LoopSimplify.cpp revision 99dcc1da860d5eb4ab05fd27b55fb31f50dd8b4a
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Note that the simplifycfg pass will clean up blocks which are split out but
27// end up being unnecessary, so usage of this pass should not pessimize
28// generated code.
29//
30// This pass obviously modifies the CFG, but updates loop information and
31// dominator information.
32//
33//===----------------------------------------------------------------------===//
34
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Function.h"
37#include "llvm/iTerminators.h"
38#include "llvm/iPHINode.h"
39#include "llvm/Constant.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Support/CFG.h"
43#include "Support/SetOperations.h"
44#include "Support/Statistic.h"
45#include "Support/DepthFirstIterator.h"
46using namespace llvm;
47
48namespace {
49  Statistic<>
50  NumInserted("loopsimplify", "Number of pre-header or exit blocks inserted");
51
52  struct LoopSimplify : public FunctionPass {
53    virtual bool runOnFunction(Function &F);
54
55    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
56      // We need loop information to identify the loops...
57      AU.addRequired<LoopInfo>();
58      AU.addRequired<DominatorSet>();
59
60      AU.addPreserved<LoopInfo>();
61      AU.addPreserved<DominatorSet>();
62      AU.addPreserved<ImmediateDominators>();
63      AU.addPreserved<DominatorTree>();
64      AU.addPreserved<DominanceFrontier>();
65      AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
66    }
67  private:
68    bool ProcessLoop(Loop *L);
69    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
70                                       const std::vector<BasicBlock*> &Preds);
71    void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
72    void InsertPreheaderForLoop(Loop *L);
73    void InsertUniqueBackedgeBlock(Loop *L);
74
75    void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
76                                         std::vector<BasicBlock*> &PredBlocks);
77  };
78
79  RegisterOpt<LoopSimplify>
80  X("loopsimplify", "Canonicalize natural loops", true);
81}
82
83// Publically exposed interface to pass...
84const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
85Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
86
87/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
88/// it in any convenient order) inserting preheaders...
89///
90bool LoopSimplify::runOnFunction(Function &F) {
91  bool Changed = false;
92  LoopInfo &LI = getAnalysis<LoopInfo>();
93
94  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
95    Changed |= ProcessLoop(*I);
96
97  return Changed;
98}
99
100
101/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
102/// all loops have preheaders.
103///
104bool LoopSimplify::ProcessLoop(Loop *L) {
105  bool Changed = false;
106
107  // Does the loop already have a preheader?  If so, don't modify the loop...
108  if (L->getLoopPreheader() == 0) {
109    InsertPreheaderForLoop(L);
110    NumInserted++;
111    Changed = true;
112  }
113
114  // Next, check to make sure that all exit nodes of the loop only have
115  // predecessors that are inside of the loop.  This check guarantees that the
116  // loop preheader/header will dominate the exit blocks.  If the exit block has
117  // predecessors from outside of the loop, split the edge now.
118  for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i) {
119    BasicBlock *ExitBlock = L->getExitBlocks()[i];
120    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
121         PI != PE; ++PI)
122      if (!L->contains(*PI)) {
123        RewriteLoopExitBlock(L, ExitBlock);
124        NumInserted++;
125        Changed = true;
126        break;
127      }
128    }
129
130  // The preheader may have more than two predecessors at this point (from the
131  // preheader and from the backedges).  To simplify the loop more, insert an
132  // extra back-edge block in the loop so that there is exactly one backedge.
133  if (L->getNumBackEdges() != 1) {
134    InsertUniqueBackedgeBlock(L);
135    NumInserted++;
136    Changed = true;
137  }
138
139  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
140    Changed |= ProcessLoop(*I);
141  return Changed;
142}
143
144/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
145/// to move the predecessors specified in the Preds list to point to the new
146/// block, leaving the remaining predecessors pointing to BB.  This method
147/// updates the SSA PHINode's, but no other analyses.
148///
149BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
150                                                 const char *Suffix,
151                                       const std::vector<BasicBlock*> &Preds) {
152
153  // Create new basic block, insert right before the original block...
154  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
155
156  // The preheader first gets an unconditional branch to the loop header...
157  BranchInst *BI = new BranchInst(BB, NewBB);
158
159  // For every PHI node in the block, insert a PHI node into NewBB where the
160  // incoming values from the out of loop edges are moved to NewBB.  We have two
161  // possible cases here.  If the loop is dead, we just insert dummy entries
162  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
163  // incoming edges in BB into new PHI nodes in NewBB.
164  //
165  if (!Preds.empty()) {  // Is the loop not obviously dead?
166    // Check to see if the values being merged into the new block need PHI
167    // nodes.  If so, insert them.
168    for (BasicBlock::iterator I = BB->begin();
169         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
170
171      // Check to see if all of the values coming in are the same.  If so, we
172      // don't need to create a new PHI node.
173      Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
174      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
175        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
176          InVal = 0;
177          break;
178        }
179
180      // If the values coming into the block are not the same, we need a PHI.
181      if (InVal == 0) {
182        // Create the new PHI node, insert it into NewBB at the end of the block
183        PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
184
185        // Move all of the edges from blocks outside the loop to the new PHI
186        for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
187          Value *V = PN->removeIncomingValue(Preds[i]);
188          NewPHI->addIncoming(V, Preds[i]);
189        }
190        InVal = NewPHI;
191      } else {
192        // Remove all of the edges coming into the PHI nodes from outside of the
193        // block.
194        for (unsigned i = 0, e = Preds.size(); i != e; ++i)
195          PN->removeIncomingValue(Preds[i], false);
196      }
197
198      // Add an incoming value to the PHI node in the loop for the preheader
199      // edge.
200      PN->addIncoming(InVal, NewBB);
201    }
202
203    // Now that the PHI nodes are updated, actually move the edges from
204    // Preds to point to NewBB instead of BB.
205    //
206    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
207      TerminatorInst *TI = Preds[i]->getTerminator();
208      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
209        if (TI->getSuccessor(s) == BB)
210          TI->setSuccessor(s, NewBB);
211    }
212
213  } else {                       // Otherwise the loop is dead...
214    for (BasicBlock::iterator I = BB->begin();
215         PHINode *PN = dyn_cast<PHINode>(I); ++I)
216      // Insert dummy values as the incoming value...
217      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
218  }
219  return NewBB;
220}
221
222// ChangeExitBlock - This recursive function is used to change any exit blocks
223// that use OldExit to use NewExit instead.  This is recursive because children
224// may need to be processed as well.
225//
226static void ChangeExitBlock(Loop *L, BasicBlock *OldExit, BasicBlock *NewExit) {
227  if (L->hasExitBlock(OldExit)) {
228    L->changeExitBlock(OldExit, NewExit);
229    for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
230      ChangeExitBlock(*I, OldExit, NewExit);
231  }
232}
233
234
235/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
236/// preheader, this method is called to insert one.  This method has two phases:
237/// preheader insertion and analysis updating.
238///
239void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
240  BasicBlock *Header = L->getHeader();
241
242  // Compute the set of predecessors of the loop that are not in the loop.
243  std::vector<BasicBlock*> OutsideBlocks;
244  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
245       PI != PE; ++PI)
246      if (!L->contains(*PI))           // Coming in from outside the loop?
247        OutsideBlocks.push_back(*PI);  // Keep track of it...
248
249  // Split out the loop pre-header
250  BasicBlock *NewBB =
251    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
252
253  //===--------------------------------------------------------------------===//
254  //  Update analysis results now that we have performed the transformation
255  //
256
257  // We know that we have loop information to update... update it now.
258  if (Loop *Parent = L->getParentLoop())
259    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
260
261  // If the header for the loop used to be an exit node for another loop, then
262  // we need to update this to know that the loop-preheader is now the exit
263  // node.  Note that the only loop that could have our header as an exit node
264  // is a sibling loop, ie, one with the same parent loop, or one if it's
265  // children.
266  //
267  LoopInfo::iterator ParentLoops, ParentLoopsE;
268  if (Loop *Parent = L->getParentLoop()) {
269    ParentLoops = Parent->begin();
270    ParentLoopsE = Parent->end();
271  } else {      // Must check top-level loops...
272    ParentLoops = getAnalysis<LoopInfo>().begin();
273    ParentLoopsE = getAnalysis<LoopInfo>().end();
274  }
275
276  // Loop over all sibling loops, performing the substitution (recursively to
277  // include child loops)...
278  for (; ParentLoops != ParentLoopsE; ++ParentLoops)
279    ChangeExitBlock(*ParentLoops, Header, NewBB);
280
281  DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
282  {
283    // The blocks that dominate NewBB are the blocks that dominate Header,
284    // minus Header, plus NewBB.
285    DominatorSet::DomSetType DomSet = DS.getDominators(Header);
286    DomSet.insert(NewBB);  // We dominate ourself
287    DomSet.erase(Header);  // Header does not dominate us...
288    DS.addBasicBlock(NewBB, DomSet);
289
290    // The newly created basic block dominates all nodes dominated by Header.
291    for (Function::iterator I = Header->getParent()->begin(),
292           E = Header->getParent()->end(); I != E; ++I)
293      if (DS.dominates(Header, I))
294        DS.addDominator(I, NewBB);
295  }
296
297  // Update immediate dominator information if we have it...
298  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
299    // Whatever i-dominated the header node now immediately dominates NewBB
300    ID->addNewBlock(NewBB, ID->get(Header));
301
302    // The preheader now is the immediate dominator for the header node...
303    ID->setImmediateDominator(Header, NewBB);
304  }
305
306  // Update DominatorTree information if it is active.
307  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
308    // The immediate dominator of the preheader is the immediate dominator of
309    // the old header.
310    //
311    DominatorTree::Node *HeaderNode = DT->getNode(Header);
312    DominatorTree::Node *PHNode = DT->createNewNode(NewBB,
313                                                    HeaderNode->getIDom());
314
315    // Change the header node so that PNHode is the new immediate dominator
316    DT->changeImmediateDominator(HeaderNode, PHNode);
317  }
318
319  // Update dominance frontier information...
320  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
321    // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
322    // everything that Header does, and it strictly dominates Header in
323    // addition.
324    assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
325    DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
326    NewDFSet.erase(Header);
327    DF->addBasicBlock(NewBB, NewDFSet);
328
329    // Now we must loop over all of the dominance frontiers in the function,
330    // replacing occurrences of Header with NewBB in some cases.  If a block
331    // dominates a (now) predecessor of NewBB, but did not strictly dominate
332    // Header, it will have Header in it's DF set, but should now have NewBB in
333    // its set.
334    for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
335      // Get all of the dominators of the predecessor...
336      const DominatorSet::DomSetType &PredDoms =
337        DS.getDominators(OutsideBlocks[i]);
338      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
339             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
340        BasicBlock *PredDom = *PDI;
341        // If the loop header is in DF(PredDom), then PredDom didn't dominate
342        // the header but did dominate a predecessor outside of the loop.  Now
343        // we change this entry to include the preheader in the DF instead of
344        // the header.
345        DominanceFrontier::iterator DFI = DF->find(PredDom);
346        assert(DFI != DF->end() && "No dominance frontier for node?");
347        if (DFI->second.count(Header)) {
348          DF->removeFromFrontier(DFI, Header);
349          DF->addToFrontier(DFI, NewBB);
350        }
351      }
352    }
353  }
354}
355
356void LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
357  DominatorSet &DS = getAnalysis<DominatorSet>();
358  assert(std::find(L->getExitBlocks().begin(), L->getExitBlocks().end(), Exit)
359         != L->getExitBlocks().end() && "Not a current exit block!");
360
361  std::vector<BasicBlock*> LoopBlocks;
362  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
363    if (L->contains(*I))
364      LoopBlocks.push_back(*I);
365
366  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
367  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
368
369  // Update Loop Information - we know that the new block will be in the parent
370  // loop of L.
371  if (Loop *Parent = L->getParentLoop())
372    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
373
374  // Replace any instances of Exit with NewBB in this and any nested loops...
375  for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
376    if (I->hasExitBlock(Exit))
377      I->changeExitBlock(Exit, NewBB);   // Update exit block information
378
379  // Update dominator information (set, immdom, domtree, and domfrontier)
380  UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
381}
382
383/// InsertUniqueBackedgeBlock - This method is called when the specified loop
384/// has more than one backedge in it.  If this occurs, revector all of these
385/// backedges to target a new basic block and have that block branch to the loop
386/// header.  This ensures that loops have exactly one backedge.
387///
388void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
389  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
390
391  // Get information about the loop
392  BasicBlock *Preheader = L->getLoopPreheader();
393  BasicBlock *Header = L->getHeader();
394  Function *F = Header->getParent();
395
396  // Figure out which basic blocks contain back-edges to the loop header.
397  std::vector<BasicBlock*> BackedgeBlocks;
398  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
399    if (*I != Preheader) BackedgeBlocks.push_back(*I);
400
401  // Create and insert the new backedge block...
402  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
403  BranchInst *BETerminator = new BranchInst(Header, BEBlock);
404
405  // Move the new backedge block to right after the last backedge block.
406  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
407  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
408
409  // Now that the block has been inserted into the function, create PHI nodes in
410  // the backedge block which correspond to any PHI nodes in the header block.
411  for (BasicBlock::iterator I = Header->begin();
412       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
413    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
414                                 BETerminator);
415    NewPN->op_reserve(2*BackedgeBlocks.size());
416
417    // Loop over the PHI node, moving all entries except the one for the
418    // preheader over to the new PHI node.
419    unsigned PreheaderIdx = ~0U;
420    bool HasUniqueIncomingValue = true;
421    Value *UniqueValue = 0;
422    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
423      BasicBlock *IBB = PN->getIncomingBlock(i);
424      Value *IV = PN->getIncomingValue(i);
425      if (IBB == Preheader) {
426        PreheaderIdx = i;
427      } else {
428        NewPN->addIncoming(IV, IBB);
429        if (HasUniqueIncomingValue) {
430          if (UniqueValue == 0)
431            UniqueValue = IV;
432          else if (UniqueValue != IV)
433            HasUniqueIncomingValue = false;
434        }
435      }
436    }
437
438    // Delete all of the incoming values from the old PN except the preheader's
439    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
440    if (PreheaderIdx != 0) {
441      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
442      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
443    }
444    PN->op_erase(PN->op_begin()+2, PN->op_end());
445
446    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
447    PN->addIncoming(NewPN, BEBlock);
448
449    // As an optimization, if all incoming values in the new PhiNode (which is a
450    // subset of the incoming values of the old PHI node) have the same value,
451    // eliminate the PHI Node.
452    if (HasUniqueIncomingValue) {
453      NewPN->replaceAllUsesWith(UniqueValue);
454      BEBlock->getInstList().erase(NewPN);
455    }
456  }
457
458  // Now that all of the PHI nodes have been inserted and adjusted, modify the
459  // backedge blocks to just to the BEBlock instead of the header.
460  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
461    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
462    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
463      if (TI->getSuccessor(Op) == Header)
464        TI->setSuccessor(Op, BEBlock);
465  }
466
467  //===--- Update all analyses which we must preserve now -----------------===//
468
469  // Update Loop Information - we know that this block is now in the current
470  // loop and all parent loops.
471  L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());
472
473  // Replace any instances of Exit with NewBB in this and any nested loops...
474  for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
475    if (I->hasExitBlock(Header))
476      I->changeExitBlock(Header, BEBlock);   // Update exit block information
477
478  // Update dominator information (set, immdom, domtree, and domfrontier)
479  UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
480}
481
482/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
483/// different kinds of dominator information (dominator sets, immediate
484/// dominators, dominator trees, and dominance frontiers) after a new block has
485/// been added to the CFG.
486///
487/// This only supports the case when an existing block (known as "NewBBSucc"),
488/// had some of its predecessors factored into a new basic block.  This
489/// transformation inserts a new basic block ("NewBB"), with a single
490/// unconditional branch to NewBBSucc, and moves some predecessors of
491/// "NewBBSucc" to now branch to NewBB.  These predecessors are listed in
492/// PredBlocks, even though they are the same as
493/// pred_begin(NewBB)/pred_end(NewBB).
494///
495void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
496                                         std::vector<BasicBlock*> &PredBlocks) {
497  assert(!PredBlocks.empty() && "No predblocks??");
498  assert(succ_begin(NewBB) != succ_end(NewBB) &&
499         ++succ_begin(NewBB) == succ_end(NewBB) &&
500         "NewBB should have a single successor!");
501  BasicBlock *NewBBSucc = *succ_begin(NewBB);
502  DominatorSet &DS = getAnalysis<DominatorSet>();
503
504  // The newly inserted basic block will dominate existing basic blocks iff the
505  // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
506  // the non-pred blocks, then they all must be the same block!
507  bool NewBBDominatesNewBBSucc = true;
508  {
509    BasicBlock *OnePred = PredBlocks[0];
510    for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
511      if (PredBlocks[i] != OnePred) {
512        NewBBDominatesNewBBSucc = false;
513        break;
514      }
515
516    if (NewBBDominatesNewBBSucc)
517      for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
518           PI != E; ++PI)
519        if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
520          NewBBDominatesNewBBSucc = false;
521          break;
522        }
523  }
524
525  // Update dominator information...  The blocks that dominate NewBB are the
526  // intersection of the dominators of predecessors, plus the block itself.
527  // The newly created basic block does not dominate anything except itself.
528  //
529  DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
530  for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
531    set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
532  NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
533  DS.addBasicBlock(NewBB, NewBBDomSet);
534
535  // If NewBB dominates some blocks, then it will dominate all blocks that
536  // NewBBSucc does.
537  if (NewBBDominatesNewBBSucc) {
538    BasicBlock *PredBlock = PredBlocks[0];
539    Function *F = NewBB->getParent();
540    for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
541      if (DS.dominates(NewBBSucc, I))
542        DS.addDominator(I, NewBB);
543  }
544
545  // Update immediate dominator information if we have it...
546  BasicBlock *NewBBIDom = 0;
547  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
548    // To find the immediate dominator of the new exit node, we trace up the
549    // immediate dominators of a predecessor until we find a basic block that
550    // dominates the exit block.
551    //
552    BasicBlock *Dom = PredBlocks[0];  // Some random predecessor...
553    while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
554      assert(Dom != 0 && "No shared dominator found???");
555      Dom = ID->get(Dom);
556    }
557
558    // Set the immediate dominator now...
559    ID->addNewBlock(NewBB, Dom);
560    NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
561
562    // If NewBB strictly dominates other blocks, we need to update their idom's
563    // now.  The only block that need adjustment is the NewBBSucc block, whose
564    // idom should currently be set to PredBlocks[0].
565    if (NewBBDominatesNewBBSucc) {
566      assert(ID->get(NewBBSucc) == PredBlocks[0] &&
567             "Immediate dominator update code broken!");
568      ID->setImmediateDominator(NewBBSucc, NewBB);
569    }
570  }
571
572  // Update DominatorTree information if it is active.
573  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
574    // If we don't have ImmediateDominator info around, calculate the idom as
575    // above.
576    DominatorTree::Node *NewBBIDomNode;
577    if (NewBBIDom) {
578      NewBBIDomNode = DT->getNode(NewBBIDom);
579    } else {
580      NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
581      while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
582        NewBBIDomNode = NewBBIDomNode->getIDom();
583        assert(NewBBIDomNode && "No shared dominator found??");
584      }
585    }
586
587    // Create the new dominator tree node... and set the idom of NewBB.
588    DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
589
590    // If NewBB strictly dominates other blocks, then it is now the immediate
591    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
592    if (NewBBDominatesNewBBSucc) {
593      DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
594      assert(NewBBSuccNode->getIDom()->getBlock() == PredBlocks[0] &&
595             "Immediate tree update code broken!");
596      DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
597    }
598  }
599
600  // Update dominance frontier information...
601  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
602    // If NewBB dominates NewBBSucc, then the global dominance frontiers are not
603    // changed.  DF(NewBB) is now going to be the DF(PredBlocks[0]) without the
604    // stuff that the new block does not dominate a predecessor of.
605    if (NewBBDominatesNewBBSucc) {
606      DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
607      if (DFI != DF->end()) {
608        DominanceFrontier::DomSetType Set = DFI->second;
609        // Filter out stuff in Set that we do not dominate a predecessor of.
610        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
611               E = Set.end(); SetI != E;) {
612          bool DominatesPred = false;
613          for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
614               PI != E; ++PI)
615            if (DS.dominates(NewBB, *PI))
616              DominatesPred = true;
617          if (!DominatesPred)
618            Set.erase(SetI++);
619          else
620            ++SetI;
621        }
622
623        DF->addBasicBlock(NewBB, Set);
624      }
625
626    } else {
627      // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
628      // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
629      // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
630      DominanceFrontier::DomSetType NewDFSet;
631      NewDFSet.insert(NewBBSucc);
632      DF->addBasicBlock(NewBB, NewDFSet);
633
634      // Now we must loop over all of the dominance frontiers in the function,
635      // replacing occurrences of NewBBSucc with NewBB in some cases.  All
636      // blocks that dominate a block in PredBlocks and contained NewBBSucc in
637      // their dominance frontier must be updated to contain NewBB instead.
638      //
639      for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
640        BasicBlock *Pred = PredBlocks[i];
641        // Get all of the dominators of the predecessor...
642        const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
643        for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
644               PDE = PredDoms.end(); PDI != PDE; ++PDI) {
645          BasicBlock *PredDom = *PDI;
646
647          // If the NewBBSucc node is in DF(PredDom), then PredDom didn't
648          // dominate NewBBSucc but did dominate a predecessor of it.  Now we
649          // change this entry to include NewBB in the DF instead of NewBBSucc.
650          DominanceFrontier::iterator DFI = DF->find(PredDom);
651          assert(DFI != DF->end() && "No dominance frontier for node?");
652          if (DFI->second.count(NewBBSucc)) {
653            DF->removeFromFrontier(DFI, NewBBSucc);
654            DF->addToFrontier(DFI, NewBB);
655          }
656        }
657      }
658    }
659  }
660}
661
662