sets
529      L->removeBlockFromLoop(BB);
530      if (LI[BB] == L)
531        LI.changeLoopFor(BB, NewOuter);
532      --i;
533    }
534  }
535
536  return NewOuter;
537}
538
539
540
541/// InsertUniqueBackedgeBlock - This method is called when the specified loop
542/// has more than one backedge in it.  If this occurs, revector all of these
543/// backedges to target a new basic block and have that block branch to the loop
544/// header.  This ensures that loops have exactly one backedge.
545///
546void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
547  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
548
549  // Get information about the loop
550  BasicBlock *Preheader = L->getLoopPreheader();
551  BasicBlock *Header = L->getHeader();
552  Function *F = Header->getParent();
553
554  // Figure out which basic blocks contain back-edges to the loop header.
555  std::vector<BasicBlock*> BackedgeBlocks;
556  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
557    if (*I != Preheader) BackedgeBlocks.push_back(*I);
558
559  // Create and insert the new backedge block...
560  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
561  BranchInst *BETerminator = new BranchInst(Header, BEBlock);
562
563  // Move the new backedge block to right after the last backedge block.
564  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
565  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
566
567  // Now that the block has been inserted into the function, create PHI nodes in
568  // the backedge block which correspond to any PHI nodes in the header block.
569  for (BasicBlock::iterator I = Header->begin();
570       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
571    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
572                                 BETerminator);
573    NewPN->op_reserve(2*BackedgeBlocks.size());
574
575    // Loop over the PHI node, moving all entries except the one for the
576    // preheader over to the new PHI node.
577    unsigned PreheaderIdx = ~0U;
578    bool HasUniqueIncomingValue = true;
579    Value *UniqueValue = 0;
580    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
581      BasicBlock *IBB = PN->getIncomingBlock(i);
582      Value *IV = PN->getIncomingValue(i);
583      if (IBB == Preheader) {
584        PreheaderIdx = i;
585      } else {
586        NewPN->addIncoming(IV, IBB);
587        if (HasUniqueIncomingValue) {
588          if (UniqueValue == 0)
589            UniqueValue = IV;
590          else if (UniqueValue != IV)
591            HasUniqueIncomingValue = false;
592        }
593      }
594    }
595
596    // Delete all of the incoming values from the old PN except the preheader's
597    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
598    if (PreheaderIdx != 0) {
599      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
600      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
601    }
602    PN->op_erase(PN->op_begin()+2, PN->op_end());
603
604    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
605    PN->addIncoming(NewPN, BEBlock);
606
607    // As an optimization, if all incoming values in the new PhiNode (which is a
608    // subset of the incoming values of the old PHI node) have the same value,
609    // eliminate the PHI Node.
610    if (HasUniqueIncomingValue) {
611      NewPN->replaceAllUsesWith(UniqueValue);
612      BEBlock->getInstList().erase(NewPN);
613    }
614  }
615
616  // Now that all of the PHI nodes have been inserted and adjusted, modify the
617  // backedge blocks to just to the BEBlock instead of the header.
618  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
619    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
620    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
621      if (TI->getSuccessor(Op) == Header)
622        TI->setSuccessor(Op, BEBlock);
623  }
624
625  //===--- Update all analyses which we must preserve now -----------------===//
626
627  // Update Loop Information - we know that this block is now in the current
628  // loop and all parent loops.
629  L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());
630
631  // Update dominator information (set, immdom, domtree, and domfrontier)
632  UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
633}
634
635/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
636/// different kinds of dominator information (dominator sets, immediate
637/// dominators, dominator trees, and dominance frontiers) after a new block has
638/// been added to the CFG.
639///
640/// This only supports the case when an existing block (known as "NewBBSucc"),
641/// had some of its predecessors factored into a new basic block.  This
642/// transformation inserts a new basic block ("NewBB"), with a single
643/// unconditional branch to NewBBSucc, and moves some predecessors of
644/// "NewBBSucc" to now branch to NewBB.  These predecessors are listed in
645/// PredBlocks, even though they are the same as
646/// pred_begin(NewBB)/pred_end(NewBB).
647///
648void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
649                                         std::vector<BasicBlock*> &PredBlocks) {
650  assert(!PredBlocks.empty() && "No predblocks??");
651  assert(succ_begin(NewBB) != succ_end(NewBB) &&
652         ++succ_begin(NewBB) == succ_end(NewBB) &&
653         "NewBB should have a single successor!");
654  BasicBlock *NewBBSucc = *succ_begin(NewBB);
655  DominatorSet &DS = getAnalysis<DominatorSet>();
656
657  // Update dominator information...  The blocks that dominate NewBB are the
658  // intersection of the dominators of predecessors, plus the block itself.
659  //
660  DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
661  for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
662    set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
663  NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
664  DS.addBasicBlock(NewBB, NewBBDomSet);
665
666  // The newly inserted basic block will dominate existing basic blocks iff the
667  // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
668  // the non-pred blocks, then they all must be the same block!
669  //
670  bool NewBBDominatesNewBBSucc = true;
671  {
672    BasicBlock *OnePred = PredBlocks[0];
673    for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
674      if (PredBlocks[i] != OnePred) {
675        NewBBDominatesNewBBSucc = false;
676        break;
677      }
678
679    if (NewBBDominatesNewBBSucc)
680      for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
681           PI != E; ++PI)
682        if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
683          NewBBDominatesNewBBSucc = false;
684          break;
685        }
686  }
687
688  // The other scenario where the new block can dominate its successors are when
689  // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
690  // already.
691  if (!NewBBDominatesNewBBSucc) {
692    NewBBDominatesNewBBSucc = true;
693    for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
694         PI != E; ++PI)
695      if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
696        NewBBDominatesNewBBSucc = false;
697        break;
698      }
699  }
700
701  // If NewBB dominates some blocks, then it will dominate all blocks that
702  // NewBBSucc does.
703  if (NewBBDominatesNewBBSucc) {
704    BasicBlock *PredBlock = PredBlocks[0];
705    Function *F = NewBB->getParent();
706    for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
707      if (DS.dominates(NewBBSucc, I))
708        DS.addDominator(I, NewBB);
709  }
710
711  // Update immediate dominator information if we have it...
712  BasicBlock *NewBBIDom = 0;
713  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
714    // To find the immediate dominator of the new exit node, we trace up the
715    // immediate dominators of a predecessor until we find a basic block that
716    // dominates the exit block.
717    //
718    BasicBlock *Dom = PredBlocks[0];  // Some random predecessor...
719    while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
720      assert(Dom != 0 && "No shared dominator found???");
721      Dom = ID->get(Dom);
722    }
723
724    // Set the immediate dominator now...
725    ID->addNewBlock(NewBB, Dom);
726    NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
727
728    // If NewBB strictly dominates other blocks, we need to update their idom's
729    // now.  The only block that need adjustment is the NewBBSucc block, whose
730    // idom should currently be set to PredBlocks[0].
731    if (NewBBDominatesNewBBSucc)
732      ID->setImmediateDominator(NewBBSucc, NewBB);
733  }
734
735  // Update DominatorTree information if it is active.
736  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
737    // If we don't have ImmediateDominator info around, calculate the idom as
738    // above.
739    DominatorTree::Node *NewBBIDomNode;
740    if (NewBBIDom) {
741      NewBBIDomNode = DT->getNode(NewBBIDom);
742    } else {
743      NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
744      while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
745        NewBBIDomNode = NewBBIDomNode->getIDom();
746        assert(NewBBIDomNode && "No shared dominator found??");
747      }
748    }
749
750    // Create the new dominator tree node... and set the idom of NewBB.
751    DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
752
753    // If NewBB strictly dominates other blocks, then it is now the immediate
754    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
755    if (NewBBDominatesNewBBSucc) {
756      DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
757      DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
758    }
759  }
760
761  // Update dominance frontier information...
762  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
763    // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
764    // DF(PredBlocks[0]) without the stuff that the new block does not dominate
765    // a predecessor of.
766    if (NewBBDominatesNewBBSucc) {
767      DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
768      if (DFI != DF->end()) {
769        DominanceFrontier::DomSetType Set = DFI->second;
770        // Filter out stuff in Set that we do not dominate a predecessor of.
771        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
772               E = Set.end(); SetI != E;) {
773          bool DominatesPred = false;
774          for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
775               PI != E; ++PI)
776            if (DS.dominates(NewBB, *PI))
777              DominatesPred = true;
778          if (!DominatesPred)
779            Set.erase(SetI++);
780          else
781            ++SetI;
782        }
783
784        DF->addBasicBlock(NewBB, Set);
785      }
786
787    } else {
788      // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
789      // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
790      // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
791      DominanceFrontier::DomSetType NewDFSet;
792      NewDFSet.insert(NewBBSucc);
793      DF->addBasicBlock(NewBB, NewDFSet);
794    }
795
796    // Now we must loop over all of the dominance frontiers in the function,
797    // replacing occurrences of NewBBSucc with NewBB in some cases.  All
798    // blocks that dominate a block in PredBlocks and contained NewBBSucc in
799    // their dominance frontier must be updated to contain NewBB instead.
800    //
801    for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
802      BasicBlock *Pred = PredBlocks[i];
803      // Get all of the dominators of the predecessor...
804      const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
805      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
806             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
807        BasicBlock *PredDom = *PDI;
808
809        // If the NewBBSucc node is in DF(PredDom), then PredDom didn't
810        // dominate NewBBSucc but did dominate a predecessor of it.  Now we
811        // change this entry to include NewBB in the DF instead of NewBBSucc.
812        DominanceFrontier::iterator DFI = DF->find(PredDom);
813        assert(DFI != DF->end() && "No dominance frontier for node?");
814        if (DFI->second.count(NewBBSucc)) {
815          // If NewBBSucc should not stay in our dominator frontier, remove it.
816          // We remove it unless there is a predecessor of NewBBSucc that we
817          // dominate, but we don't strictly dominate NewBBSucc.
818          bool ShouldRemove = true;
819          if (PredDom == NewBBSucc || !DS.dominates(PredDom, NewBBSucc)) {
820            // Okay, we know that PredDom does not strictly dominate NewBBSucc.
821            // Check to see if it dominates any predecessors of NewBBSucc.
822            for (pred_iterator PI = pred_begin(NewBBSucc),
823                   E = pred_end(NewBBSucc); PI != E; ++PI)
824              if (DS.dominates(PredDom, *PI)) {
825                ShouldRemove = false;
826                break;
827              }
828          }
829
830          if (ShouldRemove)
831            DF->removeFromFrontier(DFI, NewBBSucc);
832          DF->addToFrontier(DFI, NewBB);
833        }
834      }
835    }
836  }
837}
838
839