LoopSimplify.cpp revision d44008ae4060a4e83981fa403a964723ec0351ba
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Note that the simplifycfg pass will clean up blocks which are split out but
27// end up being unnecessary, so usage of this pass should not pessimize
28// generated code.
29//
30// This pass obviously modifies the CFG, but updates loop information and
31// dominator information.
32//
33//===----------------------------------------------------------------------===//
34
35#define DEBUG_TYPE "loopsimplify"
36#include "llvm/Transforms/Scalar.h"
37#include "llvm/Constant.h"
38#include "llvm/Instructions.h"
39#include "llvm/Function.h"
40#include "llvm/Type.h"
41#include "llvm/Analysis/AliasAnalysis.h"
42#include "llvm/Analysis/Dominators.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Support/CFG.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/ADT/SetOperations.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/DepthFirstIterator.h"
50using namespace llvm;
51
52STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
53STATISTIC(NumNested  , "Number of nested loops split out");
54
55namespace {
56  struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass {
57    // AA - If we have an alias analysis object to update, this is it, otherwise
58    // this is null.
59    AliasAnalysis *AA;
60    LoopInfo *LI;
61
62    virtual bool runOnFunction(Function &F);
63
64    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65      // We need loop information to identify the loops...
66      AU.addRequired<LoopInfo>();
67      AU.addRequired<DominatorSet>();
68      AU.addRequired<DominatorTree>();
69      AU.addRequired<ETForest>();
70
71      AU.addPreserved<LoopInfo>();
72      AU.addPreserved<DominatorSet>();
73      AU.addPreserved<ImmediateDominators>();
74      AU.addPreserved<ETForest>();
75      AU.addPreserved<DominatorTree>();
76      AU.addPreserved<DominanceFrontier>();
77      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
78    }
79  private:
80    bool ProcessLoop(Loop *L);
81    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
82                                       const std::vector<BasicBlock*> &Preds);
83    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
84    void InsertPreheaderForLoop(Loop *L);
85    Loop *SeparateNestedLoop(Loop *L);
86    void InsertUniqueBackedgeBlock(Loop *L);
87    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
88                                  std::vector<BasicBlock*> &SplitPreds,
89                                  Loop *L);
90
91    void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
92                                         std::vector<BasicBlock*> &PredBlocks);
93  };
94
95  RegisterPass<LoopSimplify>
96  X("loopsimplify", "Canonicalize natural loops", true);
97}
98
99// Publically exposed interface to pass...
100const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
101FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
102
103/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
104/// it in any convenient order) inserting preheaders...
105///
106bool LoopSimplify::runOnFunction(Function &F) {
107  bool Changed = false;
108  LI = &getAnalysis<LoopInfo>();
109  AA = getAnalysisToUpdate<AliasAnalysis>();
110
111  // Check to see that no blocks (other than the header) in loops have
112  // predecessors that are not in loops.  This is not valid for natural loops,
113  // but can occur if the blocks are unreachable.  Since they are unreachable we
114  // can just shamelessly destroy their terminators to make them not branch into
115  // the loop!
116  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
117    // This case can only occur for unreachable blocks.  Blocks that are
118    // unreachable can't be in loops, so filter those blocks out.
119    if (LI->getLoopFor(BB)) continue;
120
121    bool BlockUnreachable = false;
122    TerminatorInst *TI = BB->getTerminator();
123
124    // Check to see if any successors of this block are non-loop-header loops
125    // that are not the header.
126    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
127      // If this successor is not in a loop, BB is clearly ok.
128      Loop *L = LI->getLoopFor(TI->getSuccessor(i));
129      if (!L) continue;
130
131      // If the succ is the loop header, and if L is a top-level loop, then this
132      // is an entrance into a loop through the header, which is also ok.
133      if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0)
134        continue;
135
136      // Otherwise, this is an entrance into a loop from some place invalid.
137      // Either the loop structure is invalid and this is not a natural loop (in
138      // which case the compiler is buggy somewhere else) or BB is unreachable.
139      BlockUnreachable = true;
140      break;
141    }
142
143    // If this block is ok, check the next one.
144    if (!BlockUnreachable) continue;
145
146    // Otherwise, this block is dead.  To clean up the CFG and to allow later
147    // loop transformations to ignore this case, we delete the edges into the
148    // loop by replacing the terminator.
149
150    // Remove PHI entries from the successors.
151    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
152      TI->getSuccessor(i)->removePredecessor(BB);
153
154    // Add a new unreachable instruction.
155    new UnreachableInst(TI);
156
157    // Delete the dead terminator.
158    if (AA) AA->deleteValue(&BB->back());
159    BB->getInstList().pop_back();
160    Changed |= true;
161  }
162
163  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
164    Changed |= ProcessLoop(*I);
165
166  return Changed;
167}
168
169/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
170/// all loops have preheaders.
171///
172bool LoopSimplify::ProcessLoop(Loop *L) {
173  bool Changed = false;
174ReprocessLoop:
175
176  // Canonicalize inner loops before outer loops.  Inner loop canonicalization
177  // can provide work for the outer loop to canonicalize.
178  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
179    Changed |= ProcessLoop(*I);
180
181  assert(L->getBlocks()[0] == L->getHeader() &&
182         "Header isn't first block in loop?");
183
184  // Does the loop already have a preheader?  If so, don't insert one.
185  if (L->getLoopPreheader() == 0) {
186    InsertPreheaderForLoop(L);
187    NumInserted++;
188    Changed = true;
189  }
190
191  // Next, check to make sure that all exit nodes of the loop only have
192  // predecessors that are inside of the loop.  This check guarantees that the
193  // loop preheader/header will dominate the exit blocks.  If the exit block has
194  // predecessors from outside of the loop, split the edge now.
195  std::vector<BasicBlock*> ExitBlocks;
196  L->getExitBlocks(ExitBlocks);
197
198  SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
199  for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
200         E = ExitBlockSet.end(); I != E; ++I) {
201    BasicBlock *ExitBlock = *I;
202    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
203         PI != PE; ++PI)
204      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
205      // allowed.
206      if (!L->contains(*PI)) {
207        RewriteLoopExitBlock(L, ExitBlock);
208        NumInserted++;
209        Changed = true;
210        break;
211      }
212  }
213
214  // If the header has more than two predecessors at this point (from the
215  // preheader and from multiple backedges), we must adjust the loop.
216  unsigned NumBackedges = L->getNumBackEdges();
217  if (NumBackedges != 1) {
218    // If this is really a nested loop, rip it out into a child loop.  Don't do
219    // this for loops with a giant number of backedges, just factor them into a
220    // common backedge instead.
221    if (NumBackedges < 8) {
222      if (Loop *NL = SeparateNestedLoop(L)) {
223        ++NumNested;
224        // This is a big restructuring change, reprocess the whole loop.
225        ProcessLoop(NL);
226        Changed = true;
227        // GCC doesn't tail recursion eliminate this.
228        goto ReprocessLoop;
229      }
230    }
231
232    // If we either couldn't, or didn't want to, identify nesting of the loops,
233    // insert a new block that all backedges target, then make it jump to the
234    // loop header.
235    InsertUniqueBackedgeBlock(L);
236    NumInserted++;
237    Changed = true;
238  }
239
240  // Scan over the PHI nodes in the loop header.  Since they now have only two
241  // incoming values (the loop is canonicalized), we may have simplified the PHI
242  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
243  PHINode *PN;
244  for (BasicBlock::iterator I = L->getHeader()->begin();
245       (PN = dyn_cast<PHINode>(I++)); )
246    if (Value *V = PN->hasConstantValue()) {
247        PN->replaceAllUsesWith(V);
248        PN->eraseFromParent();
249      }
250
251  return Changed;
252}
253
254/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
255/// to move the predecessors specified in the Preds list to point to the new
256/// block, leaving the remaining predecessors pointing to BB.  This method
257/// updates the SSA PHINode's, but no other analyses.
258///
259BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
260                                                 const char *Suffix,
261                                       const std::vector<BasicBlock*> &Preds) {
262
263  // Create new basic block, insert right before the original block...
264  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
265
266  // The preheader first gets an unconditional branch to the loop header...
267  BranchInst *BI = new BranchInst(BB, NewBB);
268
269  // For every PHI node in the block, insert a PHI node into NewBB where the
270  // incoming values from the out of loop edges are moved to NewBB.  We have two
271  // possible cases here.  If the loop is dead, we just insert dummy entries
272  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
273  // incoming edges in BB into new PHI nodes in NewBB.
274  //
275  if (!Preds.empty()) {  // Is the loop not obviously dead?
276    // Check to see if the values being merged into the new block need PHI
277    // nodes.  If so, insert them.
278    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
279      PHINode *PN = cast<PHINode>(I);
280      ++I;
281
282      // Check to see if all of the values coming in are the same.  If so, we
283      // don't need to create a new PHI node.
284      Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
285      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
286        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
287          InVal = 0;
288          break;
289        }
290
291      // If the values coming into the block are not the same, we need a PHI.
292      if (InVal == 0) {
293        // Create the new PHI node, insert it into NewBB at the end of the block
294        PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
295        if (AA) AA->copyValue(PN, NewPHI);
296
297        // Move all of the edges from blocks outside the loop to the new PHI
298        for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
299          Value *V = PN->removeIncomingValue(Preds[i], false);
300          NewPHI->addIncoming(V, Preds[i]);
301        }
302        InVal = NewPHI;
303      } else {
304        // Remove all of the edges coming into the PHI nodes from outside of the
305        // block.
306        for (unsigned i = 0, e = Preds.size(); i != e; ++i)
307          PN->removeIncomingValue(Preds[i], false);
308      }
309
310      // Add an incoming value to the PHI node in the loop for the preheader
311      // edge.
312      PN->addIncoming(InVal, NewBB);
313
314      // Can we eliminate this phi node now?
315      if (Value *V = PN->hasConstantValue(true)) {
316        if (!isa<Instruction>(V) ||
317            getAnalysis<ETForest>().dominates(cast<Instruction>(V), PN)) {
318          PN->replaceAllUsesWith(V);
319          if (AA) AA->deleteValue(PN);
320          BB->getInstList().erase(PN);
321        }
322      }
323    }
324
325    // Now that the PHI nodes are updated, actually move the edges from
326    // Preds to point to NewBB instead of BB.
327    //
328    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
329      TerminatorInst *TI = Preds[i]->getTerminator();
330      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
331        if (TI->getSuccessor(s) == BB)
332          TI->setSuccessor(s, NewBB);
333    }
334
335  } else {                       // Otherwise the loop is dead...
336    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
337      PHINode *PN = cast<PHINode>(I);
338      // Insert dummy values as the incoming value...
339      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
340    }
341  }
342  return NewBB;
343}
344
345/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
346/// preheader, this method is called to insert one.  This method has two phases:
347/// preheader insertion and analysis updating.
348///
349void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
350  BasicBlock *Header = L->getHeader();
351
352  // Compute the set of predecessors of the loop that are not in the loop.
353  std::vector<BasicBlock*> OutsideBlocks;
354  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
355       PI != PE; ++PI)
356    if (!L->contains(*PI))           // Coming in from outside the loop?
357      OutsideBlocks.push_back(*PI);  // Keep track of it...
358
359  // Split out the loop pre-header.
360  BasicBlock *NewBB =
361    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
362
363
364  //===--------------------------------------------------------------------===//
365  //  Update analysis results now that we have performed the transformation
366  //
367
368  // We know that we have loop information to update... update it now.
369  if (Loop *Parent = L->getParentLoop())
370    Parent->addBasicBlockToLoop(NewBB, *LI);
371
372  UpdateDomInfoForRevectoredPreds(NewBB, OutsideBlocks);
373
374  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
375  // code layout too horribly.
376  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
377}
378
379/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
380/// blocks.  This method is used to split exit blocks that have predecessors
381/// outside of the loop.
382BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
383  std::vector<BasicBlock*> LoopBlocks;
384  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
385    if (L->contains(*I))
386      LoopBlocks.push_back(*I);
387
388  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
389  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
390
391  // Update Loop Information - we know that the new block will be in whichever
392  // loop the Exit block is in.  Note that it may not be in that immediate loop,
393  // if the successor is some other loop header.  In that case, we continue
394  // walking up the loop tree to find a loop that contains both the successor
395  // block and the predecessor block.
396  Loop *SuccLoop = LI->getLoopFor(Exit);
397  while (SuccLoop && !SuccLoop->contains(L->getHeader()))
398    SuccLoop = SuccLoop->getParentLoop();
399  if (SuccLoop)
400    SuccLoop->addBasicBlockToLoop(NewBB, *LI);
401
402  // Update dominator information (set, immdom, domtree, and domfrontier)
403  UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
404  return NewBB;
405}
406
407/// AddBlockAndPredsToSet - Add the specified block, and all of its
408/// predecessors, to the specified set, if it's not already in there.  Stop
409/// predecessor traversal when we reach StopBlock.
410static void AddBlockAndPredsToSet(BasicBlock *BB, BasicBlock *StopBlock,
411                                  std::set<BasicBlock*> &Blocks) {
412  if (!Blocks.insert(BB).second) return;  // already processed.
413  if (BB == StopBlock) return;  // Stop here!
414
415  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
416    AddBlockAndPredsToSet(*I, StopBlock, Blocks);
417}
418
419/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
420/// PHI node that tells us how to partition the loops.
421static PHINode *FindPHIToPartitionLoops(Loop *L, ETForest *EF,
422					AliasAnalysis *AA) {
423  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
424    PHINode *PN = cast<PHINode>(I);
425    ++I;
426    if (Value *V = PN->hasConstantValue())
427      if (!isa<Instruction>(V) || EF->dominates(cast<Instruction>(V), PN)) {
428        // This is a degenerate PHI already, don't modify it!
429        PN->replaceAllUsesWith(V);
430        if (AA) AA->deleteValue(PN);
431        PN->eraseFromParent();
432        continue;
433      }
434
435    // Scan this PHI node looking for a use of the PHI node by itself.
436    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
437      if (PN->getIncomingValue(i) == PN &&
438          L->contains(PN->getIncomingBlock(i)))
439        // We found something tasty to remove.
440        return PN;
441  }
442  return 0;
443}
444
445// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
446// right after some 'outside block' block.  This prevents the preheader from
447// being placed inside the loop body, e.g. when the loop hasn't been rotated.
448void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
449                                            std::vector<BasicBlock*>&SplitPreds,
450                                            Loop *L) {
451  // Check to see if NewBB is already well placed.
452  Function::iterator BBI = NewBB; --BBI;
453  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
454    if (&*BBI == SplitPreds[i])
455      return;
456  }
457
458  // If it isn't already after an outside block, move it after one.  This is
459  // always good as it makes the uncond branch from the outside block into a
460  // fall-through.
461
462  // Figure out *which* outside block to put this after.  Prefer an outside
463  // block that neighbors a BB actually in the loop.
464  BasicBlock *FoundBB = 0;
465  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
466    Function::iterator BBI = SplitPreds[i];
467    if (++BBI != NewBB->getParent()->end() &&
468        L->contains(BBI)) {
469      FoundBB = SplitPreds[i];
470      break;
471    }
472  }
473
474  // If our heuristic for a *good* bb to place this after doesn't find
475  // anything, just pick something.  It's likely better than leaving it within
476  // the loop.
477  if (!FoundBB)
478    FoundBB = SplitPreds[0];
479  NewBB->moveAfter(FoundBB);
480}
481
482
483/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
484/// them out into a nested loop.  This is important for code that looks like
485/// this:
486///
487///  Loop:
488///     ...
489///     br cond, Loop, Next
490///     ...
491///     br cond2, Loop, Out
492///
493/// To identify this common case, we look at the PHI nodes in the header of the
494/// loop.  PHI nodes with unchanging values on one backedge correspond to values
495/// that change in the "outer" loop, but not in the "inner" loop.
496///
497/// If we are able to separate out a loop, return the new outer loop that was
498/// created.
499///
500Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
501  ETForest *EF = getAnalysisToUpdate<ETForest>();
502  PHINode *PN = FindPHIToPartitionLoops(L, EF, AA);
503  if (PN == 0) return 0;  // No known way to partition.
504
505  // Pull out all predecessors that have varying values in the loop.  This
506  // handles the case when a PHI node has multiple instances of itself as
507  // arguments.
508  std::vector<BasicBlock*> OuterLoopPreds;
509  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
510    if (PN->getIncomingValue(i) != PN ||
511        !L->contains(PN->getIncomingBlock(i)))
512      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
513
514  BasicBlock *Header = L->getHeader();
515  BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
516
517  // Update dominator information (set, immdom, domtree, and domfrontier)
518  UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds);
519
520  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
521  // code layout too horribly.
522  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
523
524  // Create the new outer loop.
525  Loop *NewOuter = new Loop();
526
527  // Change the parent loop to use the outer loop as its child now.
528  if (Loop *Parent = L->getParentLoop())
529    Parent->replaceChildLoopWith(L, NewOuter);
530  else
531    LI->changeTopLevelLoop(L, NewOuter);
532
533  // This block is going to be our new header block: add it to this loop and all
534  // parent loops.
535  NewOuter->addBasicBlockToLoop(NewBB, *LI);
536
537  // L is now a subloop of our outer loop.
538  NewOuter->addChildLoop(L);
539
540  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
541    NewOuter->addBlockEntry(L->getBlocks()[i]);
542
543  // Determine which blocks should stay in L and which should be moved out to
544  // the Outer loop now.
545  std::set<BasicBlock*> BlocksInL;
546  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
547    if (EF->dominates(Header, *PI))
548      AddBlockAndPredsToSet(*PI, Header, BlocksInL);
549
550
551  // Scan all of the loop children of L, moving them to OuterLoop if they are
552  // not part of the inner loop.
553  for (Loop::iterator I = L->begin(); I != L->end(); )
554    if (BlocksInL.count((*I)->getHeader()))
555      ++I;   // Loop remains in L
556    else
557      NewOuter->addChildLoop(L->removeChildLoop(I));
558
559  // Now that we know which blocks are in L and which need to be moved to
560  // OuterLoop, move any blocks that need it.
561  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
562    BasicBlock *BB = L->getBlocks()[i];
563    if (!BlocksInL.count(BB)) {
564      // Move this block to the parent, updating the exit blocks sets
565      L->removeBlockFromLoop(BB);
566      if ((*LI)[BB] == L)
567        LI->changeLoopFor(BB, NewOuter);
568      --i;
569    }
570  }
571
572  return NewOuter;
573}
574
575
576
577/// InsertUniqueBackedgeBlock - This method is called when the specified loop
578/// has more than one backedge in it.  If this occurs, revector all of these
579/// backedges to target a new basic block and have that block branch to the loop
580/// header.  This ensures that loops have exactly one backedge.
581///
582void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
583  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
584
585  // Get information about the loop
586  BasicBlock *Preheader = L->getLoopPreheader();
587  BasicBlock *Header = L->getHeader();
588  Function *F = Header->getParent();
589
590  // Figure out which basic blocks contain back-edges to the loop header.
591  std::vector<BasicBlock*> BackedgeBlocks;
592  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
593    if (*I != Preheader) BackedgeBlocks.push_back(*I);
594
595  // Create and insert the new backedge block...
596  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
597  BranchInst *BETerminator = new BranchInst(Header, BEBlock);
598
599  // Move the new backedge block to right after the last backedge block.
600  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
601  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
602
603  // Now that the block has been inserted into the function, create PHI nodes in
604  // the backedge block which correspond to any PHI nodes in the header block.
605  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
606    PHINode *PN = cast<PHINode>(I);
607    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
608                                 BETerminator);
609    NewPN->reserveOperandSpace(BackedgeBlocks.size());
610    if (AA) AA->copyValue(PN, NewPN);
611
612    // Loop over the PHI node, moving all entries except the one for the
613    // preheader over to the new PHI node.
614    unsigned PreheaderIdx = ~0U;
615    bool HasUniqueIncomingValue = true;
616    Value *UniqueValue = 0;
617    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
618      BasicBlock *IBB = PN->getIncomingBlock(i);
619      Value *IV = PN->getIncomingValue(i);
620      if (IBB == Preheader) {
621        PreheaderIdx = i;
622      } else {
623        NewPN->addIncoming(IV, IBB);
624        if (HasUniqueIncomingValue) {
625          if (UniqueValue == 0)
626            UniqueValue = IV;
627          else if (UniqueValue != IV)
628            HasUniqueIncomingValue = false;
629        }
630      }
631    }
632
633    // Delete all of the incoming values from the old PN except the preheader's
634    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
635    if (PreheaderIdx != 0) {
636      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
637      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
638    }
639    // Nuke all entries except the zero'th.
640    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
641      PN->removeIncomingValue(e-i, false);
642
643    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
644    PN->addIncoming(NewPN, BEBlock);
645
646    // As an optimization, if all incoming values in the new PhiNode (which is a
647    // subset of the incoming values of the old PHI node) have the same value,
648    // eliminate the PHI Node.
649    if (HasUniqueIncomingValue) {
650      NewPN->replaceAllUsesWith(UniqueValue);
651      if (AA) AA->deleteValue(NewPN);
652      BEBlock->getInstList().erase(NewPN);
653    }
654  }
655
656  // Now that all of the PHI nodes have been inserted and adjusted, modify the
657  // backedge blocks to just to the BEBlock instead of the header.
658  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
659    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
660    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
661      if (TI->getSuccessor(Op) == Header)
662        TI->setSuccessor(Op, BEBlock);
663  }
664
665  //===--- Update all analyses which we must preserve now -----------------===//
666
667  // Update Loop Information - we know that this block is now in the current
668  // loop and all parent loops.
669  L->addBasicBlockToLoop(BEBlock, *LI);
670
671  // Update dominator information (set, immdom, domtree, and domfrontier)
672  UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
673}
674
675/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
676/// different kinds of dominator information (dominator sets, immediate
677/// dominators, dominator trees, and dominance frontiers) after a new block has
678/// been added to the CFG.
679///
680/// This only supports the case when an existing block (known as "NewBBSucc"),
681/// had some of its predecessors factored into a new basic block.  This
682/// transformation inserts a new basic block ("NewBB"), with a single
683/// unconditional branch to NewBBSucc, and moves some predecessors of
684/// "NewBBSucc" to now branch to NewBB.  These predecessors are listed in
685/// PredBlocks, even though they are the same as
686/// pred_begin(NewBB)/pred_end(NewBB).
687///
688void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
689                                         std::vector<BasicBlock*> &PredBlocks) {
690  assert(!PredBlocks.empty() && "No predblocks??");
691  assert(succ_begin(NewBB) != succ_end(NewBB) &&
692         ++succ_begin(NewBB) == succ_end(NewBB) &&
693         "NewBB should have a single successor!");
694  BasicBlock *NewBBSucc = *succ_begin(NewBB);
695  DominatorSet &DS = getAnalysis<DominatorSet>();
696
697  // Update dominator information...  The blocks that dominate NewBB are the
698  // intersection of the dominators of predecessors, plus the block itself.
699  //
700  DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
701  {
702    unsigned i, e = PredBlocks.size();
703    // It is possible for some preds to not be reachable, and thus have empty
704    // dominator sets (all blocks must dom themselves, so no domset would
705    // otherwise be empty).  If we see any of these, don't intersect with them,
706    // as that would certainly leave the resultant set empty.
707    for (i = 1; NewBBDomSet.empty(); ++i) {
708      assert(i != e && "Didn't find reachable pred?");
709      NewBBDomSet = DS.getDominators(PredBlocks[i]);
710    }
711
712    // Intersect the rest of the non-empty sets.
713    for (; i != e; ++i) {
714      const DominatorSet::DomSetType &PredDS = DS.getDominators(PredBlocks[i]);
715      if (!PredDS.empty())
716        set_intersect(NewBBDomSet, PredDS);
717    }
718    NewBBDomSet.insert(NewBB);  // All blocks dominate themselves.
719    DS.addBasicBlock(NewBB, NewBBDomSet);
720  }
721
722  // The newly inserted basic block will dominate existing basic blocks iff the
723  // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
724  // the non-pred blocks, then they all must be the same block!
725  //
726  bool NewBBDominatesNewBBSucc = true;
727  {
728    BasicBlock *OnePred = PredBlocks[0];
729    unsigned i, e = PredBlocks.size();
730    for (i = 1; !DS.isReachable(OnePred); ++i) {
731      assert(i != e && "Didn't find reachable pred?");
732      OnePred = PredBlocks[i];
733    }
734
735    for (; i != e; ++i)
736      if (PredBlocks[i] != OnePred && DS.isReachable(PredBlocks[i])) {
737        NewBBDominatesNewBBSucc = false;
738        break;
739      }
740
741    if (NewBBDominatesNewBBSucc)
742      for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
743           PI != E; ++PI)
744        if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
745          NewBBDominatesNewBBSucc = false;
746          break;
747        }
748  }
749
750  // The other scenario where the new block can dominate its successors are when
751  // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
752  // already.
753  if (!NewBBDominatesNewBBSucc) {
754    NewBBDominatesNewBBSucc = true;
755    for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
756         PI != E; ++PI)
757      if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
758        NewBBDominatesNewBBSucc = false;
759        break;
760      }
761  }
762
763  // If NewBB dominates some blocks, then it will dominate all blocks that
764  // NewBBSucc does.
765  if (NewBBDominatesNewBBSucc) {
766    Function *F = NewBB->getParent();
767    for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
768      if (DS.dominates(NewBBSucc, I))
769        DS.addDominator(I, NewBB);
770  }
771
772  // Update immediate dominator information if we have it.
773  BasicBlock *NewBBIDom = 0;
774  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
775    // To find the immediate dominator of the new exit node, we trace up the
776    // immediate dominators of a predecessor until we find a basic block that
777    // dominates the exit block.
778    //
779    BasicBlock *Dom = PredBlocks[0];  // Some random predecessor.
780
781    // Find a reachable pred.
782    for (unsigned i = 1; !DS.isReachable(Dom); ++i) {
783      assert(i != PredBlocks.size() && "Didn't find reachable pred!");
784      Dom = PredBlocks[i];
785    }
786
787    while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator.
788      assert(Dom != 0 && "No shared dominator found???");
789      Dom = ID->get(Dom);
790    }
791
792    // Set the immediate dominator now...
793    ID->addNewBlock(NewBB, Dom);
794    NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
795
796    // If NewBB strictly dominates other blocks, we need to update their idom's
797    // now.  The only block that need adjustment is the NewBBSucc block, whose
798    // idom should currently be set to PredBlocks[0].
799    if (NewBBDominatesNewBBSucc)
800      ID->setImmediateDominator(NewBBSucc, NewBB);
801  }
802
803  // Update DominatorTree information if it is active.
804  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
805    // If we don't have ImmediateDominator info around, calculate the idom as
806    // above.
807    DominatorTree::Node *NewBBIDomNode;
808    if (NewBBIDom) {
809      NewBBIDomNode = DT->getNode(NewBBIDom);
810    } else {
811      // Scan all the pred blocks that were pulled out.  Any individual one may
812      // actually be unreachable, which would mean it doesn't have dom info.
813      NewBBIDomNode = 0;
814      for (unsigned i = 0; !NewBBIDomNode; ++i) {
815        assert(i != PredBlocks.size() && "No reachable preds?");
816        NewBBIDomNode = DT->getNode(PredBlocks[i]);
817      }
818
819      while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
820        NewBBIDomNode = NewBBIDomNode->getIDom();
821        assert(NewBBIDomNode && "No shared dominator found??");
822      }
823      NewBBIDom = NewBBIDomNode->getBlock();
824    }
825
826    // Create the new dominator tree node... and set the idom of NewBB.
827    DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
828
829    // If NewBB strictly dominates other blocks, then it is now the immediate
830    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
831    if (NewBBDominatesNewBBSucc) {
832      DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
833      DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
834    }
835  }
836
837  // Update ET-Forest information if it is active.
838  if (ETForest *EF = getAnalysisToUpdate<ETForest>()) {
839    EF->addNewBlock(NewBB, NewBBIDom);
840    if (NewBBDominatesNewBBSucc)
841      EF->setImmediateDominator(NewBBSucc, NewBB);
842  }
843
844  // Update dominance frontier information...
845  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
846    // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
847    // DF(PredBlocks[0]) without the stuff that the new block does not dominate
848    // a predecessor of.
849    if (NewBBDominatesNewBBSucc) {
850      DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
851      if (DFI != DF->end()) {
852        DominanceFrontier::DomSetType Set = DFI->second;
853        // Filter out stuff in Set that we do not dominate a predecessor of.
854        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
855               E = Set.end(); SetI != E;) {
856          bool DominatesPred = false;
857          for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
858               PI != E; ++PI)
859            if (DS.dominates(NewBB, *PI))
860              DominatesPred = true;
861          if (!DominatesPred)
862            Set.erase(SetI++);
863          else
864            ++SetI;
865        }
866
867        DF->addBasicBlock(NewBB, Set);
868      }
869
870    } else {
871      // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
872      // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
873      // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
874      DominanceFrontier::DomSetType NewDFSet;
875      NewDFSet.insert(NewBBSucc);
876      DF->addBasicBlock(NewBB, NewDFSet);
877    }
878
879    // Now we must loop over all of the dominance frontiers in the function,
880    // replacing occurrences of NewBBSucc with NewBB in some cases.  All
881    // blocks that dominate a block in PredBlocks and contained NewBBSucc in
882    // their dominance frontier must be updated to contain NewBB instead.
883    //
884    for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
885      BasicBlock *Pred = PredBlocks[i];
886      // Get all of the dominators of the predecessor...
887      const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
888      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
889             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
890        BasicBlock *PredDom = *PDI;
891
892        // If the NewBBSucc node is in DF(PredDom), then PredDom didn't
893        // dominate NewBBSucc but did dominate a predecessor of it.  Now we
894        // change this entry to include NewBB in the DF instead of NewBBSucc.
895        DominanceFrontier::iterator DFI = DF->find(PredDom);
896        assert(DFI != DF->end() && "No dominance frontier for node?");
897        if (DFI->second.count(NewBBSucc)) {
898          // If NewBBSucc should not stay in our dominator frontier, remove it.
899          // We remove it unless there is a predecessor of NewBBSucc that we
900          // dominate, but we don't strictly dominate NewBBSucc.
901          bool ShouldRemove = true;
902          if (PredDom == NewBBSucc || !DS.dominates(PredDom, NewBBSucc)) {
903            // Okay, we know that PredDom does not strictly dominate NewBBSucc.
904            // Check to see if it dominates any predecessors of NewBBSucc.
905            for (pred_iterator PI = pred_begin(NewBBSucc),
906                   E = pred_end(NewBBSucc); PI != E; ++PI)
907              if (DS.dominates(PredDom, *PI)) {
908                ShouldRemove = false;
909                break;
910              }
911          }
912
913          if (ShouldRemove)
914            DF->removeFromFrontier(DFI, NewBBSucc);
915          DF->addToFrontier(DFI, NewBB);
916        }
917      }
918    }
919  }
920}
921
922