LoopSimplify.cpp revision dfa5f83c8ea9fa577c5a42407c3fd8b6c789a6dd
1//===- LoopPreheaders.cpp - Loop Preheader Insertion Pass -----------------===//
2//
3// Insert Loop pre-headers and exit blocks into the CFG for each function in the
4// module.  This pass updates loop information and dominator information.
5//
6// Loop pre-header insertion guarantees that there is a single, non-critical
7// entry edge from outside of the loop to the loop header.  This simplifies a
8// number of analyses and transformations, such as LICM.
9//
10// Loop exit-block insertion guarantees that all exit blocks from the loop
11// (blocks which are outside of the loop that have predecessors inside of the
12// loop) are dominated by the loop header.  This simplifies transformations such
13// as store-sinking that are built into LICM.
14//
15// Note that the simplifycfg pass will clean up blocks which are split out but
16// end up being unnecessary, so usage of this pass does not neccesarily
17// pessimize generated code.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Function.h"
25#include "llvm/iTerminators.h"
26#include "llvm/iPHINode.h"
27#include "llvm/Constant.h"
28#include "llvm/Support/CFG.h"
29#include "Support/SetOperations.h"
30#include "Support/Statistic.h"
31#include "Support/DepthFirstIterator.h"
32
33namespace {
34  Statistic<> NumInserted("preheaders", "Number of pre-header nodes inserted");
35
36  struct Preheaders : public FunctionPass {
37    virtual bool runOnFunction(Function &F);
38
39    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
40      // We need loop information to identify the loops...
41      AU.addRequired<LoopInfo>();
42      AU.addRequired<DominatorSet>();
43
44      AU.addPreserved<LoopInfo>();
45      AU.addPreserved<DominatorSet>();
46      AU.addPreserved<ImmediateDominators>();
47      AU.addPreserved<DominatorTree>();
48      AU.addPreserved<DominanceFrontier>();
49      AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
50    }
51  private:
52    bool ProcessLoop(Loop *L);
53    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
54                                       const std::vector<BasicBlock*> &Preds);
55    void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
56    void InsertPreheaderForLoop(Loop *L);
57  };
58
59  RegisterOpt<Preheaders> X("preheaders", "Natural loop pre-header insertion");
60}
61
62// Publically exposed interface to pass...
63const PassInfo *LoopPreheadersID = X.getPassInfo();
64Pass *createLoopPreheaderInsertionPass() { return new Preheaders(); }
65
66
67/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
68/// it in any convenient order) inserting preheaders...
69///
70bool Preheaders::runOnFunction(Function &F) {
71  bool Changed = false;
72  LoopInfo &LI = getAnalysis<LoopInfo>();
73
74  for (unsigned i = 0, e = LI.getTopLevelLoops().size(); i != e; ++i)
75    Changed |= ProcessLoop(LI.getTopLevelLoops()[i]);
76
77  return Changed;
78}
79
80
81/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
82/// all loops have preheaders.
83///
84bool Preheaders::ProcessLoop(Loop *L) {
85  bool Changed = false;
86
87  // Does the loop already have a preheader?  If so, don't modify the loop...
88  if (L->getLoopPreheader() == 0) {
89    InsertPreheaderForLoop(L);
90    NumInserted++;
91    Changed = true;
92  }
93
94  // Regardless of whether or not we added a preheader to the loop we must
95  // guarantee that the preheader dominates all exit nodes.  If there are any
96  // exit nodes not dominated, split them now.
97  DominatorSet &DS = getAnalysis<DominatorSet>();
98  BasicBlock *Header = L->getHeader();
99  for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i)
100    if (!DS.dominates(Header, L->getExitBlocks()[i])) {
101      RewriteLoopExitBlock(L, L->getExitBlocks()[i]);
102      assert(DS.dominates(Header, L->getExitBlocks()[i]) &&
103             "RewriteLoopExitBlock failed?");
104      NumInserted++;
105      Changed = true;
106    }
107
108  const std::vector<Loop*> &SubLoops = L->getSubLoops();
109  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
110    Changed |= ProcessLoop(SubLoops[i]);
111  return Changed;
112}
113
114/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
115/// to move the predecessors specified in the Preds list to point to the new
116/// block, leaving the remaining predecessors pointing to BB.  This method
117/// updates the SSA PHINode's, but no other analyses.
118///
119BasicBlock *Preheaders::SplitBlockPredecessors(BasicBlock *BB,
120                                               const char *Suffix,
121                                       const std::vector<BasicBlock*> &Preds) {
122
123  // Create new basic block, insert right before the original block...
124  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB);
125
126  // The preheader first gets an unconditional branch to the loop header...
127  BranchInst *BI = new BranchInst(BB);
128  NewBB->getInstList().push_back(BI);
129
130  // For every PHI node in the block, insert a PHI node into NewBB where the
131  // incoming values from the out of loop edges are moved to NewBB.  We have two
132  // possible cases here.  If the loop is dead, we just insert dummy entries
133  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
134  // incoming edges in BB into new PHI nodes in NewBB.
135  //
136  if (!Preds.empty()) {  // Is the loop not obviously dead?
137    for (BasicBlock::iterator I = BB->begin();
138         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
139
140      // Create the new PHI node, insert it into NewBB at the end of the block
141      PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
142
143      // Move all of the edges from blocks outside the loop to the new PHI
144      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
145        Value *V = PN->removeIncomingValue(Preds[i]);
146        NewPHI->addIncoming(V, Preds[i]);
147      }
148
149      // Add an incoming value to the PHI node in the loop for the preheader
150      // edge
151      PN->addIncoming(NewPHI, NewBB);
152    }
153
154    // Now that the PHI nodes are updated, actually move the edges from
155    // Preds to point to NewBB instead of BB.
156    //
157    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
158      TerminatorInst *TI = Preds[i]->getTerminator();
159      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
160        if (TI->getSuccessor(s) == BB)
161          TI->setSuccessor(s, NewBB);
162    }
163
164  } else {                       // Otherwise the loop is dead...
165    for (BasicBlock::iterator I = BB->begin();
166         PHINode *PN = dyn_cast<PHINode>(I); ++I)
167      // Insert dummy values as the incoming value...
168      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
169  }
170  return NewBB;
171}
172
173// ChangeExitBlock - This recursive function is used to change any exit blocks
174// that use OldExit to use NewExit instead.  This is recursive because children
175// may need to be processed as well.
176//
177static void ChangeExitBlock(Loop *L, BasicBlock *OldExit, BasicBlock *NewExit) {
178  if (L->hasExitBlock(OldExit)) {
179    L->changeExitBlock(OldExit, NewExit);
180    const std::vector<Loop*> &SubLoops = L->getSubLoops();
181    for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
182      ChangeExitBlock(SubLoops[i], OldExit, NewExit);
183  }
184}
185
186
187/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
188/// preheader, this method is called to insert one.  This method has two phases:
189/// preheader insertion and analysis updating.
190///
191void Preheaders::InsertPreheaderForLoop(Loop *L) {
192  BasicBlock *Header = L->getHeader();
193
194  // Compute the set of predecessors of the loop that are not in the loop.
195  std::vector<BasicBlock*> OutsideBlocks;
196  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
197       PI != PE; ++PI)
198      if (!L->contains(*PI))           // Coming in from outside the loop?
199        OutsideBlocks.push_back(*PI);  // Keep track of it...
200
201  // Split out the loop pre-header
202  BasicBlock *NewBB =
203    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
204
205  //===--------------------------------------------------------------------===//
206  //  Update analysis results now that we have preformed the transformation
207  //
208
209  // We know that we have loop information to update... update it now.
210  if (Loop *Parent = L->getParentLoop())
211    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
212
213  // If the header for the loop used to be an exit node for another loop, then
214  // we need to update this to know that the loop-preheader is now the exit
215  // node.  Note that the only loop that could have our header as an exit node
216  // is a sibling loop, ie, one with the same parent loop, or one if it's
217  // children.
218  //
219  const std::vector<Loop*> *ParentSubLoops;
220  if (Loop *Parent = L->getParentLoop())
221    ParentSubLoops = &Parent->getSubLoops();
222  else       // Must check top-level loops...
223    ParentSubLoops = &getAnalysis<LoopInfo>().getTopLevelLoops();
224
225  // Loop over all sibling loops, performing the substitution (recursively to
226  // include child loops)...
227  for (unsigned i = 0, e = ParentSubLoops->size(); i != e; ++i)
228    ChangeExitBlock((*ParentSubLoops)[i], Header, NewBB);
229
230  DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
231  {
232    // The blocks that dominate NewBB are the blocks that dominate Header,
233    // minus Header, plus NewBB.
234    DominatorSet::DomSetType DomSet = DS.getDominators(Header);
235    DomSet.insert(NewBB);  // We dominate ourself
236    DomSet.erase(Header);  // Header does not dominate us...
237    DS.addBasicBlock(NewBB, DomSet);
238
239    // The newly created basic block dominates all nodes dominated by Header.
240    for (Function::iterator I = Header->getParent()->begin(),
241           E = Header->getParent()->end(); I != E; ++I)
242      if (DS.dominates(Header, I))
243        DS.addDominator(I, NewBB);
244  }
245
246  // Update immediate dominator information if we have it...
247  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
248    // Whatever i-dominated the header node now immediately dominates NewBB
249    ID->addNewBlock(NewBB, ID->get(Header));
250
251    // The preheader now is the immediate dominator for the header node...
252    ID->setImmediateDominator(Header, NewBB);
253  }
254
255  // Update DominatorTree information if it is active.
256  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
257    // The immediate dominator of the preheader is the immediate dominator of
258    // the old header.
259    //
260    DominatorTree::Node *HeaderNode = DT->getNode(Header);
261    DominatorTree::Node *PHNode = DT->createNewNode(NewBB,
262                                                    HeaderNode->getIDom());
263
264    // Change the header node so that PNHode is the new immediate dominator
265    DT->changeImmediateDominator(HeaderNode, PHNode);
266  }
267
268  // Update dominance frontier information...
269  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
270    // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
271    // everything that Header does, and it strictly dominates Header in
272    // addition.
273    assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
274    DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
275    NewDFSet.erase(Header);
276    DF->addBasicBlock(NewBB, NewDFSet);
277
278    // Now we must loop over all of the dominance frontiers in the function,
279    // replacing occurrences of Header with NewBB in some cases.  If a block
280    // dominates a (now) predecessor of NewBB, but did not strictly dominate
281    // Header, it will have Header in it's DF set, but should now have NewBB in
282    // its set.
283    for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
284      // Get all of the dominators of the predecessor...
285      const DominatorSet::DomSetType &PredDoms =
286        DS.getDominators(OutsideBlocks[i]);
287      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
288             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
289        BasicBlock *PredDom = *PDI;
290        // If the loop header is in DF(PredDom), then PredDom didn't dominate
291        // the header but did dominate a predecessor outside of the loop.  Now
292        // we change this entry to include the preheader in the DF instead of
293        // the header.
294        DominanceFrontier::iterator DFI = DF->find(PredDom);
295        assert(DFI != DF->end() && "No dominance frontier for node?");
296        if (DFI->second.count(Header)) {
297          DF->removeFromFrontier(DFI, Header);
298          DF->addToFrontier(DFI, NewBB);
299        }
300      }
301    }
302  }
303}
304
305void Preheaders::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
306  DominatorSet &DS = getAnalysis<DominatorSet>();
307  assert(!DS.dominates(L->getHeader(), Exit) &&
308         "Loop already dominates exit block??");
309  assert(std::find(L->getExitBlocks().begin(), L->getExitBlocks().end(), Exit)
310         != L->getExitBlocks().end() && "Not a current exit block!");
311
312  std::vector<BasicBlock*> LoopBlocks;
313  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
314    if (L->contains(*I))
315      LoopBlocks.push_back(*I);
316
317  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
318  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
319
320  // Update Loop Information - we know that the new block will be in the parent
321  // loop of L.
322  if (Loop *Parent = L->getParentLoop())
323    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
324
325  // Replace any instances of Exit with NewBB in this and any nested loops...
326  for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
327    if (I->hasExitBlock(Exit))
328      I->changeExitBlock(Exit, NewBB);   // Update exit block information
329
330  // Update dominator information...  The blocks that dominate NewBB are the
331  // intersection of the dominators of predecessors, plus the block itself.
332  // The newly created basic block does not dominate anything except itself.
333  //
334  DominatorSet::DomSetType NewBBDomSet = DS.getDominators(LoopBlocks[0]);
335  for (unsigned i = 1, e = LoopBlocks.size(); i != e; ++i)
336    set_intersect(NewBBDomSet, DS.getDominators(LoopBlocks[i]));
337  NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
338  DS.addBasicBlock(NewBB, NewBBDomSet);
339
340  // Update immediate dominator information if we have it...
341  BasicBlock *NewBBIDom = 0;
342  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
343    // This block does not strictly dominate anything, so it is not an immediate
344    // dominator.  To find the immediate dominator of the new exit node, we
345    // trace up the immediate dominators of a predecessor until we find a basic
346    // block that dominates the exit block.
347    //
348    BasicBlock *Dom = LoopBlocks[0];  // Some random predecessor...
349    while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
350      assert(Dom != 0 && "No shared dominator found???");
351      Dom = ID->get(Dom);
352    }
353
354    // Set the immediate dominator now...
355    ID->addNewBlock(NewBB, Dom);
356    NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
357  }
358
359  // Update DominatorTree information if it is active.
360  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
361    // NewBB doesn't dominate anything, so just create a node and link it into
362    // its immediate dominator.  If we don't have ImmediateDominator info
363    // around, calculate the idom as above.
364    DominatorTree::Node *NewBBIDomNode;
365    if (NewBBIDom) {
366      NewBBIDomNode = DT->getNode(NewBBIDom);
367    } else {
368      NewBBIDomNode = DT->getNode(LoopBlocks[0]); // Random pred
369      while (!NewBBDomSet.count(NewBBIDomNode->getNode())) {
370        NewBBIDomNode = NewBBIDomNode->getIDom();
371        assert(NewBBIDomNode && "No shared dominator found??");
372      }
373    }
374
375    // Create the new dominator tree node...
376    DT->createNewNode(NewBB, NewBBIDomNode);
377  }
378
379  // Update dominance frontier information...
380  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
381    // DF(NewBB) is {Exit} because NewBB does not strictly dominate Exit, but it
382    // does dominate itself (and there is an edge (NewBB -> Exit)).
383    DominanceFrontier::DomSetType NewDFSet;
384    NewDFSet.insert(Exit);
385    DF->addBasicBlock(NewBB, NewDFSet);
386
387    // Now we must loop over all of the dominance frontiers in the function,
388    // replacing occurrences of Exit with NewBB in some cases.  If a block
389    // dominates a (now) predecessor of NewBB, but did not strictly dominate
390    // Exit, it will have Exit in it's DF set, but should now have NewBB in its
391    // set.
392    for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
393      // Get all of the dominators of the predecessor...
394      const DominatorSet::DomSetType &PredDoms =DS.getDominators(LoopBlocks[i]);
395      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
396             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
397        BasicBlock *PredDom = *PDI;
398        // Make sure to only rewrite blocks that are part of the loop...
399        if (L->contains(PredDom)) {
400          // If the exit node is in DF(PredDom), then PredDom didn't dominate
401          // Exit but did dominate a predecessor inside of the loop.  Now we
402          // change this entry to include NewBB in the DF instead of Exit.
403          DominanceFrontier::iterator DFI = DF->find(PredDom);
404          assert(DFI != DF->end() && "No dominance frontier for node?");
405          if (DFI->second.count(Exit)) {
406            DF->removeFromFrontier(DFI, Exit);
407            DF->addToFrontier(DFI, NewBB);
408          }
409        }
410      }
411    }
412  }
413}
414