AsmMatcherEmitter.cpp revision decfdf548b43c80c3dd81ff1cc3639b80ed33a3e
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures. It also emits a matcher for
12// custom operand parsing.
13//
14// Converting assembly operands into MCInst structures
15// ---------------------------------------------------
16//
17// The input to the target specific matcher is a list of literal tokens and
18// operands. The target specific parser should generally eliminate any syntax
19// which is not relevant for matching; for example, comma tokens should have
20// already been consumed and eliminated by the parser. Most instructions will
21// end up with a single literal token (the instruction name) and some number of
22// operands.
23//
24// Some example inputs, for X86:
25//   'addl' (immediate ...) (register ...)
26//   'add' (immediate ...) (memory ...)
27//   'call' '*' %epc
28//
29// The assembly matcher is responsible for converting this input into a precise
30// machine instruction (i.e., an instruction with a well defined encoding). This
31// mapping has several properties which complicate matching:
32//
33//  - It may be ambiguous; many architectures can legally encode particular
34//    variants of an instruction in different ways (for example, using a smaller
35//    encoding for small immediates). Such ambiguities should never be
36//    arbitrarily resolved by the assembler, the assembler is always responsible
37//    for choosing the "best" available instruction.
38//
39//  - It may depend on the subtarget or the assembler context. Instructions
40//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41//    an SSE instruction in a file being assembled for i486) should be accepted
42//    and rejected by the assembler front end. However, if the proper encoding
43//    for an instruction is dependent on the assembler context then the matcher
44//    is responsible for selecting the correct machine instruction for the
45//    current mode.
46//
47// The core matching algorithm attempts to exploit the regularity in most
48// instruction sets to quickly determine the set of possibly matching
49// instructions, and the simplify the generated code. Additionally, this helps
50// to ensure that the ambiguities are intentionally resolved by the user.
51//
52// The matching is divided into two distinct phases:
53//
54//   1. Classification: Each operand is mapped to the unique set which (a)
55//      contains it, and (b) is the largest such subset for which a single
56//      instruction could match all members.
57//
58//      For register classes, we can generate these subgroups automatically. For
59//      arbitrary operands, we expect the user to define the classes and their
60//      relations to one another (for example, 8-bit signed immediates as a
61//      subset of 32-bit immediates).
62//
63//      By partitioning the operands in this way, we guarantee that for any
64//      tuple of classes, any single instruction must match either all or none
65//      of the sets of operands which could classify to that tuple.
66//
67//      In addition, the subset relation amongst classes induces a partial order
68//      on such tuples, which we use to resolve ambiguities.
69//
70//   2. The input can now be treated as a tuple of classes (static tokens are
71//      simple singleton sets). Each such tuple should generally map to a single
72//      instruction (we currently ignore cases where this isn't true, whee!!!),
73//      which we can emit a simple matcher for.
74//
75// Custom Operand Parsing
76// ----------------------
77//
78//  Some targets need a custom way to parse operands, some specific instructions
79//  can contain arguments that can represent processor flags and other kinds of
80//  identifiers that need to be mapped to specific values in the final encoded
81//  instructions. The target specific custom operand parsing works in the
82//  following way:
83//
84//   1. A operand match table is built, each entry contains a mnemonic, an
85//      operand class, a mask for all operand positions for that same
86//      class/mnemonic and target features to be checked while trying to match.
87//
88//   2. The operand matcher will try every possible entry with the same
89//      mnemonic and will check if the target feature for this mnemonic also
90//      matches. After that, if the operand to be matched has its index
91//      present in the mask, a successful match occurs. Otherwise, fallback
92//      to the regular operand parsing.
93//
94//   3. For a match success, each operand class that has a 'ParserMethod'
95//      becomes part of a switch from where the custom method is called.
96//
97//===----------------------------------------------------------------------===//
98
99#include "CodeGenTarget.h"
100#include "StringToOffsetTable.h"
101#include "llvm/ADT/OwningPtr.h"
102#include "llvm/ADT/PointerUnion.h"
103#include "llvm/ADT/SmallPtrSet.h"
104#include "llvm/ADT/SmallVector.h"
105#include "llvm/ADT/STLExtras.h"
106#include "llvm/ADT/StringExtras.h"
107#include "llvm/Support/CommandLine.h"
108#include "llvm/Support/Debug.h"
109#include "llvm/Support/ErrorHandling.h"
110#include "llvm/TableGen/Error.h"
111#include "llvm/TableGen/Record.h"
112#include "llvm/TableGen/StringMatcher.h"
113#include "llvm/TableGen/TableGenBackend.h"
114#include <cassert>
115#include <map>
116#include <set>
117using namespace llvm;
118
119static cl::opt<std::string>
120MatchPrefix("match-prefix", cl::init(""),
121            cl::desc("Only match instructions with the given prefix"));
122
123namespace {
124class AsmMatcherInfo;
125struct SubtargetFeatureInfo;
126
127class AsmMatcherEmitter {
128  RecordKeeper &Records;
129public:
130  AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
131
132  void run(raw_ostream &o);
133};
134
135/// ClassInfo - Helper class for storing the information about a particular
136/// class of operands which can be matched.
137struct ClassInfo {
138  enum ClassInfoKind {
139    /// Invalid kind, for use as a sentinel value.
140    Invalid = 0,
141
142    /// The class for a particular token.
143    Token,
144
145    /// The (first) register class, subsequent register classes are
146    /// RegisterClass0+1, and so on.
147    RegisterClass0,
148
149    /// The (first) user defined class, subsequent user defined classes are
150    /// UserClass0+1, and so on.
151    UserClass0 = 1<<16
152  };
153
154  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
155  /// N) for the Nth user defined class.
156  unsigned Kind;
157
158  /// SuperClasses - The super classes of this class. Note that for simplicities
159  /// sake user operands only record their immediate super class, while register
160  /// operands include all superclasses.
161  std::vector<ClassInfo*> SuperClasses;
162
163  /// Name - The full class name, suitable for use in an enum.
164  std::string Name;
165
166  /// ClassName - The unadorned generic name for this class (e.g., Token).
167  std::string ClassName;
168
169  /// ValueName - The name of the value this class represents; for a token this
170  /// is the literal token string, for an operand it is the TableGen class (or
171  /// empty if this is a derived class).
172  std::string ValueName;
173
174  /// PredicateMethod - The name of the operand method to test whether the
175  /// operand matches this class; this is not valid for Token or register kinds.
176  std::string PredicateMethod;
177
178  /// RenderMethod - The name of the operand method to add this operand to an
179  /// MCInst; this is not valid for Token or register kinds.
180  std::string RenderMethod;
181
182  /// ParserMethod - The name of the operand method to do a target specific
183  /// parsing on the operand.
184  std::string ParserMethod;
185
186  /// For register classes, the records for all the registers in this class.
187  std::set<Record*> Registers;
188
189  /// For custom match classes, he diagnostic kind for when the predicate fails.
190  std::string DiagnosticType;
191public:
192  /// isRegisterClass() - Check if this is a register class.
193  bool isRegisterClass() const {
194    return Kind >= RegisterClass0 && Kind < UserClass0;
195  }
196
197  /// isUserClass() - Check if this is a user defined class.
198  bool isUserClass() const {
199    return Kind >= UserClass0;
200  }
201
202  /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
203  /// are related if they are in the same class hierarchy.
204  bool isRelatedTo(const ClassInfo &RHS) const {
205    // Tokens are only related to tokens.
206    if (Kind == Token || RHS.Kind == Token)
207      return Kind == Token && RHS.Kind == Token;
208
209    // Registers classes are only related to registers classes, and only if
210    // their intersection is non-empty.
211    if (isRegisterClass() || RHS.isRegisterClass()) {
212      if (!isRegisterClass() || !RHS.isRegisterClass())
213        return false;
214
215      std::set<Record*> Tmp;
216      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
217      std::set_intersection(Registers.begin(), Registers.end(),
218                            RHS.Registers.begin(), RHS.Registers.end(),
219                            II);
220
221      return !Tmp.empty();
222    }
223
224    // Otherwise we have two users operands; they are related if they are in the
225    // same class hierarchy.
226    //
227    // FIXME: This is an oversimplification, they should only be related if they
228    // intersect, however we don't have that information.
229    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
230    const ClassInfo *Root = this;
231    while (!Root->SuperClasses.empty())
232      Root = Root->SuperClasses.front();
233
234    const ClassInfo *RHSRoot = &RHS;
235    while (!RHSRoot->SuperClasses.empty())
236      RHSRoot = RHSRoot->SuperClasses.front();
237
238    return Root == RHSRoot;
239  }
240
241  /// isSubsetOf - Test whether this class is a subset of \p RHS.
242  bool isSubsetOf(const ClassInfo &RHS) const {
243    // This is a subset of RHS if it is the same class...
244    if (this == &RHS)
245      return true;
246
247    // ... or if any of its super classes are a subset of RHS.
248    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
249           ie = SuperClasses.end(); it != ie; ++it)
250      if ((*it)->isSubsetOf(RHS))
251        return true;
252
253    return false;
254  }
255
256  /// operator< - Compare two classes.
257  bool operator<(const ClassInfo &RHS) const {
258    if (this == &RHS)
259      return false;
260
261    // Unrelated classes can be ordered by kind.
262    if (!isRelatedTo(RHS))
263      return Kind < RHS.Kind;
264
265    switch (Kind) {
266    case Invalid:
267      llvm_unreachable("Invalid kind!");
268
269    default:
270      // This class precedes the RHS if it is a proper subset of the RHS.
271      if (isSubsetOf(RHS))
272        return true;
273      if (RHS.isSubsetOf(*this))
274        return false;
275
276      // Otherwise, order by name to ensure we have a total ordering.
277      return ValueName < RHS.ValueName;
278    }
279  }
280};
281
282/// MatchableInfo - Helper class for storing the necessary information for an
283/// instruction or alias which is capable of being matched.
284struct MatchableInfo {
285  struct AsmOperand {
286    /// Token - This is the token that the operand came from.
287    StringRef Token;
288
289    /// The unique class instance this operand should match.
290    ClassInfo *Class;
291
292    /// The operand name this is, if anything.
293    StringRef SrcOpName;
294
295    /// The suboperand index within SrcOpName, or -1 for the entire operand.
296    int SubOpIdx;
297
298    /// Register record if this token is singleton register.
299    Record *SingletonReg;
300
301    explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
302                                       SingletonReg(0) {}
303  };
304
305  /// ResOperand - This represents a single operand in the result instruction
306  /// generated by the match.  In cases (like addressing modes) where a single
307  /// assembler operand expands to multiple MCOperands, this represents the
308  /// single assembler operand, not the MCOperand.
309  struct ResOperand {
310    enum {
311      /// RenderAsmOperand - This represents an operand result that is
312      /// generated by calling the render method on the assembly operand.  The
313      /// corresponding AsmOperand is specified by AsmOperandNum.
314      RenderAsmOperand,
315
316      /// TiedOperand - This represents a result operand that is a duplicate of
317      /// a previous result operand.
318      TiedOperand,
319
320      /// ImmOperand - This represents an immediate value that is dumped into
321      /// the operand.
322      ImmOperand,
323
324      /// RegOperand - This represents a fixed register that is dumped in.
325      RegOperand
326    } Kind;
327
328    union {
329      /// This is the operand # in the AsmOperands list that this should be
330      /// copied from.
331      unsigned AsmOperandNum;
332
333      /// TiedOperandNum - This is the (earlier) result operand that should be
334      /// copied from.
335      unsigned TiedOperandNum;
336
337      /// ImmVal - This is the immediate value added to the instruction.
338      int64_t ImmVal;
339
340      /// Register - This is the register record.
341      Record *Register;
342    };
343
344    /// MINumOperands - The number of MCInst operands populated by this
345    /// operand.
346    unsigned MINumOperands;
347
348    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
349      ResOperand X;
350      X.Kind = RenderAsmOperand;
351      X.AsmOperandNum = AsmOpNum;
352      X.MINumOperands = NumOperands;
353      return X;
354    }
355
356    static ResOperand getTiedOp(unsigned TiedOperandNum) {
357      ResOperand X;
358      X.Kind = TiedOperand;
359      X.TiedOperandNum = TiedOperandNum;
360      X.MINumOperands = 1;
361      return X;
362    }
363
364    static ResOperand getImmOp(int64_t Val) {
365      ResOperand X;
366      X.Kind = ImmOperand;
367      X.ImmVal = Val;
368      X.MINumOperands = 1;
369      return X;
370    }
371
372    static ResOperand getRegOp(Record *Reg) {
373      ResOperand X;
374      X.Kind = RegOperand;
375      X.Register = Reg;
376      X.MINumOperands = 1;
377      return X;
378    }
379  };
380
381  /// AsmVariantID - Target's assembly syntax variant no.
382  int AsmVariantID;
383
384  /// TheDef - This is the definition of the instruction or InstAlias that this
385  /// matchable came from.
386  Record *const TheDef;
387
388  /// DefRec - This is the definition that it came from.
389  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
390
391  const CodeGenInstruction *getResultInst() const {
392    if (DefRec.is<const CodeGenInstruction*>())
393      return DefRec.get<const CodeGenInstruction*>();
394    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
395  }
396
397  /// ResOperands - This is the operand list that should be built for the result
398  /// MCInst.
399  SmallVector<ResOperand, 8> ResOperands;
400
401  /// AsmString - The assembly string for this instruction (with variants
402  /// removed), e.g. "movsx $src, $dst".
403  std::string AsmString;
404
405  /// Mnemonic - This is the first token of the matched instruction, its
406  /// mnemonic.
407  StringRef Mnemonic;
408
409  /// AsmOperands - The textual operands that this instruction matches,
410  /// annotated with a class and where in the OperandList they were defined.
411  /// This directly corresponds to the tokenized AsmString after the mnemonic is
412  /// removed.
413  SmallVector<AsmOperand, 8> AsmOperands;
414
415  /// Predicates - The required subtarget features to match this instruction.
416  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
417
418  /// ConversionFnKind - The enum value which is passed to the generated
419  /// convertToMCInst to convert parsed operands into an MCInst for this
420  /// function.
421  std::string ConversionFnKind;
422
423  MatchableInfo(const CodeGenInstruction &CGI)
424    : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
425      AsmString(CGI.AsmString) {
426  }
427
428  MatchableInfo(const CodeGenInstAlias *Alias)
429    : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
430      AsmString(Alias->AsmString) {
431  }
432
433  // Two-operand aliases clone from the main matchable, but mark the second
434  // operand as a tied operand of the first for purposes of the assembler.
435  void formTwoOperandAlias(StringRef Constraint);
436
437  void initialize(const AsmMatcherInfo &Info,
438                  SmallPtrSet<Record*, 16> &SingletonRegisters,
439                  int AsmVariantNo, std::string &RegisterPrefix);
440
441  /// validate - Return true if this matchable is a valid thing to match against
442  /// and perform a bunch of validity checking.
443  bool validate(StringRef CommentDelimiter, bool Hack) const;
444
445  /// extractSingletonRegisterForAsmOperand - Extract singleton register,
446  /// if present, from specified token.
447  void
448  extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
449                                        std::string &RegisterPrefix);
450
451  /// findAsmOperand - Find the AsmOperand with the specified name and
452  /// suboperand index.
453  int findAsmOperand(StringRef N, int SubOpIdx) const {
454    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
455      if (N == AsmOperands[i].SrcOpName &&
456          SubOpIdx == AsmOperands[i].SubOpIdx)
457        return i;
458    return -1;
459  }
460
461  /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
462  /// This does not check the suboperand index.
463  int findAsmOperandNamed(StringRef N) const {
464    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
465      if (N == AsmOperands[i].SrcOpName)
466        return i;
467    return -1;
468  }
469
470  void buildInstructionResultOperands();
471  void buildAliasResultOperands();
472
473  /// operator< - Compare two matchables.
474  bool operator<(const MatchableInfo &RHS) const {
475    // The primary comparator is the instruction mnemonic.
476    if (Mnemonic != RHS.Mnemonic)
477      return Mnemonic < RHS.Mnemonic;
478
479    if (AsmOperands.size() != RHS.AsmOperands.size())
480      return AsmOperands.size() < RHS.AsmOperands.size();
481
482    // Compare lexicographically by operand. The matcher validates that other
483    // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
484    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
485      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
486        return true;
487      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
488        return false;
489    }
490
491    // Give matches that require more features higher precedence. This is useful
492    // because we cannot define AssemblerPredicates with the negation of
493    // processor features. For example, ARM v6 "nop" may be either a HINT or
494    // MOV. With v6, we want to match HINT. The assembler has no way to
495    // predicate MOV under "NoV6", but HINT will always match first because it
496    // requires V6 while MOV does not.
497    if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
498      return RequiredFeatures.size() > RHS.RequiredFeatures.size();
499
500    return false;
501  }
502
503  /// couldMatchAmbiguouslyWith - Check whether this matchable could
504  /// ambiguously match the same set of operands as \p RHS (without being a
505  /// strictly superior match).
506  bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
507    // The primary comparator is the instruction mnemonic.
508    if (Mnemonic != RHS.Mnemonic)
509      return false;
510
511    // The number of operands is unambiguous.
512    if (AsmOperands.size() != RHS.AsmOperands.size())
513      return false;
514
515    // Otherwise, make sure the ordering of the two instructions is unambiguous
516    // by checking that either (a) a token or operand kind discriminates them,
517    // or (b) the ordering among equivalent kinds is consistent.
518
519    // Tokens and operand kinds are unambiguous (assuming a correct target
520    // specific parser).
521    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
522      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
523          AsmOperands[i].Class->Kind == ClassInfo::Token)
524        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
525            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
526          return false;
527
528    // Otherwise, this operand could commute if all operands are equivalent, or
529    // there is a pair of operands that compare less than and a pair that
530    // compare greater than.
531    bool HasLT = false, HasGT = false;
532    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
533      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
534        HasLT = true;
535      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
536        HasGT = true;
537    }
538
539    return !(HasLT ^ HasGT);
540  }
541
542  void dump();
543
544private:
545  void tokenizeAsmString(const AsmMatcherInfo &Info);
546};
547
548/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
549/// feature which participates in instruction matching.
550struct SubtargetFeatureInfo {
551  /// \brief The predicate record for this feature.
552  Record *TheDef;
553
554  /// \brief An unique index assigned to represent this feature.
555  unsigned Index;
556
557  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
558
559  /// \brief The name of the enumerated constant identifying this feature.
560  std::string getEnumName() const {
561    return "Feature_" + TheDef->getName();
562  }
563};
564
565struct OperandMatchEntry {
566  unsigned OperandMask;
567  MatchableInfo* MI;
568  ClassInfo *CI;
569
570  static OperandMatchEntry create(MatchableInfo* mi, ClassInfo *ci,
571                                  unsigned opMask) {
572    OperandMatchEntry X;
573    X.OperandMask = opMask;
574    X.CI = ci;
575    X.MI = mi;
576    return X;
577  }
578};
579
580
581class AsmMatcherInfo {
582public:
583  /// Tracked Records
584  RecordKeeper &Records;
585
586  /// The tablegen AsmParser record.
587  Record *AsmParser;
588
589  /// Target - The target information.
590  CodeGenTarget &Target;
591
592  /// The classes which are needed for matching.
593  std::vector<ClassInfo*> Classes;
594
595  /// The information on the matchables to match.
596  std::vector<MatchableInfo*> Matchables;
597
598  /// Info for custom matching operands by user defined methods.
599  std::vector<OperandMatchEntry> OperandMatchInfo;
600
601  /// Map of Register records to their class information.
602  typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
603  RegisterClassesTy RegisterClasses;
604
605  /// Map of Predicate records to their subtarget information.
606  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
607
608  /// Map of AsmOperandClass records to their class information.
609  std::map<Record*, ClassInfo*> AsmOperandClasses;
610
611private:
612  /// Map of token to class information which has already been constructed.
613  std::map<std::string, ClassInfo*> TokenClasses;
614
615  /// Map of RegisterClass records to their class information.
616  std::map<Record*, ClassInfo*> RegisterClassClasses;
617
618private:
619  /// getTokenClass - Lookup or create the class for the given token.
620  ClassInfo *getTokenClass(StringRef Token);
621
622  /// getOperandClass - Lookup or create the class for the given operand.
623  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
624                             int SubOpIdx);
625  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
626
627  /// buildRegisterClasses - Build the ClassInfo* instances for register
628  /// classes.
629  void buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
630
631  /// buildOperandClasses - Build the ClassInfo* instances for user defined
632  /// operand classes.
633  void buildOperandClasses();
634
635  void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
636                                        unsigned AsmOpIdx);
637  void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
638                                  MatchableInfo::AsmOperand &Op);
639
640public:
641  AsmMatcherInfo(Record *AsmParser,
642                 CodeGenTarget &Target,
643                 RecordKeeper &Records);
644
645  /// buildInfo - Construct the various tables used during matching.
646  void buildInfo();
647
648  /// buildOperandMatchInfo - Build the necessary information to handle user
649  /// defined operand parsing methods.
650  void buildOperandMatchInfo();
651
652  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
653  /// given operand.
654  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
655    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
656    std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
657      SubtargetFeatures.find(Def);
658    return I == SubtargetFeatures.end() ? 0 : I->second;
659  }
660
661  RecordKeeper &getRecords() const {
662    return Records;
663  }
664};
665
666} // End anonymous namespace
667
668void MatchableInfo::dump() {
669  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
670
671  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
672    AsmOperand &Op = AsmOperands[i];
673    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
674    errs() << '\"' << Op.Token << "\"\n";
675  }
676}
677
678static std::pair<StringRef, StringRef>
679parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
680  // Split via the '='.
681  std::pair<StringRef, StringRef> Ops = S.split('=');
682  if (Ops.second == "")
683    throw TGError(Loc, "missing '=' in two-operand alias constraint");
684  // Trim whitespace and the leading '$' on the operand names.
685  size_t start = Ops.first.find_first_of('$');
686  if (start == std::string::npos)
687    throw TGError(Loc, "expected '$' prefix on asm operand name");
688  Ops.first = Ops.first.slice(start + 1, std::string::npos);
689  size_t end = Ops.first.find_last_of(" \t");
690  Ops.first = Ops.first.slice(0, end);
691  // Now the second operand.
692  start = Ops.second.find_first_of('$');
693  if (start == std::string::npos)
694    throw TGError(Loc, "expected '$' prefix on asm operand name");
695  Ops.second = Ops.second.slice(start + 1, std::string::npos);
696  end = Ops.second.find_last_of(" \t");
697  Ops.first = Ops.first.slice(0, end);
698  return Ops;
699}
700
701void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
702  // Figure out which operands are aliased and mark them as tied.
703  std::pair<StringRef, StringRef> Ops =
704    parseTwoOperandConstraint(Constraint, TheDef->getLoc());
705
706  // Find the AsmOperands that refer to the operands we're aliasing.
707  int SrcAsmOperand = findAsmOperandNamed(Ops.first);
708  int DstAsmOperand = findAsmOperandNamed(Ops.second);
709  if (SrcAsmOperand == -1)
710    throw TGError(TheDef->getLoc(),
711                  "unknown source two-operand alias operand '" +
712                  Ops.first.str() + "'.");
713  if (DstAsmOperand == -1)
714    throw TGError(TheDef->getLoc(),
715                  "unknown destination two-operand alias operand '" +
716                  Ops.second.str() + "'.");
717
718  // Find the ResOperand that refers to the operand we're aliasing away
719  // and update it to refer to the combined operand instead.
720  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
721    ResOperand &Op = ResOperands[i];
722    if (Op.Kind == ResOperand::RenderAsmOperand &&
723        Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
724      Op.AsmOperandNum = DstAsmOperand;
725      break;
726    }
727  }
728  // Remove the AsmOperand for the alias operand.
729  AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
730  // Adjust the ResOperand references to any AsmOperands that followed
731  // the one we just deleted.
732  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
733    ResOperand &Op = ResOperands[i];
734    switch(Op.Kind) {
735    default:
736      // Nothing to do for operands that don't reference AsmOperands.
737      break;
738    case ResOperand::RenderAsmOperand:
739      if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
740        --Op.AsmOperandNum;
741      break;
742    case ResOperand::TiedOperand:
743      if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
744        --Op.TiedOperandNum;
745      break;
746    }
747  }
748}
749
750void MatchableInfo::initialize(const AsmMatcherInfo &Info,
751                               SmallPtrSet<Record*, 16> &SingletonRegisters,
752                               int AsmVariantNo, std::string &RegisterPrefix) {
753  AsmVariantID = AsmVariantNo;
754  AsmString =
755    CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
756
757  tokenizeAsmString(Info);
758
759  // Compute the require features.
760  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
761  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
762    if (SubtargetFeatureInfo *Feature =
763        Info.getSubtargetFeature(Predicates[i]))
764      RequiredFeatures.push_back(Feature);
765
766  // Collect singleton registers, if used.
767  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
768    extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
769    if (Record *Reg = AsmOperands[i].SingletonReg)
770      SingletonRegisters.insert(Reg);
771  }
772}
773
774/// tokenizeAsmString - Tokenize a simplified assembly string.
775void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
776  StringRef String = AsmString;
777  unsigned Prev = 0;
778  bool InTok = true;
779  for (unsigned i = 0, e = String.size(); i != e; ++i) {
780    switch (String[i]) {
781    case '[':
782    case ']':
783    case '*':
784    case '!':
785    case ' ':
786    case '\t':
787    case ',':
788      if (InTok) {
789        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
790        InTok = false;
791      }
792      if (!isspace(String[i]) && String[i] != ',')
793        AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
794      Prev = i + 1;
795      break;
796
797    case '\\':
798      if (InTok) {
799        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
800        InTok = false;
801      }
802      ++i;
803      assert(i != String.size() && "Invalid quoted character");
804      AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
805      Prev = i + 1;
806      break;
807
808    case '$': {
809      if (InTok) {
810        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
811        InTok = false;
812      }
813
814      // If this isn't "${", treat like a normal token.
815      if (i + 1 == String.size() || String[i + 1] != '{') {
816        Prev = i;
817        break;
818      }
819
820      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
821      assert(End != String.end() && "Missing brace in operand reference!");
822      size_t EndPos = End - String.begin();
823      AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
824      Prev = EndPos + 1;
825      i = EndPos;
826      break;
827    }
828
829    case '.':
830      if (InTok)
831        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
832      Prev = i;
833      InTok = true;
834      break;
835
836    default:
837      InTok = true;
838    }
839  }
840  if (InTok && Prev != String.size())
841    AsmOperands.push_back(AsmOperand(String.substr(Prev)));
842
843  // The first token of the instruction is the mnemonic, which must be a
844  // simple string, not a $foo variable or a singleton register.
845  if (AsmOperands.empty())
846    throw TGError(TheDef->getLoc(),
847                  "Instruction '" + TheDef->getName() + "' has no tokens");
848  Mnemonic = AsmOperands[0].Token;
849  if (Mnemonic.empty())
850    throw TGError(TheDef->getLoc(),
851                  "Missing instruction mnemonic");
852  // FIXME : Check and raise an error if it is a register.
853  if (Mnemonic[0] == '$')
854    throw TGError(TheDef->getLoc(),
855                  "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
856
857  // Remove the first operand, it is tracked in the mnemonic field.
858  AsmOperands.erase(AsmOperands.begin());
859}
860
861bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
862  // Reject matchables with no .s string.
863  if (AsmString.empty())
864    throw TGError(TheDef->getLoc(), "instruction with empty asm string");
865
866  // Reject any matchables with a newline in them, they should be marked
867  // isCodeGenOnly if they are pseudo instructions.
868  if (AsmString.find('\n') != std::string::npos)
869    throw TGError(TheDef->getLoc(),
870                  "multiline instruction is not valid for the asmparser, "
871                  "mark it isCodeGenOnly");
872
873  // Remove comments from the asm string.  We know that the asmstring only
874  // has one line.
875  if (!CommentDelimiter.empty() &&
876      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
877    throw TGError(TheDef->getLoc(),
878                  "asmstring for instruction has comment character in it, "
879                  "mark it isCodeGenOnly");
880
881  // Reject matchables with operand modifiers, these aren't something we can
882  // handle, the target should be refactored to use operands instead of
883  // modifiers.
884  //
885  // Also, check for instructions which reference the operand multiple times;
886  // this implies a constraint we would not honor.
887  std::set<std::string> OperandNames;
888  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
889    StringRef Tok = AsmOperands[i].Token;
890    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
891      throw TGError(TheDef->getLoc(),
892                    "matchable with operand modifier '" + Tok.str() +
893                    "' not supported by asm matcher.  Mark isCodeGenOnly!");
894
895    // Verify that any operand is only mentioned once.
896    // We reject aliases and ignore instructions for now.
897    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
898      if (!Hack)
899        throw TGError(TheDef->getLoc(),
900                      "ERROR: matchable with tied operand '" + Tok.str() +
901                      "' can never be matched!");
902      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
903      // bunch of instructions.  It is unclear what the right answer is.
904      DEBUG({
905        errs() << "warning: '" << TheDef->getName() << "': "
906               << "ignoring instruction with tied operand '"
907               << Tok.str() << "'\n";
908      });
909      return false;
910    }
911  }
912
913  return true;
914}
915
916/// extractSingletonRegisterForAsmOperand - Extract singleton register,
917/// if present, from specified token.
918void MatchableInfo::
919extractSingletonRegisterForAsmOperand(unsigned OperandNo,
920                                      const AsmMatcherInfo &Info,
921                                      std::string &RegisterPrefix) {
922  StringRef Tok = AsmOperands[OperandNo].Token;
923  if (RegisterPrefix.empty()) {
924    std::string LoweredTok = Tok.lower();
925    if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
926      AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
927    return;
928  }
929
930  if (!Tok.startswith(RegisterPrefix))
931    return;
932
933  StringRef RegName = Tok.substr(RegisterPrefix.size());
934  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
935    AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
936
937  // If there is no register prefix (i.e. "%" in "%eax"), then this may
938  // be some random non-register token, just ignore it.
939  return;
940}
941
942static std::string getEnumNameForToken(StringRef Str) {
943  std::string Res;
944
945  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
946    switch (*it) {
947    case '*': Res += "_STAR_"; break;
948    case '%': Res += "_PCT_"; break;
949    case ':': Res += "_COLON_"; break;
950    case '!': Res += "_EXCLAIM_"; break;
951    case '.': Res += "_DOT_"; break;
952    default:
953      if (isalnum(*it))
954        Res += *it;
955      else
956        Res += "_" + utostr((unsigned) *it) + "_";
957    }
958  }
959
960  return Res;
961}
962
963ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
964  ClassInfo *&Entry = TokenClasses[Token];
965
966  if (!Entry) {
967    Entry = new ClassInfo();
968    Entry->Kind = ClassInfo::Token;
969    Entry->ClassName = "Token";
970    Entry->Name = "MCK_" + getEnumNameForToken(Token);
971    Entry->ValueName = Token;
972    Entry->PredicateMethod = "<invalid>";
973    Entry->RenderMethod = "<invalid>";
974    Entry->ParserMethod = "";
975    Entry->DiagnosticType = "";
976    Classes.push_back(Entry);
977  }
978
979  return Entry;
980}
981
982ClassInfo *
983AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
984                                int SubOpIdx) {
985  Record *Rec = OI.Rec;
986  if (SubOpIdx != -1)
987    Rec = dynamic_cast<DefInit*>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
988  return getOperandClass(Rec, SubOpIdx);
989}
990
991ClassInfo *
992AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
993  if (Rec->isSubClassOf("RegisterOperand")) {
994    // RegisterOperand may have an associated ParserMatchClass. If it does,
995    // use it, else just fall back to the underlying register class.
996    const RecordVal *R = Rec->getValue("ParserMatchClass");
997    if (R == 0 || R->getValue() == 0)
998      throw "Record `" + Rec->getName() +
999        "' does not have a ParserMatchClass!\n";
1000
1001    if (DefInit *DI= dynamic_cast<DefInit*>(R->getValue())) {
1002      Record *MatchClass = DI->getDef();
1003      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1004        return CI;
1005    }
1006
1007    // No custom match class. Just use the register class.
1008    Record *ClassRec = Rec->getValueAsDef("RegClass");
1009    if (!ClassRec)
1010      throw TGError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1011                    "' has no associated register class!\n");
1012    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1013      return CI;
1014    throw TGError(Rec->getLoc(), "register class has no class info!");
1015  }
1016
1017
1018  if (Rec->isSubClassOf("RegisterClass")) {
1019    if (ClassInfo *CI = RegisterClassClasses[Rec])
1020      return CI;
1021    throw TGError(Rec->getLoc(), "register class has no class info!");
1022  }
1023
1024  if (!Rec->isSubClassOf("Operand"))
1025    throw TGError(Rec->getLoc(), "Operand `" + Rec->getName() +
1026                  "' does not derive from class Operand!\n");
1027  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1028  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1029    return CI;
1030
1031  throw TGError(Rec->getLoc(), "operand has no match class!");
1032}
1033
1034void AsmMatcherInfo::
1035buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
1036  const std::vector<CodeGenRegister*> &Registers =
1037    Target.getRegBank().getRegisters();
1038  ArrayRef<CodeGenRegisterClass*> RegClassList =
1039    Target.getRegBank().getRegClasses();
1040
1041  // The register sets used for matching.
1042  std::set< std::set<Record*> > RegisterSets;
1043
1044  // Gather the defined sets.
1045  for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
1046       RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
1047    RegisterSets.insert(std::set<Record*>(
1048        (*it)->getOrder().begin(), (*it)->getOrder().end()));
1049
1050  // Add any required singleton sets.
1051  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1052       ie = SingletonRegisters.end(); it != ie; ++it) {
1053    Record *Rec = *it;
1054    RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
1055  }
1056
1057  // Introduce derived sets where necessary (when a register does not determine
1058  // a unique register set class), and build the mapping of registers to the set
1059  // they should classify to.
1060  std::map<Record*, std::set<Record*> > RegisterMap;
1061  for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
1062         ie = Registers.end(); it != ie; ++it) {
1063    const CodeGenRegister &CGR = **it;
1064    // Compute the intersection of all sets containing this register.
1065    std::set<Record*> ContainingSet;
1066
1067    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1068           ie = RegisterSets.end(); it != ie; ++it) {
1069      if (!it->count(CGR.TheDef))
1070        continue;
1071
1072      if (ContainingSet.empty()) {
1073        ContainingSet = *it;
1074        continue;
1075      }
1076
1077      std::set<Record*> Tmp;
1078      std::swap(Tmp, ContainingSet);
1079      std::insert_iterator< std::set<Record*> > II(ContainingSet,
1080                                                   ContainingSet.begin());
1081      std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
1082    }
1083
1084    if (!ContainingSet.empty()) {
1085      RegisterSets.insert(ContainingSet);
1086      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1087    }
1088  }
1089
1090  // Construct the register classes.
1091  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
1092  unsigned Index = 0;
1093  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1094         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
1095    ClassInfo *CI = new ClassInfo();
1096    CI->Kind = ClassInfo::RegisterClass0 + Index;
1097    CI->ClassName = "Reg" + utostr(Index);
1098    CI->Name = "MCK_Reg" + utostr(Index);
1099    CI->ValueName = "";
1100    CI->PredicateMethod = ""; // unused
1101    CI->RenderMethod = "addRegOperands";
1102    CI->Registers = *it;
1103    // FIXME: diagnostic type.
1104    CI->DiagnosticType = "";
1105    Classes.push_back(CI);
1106    RegisterSetClasses.insert(std::make_pair(*it, CI));
1107  }
1108
1109  // Find the superclasses; we could compute only the subgroup lattice edges,
1110  // but there isn't really a point.
1111  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1112         ie = RegisterSets.end(); it != ie; ++it) {
1113    ClassInfo *CI = RegisterSetClasses[*it];
1114    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
1115           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
1116      if (*it != *it2 &&
1117          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
1118        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
1119  }
1120
1121  // Name the register classes which correspond to a user defined RegisterClass.
1122  for (ArrayRef<CodeGenRegisterClass*>::const_iterator
1123       it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
1124    const CodeGenRegisterClass &RC = **it;
1125    // Def will be NULL for non-user defined register classes.
1126    Record *Def = RC.getDef();
1127    if (!Def)
1128      continue;
1129    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
1130                                                         RC.getOrder().end())];
1131    if (CI->ValueName.empty()) {
1132      CI->ClassName = RC.getName();
1133      CI->Name = "MCK_" + RC.getName();
1134      CI->ValueName = RC.getName();
1135    } else
1136      CI->ValueName = CI->ValueName + "," + RC.getName();
1137
1138    RegisterClassClasses.insert(std::make_pair(Def, CI));
1139  }
1140
1141  // Populate the map for individual registers.
1142  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
1143         ie = RegisterMap.end(); it != ie; ++it)
1144    RegisterClasses[it->first] = RegisterSetClasses[it->second];
1145
1146  // Name the register classes which correspond to singleton registers.
1147  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1148         ie = SingletonRegisters.end(); it != ie; ++it) {
1149    Record *Rec = *it;
1150    ClassInfo *CI = RegisterClasses[Rec];
1151    assert(CI && "Missing singleton register class info!");
1152
1153    if (CI->ValueName.empty()) {
1154      CI->ClassName = Rec->getName();
1155      CI->Name = "MCK_" + Rec->getName();
1156      CI->ValueName = Rec->getName();
1157    } else
1158      CI->ValueName = CI->ValueName + "," + Rec->getName();
1159  }
1160}
1161
1162void AsmMatcherInfo::buildOperandClasses() {
1163  std::vector<Record*> AsmOperands =
1164    Records.getAllDerivedDefinitions("AsmOperandClass");
1165
1166  // Pre-populate AsmOperandClasses map.
1167  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1168         ie = AsmOperands.end(); it != ie; ++it)
1169    AsmOperandClasses[*it] = new ClassInfo();
1170
1171  unsigned Index = 0;
1172  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1173         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
1174    ClassInfo *CI = AsmOperandClasses[*it];
1175    CI->Kind = ClassInfo::UserClass0 + Index;
1176
1177    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
1178    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
1179      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
1180      if (!DI) {
1181        PrintError((*it)->getLoc(), "Invalid super class reference!");
1182        continue;
1183      }
1184
1185      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1186      if (!SC)
1187        PrintError((*it)->getLoc(), "Invalid super class reference!");
1188      else
1189        CI->SuperClasses.push_back(SC);
1190    }
1191    CI->ClassName = (*it)->getValueAsString("Name");
1192    CI->Name = "MCK_" + CI->ClassName;
1193    CI->ValueName = (*it)->getName();
1194
1195    // Get or construct the predicate method name.
1196    Init *PMName = (*it)->getValueInit("PredicateMethod");
1197    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
1198      CI->PredicateMethod = SI->getValue();
1199    } else {
1200      assert(dynamic_cast<UnsetInit*>(PMName) &&
1201             "Unexpected PredicateMethod field!");
1202      CI->PredicateMethod = "is" + CI->ClassName;
1203    }
1204
1205    // Get or construct the render method name.
1206    Init *RMName = (*it)->getValueInit("RenderMethod");
1207    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
1208      CI->RenderMethod = SI->getValue();
1209    } else {
1210      assert(dynamic_cast<UnsetInit*>(RMName) &&
1211             "Unexpected RenderMethod field!");
1212      CI->RenderMethod = "add" + CI->ClassName + "Operands";
1213    }
1214
1215    // Get the parse method name or leave it as empty.
1216    Init *PRMName = (*it)->getValueInit("ParserMethod");
1217    if (StringInit *SI = dynamic_cast<StringInit*>(PRMName))
1218      CI->ParserMethod = SI->getValue();
1219
1220    // Get the diagnostic type or leave it as empty.
1221    // Get the parse method name or leave it as empty.
1222    Init *DiagnosticType = (*it)->getValueInit("DiagnosticType");
1223    if (StringInit *SI = dynamic_cast<StringInit*>(DiagnosticType))
1224      CI->DiagnosticType = SI->getValue();
1225
1226    AsmOperandClasses[*it] = CI;
1227    Classes.push_back(CI);
1228  }
1229}
1230
1231AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1232                               CodeGenTarget &target,
1233                               RecordKeeper &records)
1234  : Records(records), AsmParser(asmParser), Target(target) {
1235}
1236
1237/// buildOperandMatchInfo - Build the necessary information to handle user
1238/// defined operand parsing methods.
1239void AsmMatcherInfo::buildOperandMatchInfo() {
1240
1241  /// Map containing a mask with all operands indices that can be found for
1242  /// that class inside a instruction.
1243  std::map<ClassInfo*, unsigned> OpClassMask;
1244
1245  for (std::vector<MatchableInfo*>::const_iterator it =
1246       Matchables.begin(), ie = Matchables.end();
1247       it != ie; ++it) {
1248    MatchableInfo &II = **it;
1249    OpClassMask.clear();
1250
1251    // Keep track of all operands of this instructions which belong to the
1252    // same class.
1253    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1254      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
1255      if (Op.Class->ParserMethod.empty())
1256        continue;
1257      unsigned &OperandMask = OpClassMask[Op.Class];
1258      OperandMask |= (1 << i);
1259    }
1260
1261    // Generate operand match info for each mnemonic/operand class pair.
1262    for (std::map<ClassInfo*, unsigned>::iterator iit = OpClassMask.begin(),
1263         iie = OpClassMask.end(); iit != iie; ++iit) {
1264      unsigned OpMask = iit->second;
1265      ClassInfo *CI = iit->first;
1266      OperandMatchInfo.push_back(OperandMatchEntry::create(&II, CI, OpMask));
1267    }
1268  }
1269}
1270
1271void AsmMatcherInfo::buildInfo() {
1272  // Build information about all of the AssemblerPredicates.
1273  std::vector<Record*> AllPredicates =
1274    Records.getAllDerivedDefinitions("Predicate");
1275  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1276    Record *Pred = AllPredicates[i];
1277    // Ignore predicates that are not intended for the assembler.
1278    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1279      continue;
1280
1281    if (Pred->getName().empty())
1282      throw TGError(Pred->getLoc(), "Predicate has no name!");
1283
1284    unsigned FeatureNo = SubtargetFeatures.size();
1285    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
1286    assert(FeatureNo < 32 && "Too many subtarget features!");
1287  }
1288
1289  // Parse the instructions; we need to do this first so that we can gather the
1290  // singleton register classes.
1291  SmallPtrSet<Record*, 16> SingletonRegisters;
1292  unsigned VariantCount = Target.getAsmParserVariantCount();
1293  for (unsigned VC = 0; VC != VariantCount; ++VC) {
1294    Record *AsmVariant = Target.getAsmParserVariant(VC);
1295    std::string CommentDelimiter =
1296      AsmVariant->getValueAsString("CommentDelimiter");
1297    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1298    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1299
1300    for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
1301           E = Target.inst_end(); I != E; ++I) {
1302      const CodeGenInstruction &CGI = **I;
1303
1304      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1305      // filter the set of instructions we consider.
1306      if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
1307        continue;
1308
1309      // Ignore "codegen only" instructions.
1310      if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
1311        continue;
1312
1313      // Validate the operand list to ensure we can handle this instruction.
1314      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1315        const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
1316
1317        // Validate tied operands.
1318        if (OI.getTiedRegister() != -1) {
1319          // If we have a tied operand that consists of multiple MCOperands,
1320          // reject it.  We reject aliases and ignore instructions for now.
1321          if (OI.MINumOperands != 1) {
1322            // FIXME: Should reject these.  The ARM backend hits this with $lane
1323            // in a bunch of instructions. The right answer is unclear.
1324            DEBUG({
1325                errs() << "warning: '" << CGI.TheDef->getName() << "': "
1326                     << "ignoring instruction with multi-operand tied operand '"
1327                     << OI.Name << "'\n";
1328              });
1329            continue;
1330          }
1331        }
1332      }
1333
1334      OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
1335
1336      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1337
1338      // Ignore instructions which shouldn't be matched and diagnose invalid
1339      // instruction definitions with an error.
1340      if (!II->validate(CommentDelimiter, true))
1341        continue;
1342
1343      // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
1344      //
1345      // FIXME: This is a total hack.
1346      if (StringRef(II->TheDef->getName()).startswith("Int_") ||
1347          StringRef(II->TheDef->getName()).endswith("_Int"))
1348        continue;
1349
1350      Matchables.push_back(II.take());
1351    }
1352
1353    // Parse all of the InstAlias definitions and stick them in the list of
1354    // matchables.
1355    std::vector<Record*> AllInstAliases =
1356      Records.getAllDerivedDefinitions("InstAlias");
1357    for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1358      CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
1359
1360      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1361      // filter the set of instruction aliases we consider, based on the target
1362      // instruction.
1363      if (!StringRef(Alias->ResultInst->TheDef->getName())
1364            .startswith( MatchPrefix))
1365        continue;
1366
1367      OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
1368
1369      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1370
1371      // Validate the alias definitions.
1372      II->validate(CommentDelimiter, false);
1373
1374      Matchables.push_back(II.take());
1375    }
1376  }
1377
1378  // Build info for the register classes.
1379  buildRegisterClasses(SingletonRegisters);
1380
1381  // Build info for the user defined assembly operand classes.
1382  buildOperandClasses();
1383
1384  // Build the information about matchables, now that we have fully formed
1385  // classes.
1386  std::vector<MatchableInfo*> NewMatchables;
1387  for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
1388         ie = Matchables.end(); it != ie; ++it) {
1389    MatchableInfo *II = *it;
1390
1391    // Parse the tokens after the mnemonic.
1392    // Note: buildInstructionOperandReference may insert new AsmOperands, so
1393    // don't precompute the loop bound.
1394    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1395      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1396      StringRef Token = Op.Token;
1397
1398      // Check for singleton registers.
1399      if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1400        Op.Class = RegisterClasses[RegRecord];
1401        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1402               "Unexpected class for singleton register");
1403        continue;
1404      }
1405
1406      // Check for simple tokens.
1407      if (Token[0] != '$') {
1408        Op.Class = getTokenClass(Token);
1409        continue;
1410      }
1411
1412      if (Token.size() > 1 && isdigit(Token[1])) {
1413        Op.Class = getTokenClass(Token);
1414        continue;
1415      }
1416
1417      // Otherwise this is an operand reference.
1418      StringRef OperandName;
1419      if (Token[1] == '{')
1420        OperandName = Token.substr(2, Token.size() - 3);
1421      else
1422        OperandName = Token.substr(1);
1423
1424      if (II->DefRec.is<const CodeGenInstruction*>())
1425        buildInstructionOperandReference(II, OperandName, i);
1426      else
1427        buildAliasOperandReference(II, OperandName, Op);
1428    }
1429
1430    if (II->DefRec.is<const CodeGenInstruction*>()) {
1431      II->buildInstructionResultOperands();
1432      // If the instruction has a two-operand alias, build up the
1433      // matchable here. We'll add them in bulk at the end to avoid
1434      // confusing this loop.
1435      std::string Constraint =
1436        II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1437      if (Constraint != "") {
1438        // Start by making a copy of the original matchable.
1439        OwningPtr<MatchableInfo> AliasII(new MatchableInfo(*II));
1440
1441        // Adjust it to be a two-operand alias.
1442        AliasII->formTwoOperandAlias(Constraint);
1443
1444        // Add the alias to the matchables list.
1445        NewMatchables.push_back(AliasII.take());
1446      }
1447    } else
1448      II->buildAliasResultOperands();
1449  }
1450  if (!NewMatchables.empty())
1451    Matchables.insert(Matchables.end(), NewMatchables.begin(),
1452                      NewMatchables.end());
1453
1454  // Process token alias definitions and set up the associated superclass
1455  // information.
1456  std::vector<Record*> AllTokenAliases =
1457    Records.getAllDerivedDefinitions("TokenAlias");
1458  for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1459    Record *Rec = AllTokenAliases[i];
1460    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1461    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1462    if (FromClass == ToClass)
1463      throw TGError(Rec->getLoc(),
1464                    "error: Destination value identical to source value.");
1465    FromClass->SuperClasses.push_back(ToClass);
1466  }
1467
1468  // Reorder classes so that classes precede super classes.
1469  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1470}
1471
1472/// buildInstructionOperandReference - The specified operand is a reference to a
1473/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1474void AsmMatcherInfo::
1475buildInstructionOperandReference(MatchableInfo *II,
1476                                 StringRef OperandName,
1477                                 unsigned AsmOpIdx) {
1478  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1479  const CGIOperandList &Operands = CGI.Operands;
1480  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1481
1482  // Map this token to an operand.
1483  unsigned Idx;
1484  if (!Operands.hasOperandNamed(OperandName, Idx))
1485    throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1486                  OperandName.str() + "'");
1487
1488  // If the instruction operand has multiple suboperands, but the parser
1489  // match class for the asm operand is still the default "ImmAsmOperand",
1490  // then handle each suboperand separately.
1491  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1492    Record *Rec = Operands[Idx].Rec;
1493    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1494    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1495    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1496      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1497      StringRef Token = Op->Token; // save this in case Op gets moved
1498      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1499        MatchableInfo::AsmOperand NewAsmOp(Token);
1500        NewAsmOp.SubOpIdx = SI;
1501        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1502      }
1503      // Replace Op with first suboperand.
1504      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1505      Op->SubOpIdx = 0;
1506    }
1507  }
1508
1509  // Set up the operand class.
1510  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1511
1512  // If the named operand is tied, canonicalize it to the untied operand.
1513  // For example, something like:
1514  //   (outs GPR:$dst), (ins GPR:$src)
1515  // with an asmstring of
1516  //   "inc $src"
1517  // we want to canonicalize to:
1518  //   "inc $dst"
1519  // so that we know how to provide the $dst operand when filling in the result.
1520  int OITied = Operands[Idx].getTiedRegister();
1521  if (OITied != -1) {
1522    // The tied operand index is an MIOperand index, find the operand that
1523    // contains it.
1524    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1525    OperandName = Operands[Idx.first].Name;
1526    Op->SubOpIdx = Idx.second;
1527  }
1528
1529  Op->SrcOpName = OperandName;
1530}
1531
1532/// buildAliasOperandReference - When parsing an operand reference out of the
1533/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1534/// operand reference is by looking it up in the result pattern definition.
1535void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1536                                                StringRef OperandName,
1537                                                MatchableInfo::AsmOperand &Op) {
1538  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1539
1540  // Set up the operand class.
1541  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1542    if (CGA.ResultOperands[i].isRecord() &&
1543        CGA.ResultOperands[i].getName() == OperandName) {
1544      // It's safe to go with the first one we find, because CodeGenInstAlias
1545      // validates that all operands with the same name have the same record.
1546      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1547      // Use the match class from the Alias definition, not the
1548      // destination instruction, as we may have an immediate that's
1549      // being munged by the match class.
1550      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1551                                 Op.SubOpIdx);
1552      Op.SrcOpName = OperandName;
1553      return;
1554    }
1555
1556  throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1557                OperandName.str() + "'");
1558}
1559
1560void MatchableInfo::buildInstructionResultOperands() {
1561  const CodeGenInstruction *ResultInst = getResultInst();
1562
1563  // Loop over all operands of the result instruction, determining how to
1564  // populate them.
1565  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1566    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1567
1568    // If this is a tied operand, just copy from the previously handled operand.
1569    int TiedOp = OpInfo.getTiedRegister();
1570    if (TiedOp != -1) {
1571      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1572      continue;
1573    }
1574
1575    // Find out what operand from the asmparser this MCInst operand comes from.
1576    int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1577    if (OpInfo.Name.empty() || SrcOperand == -1)
1578      throw TGError(TheDef->getLoc(), "Instruction '" +
1579                    TheDef->getName() + "' has operand '" + OpInfo.Name +
1580                    "' that doesn't appear in asm string!");
1581
1582    // Check if the one AsmOperand populates the entire operand.
1583    unsigned NumOperands = OpInfo.MINumOperands;
1584    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1585      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1586      continue;
1587    }
1588
1589    // Add a separate ResOperand for each suboperand.
1590    for (unsigned AI = 0; AI < NumOperands; ++AI) {
1591      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1592             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1593             "unexpected AsmOperands for suboperands");
1594      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1595    }
1596  }
1597}
1598
1599void MatchableInfo::buildAliasResultOperands() {
1600  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1601  const CodeGenInstruction *ResultInst = getResultInst();
1602
1603  // Loop over all operands of the result instruction, determining how to
1604  // populate them.
1605  unsigned AliasOpNo = 0;
1606  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1607  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1608    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1609
1610    // If this is a tied operand, just copy from the previously handled operand.
1611    int TiedOp = OpInfo->getTiedRegister();
1612    if (TiedOp != -1) {
1613      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1614      continue;
1615    }
1616
1617    // Handle all the suboperands for this operand.
1618    const std::string &OpName = OpInfo->Name;
1619    for ( ; AliasOpNo <  LastOpNo &&
1620            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1621      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1622
1623      // Find out what operand from the asmparser that this MCInst operand
1624      // comes from.
1625      switch (CGA.ResultOperands[AliasOpNo].Kind) {
1626      case CodeGenInstAlias::ResultOperand::K_Record: {
1627        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1628        int SrcOperand = findAsmOperand(Name, SubIdx);
1629        if (SrcOperand == -1)
1630          throw TGError(TheDef->getLoc(), "Instruction '" +
1631                        TheDef->getName() + "' has operand '" + OpName +
1632                        "' that doesn't appear in asm string!");
1633        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1634        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1635                                                        NumOperands));
1636        break;
1637      }
1638      case CodeGenInstAlias::ResultOperand::K_Imm: {
1639        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1640        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1641        break;
1642      }
1643      case CodeGenInstAlias::ResultOperand::K_Reg: {
1644        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1645        ResOperands.push_back(ResOperand::getRegOp(Reg));
1646        break;
1647      }
1648      }
1649    }
1650  }
1651}
1652
1653static unsigned getConverterOperandID(const std::string &Name,
1654                                      SetVector<std::string> &Table,
1655                                      bool &IsNew) {
1656  IsNew = Table.insert(Name);
1657
1658  unsigned ID = IsNew ? Table.size() - 1 :
1659    std::find(Table.begin(), Table.end(), Name) - Table.begin();
1660
1661  assert(ID < Table.size());
1662
1663  return ID;
1664}
1665
1666
1667static void emitConvertToMCInst(CodeGenTarget &Target, StringRef ClassName,
1668                                std::vector<MatchableInfo*> &Infos,
1669                                raw_ostream &OS) {
1670  SetVector<std::string> OperandConversionKinds;
1671  SetVector<std::string> InstructionConversionKinds;
1672  std::vector<std::vector<uint8_t> > ConversionTable;
1673  size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1674
1675  // TargetOperandClass - This is the target's operand class, like X86Operand.
1676  std::string TargetOperandClass = Target.getName() + "Operand";
1677
1678  // Write the convert function to a separate stream, so we can drop it after
1679  // the enum. We'll build up the conversion handlers for the individual
1680  // operand types opportunistically as we encounter them.
1681  std::string ConvertFnBody;
1682  raw_string_ostream CvtOS(ConvertFnBody);
1683  // Start the unified conversion function.
1684  CvtOS << "void " << Target.getName() << ClassName << "::\n"
1685        << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1686        << "unsigned Opcode,\n"
1687        << "                const SmallVectorImpl<MCParsedAsmOperand*"
1688        << "> &Operands) {\n"
1689        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1690        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1691        << "  Inst.setOpcode(Opcode);\n"
1692        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1693        << "    switch (*p) {\n"
1694        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1695        << "    case CVT_Reg:\n"
1696        << "      static_cast<" << TargetOperandClass
1697        << "*>(Operands[*(p + 1)])->addRegOperands(Inst, 1);\n"
1698        << "      break;\n"
1699        << "    case CVT_Tied:\n"
1700        << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
1701        << "      break;\n";
1702
1703  std::string OperandFnBody;
1704  raw_string_ostream OpOS(OperandFnBody);
1705  // Start the operand number lookup function.
1706  OpOS << "unsigned " << Target.getName() << ClassName << "::\n"
1707       << "getMCInstOperandNumImpl(unsigned Kind, MCInst &Inst,\n"
1708       << "                        const SmallVectorImpl<MCParsedAsmOperand*> "
1709       << "&Operands,\n                        unsigned OperandNum, unsigned "
1710       << "&NumMCOperands) {\n"
1711       << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1712       << "  NumMCOperands = 0;\n"
1713       << "  unsigned MCOperandNum = 0;\n"
1714       << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1715       << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1716       << "    if (*(p + 1) > OperandNum) continue;\n"
1717       << "    switch (*p) {\n"
1718       << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1719       << "    case CVT_Reg:\n"
1720       << "      if (*(p + 1) == OperandNum) {\n"
1721       << "        NumMCOperands = 1;\n"
1722       << "        break;\n"
1723       << "      }\n"
1724       << "      ++MCOperandNum;\n"
1725       << "      break;\n"
1726       << "    case CVT_Tied:\n"
1727       << "      // FIXME: Tied operand calculation not supported.\n"
1728       << "      assert (0 && \"getMCInstOperandNumImpl() doesn't support tied operands, yet!\");\n"
1729       << "      break;\n";
1730
1731  // Pre-populate the operand conversion kinds with the standard always
1732  // available entries.
1733  OperandConversionKinds.insert("CVT_Done");
1734  OperandConversionKinds.insert("CVT_Reg");
1735  OperandConversionKinds.insert("CVT_Tied");
1736  enum { CVT_Done, CVT_Reg, CVT_Tied };
1737
1738  for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
1739         ie = Infos.end(); it != ie; ++it) {
1740    MatchableInfo &II = **it;
1741
1742    // Check if we have a custom match function.
1743    std::string AsmMatchConverter =
1744      II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1745    if (!AsmMatchConverter.empty()) {
1746      std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1747      II.ConversionFnKind = Signature;
1748
1749      // Check if we have already generated this signature.
1750      if (!InstructionConversionKinds.insert(Signature))
1751        continue;
1752
1753      // Remember this converter for the kind enum.
1754      unsigned KindID = OperandConversionKinds.size();
1755      OperandConversionKinds.insert("CVT_" + AsmMatchConverter);
1756
1757      // Add the converter row for this instruction.
1758      ConversionTable.push_back(std::vector<uint8_t>());
1759      ConversionTable.back().push_back(KindID);
1760      ConversionTable.back().push_back(CVT_Done);
1761
1762      // Add the handler to the conversion driver function.
1763      CvtOS << "    case CVT_" << AsmMatchConverter << ":\n"
1764            << "      " << AsmMatchConverter << "(Inst, Operands);\n"
1765            << "      break;\n";
1766
1767      // FIXME: Handle the operand number lookup for custom match functions.
1768      continue;
1769    }
1770
1771    // Build the conversion function signature.
1772    std::string Signature = "Convert";
1773
1774    std::vector<uint8_t> ConversionRow;
1775
1776    // Compute the convert enum and the case body.
1777    MaxRowLength = std::max(MaxRowLength, II.ResOperands.size()*2 + 1 );
1778
1779    for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
1780      const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
1781
1782      // Generate code to populate each result operand.
1783      switch (OpInfo.Kind) {
1784      case MatchableInfo::ResOperand::RenderAsmOperand: {
1785        // This comes from something we parsed.
1786        MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
1787
1788        // Registers are always converted the same, don't duplicate the
1789        // conversion function based on them.
1790        Signature += "__";
1791        std::string Class;
1792        Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
1793        Signature += Class;
1794        Signature += utostr(OpInfo.MINumOperands);
1795        Signature += "_" + itostr(OpInfo.AsmOperandNum);
1796
1797        // Add the conversion kind, if necessary, and get the associated ID
1798        // the index of its entry in the vector).
1799        std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
1800                                     Op.Class->RenderMethod);
1801
1802        bool IsNewConverter = false;
1803        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1804                                            IsNewConverter);
1805
1806        // Add the operand entry to the instruction kind conversion row.
1807        ConversionRow.push_back(ID);
1808        ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
1809
1810        if (!IsNewConverter)
1811          break;
1812
1813        // This is a new operand kind. Add a handler for it to the
1814        // converter driver.
1815        CvtOS << "    case " << Name << ":\n"
1816              << "      static_cast<" << TargetOperandClass
1817              << "*>(Operands[*(p + 1)])->"
1818              << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands
1819              << ");\n"
1820              << "      break;\n";
1821
1822        // Add a handler for the operand number lookup.
1823        OpOS << "    case " << Name << ":\n"
1824             << "      if (*(p + 1) == OperandNum) {\n"
1825             << "        NumMCOperands = " << OpInfo.MINumOperands << ";\n"
1826             << "        break;\n"
1827             << "      }\n"
1828             << "      MCOperandNum += " << OpInfo.MINumOperands << ";\n"
1829             << "      break;\n";
1830        break;
1831      }
1832      case MatchableInfo::ResOperand::TiedOperand: {
1833        // If this operand is tied to a previous one, just copy the MCInst
1834        // operand from the earlier one.We can only tie single MCOperand values.
1835        //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1836        unsigned TiedOp = OpInfo.TiedOperandNum;
1837        assert(i > TiedOp && "Tied operand precedes its target!");
1838        Signature += "__Tie" + utostr(TiedOp);
1839        ConversionRow.push_back(CVT_Tied);
1840        ConversionRow.push_back(TiedOp);
1841        // FIXME: Handle the operand number lookup for tied operands.
1842        break;
1843      }
1844      case MatchableInfo::ResOperand::ImmOperand: {
1845        int64_t Val = OpInfo.ImmVal;
1846        std::string Ty = "imm_" + itostr(Val);
1847        Signature += "__" + Ty;
1848
1849        std::string Name = "CVT_" + Ty;
1850        bool IsNewConverter = false;
1851        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1852                                            IsNewConverter);
1853        // Add the operand entry to the instruction kind conversion row.
1854        ConversionRow.push_back(ID);
1855        ConversionRow.push_back(0);
1856
1857        if (!IsNewConverter)
1858          break;
1859
1860        CvtOS << "    case " << Name << ":\n"
1861              << "      Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
1862              << "      break;\n";
1863
1864        OpOS << "    case " << Name << ":\n"
1865             << "      if (*(p + 1) == OperandNum) {\n"
1866             << "        NumMCOperands = 1;\n"
1867             << "        break;\n"
1868             << "      }\n"
1869             << "      ++MCOperandNum;\n"
1870             << "      break;\n";
1871        break;
1872      }
1873      case MatchableInfo::ResOperand::RegOperand: {
1874        std::string Reg, Name;
1875        if (OpInfo.Register == 0) {
1876          Name = "reg0";
1877          Reg = "0";
1878        } else {
1879          Reg = getQualifiedName(OpInfo.Register);
1880          Name = "reg" + OpInfo.Register->getName();
1881        }
1882        Signature += "__" + Name;
1883        Name = "CVT_" + Name;
1884        bool IsNewConverter = false;
1885        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1886                                            IsNewConverter);
1887        // Add the operand entry to the instruction kind conversion row.
1888        ConversionRow.push_back(ID);
1889        ConversionRow.push_back(0);
1890
1891        if (!IsNewConverter)
1892          break;
1893        CvtOS << "    case " << Name << ":\n"
1894              << "      Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
1895              << "      break;\n";
1896
1897        OpOS << "    case " << Name << ":\n"
1898             << "      if (*(p + 1) == OperandNum) {\n"
1899             << "        NumMCOperands = 1;\n"
1900             << "        break;\n"
1901             << "      }\n"
1902             << "      ++MCOperandNum;\n"
1903             << "      break;\n";
1904      }
1905      }
1906    }
1907
1908    // If there were no operands, add to the signature to that effect
1909    if (Signature == "Convert")
1910      Signature += "_NoOperands";
1911
1912    II.ConversionFnKind = Signature;
1913
1914    // Save the signature. If we already have it, don't add a new row
1915    // to the table.
1916    if (!InstructionConversionKinds.insert(Signature))
1917      continue;
1918
1919    // Add the row to the table.
1920    ConversionTable.push_back(ConversionRow);
1921  }
1922
1923  // Finish up the converter driver function.
1924  CvtOS << "    }\n  }\n}\n\n";
1925
1926  // Finish up the operand number lookup function.
1927  OpOS << "    }\n  }\n  return MCOperandNum;\n}\n\n";
1928
1929  OS << "namespace {\n";
1930
1931  // Output the operand conversion kind enum.
1932  OS << "enum OperatorConversionKind {\n";
1933  for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
1934    OS << "  " << OperandConversionKinds[i] << ",\n";
1935  OS << "  CVT_NUM_CONVERTERS\n";
1936  OS << "};\n\n";
1937
1938  // Output the instruction conversion kind enum.
1939  OS << "enum InstructionConversionKind {\n";
1940  for (SetVector<std::string>::const_iterator
1941         i = InstructionConversionKinds.begin(),
1942         e = InstructionConversionKinds.end(); i != e; ++i)
1943    OS << "  " << *i << ",\n";
1944  OS << "  CVT_NUM_SIGNATURES\n";
1945  OS << "};\n\n";
1946
1947
1948  OS << "} // end anonymous namespace\n\n";
1949
1950  // Output the conversion table.
1951  OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
1952     << MaxRowLength << "] = {\n";
1953
1954  for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
1955    assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
1956    OS << "  // " << InstructionConversionKinds[Row] << "\n";
1957    OS << "  { ";
1958    for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
1959      OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
1960         << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
1961    OS << "CVT_Done },\n";
1962  }
1963
1964  OS << "};\n\n";
1965
1966  // Spit out the conversion driver function.
1967  OS << CvtOS.str();
1968
1969  // Spit out the operand number lookup function.
1970  OS << OpOS.str();
1971}
1972
1973/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
1974static void emitMatchClassEnumeration(CodeGenTarget &Target,
1975                                      std::vector<ClassInfo*> &Infos,
1976                                      raw_ostream &OS) {
1977  OS << "namespace {\n\n";
1978
1979  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1980     << "/// instruction matching.\n";
1981  OS << "enum MatchClassKind {\n";
1982  OS << "  InvalidMatchClass = 0,\n";
1983  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1984         ie = Infos.end(); it != ie; ++it) {
1985    ClassInfo &CI = **it;
1986    OS << "  " << CI.Name << ", // ";
1987    if (CI.Kind == ClassInfo::Token) {
1988      OS << "'" << CI.ValueName << "'\n";
1989    } else if (CI.isRegisterClass()) {
1990      if (!CI.ValueName.empty())
1991        OS << "register class '" << CI.ValueName << "'\n";
1992      else
1993        OS << "derived register class\n";
1994    } else {
1995      OS << "user defined class '" << CI.ValueName << "'\n";
1996    }
1997  }
1998  OS << "  NumMatchClassKinds\n";
1999  OS << "};\n\n";
2000
2001  OS << "}\n\n";
2002}
2003
2004/// emitValidateOperandClass - Emit the function to validate an operand class.
2005static void emitValidateOperandClass(AsmMatcherInfo &Info,
2006                                     raw_ostream &OS) {
2007  OS << "static unsigned validateOperandClass(MCParsedAsmOperand *GOp, "
2008     << "MatchClassKind Kind) {\n";
2009  OS << "  " << Info.Target.getName() << "Operand &Operand = *("
2010     << Info.Target.getName() << "Operand*)GOp;\n";
2011
2012  // The InvalidMatchClass is not to match any operand.
2013  OS << "  if (Kind == InvalidMatchClass)\n";
2014  OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2015
2016  // Check for Token operands first.
2017  // FIXME: Use a more specific diagnostic type.
2018  OS << "  if (Operand.isToken())\n";
2019  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2020     << "             MCTargetAsmParser::Match_Success :\n"
2021     << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2022
2023  // Check the user classes. We don't care what order since we're only
2024  // actually matching against one of them.
2025  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
2026         ie = Info.Classes.end(); it != ie; ++it) {
2027    ClassInfo &CI = **it;
2028
2029    if (!CI.isUserClass())
2030      continue;
2031
2032    OS << "  // '" << CI.ClassName << "' class\n";
2033    OS << "  if (Kind == " << CI.Name << ") {\n";
2034    OS << "    if (Operand." << CI.PredicateMethod << "())\n";
2035    OS << "      return MCTargetAsmParser::Match_Success;\n";
2036    if (!CI.DiagnosticType.empty())
2037      OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2038         << CI.DiagnosticType << ";\n";
2039    OS << "  }\n\n";
2040  }
2041
2042  // Check for register operands, including sub-classes.
2043  OS << "  if (Operand.isReg()) {\n";
2044  OS << "    MatchClassKind OpKind;\n";
2045  OS << "    switch (Operand.getReg()) {\n";
2046  OS << "    default: OpKind = InvalidMatchClass; break;\n";
2047  for (AsmMatcherInfo::RegisterClassesTy::iterator
2048         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
2049       it != ie; ++it)
2050    OS << "    case " << Info.Target.getName() << "::"
2051       << it->first->getName() << ": OpKind = " << it->second->Name
2052       << "; break;\n";
2053  OS << "    }\n";
2054  OS << "    return isSubclass(OpKind, Kind) ? "
2055     << "MCTargetAsmParser::Match_Success :\n                             "
2056     << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
2057
2058  // Generic fallthrough match failure case for operands that don't have
2059  // specialized diagnostic types.
2060  OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2061  OS << "}\n\n";
2062}
2063
2064/// emitIsSubclass - Emit the subclass predicate function.
2065static void emitIsSubclass(CodeGenTarget &Target,
2066                           std::vector<ClassInfo*> &Infos,
2067                           raw_ostream &OS) {
2068  OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2069  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2070  OS << "  if (A == B)\n";
2071  OS << "    return true;\n\n";
2072
2073  OS << "  switch (A) {\n";
2074  OS << "  default:\n";
2075  OS << "    return false;\n";
2076  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2077         ie = Infos.end(); it != ie; ++it) {
2078    ClassInfo &A = **it;
2079
2080    std::vector<StringRef> SuperClasses;
2081    for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2082         ie = Infos.end(); it != ie; ++it) {
2083      ClassInfo &B = **it;
2084
2085      if (&A != &B && A.isSubsetOf(B))
2086        SuperClasses.push_back(B.Name);
2087    }
2088
2089    if (SuperClasses.empty())
2090      continue;
2091
2092    OS << "\n  case " << A.Name << ":\n";
2093
2094    if (SuperClasses.size() == 1) {
2095      OS << "    return B == " << SuperClasses.back() << ";\n";
2096      continue;
2097    }
2098
2099    OS << "    switch (B) {\n";
2100    OS << "    default: return false;\n";
2101    for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
2102      OS << "    case " << SuperClasses[i] << ": return true;\n";
2103    OS << "    }\n";
2104  }
2105  OS << "  }\n";
2106  OS << "}\n\n";
2107}
2108
2109/// emitMatchTokenString - Emit the function to match a token string to the
2110/// appropriate match class value.
2111static void emitMatchTokenString(CodeGenTarget &Target,
2112                                 std::vector<ClassInfo*> &Infos,
2113                                 raw_ostream &OS) {
2114  // Construct the match list.
2115  std::vector<StringMatcher::StringPair> Matches;
2116  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2117         ie = Infos.end(); it != ie; ++it) {
2118    ClassInfo &CI = **it;
2119
2120    if (CI.Kind == ClassInfo::Token)
2121      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
2122                                                  "return " + CI.Name + ";"));
2123  }
2124
2125  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2126
2127  StringMatcher("Name", Matches, OS).Emit();
2128
2129  OS << "  return InvalidMatchClass;\n";
2130  OS << "}\n\n";
2131}
2132
2133/// emitMatchRegisterName - Emit the function to match a string to the target
2134/// specific register enum.
2135static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2136                                  raw_ostream &OS) {
2137  // Construct the match list.
2138  std::vector<StringMatcher::StringPair> Matches;
2139  const std::vector<CodeGenRegister*> &Regs =
2140    Target.getRegBank().getRegisters();
2141  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2142    const CodeGenRegister *Reg = Regs[i];
2143    if (Reg->TheDef->getValueAsString("AsmName").empty())
2144      continue;
2145
2146    Matches.push_back(StringMatcher::StringPair(
2147                                     Reg->TheDef->getValueAsString("AsmName"),
2148                                     "return " + utostr(Reg->EnumValue) + ";"));
2149  }
2150
2151  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2152
2153  StringMatcher("Name", Matches, OS).Emit();
2154
2155  OS << "  return 0;\n";
2156  OS << "}\n\n";
2157}
2158
2159/// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
2160/// definitions.
2161static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
2162                                                raw_ostream &OS) {
2163  OS << "// Flags for subtarget features that participate in "
2164     << "instruction matching.\n";
2165  OS << "enum SubtargetFeatureFlag {\n";
2166  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2167         it = Info.SubtargetFeatures.begin(),
2168         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2169    SubtargetFeatureInfo &SFI = *it->second;
2170    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
2171  }
2172  OS << "  Feature_None = 0\n";
2173  OS << "};\n\n";
2174}
2175
2176/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2177static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2178  // Get the set of diagnostic types from all of the operand classes.
2179  std::set<StringRef> Types;
2180  for (std::map<Record*, ClassInfo*>::const_iterator
2181       I = Info.AsmOperandClasses.begin(),
2182       E = Info.AsmOperandClasses.end(); I != E; ++I) {
2183    if (!I->second->DiagnosticType.empty())
2184      Types.insert(I->second->DiagnosticType);
2185  }
2186
2187  if (Types.empty()) return;
2188
2189  // Now emit the enum entries.
2190  for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
2191       I != E; ++I)
2192    OS << "  Match_" << *I << ",\n";
2193  OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2194}
2195
2196/// emitGetSubtargetFeatureName - Emit the helper function to get the
2197/// user-level name for a subtarget feature.
2198static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2199  OS << "// User-level names for subtarget features that participate in\n"
2200     << "// instruction matching.\n"
2201     << "static const char *getSubtargetFeatureName(unsigned Val) {\n"
2202     << "  switch(Val) {\n";
2203  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2204         it = Info.SubtargetFeatures.begin(),
2205         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2206    SubtargetFeatureInfo &SFI = *it->second;
2207    // FIXME: Totally just a placeholder name to get the algorithm working.
2208    OS << "  case " << SFI.getEnumName() << ": return \""
2209       << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2210  }
2211  OS << "  default: return \"(unknown)\";\n";
2212  OS << "  }\n}\n\n";
2213}
2214
2215/// emitComputeAvailableFeatures - Emit the function to compute the list of
2216/// available features given a subtarget.
2217static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
2218                                         raw_ostream &OS) {
2219  std::string ClassName =
2220    Info.AsmParser->getValueAsString("AsmParserClassName");
2221
2222  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
2223     << "ComputeAvailableFeatures(uint64_t FB) const {\n";
2224  OS << "  unsigned Features = 0;\n";
2225  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2226         it = Info.SubtargetFeatures.begin(),
2227         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2228    SubtargetFeatureInfo &SFI = *it->second;
2229
2230    OS << "  if (";
2231    std::string CondStorage =
2232      SFI.TheDef->getValueAsString("AssemblerCondString");
2233    StringRef Conds = CondStorage;
2234    std::pair<StringRef,StringRef> Comma = Conds.split(',');
2235    bool First = true;
2236    do {
2237      if (!First)
2238        OS << " && ";
2239
2240      bool Neg = false;
2241      StringRef Cond = Comma.first;
2242      if (Cond[0] == '!') {
2243        Neg = true;
2244        Cond = Cond.substr(1);
2245      }
2246
2247      OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
2248      if (Neg)
2249        OS << " == 0";
2250      else
2251        OS << " != 0";
2252      OS << ")";
2253
2254      if (Comma.second.empty())
2255        break;
2256
2257      First = false;
2258      Comma = Comma.second.split(',');
2259    } while (true);
2260
2261    OS << ")\n";
2262    OS << "    Features |= " << SFI.getEnumName() << ";\n";
2263  }
2264  OS << "  return Features;\n";
2265  OS << "}\n\n";
2266}
2267
2268static std::string GetAliasRequiredFeatures(Record *R,
2269                                            const AsmMatcherInfo &Info) {
2270  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2271  std::string Result;
2272  unsigned NumFeatures = 0;
2273  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2274    SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2275
2276    if (F == 0)
2277      throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2278                    "' is not marked as an AssemblerPredicate!");
2279
2280    if (NumFeatures)
2281      Result += '|';
2282
2283    Result += F->getEnumName();
2284    ++NumFeatures;
2285  }
2286
2287  if (NumFeatures > 1)
2288    Result = '(' + Result + ')';
2289  return Result;
2290}
2291
2292/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2293/// emit a function for them and return true, otherwise return false.
2294static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
2295  // Ignore aliases when match-prefix is set.
2296  if (!MatchPrefix.empty())
2297    return false;
2298
2299  std::vector<Record*> Aliases =
2300    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2301  if (Aliases.empty()) return false;
2302
2303  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2304        "unsigned Features) {\n";
2305
2306  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2307  // iteration order of the map is stable.
2308  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2309
2310  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
2311    Record *R = Aliases[i];
2312    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2313  }
2314
2315  // Process each alias a "from" mnemonic at a time, building the code executed
2316  // by the string remapper.
2317  std::vector<StringMatcher::StringPair> Cases;
2318  for (std::map<std::string, std::vector<Record*> >::iterator
2319       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
2320       I != E; ++I) {
2321    const std::vector<Record*> &ToVec = I->second;
2322
2323    // Loop through each alias and emit code that handles each case.  If there
2324    // are two instructions without predicates, emit an error.  If there is one,
2325    // emit it last.
2326    std::string MatchCode;
2327    int AliasWithNoPredicate = -1;
2328
2329    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2330      Record *R = ToVec[i];
2331      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2332
2333      // If this unconditionally matches, remember it for later and diagnose
2334      // duplicates.
2335      if (FeatureMask.empty()) {
2336        if (AliasWithNoPredicate != -1) {
2337          // We can't have two aliases from the same mnemonic with no predicate.
2338          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2339                     "two MnemonicAliases with the same 'from' mnemonic!");
2340          throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
2341        }
2342
2343        AliasWithNoPredicate = i;
2344        continue;
2345      }
2346      if (R->getValueAsString("ToMnemonic") == I->first)
2347        throw TGError(R->getLoc(), "MnemonicAlias to the same string");
2348
2349      if (!MatchCode.empty())
2350        MatchCode += "else ";
2351      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2352      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
2353    }
2354
2355    if (AliasWithNoPredicate != -1) {
2356      Record *R = ToVec[AliasWithNoPredicate];
2357      if (!MatchCode.empty())
2358        MatchCode += "else\n  ";
2359      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
2360    }
2361
2362    MatchCode += "return;";
2363
2364    Cases.push_back(std::make_pair(I->first, MatchCode));
2365  }
2366
2367  StringMatcher("Mnemonic", Cases, OS).Emit();
2368  OS << "}\n\n";
2369
2370  return true;
2371}
2372
2373static const char *getMinimalTypeForRange(uint64_t Range) {
2374  assert(Range < 0xFFFFFFFFULL && "Enum too large");
2375  if (Range > 0xFFFF)
2376    return "uint32_t";
2377  if (Range > 0xFF)
2378    return "uint16_t";
2379  return "uint8_t";
2380}
2381
2382static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2383                              const AsmMatcherInfo &Info, StringRef ClassName,
2384                              StringToOffsetTable &StringTable,
2385                              unsigned MaxMnemonicIndex) {
2386  unsigned MaxMask = 0;
2387  for (std::vector<OperandMatchEntry>::const_iterator it =
2388       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2389       it != ie; ++it) {
2390    MaxMask |= it->OperandMask;
2391  }
2392
2393  // Emit the static custom operand parsing table;
2394  OS << "namespace {\n";
2395  OS << "  struct OperandMatchEntry {\n";
2396  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2397               << " RequiredFeatures;\n";
2398  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2399               << " Mnemonic;\n";
2400  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2401               << " Class;\n";
2402  OS << "    " << getMinimalTypeForRange(MaxMask)
2403               << " OperandMask;\n\n";
2404  OS << "    StringRef getMnemonic() const {\n";
2405  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2406  OS << "                       MnemonicTable[Mnemonic]);\n";
2407  OS << "    }\n";
2408  OS << "  };\n\n";
2409
2410  OS << "  // Predicate for searching for an opcode.\n";
2411  OS << "  struct LessOpcodeOperand {\n";
2412  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2413  OS << "      return LHS.getMnemonic()  < RHS;\n";
2414  OS << "    }\n";
2415  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2416  OS << "      return LHS < RHS.getMnemonic();\n";
2417  OS << "    }\n";
2418  OS << "    bool operator()(const OperandMatchEntry &LHS,";
2419  OS << " const OperandMatchEntry &RHS) {\n";
2420  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2421  OS << "    }\n";
2422  OS << "  };\n";
2423
2424  OS << "} // end anonymous namespace.\n\n";
2425
2426  OS << "static const OperandMatchEntry OperandMatchTable["
2427     << Info.OperandMatchInfo.size() << "] = {\n";
2428
2429  OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2430  for (std::vector<OperandMatchEntry>::const_iterator it =
2431       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2432       it != ie; ++it) {
2433    const OperandMatchEntry &OMI = *it;
2434    const MatchableInfo &II = *OMI.MI;
2435
2436    OS << "  { ";
2437
2438    // Write the required features mask.
2439    if (!II.RequiredFeatures.empty()) {
2440      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2441        if (i) OS << "|";
2442        OS << II.RequiredFeatures[i]->getEnumName();
2443      }
2444    } else
2445      OS << "0";
2446
2447    // Store a pascal-style length byte in the mnemonic.
2448    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2449    OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2450       << " /* " << II.Mnemonic << " */, ";
2451
2452    OS << OMI.CI->Name;
2453
2454    OS << ", " << OMI.OperandMask;
2455    OS << " /* ";
2456    bool printComma = false;
2457    for (int i = 0, e = 31; i !=e; ++i)
2458      if (OMI.OperandMask & (1 << i)) {
2459        if (printComma)
2460          OS << ", ";
2461        OS << i;
2462        printComma = true;
2463      }
2464    OS << " */";
2465
2466    OS << " },\n";
2467  }
2468  OS << "};\n\n";
2469
2470  // Emit the operand class switch to call the correct custom parser for
2471  // the found operand class.
2472  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2473     << Target.getName() << ClassName << "::\n"
2474     << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
2475     << " &Operands,\n                      unsigned MCK) {\n\n"
2476     << "  switch(MCK) {\n";
2477
2478  for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
2479       ie = Info.Classes.end(); it != ie; ++it) {
2480    ClassInfo *CI = *it;
2481    if (CI->ParserMethod.empty())
2482      continue;
2483    OS << "  case " << CI->Name << ":\n"
2484       << "    return " << CI->ParserMethod << "(Operands);\n";
2485  }
2486
2487  OS << "  default:\n";
2488  OS << "    return MatchOperand_NoMatch;\n";
2489  OS << "  }\n";
2490  OS << "  return MatchOperand_NoMatch;\n";
2491  OS << "}\n\n";
2492
2493  // Emit the static custom operand parser. This code is very similar with
2494  // the other matcher. Also use MatchResultTy here just in case we go for
2495  // a better error handling.
2496  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2497     << Target.getName() << ClassName << "::\n"
2498     << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
2499     << " &Operands,\n                       StringRef Mnemonic) {\n";
2500
2501  // Emit code to get the available features.
2502  OS << "  // Get the current feature set.\n";
2503  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2504
2505  OS << "  // Get the next operand index.\n";
2506  OS << "  unsigned NextOpNum = Operands.size()-1;\n";
2507
2508  // Emit code to search the table.
2509  OS << "  // Search the table.\n";
2510  OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2511  OS << " MnemonicRange =\n";
2512  OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
2513     << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2514     << "                     LessOpcodeOperand());\n\n";
2515
2516  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2517  OS << "    return MatchOperand_NoMatch;\n\n";
2518
2519  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2520     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2521
2522  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2523  OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2524
2525  // Emit check that the required features are available.
2526  OS << "    // check if the available features match\n";
2527  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2528     << "!= it->RequiredFeatures) {\n";
2529  OS << "      continue;\n";
2530  OS << "    }\n\n";
2531
2532  // Emit check to ensure the operand number matches.
2533  OS << "    // check if the operand in question has a custom parser.\n";
2534  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2535  OS << "      continue;\n\n";
2536
2537  // Emit call to the custom parser method
2538  OS << "    // call custom parse method to handle the operand\n";
2539  OS << "    OperandMatchResultTy Result = ";
2540  OS << "tryCustomParseOperand(Operands, it->Class);\n";
2541  OS << "    if (Result != MatchOperand_NoMatch)\n";
2542  OS << "      return Result;\n";
2543  OS << "  }\n\n";
2544
2545  OS << "  // Okay, we had no match.\n";
2546  OS << "  return MatchOperand_NoMatch;\n";
2547  OS << "}\n\n";
2548}
2549
2550void AsmMatcherEmitter::run(raw_ostream &OS) {
2551  CodeGenTarget Target(Records);
2552  Record *AsmParser = Target.getAsmParser();
2553  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2554
2555  // Compute the information on the instructions to match.
2556  AsmMatcherInfo Info(AsmParser, Target, Records);
2557  Info.buildInfo();
2558
2559  // Sort the instruction table using the partial order on classes. We use
2560  // stable_sort to ensure that ambiguous instructions are still
2561  // deterministically ordered.
2562  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2563                   less_ptr<MatchableInfo>());
2564
2565  DEBUG_WITH_TYPE("instruction_info", {
2566      for (std::vector<MatchableInfo*>::iterator
2567             it = Info.Matchables.begin(), ie = Info.Matchables.end();
2568           it != ie; ++it)
2569        (*it)->dump();
2570    });
2571
2572  // Check for ambiguous matchables.
2573  DEBUG_WITH_TYPE("ambiguous_instrs", {
2574    unsigned NumAmbiguous = 0;
2575    for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
2576      for (unsigned j = i + 1; j != e; ++j) {
2577        MatchableInfo &A = *Info.Matchables[i];
2578        MatchableInfo &B = *Info.Matchables[j];
2579
2580        if (A.couldMatchAmbiguouslyWith(B)) {
2581          errs() << "warning: ambiguous matchables:\n";
2582          A.dump();
2583          errs() << "\nis incomparable with:\n";
2584          B.dump();
2585          errs() << "\n\n";
2586          ++NumAmbiguous;
2587        }
2588      }
2589    }
2590    if (NumAmbiguous)
2591      errs() << "warning: " << NumAmbiguous
2592             << " ambiguous matchables!\n";
2593  });
2594
2595  // Compute the information on the custom operand parsing.
2596  Info.buildOperandMatchInfo();
2597
2598  // Write the output.
2599
2600  // Information for the class declaration.
2601  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2602  OS << "#undef GET_ASSEMBLER_HEADER\n";
2603  OS << "  // This should be included into the middle of the declaration of\n";
2604  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
2605  OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
2606  OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
2607     << "unsigned Opcode,\n"
2608     << "                          const SmallVectorImpl<MCParsedAsmOperand*> "
2609     << "&Operands);\n";
2610  OS << "  unsigned getMCInstOperandNumImpl(unsigned Kind, MCInst &Inst,\n     "
2611     << "                              const "
2612     << "SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n                     "
2613     << "          unsigned OperandNum, unsigned &NumMCOperands);\n";
2614  OS << "  bool MnemonicIsValid(StringRef Mnemonic);\n";
2615  OS << "  unsigned MatchInstructionImpl(\n"
2616     << "    const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"
2617     << "    unsigned &Kind, MCInst &Inst, "
2618     << "unsigned &ErrorInfo,\n    unsigned VariantID = 0);\n";
2619
2620  if (Info.OperandMatchInfo.size()) {
2621    OS << "\n  enum OperandMatchResultTy {\n";
2622    OS << "    MatchOperand_Success,    // operand matched successfully\n";
2623    OS << "    MatchOperand_NoMatch,    // operand did not match\n";
2624    OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
2625    OS << "  };\n";
2626    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
2627    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2628    OS << "    StringRef Mnemonic);\n";
2629
2630    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
2631    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2632    OS << "    unsigned MCK);\n\n";
2633  }
2634
2635  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2636
2637  // Emit the operand match diagnostic enum names.
2638  OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
2639  OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2640  emitOperandDiagnosticTypes(Info, OS);
2641  OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2642
2643
2644  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2645  OS << "#undef GET_REGISTER_MATCHER\n\n";
2646
2647  // Emit the subtarget feature enumeration.
2648  emitSubtargetFeatureFlagEnumeration(Info, OS);
2649
2650  // Emit the function to match a register name to number.
2651  // This should be omitted for Mips target
2652  if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
2653    emitMatchRegisterName(Target, AsmParser, OS);
2654
2655  OS << "#endif // GET_REGISTER_MATCHER\n\n";
2656
2657  OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
2658  OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
2659
2660  // Generate the helper function to get the names for subtarget features.
2661  emitGetSubtargetFeatureName(Info, OS);
2662
2663  OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
2664
2665  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2666  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2667
2668  // Generate the function that remaps for mnemonic aliases.
2669  bool HasMnemonicAliases = emitMnemonicAliases(OS, Info);
2670
2671  // Generate the unified function to convert operands into an MCInst.
2672  emitConvertToMCInst(Target, ClassName, Info.Matchables, OS);
2673
2674  // Emit the enumeration for classes which participate in matching.
2675  emitMatchClassEnumeration(Target, Info.Classes, OS);
2676
2677  // Emit the routine to match token strings to their match class.
2678  emitMatchTokenString(Target, Info.Classes, OS);
2679
2680  // Emit the subclass predicate routine.
2681  emitIsSubclass(Target, Info.Classes, OS);
2682
2683  // Emit the routine to validate an operand against a match class.
2684  emitValidateOperandClass(Info, OS);
2685
2686  // Emit the available features compute function.
2687  emitComputeAvailableFeatures(Info, OS);
2688
2689
2690  StringToOffsetTable StringTable;
2691
2692  size_t MaxNumOperands = 0;
2693  unsigned MaxMnemonicIndex = 0;
2694  for (std::vector<MatchableInfo*>::const_iterator it =
2695         Info.Matchables.begin(), ie = Info.Matchables.end();
2696       it != ie; ++it) {
2697    MatchableInfo &II = **it;
2698    MaxNumOperands = std::max(MaxNumOperands, II.AsmOperands.size());
2699
2700    // Store a pascal-style length byte in the mnemonic.
2701    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2702    MaxMnemonicIndex = std::max(MaxMnemonicIndex,
2703                        StringTable.GetOrAddStringOffset(LenMnemonic, false));
2704  }
2705
2706  OS << "static const char *const MnemonicTable =\n";
2707  StringTable.EmitString(OS);
2708  OS << ";\n\n";
2709
2710  // Emit the static match table; unused classes get initalized to 0 which is
2711  // guaranteed to be InvalidMatchClass.
2712  //
2713  // FIXME: We can reduce the size of this table very easily. First, we change
2714  // it so that store the kinds in separate bit-fields for each index, which
2715  // only needs to be the max width used for classes at that index (we also need
2716  // to reject based on this during classification). If we then make sure to
2717  // order the match kinds appropriately (putting mnemonics last), then we
2718  // should only end up using a few bits for each class, especially the ones
2719  // following the mnemonic.
2720  OS << "namespace {\n";
2721  OS << "  struct MatchEntry {\n";
2722  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2723               << " Mnemonic;\n";
2724  OS << "    uint16_t Opcode;\n";
2725  OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
2726               << " ConvertFn;\n";
2727  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2728               << " RequiredFeatures;\n";
2729  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2730               << " Classes[" << MaxNumOperands << "];\n";
2731  OS << "    uint8_t AsmVariantID;\n\n";
2732  OS << "    StringRef getMnemonic() const {\n";
2733  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2734  OS << "                       MnemonicTable[Mnemonic]);\n";
2735  OS << "    }\n";
2736  OS << "  };\n\n";
2737
2738  OS << "  // Predicate for searching for an opcode.\n";
2739  OS << "  struct LessOpcode {\n";
2740  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2741  OS << "      return LHS.getMnemonic() < RHS;\n";
2742  OS << "    }\n";
2743  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2744  OS << "      return LHS < RHS.getMnemonic();\n";
2745  OS << "    }\n";
2746  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2747  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2748  OS << "    }\n";
2749  OS << "  };\n";
2750
2751  OS << "} // end anonymous namespace.\n\n";
2752
2753  OS << "static const MatchEntry MatchTable["
2754     << Info.Matchables.size() << "] = {\n";
2755
2756  for (std::vector<MatchableInfo*>::const_iterator it =
2757       Info.Matchables.begin(), ie = Info.Matchables.end();
2758       it != ie; ++it) {
2759    MatchableInfo &II = **it;
2760
2761    // Store a pascal-style length byte in the mnemonic.
2762    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2763    OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2764       << " /* " << II.Mnemonic << " */, "
2765       << Target.getName() << "::"
2766       << II.getResultInst()->TheDef->getName() << ", "
2767       << II.ConversionFnKind << ", ";
2768
2769    // Write the required features mask.
2770    if (!II.RequiredFeatures.empty()) {
2771      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2772        if (i) OS << "|";
2773        OS << II.RequiredFeatures[i]->getEnumName();
2774      }
2775    } else
2776      OS << "0";
2777
2778    OS << ", { ";
2779    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
2780      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
2781
2782      if (i) OS << ", ";
2783      OS << Op.Class->Name;
2784    }
2785    OS << " }, " << II.AsmVariantID;
2786    OS << "},\n";
2787  }
2788
2789  OS << "};\n\n";
2790
2791  // A method to determine if a mnemonic is in the list.
2792  OS << "bool " << Target.getName() << ClassName << "::\n"
2793     << "MnemonicIsValid(StringRef Mnemonic) {\n";
2794  OS << "  // Search the table.\n";
2795  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2796  OS << "    std::equal_range(MatchTable, MatchTable+"
2797     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n";
2798  OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
2799  OS << "}\n\n";
2800
2801  // Finally, build the match function.
2802  OS << "unsigned "
2803     << Target.getName() << ClassName << "::\n"
2804     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
2805     << " &Operands,\n";
2806  OS << "                     unsigned &Kind, MCInst &Inst, unsigned ";
2807  OS << "&ErrorInfo,\n                     unsigned VariantID) {\n";
2808
2809  OS << "  // Eliminate obvious mismatches.\n";
2810  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2811  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2812  OS << "    return Match_InvalidOperand;\n";
2813  OS << "  }\n\n";
2814
2815  // Emit code to get the available features.
2816  OS << "  // Get the current feature set.\n";
2817  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2818
2819  OS << "  // Get the instruction mnemonic, which is the first token.\n";
2820  OS << "  StringRef Mnemonic = ((" << Target.getName()
2821     << "Operand*)Operands[0])->getToken();\n\n";
2822
2823  if (HasMnemonicAliases) {
2824    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
2825    OS << "  // FIXME : Add an entry in AsmParserVariant to check this.\n";
2826    OS << "  if (!VariantID)\n";
2827    OS << "    applyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
2828  }
2829
2830  // Emit code to compute the class list for this operand vector.
2831  OS << "  // Some state to try to produce better error messages.\n";
2832  OS << "  bool HadMatchOtherThanFeatures = false;\n";
2833  OS << "  bool HadMatchOtherThanPredicate = false;\n";
2834  OS << "  unsigned RetCode = Match_InvalidOperand;\n";
2835  OS << "  unsigned MissingFeatures = ~0U;\n";
2836  OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
2837  OS << "  // wrong for all instances of the instruction.\n";
2838  OS << "  ErrorInfo = ~0U;\n";
2839
2840  // Emit code to search the table.
2841  OS << "  // Search the table.\n";
2842  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2843  OS << "    std::equal_range(MatchTable, MatchTable+"
2844     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
2845
2846  OS << "  // Return a more specific error code if no mnemonics match.\n";
2847  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2848  OS << "    return Match_MnemonicFail;\n\n";
2849
2850  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
2851     << "*ie = MnemonicRange.second;\n";
2852  OS << "       it != ie; ++it) {\n";
2853
2854  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2855  OS << "    assert(Mnemonic == it->getMnemonic());\n";
2856
2857  // Emit check that the subclasses match.
2858  OS << "    if (VariantID != it->AsmVariantID) continue;\n";
2859  OS << "    bool OperandsValid = true;\n";
2860  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2861  OS << "      if (i + 1 >= Operands.size()) {\n";
2862  OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2863  OS << "        if (!OperandsValid) ErrorInfo = i + 1;\n";
2864  OS << "        break;\n";
2865  OS << "      }\n";
2866  OS << "      unsigned Diag = validateOperandClass(Operands[i+1],\n";
2867  OS.indent(43);
2868  OS << "(MatchClassKind)it->Classes[i]);\n";
2869  OS << "      if (Diag == Match_Success)\n";
2870  OS << "        continue;\n";
2871  OS << "      // If this operand is broken for all of the instances of this\n";
2872  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
2873  OS << "      // If we already had a match that only failed due to a\n";
2874  OS << "      // target predicate, that diagnostic is preferred.\n";
2875  OS << "      if (!HadMatchOtherThanPredicate &&\n";
2876  OS << "          (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
2877  OS << "        ErrorInfo = i+1;\n";
2878  OS << "        // InvalidOperand is the default. Prefer specificity.\n";
2879  OS << "        if (Diag != Match_InvalidOperand)\n";
2880  OS << "          RetCode = Diag;\n";
2881  OS << "      }\n";
2882  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
2883  OS << "      OperandsValid = false;\n";
2884  OS << "      break;\n";
2885  OS << "    }\n\n";
2886
2887  OS << "    if (!OperandsValid) continue;\n";
2888
2889  // Emit check that the required features are available.
2890  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2891     << "!= it->RequiredFeatures) {\n";
2892  OS << "      HadMatchOtherThanFeatures = true;\n";
2893  OS << "      unsigned NewMissingFeatures = it->RequiredFeatures & "
2894        "~AvailableFeatures;\n";
2895  OS << "      if (CountPopulation_32(NewMissingFeatures) <=\n"
2896        "          CountPopulation_32(MissingFeatures))\n";
2897  OS << "        MissingFeatures = NewMissingFeatures;\n";
2898  OS << "      continue;\n";
2899  OS << "    }\n";
2900  OS << "\n";
2901  OS << "    // We have selected a definite instruction, convert the parsed\n"
2902     << "    // operands into the appropriate MCInst.\n";
2903  OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
2904  OS << "\n";
2905
2906  // Verify the instruction with the target-specific match predicate function.
2907  OS << "    // We have a potential match. Check the target predicate to\n"
2908     << "    // handle any context sensitive constraints.\n"
2909     << "    unsigned MatchResult;\n"
2910     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
2911     << " Match_Success) {\n"
2912     << "      Inst.clear();\n"
2913     << "      RetCode = MatchResult;\n"
2914     << "      HadMatchOtherThanPredicate = true;\n"
2915     << "      continue;\n"
2916     << "    }\n\n";
2917
2918  // Call the post-processing function, if used.
2919  std::string InsnCleanupFn =
2920    AsmParser->getValueAsString("AsmParserInstCleanup");
2921  if (!InsnCleanupFn.empty())
2922    OS << "    " << InsnCleanupFn << "(Inst);\n";
2923
2924  OS << "    Kind = it->ConvertFn;\n";
2925  OS << "    return Match_Success;\n";
2926  OS << "  }\n\n";
2927
2928  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
2929  OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
2930  OS << "    return RetCode;\n\n";
2931  OS << "  // Missing feature matches return which features were missing\n";
2932  OS << "  ErrorInfo = MissingFeatures;\n";
2933  OS << "  return Match_MissingFeature;\n";
2934  OS << "}\n\n";
2935
2936  if (Info.OperandMatchInfo.size())
2937    emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
2938                             MaxMnemonicIndex);
2939
2940  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
2941}
2942
2943namespace llvm {
2944
2945void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
2946  emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
2947  AsmMatcherEmitter(RK).run(OS);
2948}
2949
2950} // End llvm namespace
2951