LoopSimplify.cpp revision ad190145912facc6fbf2fbe58023bb238fbf2365
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Note that the simplifycfg pass will clean up blocks which are split out but
27// end up being unnecessary, so usage of this pass should not pessimize
28// generated code.
29//
30// This pass obviously modifies the CFG, but updates loop information and
31// dominator information.
32//
33//===----------------------------------------------------------------------===//
34
35#define DEBUG_TYPE "loopsimplify"
36#include "llvm/Transforms/Scalar.h"
37#include "llvm/Constant.h"
38#include "llvm/Instructions.h"
39#include "llvm/Function.h"
40#include "llvm/Type.h"
41#include "llvm/Analysis/AliasAnalysis.h"
42#include "llvm/Analysis/Dominators.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Support/CFG.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/ADT/SetOperations.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/DepthFirstIterator.h"
50using namespace llvm;
51
52STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
53STATISTIC(NumNested  , "Number of nested loops split out");
54
55namespace {
56  struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass {
57    // AA - If we have an alias analysis object to update, this is it, otherwise
58    // this is null.
59    AliasAnalysis *AA;
60    LoopInfo *LI;
61
62    virtual bool runOnFunction(Function &F);
63
64    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65      // We need loop information to identify the loops...
66      AU.addRequired<LoopInfo>();
67      AU.addRequired<DominatorTree>();
68      AU.addRequired<ETForest>();
69
70      AU.addPreserved<LoopInfo>();
71      AU.addPreserved<ImmediateDominators>();
72      AU.addPreserved<ETForest>();
73      AU.addPreserved<DominatorTree>();
74      AU.addPreserved<DominanceFrontier>();
75      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
76    }
77  private:
78    bool ProcessLoop(Loop *L);
79    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
80                                       const std::vector<BasicBlock*> &Preds);
81    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
82    void InsertPreheaderForLoop(Loop *L);
83    Loop *SeparateNestedLoop(Loop *L);
84    void InsertUniqueBackedgeBlock(Loop *L);
85    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
86                                  std::vector<BasicBlock*> &SplitPreds,
87                                  Loop *L);
88
89    void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
90                                         std::vector<BasicBlock*> &PredBlocks);
91  };
92
93  RegisterPass<LoopSimplify>
94  X("loopsimplify", "Canonicalize natural loops", true);
95}
96
97// Publically exposed interface to pass...
98const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
99FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
100
101/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
102/// it in any convenient order) inserting preheaders...
103///
104bool LoopSimplify::runOnFunction(Function &F) {
105  bool Changed = false;
106  LI = &getAnalysis<LoopInfo>();
107  AA = getAnalysisToUpdate<AliasAnalysis>();
108
109  // Check to see that no blocks (other than the header) in loops have
110  // predecessors that are not in loops.  This is not valid for natural loops,
111  // but can occur if the blocks are unreachable.  Since they are unreachable we
112  // can just shamelessly destroy their terminators to make them not branch into
113  // the loop!
114  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
115    // This case can only occur for unreachable blocks.  Blocks that are
116    // unreachable can't be in loops, so filter those blocks out.
117    if (LI->getLoopFor(BB)) continue;
118
119    bool BlockUnreachable = false;
120    TerminatorInst *TI = BB->getTerminator();
121
122    // Check to see if any successors of this block are non-loop-header loops
123    // that are not the header.
124    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
125      // If this successor is not in a loop, BB is clearly ok.
126      Loop *L = LI->getLoopFor(TI->getSuccessor(i));
127      if (!L) continue;
128
129      // If the succ is the loop header, and if L is a top-level loop, then this
130      // is an entrance into a loop through the header, which is also ok.
131      if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0)
132        continue;
133
134      // Otherwise, this is an entrance into a loop from some place invalid.
135      // Either the loop structure is invalid and this is not a natural loop (in
136      // which case the compiler is buggy somewhere else) or BB is unreachable.
137      BlockUnreachable = true;
138      break;
139    }
140
141    // If this block is ok, check the next one.
142    if (!BlockUnreachable) continue;
143
144    // Otherwise, this block is dead.  To clean up the CFG and to allow later
145    // loop transformations to ignore this case, we delete the edges into the
146    // loop by replacing the terminator.
147
148    // Remove PHI entries from the successors.
149    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
150      TI->getSuccessor(i)->removePredecessor(BB);
151
152    // Add a new unreachable instruction.
153    new UnreachableInst(TI);
154
155    // Delete the dead terminator.
156    if (AA) AA->deleteValue(&BB->back());
157    BB->getInstList().pop_back();
158    Changed |= true;
159  }
160
161  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
162    Changed |= ProcessLoop(*I);
163
164  return Changed;
165}
166
167/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
168/// all loops have preheaders.
169///
170bool LoopSimplify::ProcessLoop(Loop *L) {
171  bool Changed = false;
172ReprocessLoop:
173
174  // Canonicalize inner loops before outer loops.  Inner loop canonicalization
175  // can provide work for the outer loop to canonicalize.
176  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
177    Changed |= ProcessLoop(*I);
178
179  assert(L->getBlocks()[0] == L->getHeader() &&
180         "Header isn't first block in loop?");
181
182  // Does the loop already have a preheader?  If so, don't insert one.
183  if (L->getLoopPreheader() == 0) {
184    InsertPreheaderForLoop(L);
185    NumInserted++;
186    Changed = true;
187  }
188
189  // Next, check to make sure that all exit nodes of the loop only have
190  // predecessors that are inside of the loop.  This check guarantees that the
191  // loop preheader/header will dominate the exit blocks.  If the exit block has
192  // predecessors from outside of the loop, split the edge now.
193  std::vector<BasicBlock*> ExitBlocks;
194  L->getExitBlocks(ExitBlocks);
195
196  SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
197  for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
198         E = ExitBlockSet.end(); I != E; ++I) {
199    BasicBlock *ExitBlock = *I;
200    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
201         PI != PE; ++PI)
202      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
203      // allowed.
204      if (!L->contains(*PI)) {
205        RewriteLoopExitBlock(L, ExitBlock);
206        NumInserted++;
207        Changed = true;
208        break;
209      }
210  }
211
212  // If the header has more than two predecessors at this point (from the
213  // preheader and from multiple backedges), we must adjust the loop.
214  unsigned NumBackedges = L->getNumBackEdges();
215  if (NumBackedges != 1) {
216    // If this is really a nested loop, rip it out into a child loop.  Don't do
217    // this for loops with a giant number of backedges, just factor them into a
218    // common backedge instead.
219    if (NumBackedges < 8) {
220      if (Loop *NL = SeparateNestedLoop(L)) {
221        ++NumNested;
222        // This is a big restructuring change, reprocess the whole loop.
223        ProcessLoop(NL);
224        Changed = true;
225        // GCC doesn't tail recursion eliminate this.
226        goto ReprocessLoop;
227      }
228    }
229
230    // If we either couldn't, or didn't want to, identify nesting of the loops,
231    // insert a new block that all backedges target, then make it jump to the
232    // loop header.
233    InsertUniqueBackedgeBlock(L);
234    NumInserted++;
235    Changed = true;
236  }
237
238  // Scan over the PHI nodes in the loop header.  Since they now have only two
239  // incoming values (the loop is canonicalized), we may have simplified the PHI
240  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
241  PHINode *PN;
242  for (BasicBlock::iterator I = L->getHeader()->begin();
243       (PN = dyn_cast<PHINode>(I++)); )
244    if (Value *V = PN->hasConstantValue()) {
245        PN->replaceAllUsesWith(V);
246        PN->eraseFromParent();
247      }
248
249  return Changed;
250}
251
252/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
253/// to move the predecessors specified in the Preds list to point to the new
254/// block, leaving the remaining predecessors pointing to BB.  This method
255/// updates the SSA PHINode's, but no other analyses.
256///
257BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
258                                                 const char *Suffix,
259                                       const std::vector<BasicBlock*> &Preds) {
260
261  // Create new basic block, insert right before the original block...
262  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
263
264  // The preheader first gets an unconditional branch to the loop header...
265  BranchInst *BI = new BranchInst(BB, NewBB);
266
267  // For every PHI node in the block, insert a PHI node into NewBB where the
268  // incoming values from the out of loop edges are moved to NewBB.  We have two
269  // possible cases here.  If the loop is dead, we just insert dummy entries
270  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
271  // incoming edges in BB into new PHI nodes in NewBB.
272  //
273  if (!Preds.empty()) {  // Is the loop not obviously dead?
274    // Check to see if the values being merged into the new block need PHI
275    // nodes.  If so, insert them.
276    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
277      PHINode *PN = cast<PHINode>(I);
278      ++I;
279
280      // Check to see if all of the values coming in are the same.  If so, we
281      // don't need to create a new PHI node.
282      Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
283      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
284        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
285          InVal = 0;
286          break;
287        }
288
289      // If the values coming into the block are not the same, we need a PHI.
290      if (InVal == 0) {
291        // Create the new PHI node, insert it into NewBB at the end of the block
292        PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
293        if (AA) AA->copyValue(PN, NewPHI);
294
295        // Move all of the edges from blocks outside the loop to the new PHI
296        for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
297          Value *V = PN->removeIncomingValue(Preds[i], false);
298          NewPHI->addIncoming(V, Preds[i]);
299        }
300        InVal = NewPHI;
301      } else {
302        // Remove all of the edges coming into the PHI nodes from outside of the
303        // block.
304        for (unsigned i = 0, e = Preds.size(); i != e; ++i)
305          PN->removeIncomingValue(Preds[i], false);
306      }
307
308      // Add an incoming value to the PHI node in the loop for the preheader
309      // edge.
310      PN->addIncoming(InVal, NewBB);
311
312      // Can we eliminate this phi node now?
313      if (Value *V = PN->hasConstantValue(true)) {
314        Instruction *I = dyn_cast<Instruction>(V);
315        // If I is in NewBB, the ETForest call will fail, because NewBB isn't
316        // registered in ETForest yet.  Handle this case explicitly.
317        if (!I || (I->getParent() != NewBB &&
318                   getAnalysis<ETForest>().dominates(I, PN))) {
319          PN->replaceAllUsesWith(V);
320          if (AA) AA->deleteValue(PN);
321          BB->getInstList().erase(PN);
322        }
323      }
324    }
325
326    // Now that the PHI nodes are updated, actually move the edges from
327    // Preds to point to NewBB instead of BB.
328    //
329    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
330      TerminatorInst *TI = Preds[i]->getTerminator();
331      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
332        if (TI->getSuccessor(s) == BB)
333          TI->setSuccessor(s, NewBB);
334    }
335
336  } else {                       // Otherwise the loop is dead...
337    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
338      PHINode *PN = cast<PHINode>(I);
339      // Insert dummy values as the incoming value...
340      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
341    }
342  }
343  return NewBB;
344}
345
346/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
347/// preheader, this method is called to insert one.  This method has two phases:
348/// preheader insertion and analysis updating.
349///
350void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
351  BasicBlock *Header = L->getHeader();
352
353  // Compute the set of predecessors of the loop that are not in the loop.
354  std::vector<BasicBlock*> OutsideBlocks;
355  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
356       PI != PE; ++PI)
357    if (!L->contains(*PI))           // Coming in from outside the loop?
358      OutsideBlocks.push_back(*PI);  // Keep track of it...
359
360  // Split out the loop pre-header.
361  BasicBlock *NewBB =
362    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
363
364
365  //===--------------------------------------------------------------------===//
366  //  Update analysis results now that we have performed the transformation
367  //
368
369  // We know that we have loop information to update... update it now.
370  if (Loop *Parent = L->getParentLoop())
371    Parent->addBasicBlockToLoop(NewBB, *LI);
372
373  UpdateDomInfoForRevectoredPreds(NewBB, OutsideBlocks);
374
375  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
376  // code layout too horribly.
377  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
378}
379
380/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
381/// blocks.  This method is used to split exit blocks that have predecessors
382/// outside of the loop.
383BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
384  std::vector<BasicBlock*> LoopBlocks;
385  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
386    if (L->contains(*I))
387      LoopBlocks.push_back(*I);
388
389  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
390  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
391
392  // Update Loop Information - we know that the new block will be in whichever
393  // loop the Exit block is in.  Note that it may not be in that immediate loop,
394  // if the successor is some other loop header.  In that case, we continue
395  // walking up the loop tree to find a loop that contains both the successor
396  // block and the predecessor block.
397  Loop *SuccLoop = LI->getLoopFor(Exit);
398  while (SuccLoop && !SuccLoop->contains(L->getHeader()))
399    SuccLoop = SuccLoop->getParentLoop();
400  if (SuccLoop)
401    SuccLoop->addBasicBlockToLoop(NewBB, *LI);
402
403  // Update dominator information (set, immdom, domtree, and domfrontier)
404  UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
405  return NewBB;
406}
407
408/// AddBlockAndPredsToSet - Add the specified block, and all of its
409/// predecessors, to the specified set, if it's not already in there.  Stop
410/// predecessor traversal when we reach StopBlock.
411static void AddBlockAndPredsToSet(BasicBlock *BB, BasicBlock *StopBlock,
412                                  std::set<BasicBlock*> &Blocks) {
413  if (!Blocks.insert(BB).second) return;  // already processed.
414  if (BB == StopBlock) return;  // Stop here!
415
416  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
417    AddBlockAndPredsToSet(*I, StopBlock, Blocks);
418}
419
420/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
421/// PHI node that tells us how to partition the loops.
422static PHINode *FindPHIToPartitionLoops(Loop *L, ETForest *EF,
423                                        AliasAnalysis *AA) {
424  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
425    PHINode *PN = cast<PHINode>(I);
426    ++I;
427    if (Value *V = PN->hasConstantValue())
428      if (!isa<Instruction>(V) || EF->dominates(cast<Instruction>(V), PN)) {
429        // This is a degenerate PHI already, don't modify it!
430        PN->replaceAllUsesWith(V);
431        if (AA) AA->deleteValue(PN);
432        PN->eraseFromParent();
433        continue;
434      }
435
436    // Scan this PHI node looking for a use of the PHI node by itself.
437    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
438      if (PN->getIncomingValue(i) == PN &&
439          L->contains(PN->getIncomingBlock(i)))
440        // We found something tasty to remove.
441        return PN;
442  }
443  return 0;
444}
445
446// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
447// right after some 'outside block' block.  This prevents the preheader from
448// being placed inside the loop body, e.g. when the loop hasn't been rotated.
449void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
450                                            std::vector<BasicBlock*>&SplitPreds,
451                                            Loop *L) {
452  // Check to see if NewBB is already well placed.
453  Function::iterator BBI = NewBB; --BBI;
454  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
455    if (&*BBI == SplitPreds[i])
456      return;
457  }
458
459  // If it isn't already after an outside block, move it after one.  This is
460  // always good as it makes the uncond branch from the outside block into a
461  // fall-through.
462
463  // Figure out *which* outside block to put this after.  Prefer an outside
464  // block that neighbors a BB actually in the loop.
465  BasicBlock *FoundBB = 0;
466  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
467    Function::iterator BBI = SplitPreds[i];
468    if (++BBI != NewBB->getParent()->end() &&
469        L->contains(BBI)) {
470      FoundBB = SplitPreds[i];
471      break;
472    }
473  }
474
475  // If our heuristic for a *good* bb to place this after doesn't find
476  // anything, just pick something.  It's likely better than leaving it within
477  // the loop.
478  if (!FoundBB)
479    FoundBB = SplitPreds[0];
480  NewBB->moveAfter(FoundBB);
481}
482
483
484/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
485/// them out into a nested loop.  This is important for code that looks like
486/// this:
487///
488///  Loop:
489///     ...
490///     br cond, Loop, Next
491///     ...
492///     br cond2, Loop, Out
493///
494/// To identify this common case, we look at the PHI nodes in the header of the
495/// loop.  PHI nodes with unchanging values on one backedge correspond to values
496/// that change in the "outer" loop, but not in the "inner" loop.
497///
498/// If we are able to separate out a loop, return the new outer loop that was
499/// created.
500///
501Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
502  ETForest *EF = getAnalysisToUpdate<ETForest>();
503  PHINode *PN = FindPHIToPartitionLoops(L, EF, AA);
504  if (PN == 0) return 0;  // No known way to partition.
505
506  // Pull out all predecessors that have varying values in the loop.  This
507  // handles the case when a PHI node has multiple instances of itself as
508  // arguments.
509  std::vector<BasicBlock*> OuterLoopPreds;
510  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
511    if (PN->getIncomingValue(i) != PN ||
512        !L->contains(PN->getIncomingBlock(i)))
513      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
514
515  BasicBlock *Header = L->getHeader();
516  BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
517
518  // Update dominator information (set, immdom, domtree, and domfrontier)
519  UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds);
520
521  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
522  // code layout too horribly.
523  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
524
525  // Create the new outer loop.
526  Loop *NewOuter = new Loop();
527
528  // Change the parent loop to use the outer loop as its child now.
529  if (Loop *Parent = L->getParentLoop())
530    Parent->replaceChildLoopWith(L, NewOuter);
531  else
532    LI->changeTopLevelLoop(L, NewOuter);
533
534  // This block is going to be our new header block: add it to this loop and all
535  // parent loops.
536  NewOuter->addBasicBlockToLoop(NewBB, *LI);
537
538  // L is now a subloop of our outer loop.
539  NewOuter->addChildLoop(L);
540
541  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
542    NewOuter->addBlockEntry(L->getBlocks()[i]);
543
544  // Determine which blocks should stay in L and which should be moved out to
545  // the Outer loop now.
546  std::set<BasicBlock*> BlocksInL;
547  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
548    if (EF->dominates(Header, *PI))
549      AddBlockAndPredsToSet(*PI, Header, BlocksInL);
550
551
552  // Scan all of the loop children of L, moving them to OuterLoop if they are
553  // not part of the inner loop.
554  for (Loop::iterator I = L->begin(); I != L->end(); )
555    if (BlocksInL.count((*I)->getHeader()))
556      ++I;   // Loop remains in L
557    else
558      NewOuter->addChildLoop(L->removeChildLoop(I));
559
560  // Now that we know which blocks are in L and which need to be moved to
561  // OuterLoop, move any blocks that need it.
562  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
563    BasicBlock *BB = L->getBlocks()[i];
564    if (!BlocksInL.count(BB)) {
565      // Move this block to the parent, updating the exit blocks sets
566      L->removeBlockFromLoop(BB);
567      if ((*LI)[BB] == L)
568        LI->changeLoopFor(BB, NewOuter);
569      --i;
570    }
571  }
572
573  return NewOuter;
574}
575
576
577
578/// InsertUniqueBackedgeBlock - This method is called when the specified loop
579/// has more than one backedge in it.  If this occurs, revector all of these
580/// backedges to target a new basic block and have that block branch to the loop
581/// header.  This ensures that loops have exactly one backedge.
582///
583void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
584  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
585
586  // Get information about the loop
587  BasicBlock *Preheader = L->getLoopPreheader();
588  BasicBlock *Header = L->getHeader();
589  Function *F = Header->getParent();
590
591  // Figure out which basic blocks contain back-edges to the loop header.
592  std::vector<BasicBlock*> BackedgeBlocks;
593  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
594    if (*I != Preheader) BackedgeBlocks.push_back(*I);
595
596  // Create and insert the new backedge block...
597  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
598  BranchInst *BETerminator = new BranchInst(Header, BEBlock);
599
600  // Move the new backedge block to right after the last backedge block.
601  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
602  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
603
604  // Now that the block has been inserted into the function, create PHI nodes in
605  // the backedge block which correspond to any PHI nodes in the header block.
606  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
607    PHINode *PN = cast<PHINode>(I);
608    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
609                                 BETerminator);
610    NewPN->reserveOperandSpace(BackedgeBlocks.size());
611    if (AA) AA->copyValue(PN, NewPN);
612
613    // Loop over the PHI node, moving all entries except the one for the
614    // preheader over to the new PHI node.
615    unsigned PreheaderIdx = ~0U;
616    bool HasUniqueIncomingValue = true;
617    Value *UniqueValue = 0;
618    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
619      BasicBlock *IBB = PN->getIncomingBlock(i);
620      Value *IV = PN->getIncomingValue(i);
621      if (IBB == Preheader) {
622        PreheaderIdx = i;
623      } else {
624        NewPN->addIncoming(IV, IBB);
625        if (HasUniqueIncomingValue) {
626          if (UniqueValue == 0)
627            UniqueValue = IV;
628          else if (UniqueValue != IV)
629            HasUniqueIncomingValue = false;
630        }
631      }
632    }
633
634    // Delete all of the incoming values from the old PN except the preheader's
635    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
636    if (PreheaderIdx != 0) {
637      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
638      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
639    }
640    // Nuke all entries except the zero'th.
641    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
642      PN->removeIncomingValue(e-i, false);
643
644    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
645    PN->addIncoming(NewPN, BEBlock);
646
647    // As an optimization, if all incoming values in the new PhiNode (which is a
648    // subset of the incoming values of the old PHI node) have the same value,
649    // eliminate the PHI Node.
650    if (HasUniqueIncomingValue) {
651      NewPN->replaceAllUsesWith(UniqueValue);
652      if (AA) AA->deleteValue(NewPN);
653      BEBlock->getInstList().erase(NewPN);
654    }
655  }
656
657  // Now that all of the PHI nodes have been inserted and adjusted, modify the
658  // backedge blocks to just to the BEBlock instead of the header.
659  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
660    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
661    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
662      if (TI->getSuccessor(Op) == Header)
663        TI->setSuccessor(Op, BEBlock);
664  }
665
666  //===--- Update all analyses which we must preserve now -----------------===//
667
668  // Update Loop Information - we know that this block is now in the current
669  // loop and all parent loops.
670  L->addBasicBlockToLoop(BEBlock, *LI);
671
672  // Update dominator information (set, immdom, domtree, and domfrontier)
673  UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
674}
675
676// Returns true if BasicBlock A dominates at least one block in vector B
677// Helper function for UpdateDomInfoForRevectoredPreds
678static bool BlockDominatesAny(BasicBlock* A, const std::vector<BasicBlock*>& B, const ETForest& ETF) {
679  for (std::vector<BasicBlock*>::iterator BI = B.begin(), BE = B.end(); BI != BE; ++BI) {
680    if (ETF.dominates(A, *BI))
681      return true;
682  }
683  return false;
684}
685
686/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
687/// different kinds of dominator information (immediate dominators,
688/// dominator trees, et-forest and dominance frontiers) after a new block has
689/// been added to the CFG.
690///
691/// This only supports the case when an existing block (known as "NewBBSucc"),
692/// had some of its predecessors factored into a new basic block.  This
693/// transformation inserts a new basic block ("NewBB"), with a single
694/// unconditional branch to NewBBSucc, and moves some predecessors of
695/// "NewBBSucc" to now branch to NewBB.  These predecessors are listed in
696/// PredBlocks, even though they are the same as
697/// pred_begin(NewBB)/pred_end(NewBB).
698///
699void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
700                                         std::vector<BasicBlock*> &PredBlocks) {
701  assert(!PredBlocks.empty() && "No predblocks??");
702  assert(succ_begin(NewBB) != succ_end(NewBB) &&
703         ++succ_begin(NewBB) == succ_end(NewBB) &&
704         "NewBB should have a single successor!");
705  BasicBlock *NewBBSucc = *succ_begin(NewBB);
706  ETForest& ETF = getAnalysis<ETForest>();
707
708  // The newly inserted basic block will dominate existing basic blocks iff the
709  // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
710  // the non-pred blocks, then they all must be the same block!
711  //
712  bool NewBBDominatesNewBBSucc = true;
713  {
714    BasicBlock *OnePred = PredBlocks[0];
715    unsigned i = 1, e = PredBlocks.size();
716    for (i = 1; !ETF.isReachableFromEntry(OnePred); ++i) {
717      assert(i != e && "Didn't find reachable pred?");
718      OnePred = PredBlocks[i];
719    }
720
721    for (; i != e; ++i)
722      if (PredBlocks[i] != OnePred && ETF.isReachableFromEntry(OnePred)){
723        NewBBDominatesNewBBSucc = false;
724        break;
725      }
726
727    if (NewBBDominatesNewBBSucc)
728      for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
729           PI != E; ++PI)
730        if (*PI != NewBB && !ETF.dominates(NewBBSucc, *PI)) {
731          NewBBDominatesNewBBSucc = false;
732          break;
733        }
734  }
735
736  // The other scenario where the new block can dominate its successors are when
737  // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
738  // already.
739  if (!NewBBDominatesNewBBSucc) {
740    NewBBDominatesNewBBSucc = true;
741    for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
742         PI != E; ++PI)
743      if (*PI != NewBB && !ETF.dominates(NewBBSucc, *PI)) {
744        NewBBDominatesNewBBSucc = false;
745        break;
746      }
747  }
748
749  BasicBlock *NewBBIDom = 0;
750
751  // Update immediate dominator information if we have it.
752  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
753    unsigned i = 0;
754    for (i = 0; i < PredBlocks.size(); ++i)
755      if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i])) {
756        NewBBIDom = PredBlocks[i];
757        break;
758      }
759    assert(i != PredBlocks.size() && "No reachable preds?");
760    for (i = i + 1; i < PredBlocks.size(); ++i) {
761      if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i]))
762        NewBBIDom = ETF.nearestCommonDominator(NewBBIDom, PredBlocks[i]);
763    }
764    assert(NewBBIDom && "No immediate dominator found??");
765
766    // Set the immediate dominator now...
767    ID->addNewBlock(NewBB, NewBBIDom);
768
769    // If NewBB strictly dominates other blocks, we need to update their idom's
770    // now.  The only block that need adjustment is the NewBBSucc block, whose
771    // idom should currently be set to PredBlocks[0].
772    if (NewBBDominatesNewBBSucc)
773      ID->setImmediateDominator(NewBBSucc, NewBB);
774  }
775
776  // Update DominatorTree information if it is active.
777  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
778    // If we don't have ImmediateDominator info around, calculate the idom as
779    // above.
780    if (!NewBBIDom) {
781      unsigned i = 0;
782      for (i = 0; i < PredBlocks.size(); ++i)
783        if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i])) {
784          NewBBIDom = PredBlocks[i];
785          break;
786        }
787      assert(i != PredBlocks.size() && "No reachable preds?");
788      for (i = i + 1; i < PredBlocks.size(); ++i) {
789        if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i]))
790          NewBBIDom = ETF.nearestCommonDominator(NewBBIDom, PredBlocks[i]);
791      }
792      assert(NewBBIDom && "No immediate dominator found??");
793    }
794    DominatorTree::Node *NewBBIDomNode = DT->getNode(NewBBIDom);
795
796    // Create the new dominator tree node... and set the idom of NewBB.
797    DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
798
799    // If NewBB strictly dominates other blocks, then it is now the immediate
800    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
801    if (NewBBDominatesNewBBSucc) {
802      DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
803      DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
804    }
805  }
806
807  // Update ET-Forest information if it is active.
808  if (ETForest *EF = getAnalysisToUpdate<ETForest>()) {
809    EF->addNewBlock(NewBB, NewBBIDom);
810    if (NewBBDominatesNewBBSucc)
811      EF->setImmediateDominator(NewBBSucc, NewBB);
812  }
813
814  // Update dominance frontier information...
815  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
816    // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
817    // DF(PredBlocks[0]) without the stuff that the new block does not dominate
818    // a predecessor of.
819    if (NewBBDominatesNewBBSucc) {
820      DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
821      if (DFI != DF->end()) {
822        DominanceFrontier::DomSetType Set = DFI->second;
823        // Filter out stuff in Set that we do not dominate a predecessor of.
824        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
825               E = Set.end(); SetI != E;) {
826          bool DominatesPred = false;
827          for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
828               PI != E; ++PI)
829            if (ETF.dominates(NewBB, *PI))
830              DominatesPred = true;
831          if (!DominatesPred)
832            Set.erase(SetI++);
833          else
834            ++SetI;
835        }
836
837        DF->addBasicBlock(NewBB, Set);
838      }
839
840    } else {
841      // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
842      // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
843      // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
844      DominanceFrontier::DomSetType NewDFSet;
845      NewDFSet.insert(NewBBSucc);
846      DF->addBasicBlock(NewBB, NewDFSet);
847    }
848
849    // Now we must loop over all of the dominance frontiers in the function,
850    // replacing occurrences of NewBBSucc with NewBB in some cases.  All
851    // blocks that dominate a block in PredBlocks and contained NewBBSucc in
852    // their dominance frontier must be updated to contain NewBB instead.
853    //
854    for (Function::iterator FI = NewBB->getParent()->begin(),
855         FE = NewBB->getParent()->end(); FI != FE; ++FI) {
856      DominanceFrontier::iterator DFI = DF->find(FI);
857      if (DFI == DF->end()) continue;  // unreachable block.
858
859      // Only consider dominators of NewBBSucc
860      if (!DFI->second.count(NewBBSucc)) continue;
861
862      if (BlockDominatesAny(FI, PredBlocks, ETF)) {
863        // If NewBBSucc should not stay in our dominator frontier, remove it.
864        // We remove it unless there is a predecessor of NewBBSucc that we
865        // dominate, but we don't strictly dominate NewBBSucc.
866        bool ShouldRemove = true;
867        if ((BasicBlock*)FI == NewBBSucc || !ETF.dominates(FI, NewBBSucc)) {
868          // Okay, we know that PredDom does not strictly dominate NewBBSucc.
869          // Check to see if it dominates any predecessors of NewBBSucc.
870          for (pred_iterator PI = pred_begin(NewBBSucc),
871               E = pred_end(NewBBSucc); PI != E; ++PI)
872            if (ETF.dominates(FI, *PI)) {
873              ShouldRemove = false;
874              break;
875            }
876
877          if (ShouldRemove)
878            DF->removeFromFrontier(DFI, NewBBSucc);
879          DF->addToFrontier(DFI, NewBB);
880
881          break;
882        }
883      }
884    }
885  }
886}
887
888
889