DAGISelEmitter.cpp revision ce1381afd9e77c323b973989d8bb257dc33e7dda
1//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a DAG instruction selector.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DAGISelEmitter.h"
15#include "Record.h"
16#include "llvm/ADT/StringExtras.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/MathExtras.h"
19#include <algorithm>
20#include <set>
21using namespace llvm;
22
23//===----------------------------------------------------------------------===//
24// Helpers for working with extended types.
25
26/// FilterVTs - Filter a list of VT's according to a predicate.
27///
28template<typename T>
29static std::vector<MVT::ValueType>
30FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
31  std::vector<MVT::ValueType> Result;
32  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
33    if (Filter(InVTs[i]))
34      Result.push_back(InVTs[i]);
35  return Result;
36}
37
38template<typename T>
39static std::vector<unsigned char>
40FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
41  std::vector<unsigned char> Result;
42  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
43    if (Filter((MVT::ValueType)InVTs[i]))
44      Result.push_back(InVTs[i]);
45  return Result;
46}
47
48static std::vector<unsigned char>
49ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
50  std::vector<unsigned char> Result;
51  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
52      Result.push_back(InVTs[i]);
53  return Result;
54}
55
56static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
57                             const std::vector<unsigned char> &RHS) {
58  if (LHS.size() > RHS.size()) return false;
59  for (unsigned i = 0, e = LHS.size(); i != e; ++i)
60    if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
61      return false;
62  return true;
63}
64
65/// isExtIntegerVT - Return true if the specified extended value type vector
66/// contains isInt or an integer value type.
67static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
68  assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
69  return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty());
70}
71
72/// isExtFloatingPointVT - Return true if the specified extended value type
73/// vector contains isFP or a FP value type.
74static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
75  assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
76  return EVTs[0] == MVT::isFP ||
77         !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty());
78}
79
80//===----------------------------------------------------------------------===//
81// SDTypeConstraint implementation
82//
83
84SDTypeConstraint::SDTypeConstraint(Record *R) {
85  OperandNo = R->getValueAsInt("OperandNum");
86
87  if (R->isSubClassOf("SDTCisVT")) {
88    ConstraintType = SDTCisVT;
89    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
90  } else if (R->isSubClassOf("SDTCisPtrTy")) {
91    ConstraintType = SDTCisPtrTy;
92  } else if (R->isSubClassOf("SDTCisInt")) {
93    ConstraintType = SDTCisInt;
94  } else if (R->isSubClassOf("SDTCisFP")) {
95    ConstraintType = SDTCisFP;
96  } else if (R->isSubClassOf("SDTCisSameAs")) {
97    ConstraintType = SDTCisSameAs;
98    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
99  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
100    ConstraintType = SDTCisVTSmallerThanOp;
101    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
102      R->getValueAsInt("OtherOperandNum");
103  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
104    ConstraintType = SDTCisOpSmallerThanOp;
105    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
106      R->getValueAsInt("BigOperandNum");
107  } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
108    ConstraintType = SDTCisIntVectorOfSameSize;
109    x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
110      R->getValueAsInt("OtherOpNum");
111  } else {
112    std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
113    exit(1);
114  }
115}
116
117/// getOperandNum - Return the node corresponding to operand #OpNo in tree
118/// N, which has NumResults results.
119TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
120                                                 TreePatternNode *N,
121                                                 unsigned NumResults) const {
122  assert(NumResults <= 1 &&
123         "We only work with nodes with zero or one result so far!");
124
125  if (OpNo >= (NumResults + N->getNumChildren())) {
126    std::cerr << "Invalid operand number " << OpNo << " ";
127    N->dump();
128    std::cerr << '\n';
129    exit(1);
130  }
131
132  if (OpNo < NumResults)
133    return N;  // FIXME: need value #
134  else
135    return N->getChild(OpNo-NumResults);
136}
137
138/// ApplyTypeConstraint - Given a node in a pattern, apply this type
139/// constraint to the nodes operands.  This returns true if it makes a
140/// change, false otherwise.  If a type contradiction is found, throw an
141/// exception.
142bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
143                                           const SDNodeInfo &NodeInfo,
144                                           TreePattern &TP) const {
145  unsigned NumResults = NodeInfo.getNumResults();
146  assert(NumResults <= 1 &&
147         "We only work with nodes with zero or one result so far!");
148
149  // Check that the number of operands is sane.  Negative operands -> varargs.
150  if (NodeInfo.getNumOperands() >= 0) {
151    if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
152      TP.error(N->getOperator()->getName() + " node requires exactly " +
153               itostr(NodeInfo.getNumOperands()) + " operands!");
154  }
155
156  const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo();
157
158  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
159
160  switch (ConstraintType) {
161  default: assert(0 && "Unknown constraint type!");
162  case SDTCisVT:
163    // Operand must be a particular type.
164    return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
165  case SDTCisPtrTy: {
166    // Operand must be same as target pointer type.
167    return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
168  }
169  case SDTCisInt: {
170    // If there is only one integer type supported, this must be it.
171    std::vector<MVT::ValueType> IntVTs =
172      FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
173
174    // If we found exactly one supported integer type, apply it.
175    if (IntVTs.size() == 1)
176      return NodeToApply->UpdateNodeType(IntVTs[0], TP);
177    return NodeToApply->UpdateNodeType(MVT::isInt, TP);
178  }
179  case SDTCisFP: {
180    // If there is only one FP type supported, this must be it.
181    std::vector<MVT::ValueType> FPVTs =
182      FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
183
184    // If we found exactly one supported FP type, apply it.
185    if (FPVTs.size() == 1)
186      return NodeToApply->UpdateNodeType(FPVTs[0], TP);
187    return NodeToApply->UpdateNodeType(MVT::isFP, TP);
188  }
189  case SDTCisSameAs: {
190    TreePatternNode *OtherNode =
191      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
192    return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
193           OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
194  }
195  case SDTCisVTSmallerThanOp: {
196    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
197    // have an integer type that is smaller than the VT.
198    if (!NodeToApply->isLeaf() ||
199        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
200        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
201               ->isSubClassOf("ValueType"))
202      TP.error(N->getOperator()->getName() + " expects a VT operand!");
203    MVT::ValueType VT =
204     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
205    if (!MVT::isInteger(VT))
206      TP.error(N->getOperator()->getName() + " VT operand must be integer!");
207
208    TreePatternNode *OtherNode =
209      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
210
211    // It must be integer.
212    bool MadeChange = false;
213    MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
214
215    // This code only handles nodes that have one type set.  Assert here so
216    // that we can change this if we ever need to deal with multiple value
217    // types at this point.
218    assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
219    if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
220      OtherNode->UpdateNodeType(MVT::Other, TP);  // Throw an error.
221    return false;
222  }
223  case SDTCisOpSmallerThanOp: {
224    TreePatternNode *BigOperand =
225      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
226
227    // Both operands must be integer or FP, but we don't care which.
228    bool MadeChange = false;
229
230    // This code does not currently handle nodes which have multiple types,
231    // where some types are integer, and some are fp.  Assert that this is not
232    // the case.
233    assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
234             isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
235           !(isExtIntegerInVTs(BigOperand->getExtTypes()) &&
236             isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
237           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
238    if (isExtIntegerInVTs(NodeToApply->getExtTypes()))
239      MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
240    else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
241      MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
242    if (isExtIntegerInVTs(BigOperand->getExtTypes()))
243      MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
244    else if (isExtFloatingPointInVTs(BigOperand->getExtTypes()))
245      MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
246
247    std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
248
249    if (isExtIntegerInVTs(NodeToApply->getExtTypes())) {
250      VTs = FilterVTs(VTs, MVT::isInteger);
251    } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
252      VTs = FilterVTs(VTs, MVT::isFloatingPoint);
253    } else {
254      VTs.clear();
255    }
256
257    switch (VTs.size()) {
258    default:         // Too many VT's to pick from.
259    case 0: break;   // No info yet.
260    case 1:
261      // Only one VT of this flavor.  Cannot ever satisify the constraints.
262      return NodeToApply->UpdateNodeType(MVT::Other, TP);  // throw
263    case 2:
264      // If we have exactly two possible types, the little operand must be the
265      // small one, the big operand should be the big one.  Common with
266      // float/double for example.
267      assert(VTs[0] < VTs[1] && "Should be sorted!");
268      MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
269      MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
270      break;
271    }
272    return MadeChange;
273  }
274  case SDTCisIntVectorOfSameSize: {
275    TreePatternNode *OtherOperand =
276      getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
277                    N, NumResults);
278    if (OtherOperand->hasTypeSet()) {
279      if (!MVT::isVector(OtherOperand->getTypeNum(0)))
280        TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
281      MVT::ValueType IVT = OtherOperand->getTypeNum(0);
282      IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
283      return NodeToApply->UpdateNodeType(IVT, TP);
284    }
285    return false;
286  }
287  }
288  return false;
289}
290
291
292//===----------------------------------------------------------------------===//
293// SDNodeInfo implementation
294//
295SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
296  EnumName    = R->getValueAsString("Opcode");
297  SDClassName = R->getValueAsString("SDClass");
298  Record *TypeProfile = R->getValueAsDef("TypeProfile");
299  NumResults = TypeProfile->getValueAsInt("NumResults");
300  NumOperands = TypeProfile->getValueAsInt("NumOperands");
301
302  // Parse the properties.
303  Properties = 0;
304  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
305  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
306    if (PropList[i]->getName() == "SDNPCommutative") {
307      Properties |= 1 << SDNPCommutative;
308    } else if (PropList[i]->getName() == "SDNPAssociative") {
309      Properties |= 1 << SDNPAssociative;
310    } else if (PropList[i]->getName() == "SDNPHasChain") {
311      Properties |= 1 << SDNPHasChain;
312    } else if (PropList[i]->getName() == "SDNPOutFlag") {
313      Properties |= 1 << SDNPOutFlag;
314    } else if (PropList[i]->getName() == "SDNPInFlag") {
315      Properties |= 1 << SDNPInFlag;
316    } else if (PropList[i]->getName() == "SDNPOptInFlag") {
317      Properties |= 1 << SDNPOptInFlag;
318    } else {
319      std::cerr << "Unknown SD Node property '" << PropList[i]->getName()
320                << "' on node '" << R->getName() << "'!\n";
321      exit(1);
322    }
323  }
324
325
326  // Parse the type constraints.
327  std::vector<Record*> ConstraintList =
328    TypeProfile->getValueAsListOfDefs("Constraints");
329  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
330}
331
332//===----------------------------------------------------------------------===//
333// TreePatternNode implementation
334//
335
336TreePatternNode::~TreePatternNode() {
337#if 0 // FIXME: implement refcounted tree nodes!
338  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
339    delete getChild(i);
340#endif
341}
342
343/// UpdateNodeType - Set the node type of N to VT if VT contains
344/// information.  If N already contains a conflicting type, then throw an
345/// exception.  This returns true if any information was updated.
346///
347bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
348                                     TreePattern &TP) {
349  assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
350
351  if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
352    return false;
353  if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
354    setTypes(ExtVTs);
355    return true;
356  }
357
358  if (getExtTypeNum(0) == MVT::iPTR) {
359    if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
360      return false;
361    if (isExtIntegerInVTs(ExtVTs)) {
362      std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
363      if (FVTs.size()) {
364        setTypes(ExtVTs);
365        return true;
366      }
367    }
368  }
369
370  if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) {
371    assert(hasTypeSet() && "should be handled above!");
372    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
373    if (getExtTypes() == FVTs)
374      return false;
375    setTypes(FVTs);
376    return true;
377  }
378  if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) {
379    //assert(hasTypeSet() && "should be handled above!");
380    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
381    if (getExtTypes() == FVTs)
382      return false;
383    if (FVTs.size()) {
384      setTypes(FVTs);
385      return true;
386    }
387  }
388  if (ExtVTs[0] == MVT::isFP  && isExtFloatingPointInVTs(getExtTypes())) {
389    assert(hasTypeSet() && "should be handled above!");
390    std::vector<unsigned char> FVTs =
391      FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
392    if (getExtTypes() == FVTs)
393      return false;
394    setTypes(FVTs);
395    return true;
396  }
397
398  // If we know this is an int or fp type, and we are told it is a specific one,
399  // take the advice.
400  //
401  // Similarly, we should probably set the type here to the intersection of
402  // {isInt|isFP} and ExtVTs
403  if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) ||
404      (getExtTypeNum(0) == MVT::isFP  && isExtFloatingPointInVTs(ExtVTs))) {
405    setTypes(ExtVTs);
406    return true;
407  }
408  if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
409    setTypes(ExtVTs);
410    return true;
411  }
412
413  if (isLeaf()) {
414    dump();
415    std::cerr << " ";
416    TP.error("Type inference contradiction found in node!");
417  } else {
418    TP.error("Type inference contradiction found in node " +
419             getOperator()->getName() + "!");
420  }
421  return true; // unreachable
422}
423
424
425void TreePatternNode::print(std::ostream &OS) const {
426  if (isLeaf()) {
427    OS << *getLeafValue();
428  } else {
429    OS << "(" << getOperator()->getName();
430  }
431
432  // FIXME: At some point we should handle printing all the value types for
433  // nodes that are multiply typed.
434  switch (getExtTypeNum(0)) {
435  case MVT::Other: OS << ":Other"; break;
436  case MVT::isInt: OS << ":isInt"; break;
437  case MVT::isFP : OS << ":isFP"; break;
438  case MVT::isUnknown: ; /*OS << ":?";*/ break;
439  case MVT::iPTR:  OS << ":iPTR"; break;
440  default: {
441    std::string VTName = llvm::getName(getTypeNum(0));
442    // Strip off MVT:: prefix if present.
443    if (VTName.substr(0,5) == "MVT::")
444      VTName = VTName.substr(5);
445    OS << ":" << VTName;
446    break;
447  }
448  }
449
450  if (!isLeaf()) {
451    if (getNumChildren() != 0) {
452      OS << " ";
453      getChild(0)->print(OS);
454      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
455        OS << ", ";
456        getChild(i)->print(OS);
457      }
458    }
459    OS << ")";
460  }
461
462  if (!PredicateFn.empty())
463    OS << "<<P:" << PredicateFn << ">>";
464  if (TransformFn)
465    OS << "<<X:" << TransformFn->getName() << ">>";
466  if (!getName().empty())
467    OS << ":$" << getName();
468
469}
470void TreePatternNode::dump() const {
471  print(std::cerr);
472}
473
474/// isIsomorphicTo - Return true if this node is recursively isomorphic to
475/// the specified node.  For this comparison, all of the state of the node
476/// is considered, except for the assigned name.  Nodes with differing names
477/// that are otherwise identical are considered isomorphic.
478bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
479  if (N == this) return true;
480  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
481      getPredicateFn() != N->getPredicateFn() ||
482      getTransformFn() != N->getTransformFn())
483    return false;
484
485  if (isLeaf()) {
486    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
487      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
488        return DI->getDef() == NDI->getDef();
489    return getLeafValue() == N->getLeafValue();
490  }
491
492  if (N->getOperator() != getOperator() ||
493      N->getNumChildren() != getNumChildren()) return false;
494  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
495    if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
496      return false;
497  return true;
498}
499
500/// clone - Make a copy of this tree and all of its children.
501///
502TreePatternNode *TreePatternNode::clone() const {
503  TreePatternNode *New;
504  if (isLeaf()) {
505    New = new TreePatternNode(getLeafValue());
506  } else {
507    std::vector<TreePatternNode*> CChildren;
508    CChildren.reserve(Children.size());
509    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
510      CChildren.push_back(getChild(i)->clone());
511    New = new TreePatternNode(getOperator(), CChildren);
512  }
513  New->setName(getName());
514  New->setTypes(getExtTypes());
515  New->setPredicateFn(getPredicateFn());
516  New->setTransformFn(getTransformFn());
517  return New;
518}
519
520/// SubstituteFormalArguments - Replace the formal arguments in this tree
521/// with actual values specified by ArgMap.
522void TreePatternNode::
523SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
524  if (isLeaf()) return;
525
526  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
527    TreePatternNode *Child = getChild(i);
528    if (Child->isLeaf()) {
529      Init *Val = Child->getLeafValue();
530      if (dynamic_cast<DefInit*>(Val) &&
531          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
532        // We found a use of a formal argument, replace it with its value.
533        Child = ArgMap[Child->getName()];
534        assert(Child && "Couldn't find formal argument!");
535        setChild(i, Child);
536      }
537    } else {
538      getChild(i)->SubstituteFormalArguments(ArgMap);
539    }
540  }
541}
542
543
544/// InlinePatternFragments - If this pattern refers to any pattern
545/// fragments, inline them into place, giving us a pattern without any
546/// PatFrag references.
547TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
548  if (isLeaf()) return this;  // nothing to do.
549  Record *Op = getOperator();
550
551  if (!Op->isSubClassOf("PatFrag")) {
552    // Just recursively inline children nodes.
553    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
554      setChild(i, getChild(i)->InlinePatternFragments(TP));
555    return this;
556  }
557
558  // Otherwise, we found a reference to a fragment.  First, look up its
559  // TreePattern record.
560  TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
561
562  // Verify that we are passing the right number of operands.
563  if (Frag->getNumArgs() != Children.size())
564    TP.error("'" + Op->getName() + "' fragment requires " +
565             utostr(Frag->getNumArgs()) + " operands!");
566
567  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
568
569  // Resolve formal arguments to their actual value.
570  if (Frag->getNumArgs()) {
571    // Compute the map of formal to actual arguments.
572    std::map<std::string, TreePatternNode*> ArgMap;
573    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
574      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
575
576    FragTree->SubstituteFormalArguments(ArgMap);
577  }
578
579  FragTree->setName(getName());
580  FragTree->UpdateNodeType(getExtTypes(), TP);
581
582  // Get a new copy of this fragment to stitch into here.
583  //delete this;    // FIXME: implement refcounting!
584  return FragTree;
585}
586
587/// getImplicitType - Check to see if the specified record has an implicit
588/// type which should be applied to it.  This infer the type of register
589/// references from the register file information, for example.
590///
591static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
592                                      TreePattern &TP) {
593  // Some common return values
594  std::vector<unsigned char> Unknown(1, MVT::isUnknown);
595  std::vector<unsigned char> Other(1, MVT::Other);
596
597  // Check to see if this is a register or a register class...
598  if (R->isSubClassOf("RegisterClass")) {
599    if (NotRegisters)
600      return Unknown;
601    const CodeGenRegisterClass &RC =
602      TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R);
603    return ConvertVTs(RC.getValueTypes());
604  } else if (R->isSubClassOf("PatFrag")) {
605    // Pattern fragment types will be resolved when they are inlined.
606    return Unknown;
607  } else if (R->isSubClassOf("Register")) {
608    if (NotRegisters)
609      return Unknown;
610    const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo();
611    return T.getRegisterVTs(R);
612  } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
613    // Using a VTSDNode or CondCodeSDNode.
614    return Other;
615  } else if (R->isSubClassOf("ComplexPattern")) {
616    if (NotRegisters)
617      return Unknown;
618    std::vector<unsigned char>
619    ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType());
620    return ComplexPat;
621  } else if (R->getName() == "node" || R->getName() == "srcvalue") {
622    // Placeholder.
623    return Unknown;
624  }
625
626  TP.error("Unknown node flavor used in pattern: " + R->getName());
627  return Other;
628}
629
630/// ApplyTypeConstraints - Apply all of the type constraints relevent to
631/// this node and its children in the tree.  This returns true if it makes a
632/// change, false otherwise.  If a type contradiction is found, throw an
633/// exception.
634bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
635  DAGISelEmitter &ISE = TP.getDAGISelEmitter();
636  if (isLeaf()) {
637    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
638      // If it's a regclass or something else known, include the type.
639      return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
640    } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
641      // Int inits are always integers. :)
642      bool MadeChange = UpdateNodeType(MVT::isInt, TP);
643
644      if (hasTypeSet()) {
645        // At some point, it may make sense for this tree pattern to have
646        // multiple types.  Assert here that it does not, so we revisit this
647        // code when appropriate.
648        assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
649        MVT::ValueType VT = getTypeNum(0);
650        for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
651          assert(getTypeNum(i) == VT && "TreePattern has too many types!");
652
653        VT = getTypeNum(0);
654        if (VT != MVT::iPTR) {
655          unsigned Size = MVT::getSizeInBits(VT);
656          // Make sure that the value is representable for this type.
657          if (Size < 32) {
658            int Val = (II->getValue() << (32-Size)) >> (32-Size);
659            if (Val != II->getValue())
660              TP.error("Sign-extended integer value '" + itostr(II->getValue())+
661                       "' is out of range for type '" +
662                       getEnumName(getTypeNum(0)) + "'!");
663          }
664        }
665      }
666
667      return MadeChange;
668    }
669    return false;
670  }
671
672  // special handling for set, which isn't really an SDNode.
673  if (getOperator()->getName() == "set") {
674    assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!");
675    bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
676    MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
677
678    // Types of operands must match.
679    MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP);
680    MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP);
681    MadeChange |= UpdateNodeType(MVT::isVoid, TP);
682    return MadeChange;
683  } else if (getOperator() == ISE.get_intrinsic_void_sdnode() ||
684             getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
685             getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) {
686    unsigned IID =
687    dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
688    const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID);
689    bool MadeChange = false;
690
691    // Apply the result type to the node.
692    MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
693
694    if (getNumChildren() != Int.ArgVTs.size())
695      TP.error("Intrinsic '" + Int.Name + "' expects " +
696               utostr(Int.ArgVTs.size()-1) + " operands, not " +
697               utostr(getNumChildren()-1) + " operands!");
698
699    // Apply type info to the intrinsic ID.
700    MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
701
702    for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
703      MVT::ValueType OpVT = Int.ArgVTs[i];
704      MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
705      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
706    }
707    return MadeChange;
708  } else if (getOperator()->isSubClassOf("SDNode")) {
709    const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator());
710
711    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
712    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
713      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
714    // Branch, etc. do not produce results and top-level forms in instr pattern
715    // must have void types.
716    if (NI.getNumResults() == 0)
717      MadeChange |= UpdateNodeType(MVT::isVoid, TP);
718
719    // If this is a vector_shuffle operation, apply types to the build_vector
720    // operation.  The types of the integers don't matter, but this ensures they
721    // won't get checked.
722    if (getOperator()->getName() == "vector_shuffle" &&
723        getChild(2)->getOperator()->getName() == "build_vector") {
724      TreePatternNode *BV = getChild(2);
725      const std::vector<MVT::ValueType> &LegalVTs
726        = ISE.getTargetInfo().getLegalValueTypes();
727      MVT::ValueType LegalIntVT = MVT::Other;
728      for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
729        if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
730          LegalIntVT = LegalVTs[i];
731          break;
732        }
733      assert(LegalIntVT != MVT::Other && "No legal integer VT?");
734
735      for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
736        MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
737    }
738    return MadeChange;
739  } else if (getOperator()->isSubClassOf("Instruction")) {
740    const DAGInstruction &Inst = ISE.getInstruction(getOperator());
741    bool MadeChange = false;
742    unsigned NumResults = Inst.getNumResults();
743
744    assert(NumResults <= 1 &&
745           "Only supports zero or one result instrs!");
746
747    CodeGenInstruction &InstInfo =
748      ISE.getTargetInfo().getInstruction(getOperator()->getName());
749    // Apply the result type to the node
750    if (NumResults == 0 || InstInfo.noResults) { // FIXME: temporary hack...
751      MadeChange = UpdateNodeType(MVT::isVoid, TP);
752    } else {
753      Record *ResultNode = Inst.getResult(0);
754      assert(ResultNode->isSubClassOf("RegisterClass") &&
755             "Operands should be register classes!");
756
757      const CodeGenRegisterClass &RC =
758        ISE.getTargetInfo().getRegisterClass(ResultNode);
759      MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
760    }
761
762    if (getNumChildren() != Inst.getNumOperands())
763      TP.error("Instruction '" + getOperator()->getName() + " expects " +
764               utostr(Inst.getNumOperands()) + " operands, not " +
765               utostr(getNumChildren()) + " operands!");
766    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
767      Record *OperandNode = Inst.getOperand(i);
768      MVT::ValueType VT;
769      if (OperandNode->isSubClassOf("RegisterClass")) {
770        const CodeGenRegisterClass &RC =
771          ISE.getTargetInfo().getRegisterClass(OperandNode);
772        MadeChange |=getChild(i)->UpdateNodeType(ConvertVTs(RC.getValueTypes()),
773                                                 TP);
774      } else if (OperandNode->isSubClassOf("Operand")) {
775        VT = getValueType(OperandNode->getValueAsDef("Type"));
776        MadeChange |= getChild(i)->UpdateNodeType(VT, TP);
777      } else {
778        assert(0 && "Unknown operand type!");
779        abort();
780      }
781      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
782    }
783    return MadeChange;
784  } else {
785    assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
786
787    // Node transforms always take one operand.
788    if (getNumChildren() != 1)
789      TP.error("Node transform '" + getOperator()->getName() +
790               "' requires one operand!");
791
792    // If either the output or input of the xform does not have exact
793    // type info. We assume they must be the same. Otherwise, it is perfectly
794    // legal to transform from one type to a completely different type.
795    if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
796      bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
797      MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
798      return MadeChange;
799    }
800    return false;
801  }
802}
803
804/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
805/// RHS of a commutative operation, not the on LHS.
806static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
807  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
808    return true;
809  if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
810    return true;
811  return false;
812}
813
814
815/// canPatternMatch - If it is impossible for this pattern to match on this
816/// target, fill in Reason and return false.  Otherwise, return true.  This is
817/// used as a santity check for .td files (to prevent people from writing stuff
818/// that can never possibly work), and to prevent the pattern permuter from
819/// generating stuff that is useless.
820bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){
821  if (isLeaf()) return true;
822
823  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
824    if (!getChild(i)->canPatternMatch(Reason, ISE))
825      return false;
826
827  // If this is an intrinsic, handle cases that would make it not match.  For
828  // example, if an operand is required to be an immediate.
829  if (getOperator()->isSubClassOf("Intrinsic")) {
830    // TODO:
831    return true;
832  }
833
834  // If this node is a commutative operator, check that the LHS isn't an
835  // immediate.
836  const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator());
837  if (NodeInfo.hasProperty(SDNPCommutative)) {
838    // Scan all of the operands of the node and make sure that only the last one
839    // is a constant node, unless the RHS also is.
840    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
841      for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
842        if (OnlyOnRHSOfCommutative(getChild(i))) {
843          Reason="Immediate value must be on the RHS of commutative operators!";
844          return false;
845        }
846    }
847  }
848
849  return true;
850}
851
852//===----------------------------------------------------------------------===//
853// TreePattern implementation
854//
855
856TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
857                         DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
858   isInputPattern = isInput;
859   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
860     Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
861}
862
863TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
864                         DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
865  isInputPattern = isInput;
866  Trees.push_back(ParseTreePattern(Pat));
867}
868
869TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
870                         DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
871  isInputPattern = isInput;
872  Trees.push_back(Pat);
873}
874
875
876
877void TreePattern::error(const std::string &Msg) const {
878  dump();
879  throw "In " + TheRecord->getName() + ": " + Msg;
880}
881
882TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
883  DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
884  if (!OpDef) error("Pattern has unexpected operator type!");
885  Record *Operator = OpDef->getDef();
886
887  if (Operator->isSubClassOf("ValueType")) {
888    // If the operator is a ValueType, then this must be "type cast" of a leaf
889    // node.
890    if (Dag->getNumArgs() != 1)
891      error("Type cast only takes one operand!");
892
893    Init *Arg = Dag->getArg(0);
894    TreePatternNode *New;
895    if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
896      Record *R = DI->getDef();
897      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
898        Dag->setArg(0, new DagInit(DI,
899                                std::vector<std::pair<Init*, std::string> >()));
900        return ParseTreePattern(Dag);
901      }
902      New = new TreePatternNode(DI);
903    } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
904      New = ParseTreePattern(DI);
905    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
906      New = new TreePatternNode(II);
907      if (!Dag->getArgName(0).empty())
908        error("Constant int argument should not have a name!");
909    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
910      // Turn this into an IntInit.
911      Init *II = BI->convertInitializerTo(new IntRecTy());
912      if (II == 0 || !dynamic_cast<IntInit*>(II))
913        error("Bits value must be constants!");
914
915      New = new TreePatternNode(dynamic_cast<IntInit*>(II));
916      if (!Dag->getArgName(0).empty())
917        error("Constant int argument should not have a name!");
918    } else {
919      Arg->dump();
920      error("Unknown leaf value for tree pattern!");
921      return 0;
922    }
923
924    // Apply the type cast.
925    New->UpdateNodeType(getValueType(Operator), *this);
926    New->setName(Dag->getArgName(0));
927    return New;
928  }
929
930  // Verify that this is something that makes sense for an operator.
931  if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
932      !Operator->isSubClassOf("Instruction") &&
933      !Operator->isSubClassOf("SDNodeXForm") &&
934      !Operator->isSubClassOf("Intrinsic") &&
935      Operator->getName() != "set")
936    error("Unrecognized node '" + Operator->getName() + "'!");
937
938  //  Check to see if this is something that is illegal in an input pattern.
939  if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
940                         Operator->isSubClassOf("SDNodeXForm")))
941    error("Cannot use '" + Operator->getName() + "' in an input pattern!");
942
943  std::vector<TreePatternNode*> Children;
944
945  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
946    Init *Arg = Dag->getArg(i);
947    if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
948      Children.push_back(ParseTreePattern(DI));
949      if (Children.back()->getName().empty())
950        Children.back()->setName(Dag->getArgName(i));
951    } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
952      Record *R = DefI->getDef();
953      // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
954      // TreePatternNode if its own.
955      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
956        Dag->setArg(i, new DagInit(DefI,
957                              std::vector<std::pair<Init*, std::string> >()));
958        --i;  // Revisit this node...
959      } else {
960        TreePatternNode *Node = new TreePatternNode(DefI);
961        Node->setName(Dag->getArgName(i));
962        Children.push_back(Node);
963
964        // Input argument?
965        if (R->getName() == "node") {
966          if (Dag->getArgName(i).empty())
967            error("'node' argument requires a name to match with operand list");
968          Args.push_back(Dag->getArgName(i));
969        }
970      }
971    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
972      TreePatternNode *Node = new TreePatternNode(II);
973      if (!Dag->getArgName(i).empty())
974        error("Constant int argument should not have a name!");
975      Children.push_back(Node);
976    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
977      // Turn this into an IntInit.
978      Init *II = BI->convertInitializerTo(new IntRecTy());
979      if (II == 0 || !dynamic_cast<IntInit*>(II))
980        error("Bits value must be constants!");
981
982      TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
983      if (!Dag->getArgName(i).empty())
984        error("Constant int argument should not have a name!");
985      Children.push_back(Node);
986    } else {
987      std::cerr << '"';
988      Arg->dump();
989      std::cerr << "\": ";
990      error("Unknown leaf value for tree pattern!");
991    }
992  }
993
994  // If the operator is an intrinsic, then this is just syntactic sugar for for
995  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
996  // convert the intrinsic name to a number.
997  if (Operator->isSubClassOf("Intrinsic")) {
998    const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator);
999    unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1;
1000
1001    // If this intrinsic returns void, it must have side-effects and thus a
1002    // chain.
1003    if (Int.ArgVTs[0] == MVT::isVoid) {
1004      Operator = getDAGISelEmitter().get_intrinsic_void_sdnode();
1005    } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
1006      // Has side-effects, requires chain.
1007      Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode();
1008    } else {
1009      // Otherwise, no chain.
1010      Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode();
1011    }
1012
1013    TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
1014    Children.insert(Children.begin(), IIDNode);
1015  }
1016
1017  return new TreePatternNode(Operator, Children);
1018}
1019
1020/// InferAllTypes - Infer/propagate as many types throughout the expression
1021/// patterns as possible.  Return true if all types are infered, false
1022/// otherwise.  Throw an exception if a type contradiction is found.
1023bool TreePattern::InferAllTypes() {
1024  bool MadeChange = true;
1025  while (MadeChange) {
1026    MadeChange = false;
1027    for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1028      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1029  }
1030
1031  bool HasUnresolvedTypes = false;
1032  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1033    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1034  return !HasUnresolvedTypes;
1035}
1036
1037void TreePattern::print(std::ostream &OS) const {
1038  OS << getRecord()->getName();
1039  if (!Args.empty()) {
1040    OS << "(" << Args[0];
1041    for (unsigned i = 1, e = Args.size(); i != e; ++i)
1042      OS << ", " << Args[i];
1043    OS << ")";
1044  }
1045  OS << ": ";
1046
1047  if (Trees.size() > 1)
1048    OS << "[\n";
1049  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1050    OS << "\t";
1051    Trees[i]->print(OS);
1052    OS << "\n";
1053  }
1054
1055  if (Trees.size() > 1)
1056    OS << "]\n";
1057}
1058
1059void TreePattern::dump() const { print(std::cerr); }
1060
1061
1062
1063//===----------------------------------------------------------------------===//
1064// DAGISelEmitter implementation
1065//
1066
1067// Parse all of the SDNode definitions for the target, populating SDNodes.
1068void DAGISelEmitter::ParseNodeInfo() {
1069  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
1070  while (!Nodes.empty()) {
1071    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
1072    Nodes.pop_back();
1073  }
1074
1075  // Get the buildin intrinsic nodes.
1076  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
1077  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
1078  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
1079}
1080
1081/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1082/// map, and emit them to the file as functions.
1083void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
1084  OS << "\n// Node transformations.\n";
1085  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
1086  while (!Xforms.empty()) {
1087    Record *XFormNode = Xforms.back();
1088    Record *SDNode = XFormNode->getValueAsDef("Opcode");
1089    std::string Code = XFormNode->getValueAsCode("XFormFunction");
1090    SDNodeXForms.insert(std::make_pair(XFormNode,
1091                                       std::make_pair(SDNode, Code)));
1092
1093    if (!Code.empty()) {
1094      std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
1095      const char *C2 = ClassName == "SDNode" ? "N" : "inN";
1096
1097      OS << "inline SDOperand Transform_" << XFormNode->getName()
1098         << "(SDNode *" << C2 << ") {\n";
1099      if (ClassName != "SDNode")
1100        OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
1101      OS << Code << "\n}\n";
1102    }
1103
1104    Xforms.pop_back();
1105  }
1106}
1107
1108void DAGISelEmitter::ParseComplexPatterns() {
1109  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
1110  while (!AMs.empty()) {
1111    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
1112    AMs.pop_back();
1113  }
1114}
1115
1116
1117/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
1118/// file, building up the PatternFragments map.  After we've collected them all,
1119/// inline fragments together as necessary, so that there are no references left
1120/// inside a pattern fragment to a pattern fragment.
1121///
1122/// This also emits all of the predicate functions to the output file.
1123///
1124void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
1125  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
1126
1127  // First step, parse all of the fragments and emit predicate functions.
1128  OS << "\n// Predicate functions.\n";
1129  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1130    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
1131    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
1132    PatternFragments[Fragments[i]] = P;
1133
1134    // Validate the argument list, converting it to map, to discard duplicates.
1135    std::vector<std::string> &Args = P->getArgList();
1136    std::set<std::string> OperandsMap(Args.begin(), Args.end());
1137
1138    if (OperandsMap.count(""))
1139      P->error("Cannot have unnamed 'node' values in pattern fragment!");
1140
1141    // Parse the operands list.
1142    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
1143    DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
1144    if (!OpsOp || OpsOp->getDef()->getName() != "ops")
1145      P->error("Operands list should start with '(ops ... '!");
1146
1147    // Copy over the arguments.
1148    Args.clear();
1149    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
1150      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
1151          static_cast<DefInit*>(OpsList->getArg(j))->
1152          getDef()->getName() != "node")
1153        P->error("Operands list should all be 'node' values.");
1154      if (OpsList->getArgName(j).empty())
1155        P->error("Operands list should have names for each operand!");
1156      if (!OperandsMap.count(OpsList->getArgName(j)))
1157        P->error("'" + OpsList->getArgName(j) +
1158                 "' does not occur in pattern or was multiply specified!");
1159      OperandsMap.erase(OpsList->getArgName(j));
1160      Args.push_back(OpsList->getArgName(j));
1161    }
1162
1163    if (!OperandsMap.empty())
1164      P->error("Operands list does not contain an entry for operand '" +
1165               *OperandsMap.begin() + "'!");
1166
1167    // If there is a code init for this fragment, emit the predicate code and
1168    // keep track of the fact that this fragment uses it.
1169    std::string Code = Fragments[i]->getValueAsCode("Predicate");
1170    if (!Code.empty()) {
1171      if (P->getOnlyTree()->isLeaf())
1172        OS << "inline bool Predicate_" << Fragments[i]->getName()
1173           << "(SDNode *N) {\n";
1174      else {
1175        std::string ClassName =
1176          getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
1177        const char *C2 = ClassName == "SDNode" ? "N" : "inN";
1178
1179        OS << "inline bool Predicate_" << Fragments[i]->getName()
1180           << "(SDNode *" << C2 << ") {\n";
1181        if (ClassName != "SDNode")
1182          OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
1183      }
1184      OS << Code << "\n}\n";
1185      P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
1186    }
1187
1188    // If there is a node transformation corresponding to this, keep track of
1189    // it.
1190    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
1191    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
1192      P->getOnlyTree()->setTransformFn(Transform);
1193  }
1194
1195  OS << "\n\n";
1196
1197  // Now that we've parsed all of the tree fragments, do a closure on them so
1198  // that there are not references to PatFrags left inside of them.
1199  for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1200       E = PatternFragments.end(); I != E; ++I) {
1201    TreePattern *ThePat = I->second;
1202    ThePat->InlinePatternFragments();
1203
1204    // Infer as many types as possible.  Don't worry about it if we don't infer
1205    // all of them, some may depend on the inputs of the pattern.
1206    try {
1207      ThePat->InferAllTypes();
1208    } catch (...) {
1209      // If this pattern fragment is not supported by this target (no types can
1210      // satisfy its constraints), just ignore it.  If the bogus pattern is
1211      // actually used by instructions, the type consistency error will be
1212      // reported there.
1213    }
1214
1215    // If debugging, print out the pattern fragment result.
1216    DEBUG(ThePat->dump());
1217  }
1218}
1219
1220/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
1221/// instruction input.  Return true if this is a real use.
1222static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
1223                      std::map<std::string, TreePatternNode*> &InstInputs,
1224                      std::vector<Record*> &InstImpInputs) {
1225  // No name -> not interesting.
1226  if (Pat->getName().empty()) {
1227    if (Pat->isLeaf()) {
1228      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1229      if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
1230        I->error("Input " + DI->getDef()->getName() + " must be named!");
1231      else if (DI && DI->getDef()->isSubClassOf("Register"))
1232        InstImpInputs.push_back(DI->getDef());
1233    }
1234    return false;
1235  }
1236
1237  Record *Rec;
1238  if (Pat->isLeaf()) {
1239    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1240    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
1241    Rec = DI->getDef();
1242  } else {
1243    assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
1244    Rec = Pat->getOperator();
1245  }
1246
1247  // SRCVALUE nodes are ignored.
1248  if (Rec->getName() == "srcvalue")
1249    return false;
1250
1251  TreePatternNode *&Slot = InstInputs[Pat->getName()];
1252  if (!Slot) {
1253    Slot = Pat;
1254  } else {
1255    Record *SlotRec;
1256    if (Slot->isLeaf()) {
1257      SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
1258    } else {
1259      assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
1260      SlotRec = Slot->getOperator();
1261    }
1262
1263    // Ensure that the inputs agree if we've already seen this input.
1264    if (Rec != SlotRec)
1265      I->error("All $" + Pat->getName() + " inputs must agree with each other");
1266    if (Slot->getExtTypes() != Pat->getExtTypes())
1267      I->error("All $" + Pat->getName() + " inputs must agree with each other");
1268  }
1269  return true;
1270}
1271
1272/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
1273/// part of "I", the instruction), computing the set of inputs and outputs of
1274/// the pattern.  Report errors if we see anything naughty.
1275void DAGISelEmitter::
1276FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
1277                            std::map<std::string, TreePatternNode*> &InstInputs,
1278                            std::map<std::string, TreePatternNode*>&InstResults,
1279                            std::vector<Record*> &InstImpInputs,
1280                            std::vector<Record*> &InstImpResults) {
1281  if (Pat->isLeaf()) {
1282    bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1283    if (!isUse && Pat->getTransformFn())
1284      I->error("Cannot specify a transform function for a non-input value!");
1285    return;
1286  } else if (Pat->getOperator()->getName() != "set") {
1287    // If this is not a set, verify that the children nodes are not void typed,
1288    // and recurse.
1289    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1290      if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
1291        I->error("Cannot have void nodes inside of patterns!");
1292      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
1293                                  InstImpInputs, InstImpResults);
1294    }
1295
1296    // If this is a non-leaf node with no children, treat it basically as if
1297    // it were a leaf.  This handles nodes like (imm).
1298    bool isUse = false;
1299    if (Pat->getNumChildren() == 0)
1300      isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1301
1302    if (!isUse && Pat->getTransformFn())
1303      I->error("Cannot specify a transform function for a non-input value!");
1304    return;
1305  }
1306
1307  // Otherwise, this is a set, validate and collect instruction results.
1308  if (Pat->getNumChildren() == 0)
1309    I->error("set requires operands!");
1310  else if (Pat->getNumChildren() & 1)
1311    I->error("set requires an even number of operands");
1312
1313  if (Pat->getTransformFn())
1314    I->error("Cannot specify a transform function on a set node!");
1315
1316  // Check the set destinations.
1317  unsigned NumValues = Pat->getNumChildren()/2;
1318  for (unsigned i = 0; i != NumValues; ++i) {
1319    TreePatternNode *Dest = Pat->getChild(i);
1320    if (!Dest->isLeaf())
1321      I->error("set destination should be a register!");
1322
1323    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1324    if (!Val)
1325      I->error("set destination should be a register!");
1326
1327    if (Val->getDef()->isSubClassOf("RegisterClass")) {
1328      if (Dest->getName().empty())
1329        I->error("set destination must have a name!");
1330      if (InstResults.count(Dest->getName()))
1331        I->error("cannot set '" + Dest->getName() +"' multiple times");
1332      InstResults[Dest->getName()] = Dest;
1333    } else if (Val->getDef()->isSubClassOf("Register")) {
1334      InstImpResults.push_back(Val->getDef());
1335    } else {
1336      I->error("set destination should be a register!");
1337    }
1338
1339    // Verify and collect info from the computation.
1340    FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues),
1341                                InstInputs, InstResults,
1342                                InstImpInputs, InstImpResults);
1343  }
1344}
1345
1346/// ParseInstructions - Parse all of the instructions, inlining and resolving
1347/// any fragments involved.  This populates the Instructions list with fully
1348/// resolved instructions.
1349void DAGISelEmitter::ParseInstructions() {
1350  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
1351
1352  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
1353    ListInit *LI = 0;
1354
1355    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
1356      LI = Instrs[i]->getValueAsListInit("Pattern");
1357
1358    // If there is no pattern, only collect minimal information about the
1359    // instruction for its operand list.  We have to assume that there is one
1360    // result, as we have no detailed info.
1361    if (!LI || LI->getSize() == 0) {
1362      std::vector<Record*> Results;
1363      std::vector<Record*> Operands;
1364
1365      CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
1366
1367      if (InstInfo.OperandList.size() != 0) {
1368        // FIXME: temporary hack...
1369        if (InstInfo.noResults) {
1370          // These produce no results
1371          for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
1372            Operands.push_back(InstInfo.OperandList[j].Rec);
1373        } else {
1374          // Assume the first operand is the result.
1375          Results.push_back(InstInfo.OperandList[0].Rec);
1376
1377          // The rest are inputs.
1378          for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
1379            Operands.push_back(InstInfo.OperandList[j].Rec);
1380        }
1381      }
1382
1383      // Create and insert the instruction.
1384      std::vector<Record*> ImpResults;
1385      std::vector<Record*> ImpOperands;
1386      Instructions.insert(std::make_pair(Instrs[i],
1387                          DAGInstruction(0, Results, Operands, ImpResults,
1388                                         ImpOperands)));
1389      continue;  // no pattern.
1390    }
1391
1392    // Parse the instruction.
1393    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
1394    // Inline pattern fragments into it.
1395    I->InlinePatternFragments();
1396
1397    // Infer as many types as possible.  If we cannot infer all of them, we can
1398    // never do anything with this instruction pattern: report it to the user.
1399    if (!I->InferAllTypes())
1400      I->error("Could not infer all types in pattern!");
1401
1402    // InstInputs - Keep track of all of the inputs of the instruction, along
1403    // with the record they are declared as.
1404    std::map<std::string, TreePatternNode*> InstInputs;
1405
1406    // InstResults - Keep track of all the virtual registers that are 'set'
1407    // in the instruction, including what reg class they are.
1408    std::map<std::string, TreePatternNode*> InstResults;
1409
1410    std::vector<Record*> InstImpInputs;
1411    std::vector<Record*> InstImpResults;
1412
1413    // Verify that the top-level forms in the instruction are of void type, and
1414    // fill in the InstResults map.
1415    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
1416      TreePatternNode *Pat = I->getTree(j);
1417      if (Pat->getExtTypeNum(0) != MVT::isVoid)
1418        I->error("Top-level forms in instruction pattern should have"
1419                 " void types");
1420
1421      // Find inputs and outputs, and verify the structure of the uses/defs.
1422      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
1423                                  InstImpInputs, InstImpResults);
1424    }
1425
1426    // Now that we have inputs and outputs of the pattern, inspect the operands
1427    // list for the instruction.  This determines the order that operands are
1428    // added to the machine instruction the node corresponds to.
1429    unsigned NumResults = InstResults.size();
1430
1431    // Parse the operands list from the (ops) list, validating it.
1432    std::vector<std::string> &Args = I->getArgList();
1433    assert(Args.empty() && "Args list should still be empty here!");
1434    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
1435
1436    // Check that all of the results occur first in the list.
1437    std::vector<Record*> Results;
1438    TreePatternNode *Res0Node = NULL;
1439    for (unsigned i = 0; i != NumResults; ++i) {
1440      if (i == CGI.OperandList.size())
1441        I->error("'" + InstResults.begin()->first +
1442                 "' set but does not appear in operand list!");
1443      const std::string &OpName = CGI.OperandList[i].Name;
1444
1445      // Check that it exists in InstResults.
1446      TreePatternNode *RNode = InstResults[OpName];
1447      if (RNode == 0)
1448        I->error("Operand $" + OpName + " does not exist in operand list!");
1449
1450      if (i == 0)
1451        Res0Node = RNode;
1452      Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
1453      if (R == 0)
1454        I->error("Operand $" + OpName + " should be a set destination: all "
1455                 "outputs must occur before inputs in operand list!");
1456
1457      if (CGI.OperandList[i].Rec != R)
1458        I->error("Operand $" + OpName + " class mismatch!");
1459
1460      // Remember the return type.
1461      Results.push_back(CGI.OperandList[i].Rec);
1462
1463      // Okay, this one checks out.
1464      InstResults.erase(OpName);
1465    }
1466
1467    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
1468    // the copy while we're checking the inputs.
1469    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
1470
1471    std::vector<TreePatternNode*> ResultNodeOperands;
1472    std::vector<Record*> Operands;
1473    for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
1474      const std::string &OpName = CGI.OperandList[i].Name;
1475      if (OpName.empty())
1476        I->error("Operand #" + utostr(i) + " in operands list has no name!");
1477
1478      if (!InstInputsCheck.count(OpName))
1479        I->error("Operand $" + OpName +
1480                 " does not appear in the instruction pattern");
1481      TreePatternNode *InVal = InstInputsCheck[OpName];
1482      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
1483
1484      if (InVal->isLeaf() &&
1485          dynamic_cast<DefInit*>(InVal->getLeafValue())) {
1486        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
1487        if (CGI.OperandList[i].Rec != InRec &&
1488            !InRec->isSubClassOf("ComplexPattern"))
1489          I->error("Operand $" + OpName + "'s register class disagrees"
1490                   " between the operand and pattern");
1491      }
1492      Operands.push_back(CGI.OperandList[i].Rec);
1493
1494      // Construct the result for the dest-pattern operand list.
1495      TreePatternNode *OpNode = InVal->clone();
1496
1497      // No predicate is useful on the result.
1498      OpNode->setPredicateFn("");
1499
1500      // Promote the xform function to be an explicit node if set.
1501      if (Record *Xform = OpNode->getTransformFn()) {
1502        OpNode->setTransformFn(0);
1503        std::vector<TreePatternNode*> Children;
1504        Children.push_back(OpNode);
1505        OpNode = new TreePatternNode(Xform, Children);
1506      }
1507
1508      ResultNodeOperands.push_back(OpNode);
1509    }
1510
1511    if (!InstInputsCheck.empty())
1512      I->error("Input operand $" + InstInputsCheck.begin()->first +
1513               " occurs in pattern but not in operands list!");
1514
1515    TreePatternNode *ResultPattern =
1516      new TreePatternNode(I->getRecord(), ResultNodeOperands);
1517    // Copy fully inferred output node type to instruction result pattern.
1518    if (NumResults > 0)
1519      ResultPattern->setTypes(Res0Node->getExtTypes());
1520
1521    // Create and insert the instruction.
1522    DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
1523    Instructions.insert(std::make_pair(I->getRecord(), TheInst));
1524
1525    // Use a temporary tree pattern to infer all types and make sure that the
1526    // constructed result is correct.  This depends on the instruction already
1527    // being inserted into the Instructions map.
1528    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
1529    Temp.InferAllTypes();
1530
1531    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
1532    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
1533
1534    DEBUG(I->dump());
1535  }
1536
1537  // If we can, convert the instructions to be patterns that are matched!
1538  for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
1539       E = Instructions.end(); II != E; ++II) {
1540    DAGInstruction &TheInst = II->second;
1541    TreePattern *I = TheInst.getPattern();
1542    if (I == 0) continue;  // No pattern.
1543
1544    if (I->getNumTrees() != 1) {
1545      std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!";
1546      continue;
1547    }
1548    TreePatternNode *Pattern = I->getTree(0);
1549    TreePatternNode *SrcPattern;
1550    if (Pattern->getOperator()->getName() == "set") {
1551      if (Pattern->getNumChildren() != 2)
1552        continue;  // Not a set of a single value (not handled so far)
1553
1554      SrcPattern = Pattern->getChild(1)->clone();
1555    } else{
1556      // Not a set (store or something?)
1557      SrcPattern = Pattern;
1558    }
1559
1560    std::string Reason;
1561    if (!SrcPattern->canPatternMatch(Reason, *this))
1562      I->error("Instruction can never match: " + Reason);
1563
1564    Record *Instr = II->first;
1565    TreePatternNode *DstPattern = TheInst.getResultPattern();
1566    PatternsToMatch.
1567      push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
1568                               SrcPattern, DstPattern,
1569                               Instr->getValueAsInt("AddedComplexity")));
1570  }
1571}
1572
1573void DAGISelEmitter::ParsePatterns() {
1574  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
1575
1576  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1577    DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
1578    TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this);
1579
1580    // Inline pattern fragments into it.
1581    Pattern->InlinePatternFragments();
1582
1583    ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
1584    if (LI->getSize() == 0) continue;  // no pattern.
1585
1586    // Parse the instruction.
1587    TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
1588
1589    // Inline pattern fragments into it.
1590    Result->InlinePatternFragments();
1591
1592    if (Result->getNumTrees() != 1)
1593      Result->error("Cannot handle instructions producing instructions "
1594                    "with temporaries yet!");
1595
1596    bool IterateInference;
1597    bool InferredAllPatternTypes, InferredAllResultTypes;
1598    do {
1599      // Infer as many types as possible.  If we cannot infer all of them, we
1600      // can never do anything with this pattern: report it to the user.
1601      InferredAllPatternTypes = Pattern->InferAllTypes();
1602
1603      // Infer as many types as possible.  If we cannot infer all of them, we
1604      // can never do anything with this pattern: report it to the user.
1605      InferredAllResultTypes = Result->InferAllTypes();
1606
1607      // Apply the type of the result to the source pattern.  This helps us
1608      // resolve cases where the input type is known to be a pointer type (which
1609      // is considered resolved), but the result knows it needs to be 32- or
1610      // 64-bits.  Infer the other way for good measure.
1611      IterateInference = Pattern->getOnlyTree()->
1612        UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result);
1613      IterateInference |= Result->getOnlyTree()->
1614        UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result);
1615    } while (IterateInference);
1616
1617    // Verify that we inferred enough types that we can do something with the
1618    // pattern and result.  If these fire the user has to add type casts.
1619    if (!InferredAllPatternTypes)
1620      Pattern->error("Could not infer all types in pattern!");
1621    if (!InferredAllResultTypes)
1622      Result->error("Could not infer all types in pattern result!");
1623
1624    // Validate that the input pattern is correct.
1625    {
1626      std::map<std::string, TreePatternNode*> InstInputs;
1627      std::map<std::string, TreePatternNode*> InstResults;
1628      std::vector<Record*> InstImpInputs;
1629      std::vector<Record*> InstImpResults;
1630      FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(),
1631                                  InstInputs, InstResults,
1632                                  InstImpInputs, InstImpResults);
1633    }
1634
1635    // Promote the xform function to be an explicit node if set.
1636    std::vector<TreePatternNode*> ResultNodeOperands;
1637    TreePatternNode *DstPattern = Result->getOnlyTree();
1638    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
1639      TreePatternNode *OpNode = DstPattern->getChild(ii);
1640      if (Record *Xform = OpNode->getTransformFn()) {
1641        OpNode->setTransformFn(0);
1642        std::vector<TreePatternNode*> Children;
1643        Children.push_back(OpNode);
1644        OpNode = new TreePatternNode(Xform, Children);
1645      }
1646      ResultNodeOperands.push_back(OpNode);
1647    }
1648    DstPattern = Result->getOnlyTree();
1649    if (!DstPattern->isLeaf())
1650      DstPattern = new TreePatternNode(DstPattern->getOperator(),
1651                                       ResultNodeOperands);
1652    DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
1653    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
1654    Temp.InferAllTypes();
1655
1656    std::string Reason;
1657    if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this))
1658      Pattern->error("Pattern can never match: " + Reason);
1659
1660    PatternsToMatch.
1661      push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
1662                               Pattern->getOnlyTree(),
1663                               Temp.getOnlyTree(),
1664                               Patterns[i]->getValueAsInt("AddedComplexity")));
1665  }
1666}
1667
1668/// CombineChildVariants - Given a bunch of permutations of each child of the
1669/// 'operator' node, put them together in all possible ways.
1670static void CombineChildVariants(TreePatternNode *Orig,
1671               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
1672                                 std::vector<TreePatternNode*> &OutVariants,
1673                                 DAGISelEmitter &ISE) {
1674  // Make sure that each operand has at least one variant to choose from.
1675  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1676    if (ChildVariants[i].empty())
1677      return;
1678
1679  // The end result is an all-pairs construction of the resultant pattern.
1680  std::vector<unsigned> Idxs;
1681  Idxs.resize(ChildVariants.size());
1682  bool NotDone = true;
1683  while (NotDone) {
1684    // Create the variant and add it to the output list.
1685    std::vector<TreePatternNode*> NewChildren;
1686    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1687      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
1688    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
1689
1690    // Copy over properties.
1691    R->setName(Orig->getName());
1692    R->setPredicateFn(Orig->getPredicateFn());
1693    R->setTransformFn(Orig->getTransformFn());
1694    R->setTypes(Orig->getExtTypes());
1695
1696    // If this pattern cannot every match, do not include it as a variant.
1697    std::string ErrString;
1698    if (!R->canPatternMatch(ErrString, ISE)) {
1699      delete R;
1700    } else {
1701      bool AlreadyExists = false;
1702
1703      // Scan to see if this pattern has already been emitted.  We can get
1704      // duplication due to things like commuting:
1705      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
1706      // which are the same pattern.  Ignore the dups.
1707      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
1708        if (R->isIsomorphicTo(OutVariants[i])) {
1709          AlreadyExists = true;
1710          break;
1711        }
1712
1713      if (AlreadyExists)
1714        delete R;
1715      else
1716        OutVariants.push_back(R);
1717    }
1718
1719    // Increment indices to the next permutation.
1720    NotDone = false;
1721    // Look for something we can increment without causing a wrap-around.
1722    for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
1723      if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
1724        NotDone = true;   // Found something to increment.
1725        break;
1726      }
1727      Idxs[IdxsIdx] = 0;
1728    }
1729  }
1730}
1731
1732/// CombineChildVariants - A helper function for binary operators.
1733///
1734static void CombineChildVariants(TreePatternNode *Orig,
1735                                 const std::vector<TreePatternNode*> &LHS,
1736                                 const std::vector<TreePatternNode*> &RHS,
1737                                 std::vector<TreePatternNode*> &OutVariants,
1738                                 DAGISelEmitter &ISE) {
1739  std::vector<std::vector<TreePatternNode*> > ChildVariants;
1740  ChildVariants.push_back(LHS);
1741  ChildVariants.push_back(RHS);
1742  CombineChildVariants(Orig, ChildVariants, OutVariants, ISE);
1743}
1744
1745
1746static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
1747                                     std::vector<TreePatternNode *> &Children) {
1748  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
1749  Record *Operator = N->getOperator();
1750
1751  // Only permit raw nodes.
1752  if (!N->getName().empty() || !N->getPredicateFn().empty() ||
1753      N->getTransformFn()) {
1754    Children.push_back(N);
1755    return;
1756  }
1757
1758  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
1759    Children.push_back(N->getChild(0));
1760  else
1761    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
1762
1763  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
1764    Children.push_back(N->getChild(1));
1765  else
1766    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
1767}
1768
1769/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
1770/// the (potentially recursive) pattern by using algebraic laws.
1771///
1772static void GenerateVariantsOf(TreePatternNode *N,
1773                               std::vector<TreePatternNode*> &OutVariants,
1774                               DAGISelEmitter &ISE) {
1775  // We cannot permute leaves.
1776  if (N->isLeaf()) {
1777    OutVariants.push_back(N);
1778    return;
1779  }
1780
1781  // Look up interesting info about the node.
1782  const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator());
1783
1784  // If this node is associative, reassociate.
1785  if (NodeInfo.hasProperty(SDNPAssociative)) {
1786    // Reassociate by pulling together all of the linked operators
1787    std::vector<TreePatternNode*> MaximalChildren;
1788    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
1789
1790    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
1791    // permutations.
1792    if (MaximalChildren.size() == 3) {
1793      // Find the variants of all of our maximal children.
1794      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
1795      GenerateVariantsOf(MaximalChildren[0], AVariants, ISE);
1796      GenerateVariantsOf(MaximalChildren[1], BVariants, ISE);
1797      GenerateVariantsOf(MaximalChildren[2], CVariants, ISE);
1798
1799      // There are only two ways we can permute the tree:
1800      //   (A op B) op C    and    A op (B op C)
1801      // Within these forms, we can also permute A/B/C.
1802
1803      // Generate legal pair permutations of A/B/C.
1804      std::vector<TreePatternNode*> ABVariants;
1805      std::vector<TreePatternNode*> BAVariants;
1806      std::vector<TreePatternNode*> ACVariants;
1807      std::vector<TreePatternNode*> CAVariants;
1808      std::vector<TreePatternNode*> BCVariants;
1809      std::vector<TreePatternNode*> CBVariants;
1810      CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE);
1811      CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE);
1812      CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE);
1813      CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE);
1814      CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE);
1815      CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE);
1816
1817      // Combine those into the result: (x op x) op x
1818      CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE);
1819      CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE);
1820      CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE);
1821      CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE);
1822      CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE);
1823      CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE);
1824
1825      // Combine those into the result: x op (x op x)
1826      CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE);
1827      CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE);
1828      CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE);
1829      CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE);
1830      CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE);
1831      CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE);
1832      return;
1833    }
1834  }
1835
1836  // Compute permutations of all children.
1837  std::vector<std::vector<TreePatternNode*> > ChildVariants;
1838  ChildVariants.resize(N->getNumChildren());
1839  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1840    GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE);
1841
1842  // Build all permutations based on how the children were formed.
1843  CombineChildVariants(N, ChildVariants, OutVariants, ISE);
1844
1845  // If this node is commutative, consider the commuted order.
1846  if (NodeInfo.hasProperty(SDNPCommutative)) {
1847    assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
1848    // Don't count children which are actually register references.
1849    unsigned NC = 0;
1850    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1851      TreePatternNode *Child = N->getChild(i);
1852      if (Child->isLeaf())
1853        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
1854          Record *RR = DI->getDef();
1855          if (RR->isSubClassOf("Register"))
1856            continue;
1857        }
1858      NC++;
1859    }
1860    // Consider the commuted order.
1861    if (NC == 2)
1862      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
1863                           OutVariants, ISE);
1864  }
1865}
1866
1867
1868// GenerateVariants - Generate variants.  For example, commutative patterns can
1869// match multiple ways.  Add them to PatternsToMatch as well.
1870void DAGISelEmitter::GenerateVariants() {
1871
1872  DEBUG(std::cerr << "Generating instruction variants.\n");
1873
1874  // Loop over all of the patterns we've collected, checking to see if we can
1875  // generate variants of the instruction, through the exploitation of
1876  // identities.  This permits the target to provide agressive matching without
1877  // the .td file having to contain tons of variants of instructions.
1878  //
1879  // Note that this loop adds new patterns to the PatternsToMatch list, but we
1880  // intentionally do not reconsider these.  Any variants of added patterns have
1881  // already been added.
1882  //
1883  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
1884    std::vector<TreePatternNode*> Variants;
1885    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
1886
1887    assert(!Variants.empty() && "Must create at least original variant!");
1888    Variants.erase(Variants.begin());  // Remove the original pattern.
1889
1890    if (Variants.empty())  // No variants for this pattern.
1891      continue;
1892
1893    DEBUG(std::cerr << "FOUND VARIANTS OF: ";
1894          PatternsToMatch[i].getSrcPattern()->dump();
1895          std::cerr << "\n");
1896
1897    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
1898      TreePatternNode *Variant = Variants[v];
1899
1900      DEBUG(std::cerr << "  VAR#" << v <<  ": ";
1901            Variant->dump();
1902            std::cerr << "\n");
1903
1904      // Scan to see if an instruction or explicit pattern already matches this.
1905      bool AlreadyExists = false;
1906      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
1907        // Check to see if this variant already exists.
1908        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
1909          DEBUG(std::cerr << "  *** ALREADY EXISTS, ignoring variant.\n");
1910          AlreadyExists = true;
1911          break;
1912        }
1913      }
1914      // If we already have it, ignore the variant.
1915      if (AlreadyExists) continue;
1916
1917      // Otherwise, add it to the list of patterns we have.
1918      PatternsToMatch.
1919        push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
1920                                 Variant, PatternsToMatch[i].getDstPattern(),
1921                                 PatternsToMatch[i].getAddedComplexity()));
1922    }
1923
1924    DEBUG(std::cerr << "\n");
1925  }
1926}
1927
1928// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
1929// ComplexPattern.
1930static bool NodeIsComplexPattern(TreePatternNode *N)
1931{
1932  return (N->isLeaf() &&
1933          dynamic_cast<DefInit*>(N->getLeafValue()) &&
1934          static_cast<DefInit*>(N->getLeafValue())->getDef()->
1935          isSubClassOf("ComplexPattern"));
1936}
1937
1938// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
1939// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
1940static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
1941                                                   DAGISelEmitter &ISE)
1942{
1943  if (N->isLeaf() &&
1944      dynamic_cast<DefInit*>(N->getLeafValue()) &&
1945      static_cast<DefInit*>(N->getLeafValue())->getDef()->
1946      isSubClassOf("ComplexPattern")) {
1947    return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
1948                                  ->getDef());
1949  }
1950  return NULL;
1951}
1952
1953/// getPatternSize - Return the 'size' of this pattern.  We want to match large
1954/// patterns before small ones.  This is used to determine the size of a
1955/// pattern.
1956static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
1957  assert((isExtIntegerInVTs(P->getExtTypes()) ||
1958          isExtFloatingPointInVTs(P->getExtTypes()) ||
1959          P->getExtTypeNum(0) == MVT::isVoid ||
1960          P->getExtTypeNum(0) == MVT::Flag ||
1961          P->getExtTypeNum(0) == MVT::iPTR) &&
1962         "Not a valid pattern node to size!");
1963  unsigned Size = 3;  // The node itself.
1964  // If the root node is a ConstantSDNode, increases its size.
1965  // e.g. (set R32:$dst, 0).
1966  if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
1967    Size += 2;
1968
1969  // FIXME: This is a hack to statically increase the priority of patterns
1970  // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
1971  // Later we can allow complexity / cost for each pattern to be (optionally)
1972  // specified. To get best possible pattern match we'll need to dynamically
1973  // calculate the complexity of all patterns a dag can potentially map to.
1974  const ComplexPattern *AM = NodeGetComplexPattern(P, ISE);
1975  if (AM)
1976    Size += AM->getNumOperands() * 3;
1977
1978  // If this node has some predicate function that must match, it adds to the
1979  // complexity of this node.
1980  if (!P->getPredicateFn().empty())
1981    ++Size;
1982
1983  // Count children in the count if they are also nodes.
1984  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1985    TreePatternNode *Child = P->getChild(i);
1986    if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
1987      Size += getPatternSize(Child, ISE);
1988    else if (Child->isLeaf()) {
1989      if (dynamic_cast<IntInit*>(Child->getLeafValue()))
1990        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1991      else if (NodeIsComplexPattern(Child))
1992        Size += getPatternSize(Child, ISE);
1993      else if (!Child->getPredicateFn().empty())
1994        ++Size;
1995    }
1996  }
1997
1998  return Size;
1999}
2000
2001/// getResultPatternCost - Compute the number of instructions for this pattern.
2002/// This is a temporary hack.  We should really include the instruction
2003/// latencies in this calculation.
2004static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) {
2005  if (P->isLeaf()) return 0;
2006
2007  unsigned Cost = 0;
2008  Record *Op = P->getOperator();
2009  if (Op->isSubClassOf("Instruction")) {
2010    Cost++;
2011    CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName());
2012    if (II.usesCustomDAGSchedInserter)
2013      Cost += 10;
2014  }
2015  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2016    Cost += getResultPatternCost(P->getChild(i), ISE);
2017  return Cost;
2018}
2019
2020/// getResultPatternCodeSize - Compute the code size of instructions for this
2021/// pattern.
2022static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
2023  if (P->isLeaf()) return 0;
2024
2025  unsigned Cost = 0;
2026  Record *Op = P->getOperator();
2027  if (Op->isSubClassOf("Instruction")) {
2028    Cost += Op->getValueAsInt("CodeSize");
2029  }
2030  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2031    Cost += getResultPatternSize(P->getChild(i), ISE);
2032  return Cost;
2033}
2034
2035// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
2036// In particular, we want to match maximal patterns first and lowest cost within
2037// a particular complexity first.
2038struct PatternSortingPredicate {
2039  PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {};
2040  DAGISelEmitter &ISE;
2041
2042  bool operator()(PatternToMatch *LHS,
2043                  PatternToMatch *RHS) {
2044    unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE);
2045    unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE);
2046    LHSSize += LHS->getAddedComplexity();
2047    RHSSize += RHS->getAddedComplexity();
2048    if (LHSSize > RHSSize) return true;   // LHS -> bigger -> less cost
2049    if (LHSSize < RHSSize) return false;
2050
2051    // If the patterns have equal complexity, compare generated instruction cost
2052    unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE);
2053    unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE);
2054    if (LHSCost < RHSCost) return true;
2055    if (LHSCost > RHSCost) return false;
2056
2057    return getResultPatternSize(LHS->getDstPattern(), ISE) <
2058      getResultPatternSize(RHS->getDstPattern(), ISE);
2059  }
2060};
2061
2062/// getRegisterValueType - Look up and return the first ValueType of specified
2063/// RegisterClass record
2064static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
2065  if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
2066    return RC->getValueTypeNum(0);
2067  return MVT::Other;
2068}
2069
2070
2071/// RemoveAllTypes - A quick recursive walk over a pattern which removes all
2072/// type information from it.
2073static void RemoveAllTypes(TreePatternNode *N) {
2074  N->removeTypes();
2075  if (!N->isLeaf())
2076    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2077      RemoveAllTypes(N->getChild(i));
2078}
2079
2080Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const {
2081  Record *N = Records.getDef(Name);
2082  if (!N || !N->isSubClassOf("SDNode")) {
2083    std::cerr << "Error getting SDNode '" << Name << "'!\n";
2084    exit(1);
2085  }
2086  return N;
2087}
2088
2089/// NodeHasProperty - return true if TreePatternNode has the specified
2090/// property.
2091static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
2092                            DAGISelEmitter &ISE)
2093{
2094  if (N->isLeaf()) {
2095    const ComplexPattern *CP = NodeGetComplexPattern(N, ISE);
2096    if (CP)
2097      return CP->hasProperty(Property);
2098    return false;
2099  }
2100  Record *Operator = N->getOperator();
2101  if (!Operator->isSubClassOf("SDNode")) return false;
2102
2103  const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator);
2104  return NodeInfo.hasProperty(Property);
2105}
2106
2107static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
2108                               DAGISelEmitter &ISE)
2109{
2110  if (NodeHasProperty(N, Property, ISE))
2111    return true;
2112
2113  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2114    TreePatternNode *Child = N->getChild(i);
2115    if (PatternHasProperty(Child, Property, ISE))
2116      return true;
2117  }
2118
2119  return false;
2120}
2121
2122class PatternCodeEmitter {
2123private:
2124  DAGISelEmitter &ISE;
2125
2126  // Predicates.
2127  ListInit *Predicates;
2128  // Pattern cost.
2129  unsigned Cost;
2130  // Instruction selector pattern.
2131  TreePatternNode *Pattern;
2132  // Matched instruction.
2133  TreePatternNode *Instruction;
2134
2135  // Node to name mapping
2136  std::map<std::string, std::string> VariableMap;
2137  // Node to operator mapping
2138  std::map<std::string, Record*> OperatorMap;
2139  // Names of all the folded nodes which produce chains.
2140  std::vector<std::pair<std::string, unsigned> > FoldedChains;
2141  // Original input chain(s).
2142  std::vector<std::pair<std::string, std::string> > OrigChains;
2143  std::set<std::string> Duplicates;
2144
2145  /// GeneratedCode - This is the buffer that we emit code to.  The first int
2146  /// indicates whether this is an exit predicate (something that should be
2147  /// tested, and if true, the match fails) [when 1], or normal code to emit
2148  /// [when 0], or initialization code to emit [when 2].
2149  std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
2150  /// GeneratedDecl - This is the set of all SDOperand declarations needed for
2151  /// the set of patterns for each top-level opcode.
2152  std::set<std::string> &GeneratedDecl;
2153  /// TargetOpcodes - The target specific opcodes used by the resulting
2154  /// instructions.
2155  std::vector<std::string> &TargetOpcodes;
2156  std::vector<std::string> &TargetVTs;
2157
2158  std::string ChainName;
2159  unsigned TmpNo;
2160  unsigned OpcNo;
2161  unsigned VTNo;
2162
2163  void emitCheck(const std::string &S) {
2164    if (!S.empty())
2165      GeneratedCode.push_back(std::make_pair(1, S));
2166  }
2167  void emitCode(const std::string &S) {
2168    if (!S.empty())
2169      GeneratedCode.push_back(std::make_pair(0, S));
2170  }
2171  void emitInit(const std::string &S) {
2172    if (!S.empty())
2173      GeneratedCode.push_back(std::make_pair(2, S));
2174  }
2175  void emitDecl(const std::string &S) {
2176    assert(!S.empty() && "Invalid declaration");
2177    GeneratedDecl.insert(S);
2178  }
2179  void emitOpcode(const std::string &Opc) {
2180    TargetOpcodes.push_back(Opc);
2181    OpcNo++;
2182  }
2183  void emitVT(const std::string &VT) {
2184    TargetVTs.push_back(VT);
2185    VTNo++;
2186  }
2187public:
2188  PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds,
2189                     TreePatternNode *pattern, TreePatternNode *instr,
2190                     std::vector<std::pair<unsigned, std::string> > &gc,
2191                     std::set<std::string> &gd,
2192                     std::vector<std::string> &to,
2193                     std::vector<std::string> &tv)
2194  : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr),
2195    GeneratedCode(gc), GeneratedDecl(gd),
2196    TargetOpcodes(to), TargetVTs(tv),
2197    TmpNo(0), OpcNo(0), VTNo(0) {}
2198
2199  /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
2200  /// if the match fails. At this point, we already know that the opcode for N
2201  /// matches, and the SDNode for the result has the RootName specified name.
2202  void EmitMatchCode(TreePatternNode *Root, TreePatternNode *N,
2203                     TreePatternNode *P, const std::string &RootName,
2204                     const std::string &ChainSuffix, bool &FoundChain) {
2205    bool isRoot = (P == NULL);
2206    // Emit instruction predicates. Each predicate is just a string for now.
2207    if (isRoot) {
2208      std::string PredicateCheck;
2209      for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
2210        if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
2211          Record *Def = Pred->getDef();
2212          if (!Def->isSubClassOf("Predicate")) {
2213#ifndef NDEBUG
2214            Def->dump();
2215#endif
2216            assert(0 && "Unknown predicate type!");
2217          }
2218          if (!PredicateCheck.empty())
2219            PredicateCheck += " && ";
2220          PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
2221        }
2222      }
2223
2224      emitCheck(PredicateCheck);
2225    }
2226
2227    if (N->isLeaf()) {
2228      if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
2229        emitCheck("cast<ConstantSDNode>(" + RootName +
2230                  ")->getSignExtended() == " + itostr(II->getValue()));
2231        return;
2232      } else if (!NodeIsComplexPattern(N)) {
2233        assert(0 && "Cannot match this as a leaf value!");
2234        abort();
2235      }
2236    }
2237
2238    // If this node has a name associated with it, capture it in VariableMap. If
2239    // we already saw this in the pattern, emit code to verify dagness.
2240    if (!N->getName().empty()) {
2241      std::string &VarMapEntry = VariableMap[N->getName()];
2242      if (VarMapEntry.empty()) {
2243        VarMapEntry = RootName;
2244      } else {
2245        // If we get here, this is a second reference to a specific name.  Since
2246        // we already have checked that the first reference is valid, we don't
2247        // have to recursively match it, just check that it's the same as the
2248        // previously named thing.
2249        emitCheck(VarMapEntry + " == " + RootName);
2250        return;
2251      }
2252
2253      if (!N->isLeaf())
2254        OperatorMap[N->getName()] = N->getOperator();
2255    }
2256
2257
2258    // Emit code to load the child nodes and match their contents recursively.
2259    unsigned OpNo = 0;
2260    bool NodeHasChain = NodeHasProperty   (N, SDNPHasChain, ISE);
2261    bool HasChain     = PatternHasProperty(N, SDNPHasChain, ISE);
2262    bool HasOutFlag   = PatternHasProperty(N, SDNPOutFlag,  ISE);
2263    bool EmittedUseCheck = false;
2264    if (HasChain) {
2265      if (NodeHasChain)
2266        OpNo = 1;
2267      if (!isRoot) {
2268        const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator());
2269        // Multiple uses of actual result?
2270        emitCheck(RootName + ".hasOneUse()");
2271        EmittedUseCheck = true;
2272        if (NodeHasChain) {
2273          // If the immediate use can somehow reach this node through another
2274          // path, then can't fold it either or it will create a cycle.
2275          // e.g. In the following diagram, XX can reach ld through YY. If
2276          // ld is folded into XX, then YY is both a predecessor and a successor
2277          // of XX.
2278          //
2279          //         [ld]
2280          //         ^  ^
2281          //         |  |
2282          //        /   \---
2283          //      /        [YY]
2284          //      |         ^
2285          //     [XX]-------|
2286          const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator());
2287          if (P != Root ||
2288              PInfo.getNumOperands() > 1 ||
2289              PInfo.hasProperty(SDNPHasChain) ||
2290              PInfo.hasProperty(SDNPInFlag) ||
2291              PInfo.hasProperty(SDNPOptInFlag)) {
2292            std::string ParentName(RootName.begin(), RootName.end()-1);
2293            emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName +
2294                      ".Val, N.Val)");
2295          }
2296        }
2297      }
2298
2299      if (NodeHasChain) {
2300        if (FoundChain) {
2301          emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || "
2302                    "IsChainCompatible(" + ChainName + ".Val, " +
2303                    RootName + ".Val))");
2304          OrigChains.push_back(std::make_pair(ChainName, RootName));
2305        } else
2306          FoundChain = true;
2307        ChainName = "Chain" + ChainSuffix;
2308        emitInit("SDOperand " + ChainName + " = " + RootName +
2309                 ".getOperand(0);");
2310      }
2311    }
2312
2313    // Don't fold any node which reads or writes a flag and has multiple uses.
2314    // FIXME: We really need to separate the concepts of flag and "glue". Those
2315    // real flag results, e.g. X86CMP output, can have multiple uses.
2316    // FIXME: If the optional incoming flag does not exist. Then it is ok to
2317    // fold it.
2318    if (!isRoot &&
2319        (PatternHasProperty(N, SDNPInFlag, ISE) ||
2320         PatternHasProperty(N, SDNPOptInFlag, ISE) ||
2321         PatternHasProperty(N, SDNPOutFlag, ISE))) {
2322      const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator());
2323      if (!EmittedUseCheck) {
2324        // Multiple uses of actual result?
2325        emitCheck(RootName + ".hasOneUse()");
2326      }
2327    }
2328
2329    // If there is a node predicate for this, emit the call.
2330    if (!N->getPredicateFn().empty())
2331      emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)");
2332
2333
2334    // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
2335    // a constant without a predicate fn that has more that one bit set, handle
2336    // this as a special case.  This is usually for targets that have special
2337    // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
2338    // handling stuff).  Using these instructions is often far more efficient
2339    // than materializing the constant.  Unfortunately, both the instcombiner
2340    // and the dag combiner can often infer that bits are dead, and thus drop
2341    // them from the mask in the dag.  For example, it might turn 'AND X, 255'
2342    // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
2343    // to handle this.
2344    if (!N->isLeaf() &&
2345        (N->getOperator()->getName() == "and" ||
2346         N->getOperator()->getName() == "or") &&
2347        N->getChild(1)->isLeaf() &&
2348        N->getChild(1)->getPredicateFn().empty()) {
2349      if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
2350        if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
2351          emitInit("SDOperand " + RootName + "0" + " = " +
2352                   RootName + ".getOperand(" + utostr(0) + ");");
2353          emitInit("SDOperand " + RootName + "1" + " = " +
2354                   RootName + ".getOperand(" + utostr(1) + ");");
2355
2356          emitCheck("isa<ConstantSDNode>(" + RootName + "1)");
2357          const char *MaskPredicate = N->getOperator()->getName() == "or"
2358            ? "CheckOrMask(" : "CheckAndMask(";
2359          emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" +
2360                    RootName + "1), " + itostr(II->getValue()) + ")");
2361
2362          EmitChildMatchCode(Root, N->getChild(0), N, RootName + utostr(0),
2363                             ChainSuffix + utostr(0), FoundChain);
2364          return;
2365        }
2366      }
2367    }
2368
2369    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
2370      emitInit("SDOperand " + RootName + utostr(OpNo) + " = " +
2371               RootName + ".getOperand(" +utostr(OpNo) + ");");
2372
2373      EmitChildMatchCode(Root, N->getChild(i), N, RootName + utostr(OpNo),
2374                         ChainSuffix + utostr(OpNo), FoundChain);
2375    }
2376
2377    // Handle cases when root is a complex pattern.
2378    const ComplexPattern *CP;
2379    if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
2380      std::string Fn = CP->getSelectFunc();
2381      unsigned NumOps = CP->getNumOperands();
2382      for (unsigned i = 0; i < NumOps; ++i) {
2383        emitDecl("CPTmp" + utostr(i));
2384        emitCode("SDOperand CPTmp" + utostr(i) + ";");
2385      }
2386      if (CP->hasProperty(SDNPHasChain)) {
2387        emitDecl("CPInChain");
2388        emitDecl("Chain" + ChainSuffix);
2389        emitCode("SDOperand CPInChain;");
2390        emitCode("SDOperand Chain" + ChainSuffix + ";");
2391      }
2392
2393      std::string Code = Fn + "(" + RootName;
2394      for (unsigned i = 0; i < NumOps; i++)
2395        Code += ", CPTmp" + utostr(i);
2396      if (CP->hasProperty(SDNPHasChain)) {
2397        ChainName = "Chain" + ChainSuffix;
2398        Code += ", CPInChain, Chain" + ChainSuffix;
2399      }
2400      emitCheck(Code + ")");
2401    }
2402  }
2403
2404  void EmitChildMatchCode(TreePatternNode *Root, TreePatternNode *Child,
2405                          TreePatternNode *Parent, const std::string &RootName,
2406                          const std::string &ChainSuffix, bool &FoundChain) {
2407    if (!Child->isLeaf()) {
2408      // If it's not a leaf, recursively match.
2409      const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator());
2410      emitCheck(RootName + ".getOpcode() == " +
2411                CInfo.getEnumName());
2412      EmitMatchCode(Root, Child, Parent, RootName, ChainSuffix, FoundChain);
2413      if (NodeHasProperty(Child, SDNPHasChain, ISE))
2414        FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
2415    } else {
2416      // If this child has a name associated with it, capture it in VarMap. If
2417      // we already saw this in the pattern, emit code to verify dagness.
2418      if (!Child->getName().empty()) {
2419        std::string &VarMapEntry = VariableMap[Child->getName()];
2420        if (VarMapEntry.empty()) {
2421          VarMapEntry = RootName;
2422        } else {
2423          // If we get here, this is a second reference to a specific name.
2424          // Since we already have checked that the first reference is valid,
2425          // we don't have to recursively match it, just check that it's the
2426          // same as the previously named thing.
2427          emitCheck(VarMapEntry + " == " + RootName);
2428          Duplicates.insert(RootName);
2429          return;
2430        }
2431      }
2432
2433      // Handle leaves of various types.
2434      if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
2435        Record *LeafRec = DI->getDef();
2436        if (LeafRec->isSubClassOf("RegisterClass")) {
2437          // Handle register references.  Nothing to do here.
2438        } else if (LeafRec->isSubClassOf("Register")) {
2439          // Handle register references.
2440        } else if (LeafRec->isSubClassOf("ComplexPattern")) {
2441          // Handle complex pattern.
2442          const ComplexPattern *CP = NodeGetComplexPattern(Child, ISE);
2443          std::string Fn = CP->getSelectFunc();
2444          unsigned NumOps = CP->getNumOperands();
2445          for (unsigned i = 0; i < NumOps; ++i) {
2446            emitDecl("CPTmp" + utostr(i));
2447            emitCode("SDOperand CPTmp" + utostr(i) + ";");
2448          }
2449          if (CP->hasProperty(SDNPHasChain)) {
2450            const SDNodeInfo &PInfo = ISE.getSDNodeInfo(Parent->getOperator());
2451            FoldedChains.push_back(std::make_pair("CPInChain",
2452                                                  PInfo.getNumResults()));
2453            ChainName = "Chain" + ChainSuffix;
2454            emitDecl("CPInChain");
2455            emitDecl(ChainName);
2456            emitCode("SDOperand CPInChain;");
2457            emitCode("SDOperand " + ChainName + ";");
2458          }
2459
2460          std::string Code = Fn + "(" + RootName;
2461          for (unsigned i = 0; i < NumOps; i++)
2462            Code += ", CPTmp" + utostr(i);
2463          if (CP->hasProperty(SDNPHasChain))
2464            Code += ", CPInChain, Chain" + ChainSuffix;
2465          emitCheck(Code + ")");
2466        } else if (LeafRec->getName() == "srcvalue") {
2467          // Place holder for SRCVALUE nodes. Nothing to do here.
2468        } else if (LeafRec->isSubClassOf("ValueType")) {
2469          // Make sure this is the specified value type.
2470          emitCheck("cast<VTSDNode>(" + RootName +
2471                    ")->getVT() == MVT::" + LeafRec->getName());
2472        } else if (LeafRec->isSubClassOf("CondCode")) {
2473          // Make sure this is the specified cond code.
2474          emitCheck("cast<CondCodeSDNode>(" + RootName +
2475                    ")->get() == ISD::" + LeafRec->getName());
2476        } else {
2477#ifndef NDEBUG
2478          Child->dump();
2479          std::cerr << " ";
2480#endif
2481          assert(0 && "Unknown leaf type!");
2482        }
2483
2484        // If there is a node predicate for this, emit the call.
2485        if (!Child->getPredicateFn().empty())
2486          emitCheck(Child->getPredicateFn() + "(" + RootName +
2487                    ".Val)");
2488      } else if (IntInit *II =
2489                 dynamic_cast<IntInit*>(Child->getLeafValue())) {
2490        emitCheck("isa<ConstantSDNode>(" + RootName + ")");
2491        unsigned CTmp = TmpNo++;
2492        emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+
2493                 RootName + ")->getSignExtended();");
2494
2495        emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue()));
2496      } else {
2497#ifndef NDEBUG
2498        Child->dump();
2499#endif
2500        assert(0 && "Unknown leaf type!");
2501      }
2502    }
2503  }
2504
2505  /// EmitResultCode - Emit the action for a pattern.  Now that it has matched
2506  /// we actually have to build a DAG!
2507  std::vector<std::string>
2508  EmitResultCode(TreePatternNode *N, bool RetSelected,
2509                 bool InFlagDecled, bool ResNodeDecled,
2510                 bool LikeLeaf = false, bool isRoot = false) {
2511    // List of arguments of getTargetNode() or SelectNodeTo().
2512    std::vector<std::string> NodeOps;
2513    // This is something selected from the pattern we matched.
2514    if (!N->getName().empty()) {
2515      std::string &Val = VariableMap[N->getName()];
2516      assert(!Val.empty() &&
2517             "Variable referenced but not defined and not caught earlier!");
2518      if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
2519        // Already selected this operand, just return the tmpval.
2520        NodeOps.push_back(Val);
2521        return NodeOps;
2522      }
2523
2524      const ComplexPattern *CP;
2525      unsigned ResNo = TmpNo++;
2526      if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
2527        assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
2528        std::string CastType;
2529        switch (N->getTypeNum(0)) {
2530        default: assert(0 && "Unknown type for constant node!");
2531        case MVT::i1:  CastType = "bool"; break;
2532        case MVT::i8:  CastType = "unsigned char"; break;
2533        case MVT::i16: CastType = "unsigned short"; break;
2534        case MVT::i32: CastType = "unsigned"; break;
2535        case MVT::i64: CastType = "uint64_t"; break;
2536        }
2537        emitCode("SDOperand Tmp" + utostr(ResNo) +
2538                 " = CurDAG->getTargetConstant(((" + CastType +
2539                 ") cast<ConstantSDNode>(" + Val + ")->getValue()), " +
2540                 getEnumName(N->getTypeNum(0)) + ");");
2541        NodeOps.push_back("Tmp" + utostr(ResNo));
2542        // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2543        // value if used multiple times by this pattern result.
2544        Val = "Tmp"+utostr(ResNo);
2545      } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
2546        Record *Op = OperatorMap[N->getName()];
2547        // Transform ExternalSymbol to TargetExternalSymbol
2548        if (Op && Op->getName() == "externalsym") {
2549          emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
2550                   "ExternalSymbol(cast<ExternalSymbolSDNode>(" +
2551                   Val + ")->getSymbol(), " +
2552                   getEnumName(N->getTypeNum(0)) + ");");
2553          NodeOps.push_back("Tmp" + utostr(ResNo));
2554          // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
2555          // this value if used multiple times by this pattern result.
2556          Val = "Tmp"+utostr(ResNo);
2557        } else {
2558          NodeOps.push_back(Val);
2559        }
2560      } else if (!N->isLeaf() && N->getOperator()->getName() == "tglobaladdr") {
2561        Record *Op = OperatorMap[N->getName()];
2562        // Transform GlobalAddress to TargetGlobalAddress
2563        if (Op && Op->getName() == "globaladdr") {
2564          emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
2565                   "GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
2566                   ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
2567                   ");");
2568          NodeOps.push_back("Tmp" + utostr(ResNo));
2569          // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
2570          // this value if used multiple times by this pattern result.
2571          Val = "Tmp"+utostr(ResNo);
2572        } else {
2573          NodeOps.push_back(Val);
2574        }
2575      } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
2576        NodeOps.push_back(Val);
2577        // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2578        // value if used multiple times by this pattern result.
2579        Val = "Tmp"+utostr(ResNo);
2580      } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") {
2581        NodeOps.push_back(Val);
2582        // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2583        // value if used multiple times by this pattern result.
2584        Val = "Tmp"+utostr(ResNo);
2585      } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
2586        std::string Fn = CP->getSelectFunc();
2587        for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
2588          emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");");
2589          NodeOps.push_back("CPTmp" + utostr(i));
2590        }
2591      } else {
2592        // This node, probably wrapped in a SDNodeXForm, behaves like a leaf
2593        // node even if it isn't one. Don't select it.
2594        if (!LikeLeaf) {
2595          emitCode("AddToISelQueue(" + Val + ");");
2596          if (isRoot && N->isLeaf()) {
2597            emitCode("ReplaceUses(N, " + Val + ");");
2598            emitCode("return NULL;");
2599          }
2600        }
2601        NodeOps.push_back(Val);
2602      }
2603      return NodeOps;
2604    }
2605    if (N->isLeaf()) {
2606      // If this is an explicit register reference, handle it.
2607      if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
2608        unsigned ResNo = TmpNo++;
2609        if (DI->getDef()->isSubClassOf("Register")) {
2610          emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
2611                   ISE.getQualifiedName(DI->getDef()) + ", " +
2612                   getEnumName(N->getTypeNum(0)) + ");");
2613          NodeOps.push_back("Tmp" + utostr(ResNo));
2614          return NodeOps;
2615        }
2616      } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
2617        unsigned ResNo = TmpNo++;
2618        assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
2619        emitCode("SDOperand Tmp" + utostr(ResNo) +
2620                 " = CurDAG->getTargetConstant(" + itostr(II->getValue()) +
2621                 ", " + getEnumName(N->getTypeNum(0)) + ");");
2622        NodeOps.push_back("Tmp" + utostr(ResNo));
2623        return NodeOps;
2624      }
2625
2626#ifndef NDEBUG
2627      N->dump();
2628#endif
2629      assert(0 && "Unknown leaf type!");
2630      return NodeOps;
2631    }
2632
2633    Record *Op = N->getOperator();
2634    if (Op->isSubClassOf("Instruction")) {
2635      const CodeGenTarget &CGT = ISE.getTargetInfo();
2636      CodeGenInstruction &II = CGT.getInstruction(Op->getName());
2637      const DAGInstruction &Inst = ISE.getInstruction(Op);
2638      TreePattern *InstPat = Inst.getPattern();
2639      TreePatternNode *InstPatNode =
2640        isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern)
2641               : (InstPat ? InstPat->getOnlyTree() : NULL);
2642      if (InstPatNode && InstPatNode->getOperator()->getName() == "set") {
2643        InstPatNode = InstPatNode->getChild(1);
2644      }
2645      bool HasVarOps     = isRoot && II.hasVariableNumberOfOperands;
2646      bool HasImpInputs  = isRoot && Inst.getNumImpOperands() > 0;
2647      bool HasImpResults = isRoot && Inst.getNumImpResults() > 0;
2648      bool NodeHasOptInFlag = isRoot &&
2649        PatternHasProperty(Pattern, SDNPOptInFlag, ISE);
2650      bool NodeHasInFlag  = isRoot &&
2651        PatternHasProperty(Pattern, SDNPInFlag, ISE);
2652      bool NodeHasOutFlag = HasImpResults || (isRoot &&
2653        PatternHasProperty(Pattern, SDNPOutFlag, ISE));
2654      bool NodeHasChain = InstPatNode &&
2655        PatternHasProperty(InstPatNode, SDNPHasChain, ISE);
2656      bool InputHasChain = isRoot &&
2657        NodeHasProperty(Pattern, SDNPHasChain, ISE);
2658
2659      if (NodeHasOptInFlag) {
2660        emitCode("bool HasInFlag = "
2661           "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
2662      }
2663      if (HasVarOps)
2664        emitCode("SmallVector<SDOperand, 8> Ops" + utostr(OpcNo) + ";");
2665
2666      // How many results is this pattern expected to produce?
2667      unsigned PatResults = 0;
2668      for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
2669        MVT::ValueType VT = Pattern->getTypeNum(i);
2670        if (VT != MVT::isVoid && VT != MVT::Flag)
2671          PatResults++;
2672      }
2673
2674      if (OrigChains.size() > 0) {
2675        // The original input chain is being ignored. If it is not just
2676        // pointing to the op that's being folded, we should create a
2677        // TokenFactor with it and the chain of the folded op as the new chain.
2678        // We could potentially be doing multiple levels of folding, in that
2679        // case, the TokenFactor can have more operands.
2680        emitCode("SmallVector<SDOperand, 8> InChains;");
2681        for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
2682          emitCode("if (" + OrigChains[i].first + ".Val != " +
2683                   OrigChains[i].second + ".Val) {");
2684          emitCode("  AddToISelQueue(" + OrigChains[i].first + ");");
2685          emitCode("  InChains.push_back(" + OrigChains[i].first + ");");
2686          emitCode("}");
2687        }
2688        emitCode("AddToISelQueue(" + ChainName + ");");
2689        emitCode("InChains.push_back(" + ChainName + ");");
2690        emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, "
2691                 "&InChains[0], InChains.size());");
2692      }
2693
2694      std::vector<std::string> AllOps;
2695      for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2696        std::vector<std::string> Ops = EmitResultCode(N->getChild(i),
2697                                      RetSelected, InFlagDecled, ResNodeDecled);
2698        AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
2699      }
2700
2701      // Emit all the chain and CopyToReg stuff.
2702      bool ChainEmitted = NodeHasChain;
2703      if (NodeHasChain)
2704        emitCode("AddToISelQueue(" + ChainName + ");");
2705      if (NodeHasInFlag || HasImpInputs)
2706        EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
2707                             InFlagDecled, ResNodeDecled, true);
2708      if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
2709        if (!InFlagDecled) {
2710          emitCode("SDOperand InFlag(0, 0);");
2711          InFlagDecled = true;
2712        }
2713        if (NodeHasOptInFlag) {
2714          emitCode("if (HasInFlag) {");
2715          emitCode("  InFlag = N.getOperand(N.getNumOperands()-1);");
2716          emitCode("  AddToISelQueue(InFlag);");
2717          emitCode("}");
2718        }
2719      }
2720
2721      unsigned NumResults = Inst.getNumResults();
2722      unsigned ResNo = TmpNo++;
2723      if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag ||
2724          NodeHasOptInFlag) {
2725        std::string Code;
2726        std::string Code2;
2727        std::string NodeName;
2728        if (!isRoot) {
2729          NodeName = "Tmp" + utostr(ResNo);
2730          Code2 = "SDOperand " + NodeName + " = SDOperand(";
2731        } else {
2732          NodeName = "ResNode";
2733          if (!ResNodeDecled)
2734            Code2 = "SDNode *" + NodeName + " = ";
2735          else
2736            Code2 = NodeName + " = ";
2737        }
2738
2739        Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo);
2740        unsigned OpsNo = OpcNo;
2741        emitOpcode(II.Namespace + "::" + II.TheDef->getName());
2742
2743        // Output order: results, chain, flags
2744        // Result types.
2745        if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
2746          Code += ", VT" + utostr(VTNo);
2747          emitVT(getEnumName(N->getTypeNum(0)));
2748        }
2749        if (NodeHasChain)
2750          Code += ", MVT::Other";
2751        if (NodeHasOutFlag)
2752          Code += ", MVT::Flag";
2753
2754        // Inputs.
2755        if (HasVarOps) {
2756          for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
2757            emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
2758          AllOps.clear();
2759        }
2760
2761        if (HasVarOps) {
2762          if (NodeHasInFlag || HasImpInputs)
2763            emitCode("for (unsigned i = 2, e = N.getNumOperands()-1; "
2764                     "i != e; ++i) {");
2765          else if (NodeHasOptInFlag)
2766            emitCode("for (unsigned i = 2, e = N.getNumOperands()-"
2767                     "(HasInFlag?1:0); i != e; ++i) {");
2768          else
2769            emitCode("for (unsigned i = 2, e = N.getNumOperands(); "
2770                     "i != e; ++i) {");
2771          emitCode("  AddToISelQueue(N.getOperand(i));");
2772          emitCode("  Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
2773          emitCode("}");
2774        }
2775
2776        if (NodeHasChain) {
2777          if (HasVarOps)
2778            emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
2779          else
2780            AllOps.push_back(ChainName);
2781        }
2782
2783        if (HasVarOps) {
2784          if (NodeHasInFlag || HasImpInputs)
2785            emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
2786          else if (NodeHasOptInFlag) {
2787            emitCode("if (HasInFlag)");
2788            emitCode("  Ops" + utostr(OpsNo) + ".push_back(InFlag);");
2789          }
2790          Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
2791            ".size()";
2792        } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
2793            AllOps.push_back("InFlag");
2794
2795        unsigned NumOps = AllOps.size();
2796        if (NumOps) {
2797          if (!NodeHasOptInFlag && NumOps < 4) {
2798            for (unsigned i = 0; i != NumOps; ++i)
2799              Code += ", " + AllOps[i];
2800          } else {
2801            std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { ";
2802            for (unsigned i = 0; i != NumOps; ++i) {
2803              OpsCode += AllOps[i];
2804              if (i != NumOps-1)
2805                OpsCode += ", ";
2806            }
2807            emitCode(OpsCode + " };");
2808            Code += ", Ops" + utostr(OpsNo) + ", ";
2809            if (NodeHasOptInFlag) {
2810              Code += "HasInFlag ? ";
2811              Code += utostr(NumOps) + " : " + utostr(NumOps-1);
2812            } else
2813              Code += utostr(NumOps);
2814          }
2815        }
2816
2817        if (!isRoot)
2818          Code += "), 0";
2819        emitCode(Code2 + Code + ");");
2820
2821        if (NodeHasChain)
2822          // Remember which op produces the chain.
2823          if (!isRoot)
2824            emitCode(ChainName + " = SDOperand(" + NodeName +
2825                     ".Val, " + utostr(PatResults) + ");");
2826          else
2827            emitCode(ChainName + " = SDOperand(" + NodeName +
2828                     ", " + utostr(PatResults) + ");");
2829
2830        if (!isRoot) {
2831          NodeOps.push_back("Tmp" + utostr(ResNo));
2832          return NodeOps;
2833        }
2834
2835        bool NeedReplace = false;
2836        if (NodeHasOutFlag) {
2837          if (!InFlagDecled) {
2838            emitCode("SDOperand InFlag = SDOperand(ResNode, " +
2839                     utostr(NumResults + (unsigned)NodeHasChain) + ");");
2840            InFlagDecled = true;
2841          } else
2842            emitCode("InFlag = SDOperand(ResNode, " +
2843                     utostr(NumResults + (unsigned)NodeHasChain) + ");");
2844        }
2845
2846        if (HasImpResults && EmitCopyFromRegs(N, ResNodeDecled, ChainEmitted)) {
2847          emitCode("ReplaceUses(SDOperand(N.Val, 0), SDOperand(ResNode, 0));");
2848          NumResults = 1;
2849        }
2850
2851        if (FoldedChains.size() > 0) {
2852          std::string Code;
2853          for (unsigned j = 0, e = FoldedChains.size(); j < e; j++)
2854            emitCode("ReplaceUses(SDOperand(" +
2855                     FoldedChains[j].first + ".Val, " +
2856                     utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " +
2857                     utostr(NumResults) + "));");
2858          NeedReplace = true;
2859        }
2860
2861        if (NodeHasOutFlag) {
2862          emitCode("ReplaceUses(SDOperand(N.Val, " +
2863                   utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);");
2864          NeedReplace = true;
2865        }
2866
2867        if (NeedReplace) {
2868          for (unsigned i = 0; i < NumResults; i++)
2869            emitCode("ReplaceUses(SDOperand(N.Val, " +
2870                     utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));");
2871          if (InputHasChain)
2872            emitCode("ReplaceUses(SDOperand(N.Val, " +
2873                     utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, "
2874                     + ChainName + ".ResNo" + "));");
2875        } else
2876          RetSelected = true;
2877
2878        // User does not expect the instruction would produce a chain!
2879        if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
2880          ;
2881        } else if (InputHasChain && !NodeHasChain) {
2882          // One of the inner node produces a chain.
2883          if (NodeHasOutFlag)
2884	    emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) +
2885		     "), SDOperand(ResNode, N.ResNo-1));");
2886	  for (unsigned i = 0; i < PatResults; ++i)
2887	    emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) +
2888		     "), SDOperand(ResNode, " + utostr(i) + "));");
2889	  emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) +
2890		   "), " + ChainName + ");");
2891	  RetSelected = false;
2892        }
2893
2894	if (RetSelected)
2895	  emitCode("return ResNode;");
2896	else
2897	  emitCode("return NULL;");
2898      } else {
2899        std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" +
2900          utostr(OpcNo);
2901        if (N->getTypeNum(0) != MVT::isVoid)
2902          Code += ", VT" + utostr(VTNo);
2903        if (NodeHasOutFlag)
2904          Code += ", MVT::Flag";
2905
2906        if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
2907          AllOps.push_back("InFlag");
2908
2909        unsigned NumOps = AllOps.size();
2910        if (NumOps) {
2911          if (!NodeHasOptInFlag && NumOps < 4) {
2912            for (unsigned i = 0; i != NumOps; ++i)
2913              Code += ", " + AllOps[i];
2914          } else {
2915            std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { ";
2916            for (unsigned i = 0; i != NumOps; ++i) {
2917              OpsCode += AllOps[i];
2918              if (i != NumOps-1)
2919                OpsCode += ", ";
2920            }
2921            emitCode(OpsCode + " };");
2922            Code += ", Ops" + utostr(OpcNo) + ", ";
2923            Code += utostr(NumOps);
2924          }
2925        }
2926        emitCode(Code + ");");
2927        emitOpcode(II.Namespace + "::" + II.TheDef->getName());
2928        if (N->getTypeNum(0) != MVT::isVoid)
2929          emitVT(getEnumName(N->getTypeNum(0)));
2930      }
2931
2932      return NodeOps;
2933    } else if (Op->isSubClassOf("SDNodeXForm")) {
2934      assert(N->getNumChildren() == 1 && "node xform should have one child!");
2935      // PatLeaf node - the operand may or may not be a leaf node. But it should
2936      // behave like one.
2937      std::vector<std::string> Ops =
2938        EmitResultCode(N->getChild(0), RetSelected, InFlagDecled,
2939                       ResNodeDecled, true);
2940      unsigned ResNo = TmpNo++;
2941      emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
2942               + "(" + Ops.back() + ".Val);");
2943      NodeOps.push_back("Tmp" + utostr(ResNo));
2944      if (isRoot)
2945        emitCode("return Tmp" + utostr(ResNo) + ".Val;");
2946      return NodeOps;
2947    } else {
2948      N->dump();
2949      std::cerr << "\n";
2950      throw std::string("Unknown node in result pattern!");
2951    }
2952  }
2953
2954  /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
2955  /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
2956  /// 'Pat' may be missing types.  If we find an unresolved type to add a check
2957  /// for, this returns true otherwise false if Pat has all types.
2958  bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
2959                          const std::string &Prefix, bool isRoot = false) {
2960    // Did we find one?
2961    if (Pat->getExtTypes() != Other->getExtTypes()) {
2962      // Move a type over from 'other' to 'pat'.
2963      Pat->setTypes(Other->getExtTypes());
2964      // The top level node type is checked outside of the select function.
2965      if (!isRoot)
2966        emitCheck(Prefix + ".Val->getValueType(0) == " +
2967                  getName(Pat->getTypeNum(0)));
2968      return true;
2969    }
2970
2971    unsigned OpNo =
2972      (unsigned) NodeHasProperty(Pat, SDNPHasChain, ISE);
2973    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
2974      if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
2975                             Prefix + utostr(OpNo)))
2976        return true;
2977    return false;
2978  }
2979
2980private:
2981  /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
2982  /// being built.
2983  void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
2984                            bool &ChainEmitted, bool &InFlagDecled,
2985                            bool &ResNodeDecled, bool isRoot = false) {
2986    const CodeGenTarget &T = ISE.getTargetInfo();
2987    unsigned OpNo =
2988      (unsigned) NodeHasProperty(N, SDNPHasChain, ISE);
2989    bool HasInFlag = NodeHasProperty(N, SDNPInFlag, ISE);
2990    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
2991      TreePatternNode *Child = N->getChild(i);
2992      if (!Child->isLeaf()) {
2993        EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
2994                             InFlagDecled, ResNodeDecled);
2995      } else {
2996        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
2997          if (!Child->getName().empty()) {
2998            std::string Name = RootName + utostr(OpNo);
2999            if (Duplicates.find(Name) != Duplicates.end())
3000              // A duplicate! Do not emit a copy for this node.
3001              continue;
3002          }
3003
3004          Record *RR = DI->getDef();
3005          if (RR->isSubClassOf("Register")) {
3006            MVT::ValueType RVT = getRegisterValueType(RR, T);
3007            if (RVT == MVT::Flag) {
3008              if (!InFlagDecled) {
3009                emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";");
3010                InFlagDecled = true;
3011              } else
3012                emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
3013              emitCode("AddToISelQueue(InFlag);");
3014            } else {
3015              if (!ChainEmitted) {
3016                emitCode("SDOperand Chain = CurDAG->getEntryNode();");
3017                ChainName = "Chain";
3018                ChainEmitted = true;
3019              }
3020              emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");");
3021              if (!InFlagDecled) {
3022                emitCode("SDOperand InFlag(0, 0);");
3023                InFlagDecled = true;
3024              }
3025              std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
3026              emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
3027                       ", " + ISE.getQualifiedName(RR) +
3028                       ", " +  RootName + utostr(OpNo) + ", InFlag).Val;");
3029              ResNodeDecled = true;
3030              emitCode(ChainName + " = SDOperand(ResNode, 0);");
3031              emitCode("InFlag = SDOperand(ResNode, 1);");
3032            }
3033          }
3034        }
3035      }
3036    }
3037
3038    if (HasInFlag) {
3039      if (!InFlagDecled) {
3040        emitCode("SDOperand InFlag = " + RootName +
3041               ".getOperand(" + utostr(OpNo) + ");");
3042        InFlagDecled = true;
3043      } else
3044        emitCode("InFlag = " + RootName +
3045               ".getOperand(" + utostr(OpNo) + ");");
3046      emitCode("AddToISelQueue(InFlag);");
3047    }
3048  }
3049
3050  /// EmitCopyFromRegs - Emit code to copy result to physical registers
3051  /// as specified by the instruction. It returns true if any copy is
3052  /// emitted.
3053  bool EmitCopyFromRegs(TreePatternNode *N, bool &ResNodeDecled,
3054                        bool &ChainEmitted) {
3055    bool RetVal = false;
3056    Record *Op = N->getOperator();
3057    if (Op->isSubClassOf("Instruction")) {
3058      const DAGInstruction &Inst = ISE.getInstruction(Op);
3059      const CodeGenTarget &CGT = ISE.getTargetInfo();
3060      unsigned NumImpResults  = Inst.getNumImpResults();
3061      for (unsigned i = 0; i < NumImpResults; i++) {
3062        Record *RR = Inst.getImpResult(i);
3063        if (RR->isSubClassOf("Register")) {
3064          MVT::ValueType RVT = getRegisterValueType(RR, CGT);
3065          if (RVT != MVT::Flag) {
3066            if (!ChainEmitted) {
3067              emitCode("SDOperand Chain = CurDAG->getEntryNode();");
3068              ChainEmitted = true;
3069              ChainName = "Chain";
3070            }
3071            std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
3072            emitCode(Decl + "ResNode = CurDAG->getCopyFromReg(" + ChainName +
3073                     ", " + ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) +
3074                     ", InFlag).Val;");
3075            ResNodeDecled = true;
3076            emitCode(ChainName + " = SDOperand(ResNode, 1);");
3077            emitCode("InFlag = SDOperand(ResNode, 2);");
3078            RetVal = true;
3079          }
3080        }
3081      }
3082    }
3083    return RetVal;
3084  }
3085};
3086
3087/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
3088/// stream to match the pattern, and generate the code for the match if it
3089/// succeeds.  Returns true if the pattern is not guaranteed to match.
3090void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern,
3091                  std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
3092                                           std::set<std::string> &GeneratedDecl,
3093                                        std::vector<std::string> &TargetOpcodes,
3094                                          std::vector<std::string> &TargetVTs) {
3095  PatternCodeEmitter Emitter(*this, Pattern.getPredicates(),
3096                             Pattern.getSrcPattern(), Pattern.getDstPattern(),
3097                             GeneratedCode, GeneratedDecl,
3098                             TargetOpcodes, TargetVTs);
3099
3100  // Emit the matcher, capturing named arguments in VariableMap.
3101  bool FoundChain = false;
3102  Emitter.EmitMatchCode(Pattern.getSrcPattern(), Pattern.getSrcPattern(), NULL,
3103                        "N", "", FoundChain);
3104
3105  // TP - Get *SOME* tree pattern, we don't care which.
3106  TreePattern &TP = *PatternFragments.begin()->second;
3107
3108  // At this point, we know that we structurally match the pattern, but the
3109  // types of the nodes may not match.  Figure out the fewest number of type
3110  // comparisons we need to emit.  For example, if there is only one integer
3111  // type supported by a target, there should be no type comparisons at all for
3112  // integer patterns!
3113  //
3114  // To figure out the fewest number of type checks needed, clone the pattern,
3115  // remove the types, then perform type inference on the pattern as a whole.
3116  // If there are unresolved types, emit an explicit check for those types,
3117  // apply the type to the tree, then rerun type inference.  Iterate until all
3118  // types are resolved.
3119  //
3120  TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
3121  RemoveAllTypes(Pat);
3122
3123  do {
3124    // Resolve/propagate as many types as possible.
3125    try {
3126      bool MadeChange = true;
3127      while (MadeChange)
3128        MadeChange = Pat->ApplyTypeConstraints(TP,
3129                                               true/*Ignore reg constraints*/);
3130    } catch (...) {
3131      assert(0 && "Error: could not find consistent types for something we"
3132             " already decided was ok!");
3133      abort();
3134    }
3135
3136    // Insert a check for an unresolved type and add it to the tree.  If we find
3137    // an unresolved type to add a check for, this returns true and we iterate,
3138    // otherwise we are done.
3139  } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
3140
3141  Emitter.EmitResultCode(Pattern.getDstPattern(),
3142                         false, false, false, false, true);
3143  delete Pat;
3144}
3145
3146/// EraseCodeLine - Erase one code line from all of the patterns.  If removing
3147/// a line causes any of them to be empty, remove them and return true when
3148/// done.
3149static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*,
3150                          std::vector<std::pair<unsigned, std::string> > > >
3151                          &Patterns) {
3152  bool ErasedPatterns = false;
3153  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3154    Patterns[i].second.pop_back();
3155    if (Patterns[i].second.empty()) {
3156      Patterns.erase(Patterns.begin()+i);
3157      --i; --e;
3158      ErasedPatterns = true;
3159    }
3160  }
3161  return ErasedPatterns;
3162}
3163
3164/// EmitPatterns - Emit code for at least one pattern, but try to group common
3165/// code together between the patterns.
3166void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*,
3167                              std::vector<std::pair<unsigned, std::string> > > >
3168                                  &Patterns, unsigned Indent,
3169                                  std::ostream &OS) {
3170  typedef std::pair<unsigned, std::string> CodeLine;
3171  typedef std::vector<CodeLine> CodeList;
3172  typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList;
3173
3174  if (Patterns.empty()) return;
3175
3176  // Figure out how many patterns share the next code line.  Explicitly copy
3177  // FirstCodeLine so that we don't invalidate a reference when changing
3178  // Patterns.
3179  const CodeLine FirstCodeLine = Patterns.back().second.back();
3180  unsigned LastMatch = Patterns.size()-1;
3181  while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
3182    --LastMatch;
3183
3184  // If not all patterns share this line, split the list into two pieces.  The
3185  // first chunk will use this line, the second chunk won't.
3186  if (LastMatch != 0) {
3187    PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
3188    PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
3189
3190    // FIXME: Emit braces?
3191    if (Shared.size() == 1) {
3192      PatternToMatch &Pattern = *Shared.back().first;
3193      OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
3194      Pattern.getSrcPattern()->print(OS);
3195      OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
3196      Pattern.getDstPattern()->print(OS);
3197      OS << "\n";
3198      unsigned AddedComplexity = Pattern.getAddedComplexity();
3199      OS << std::string(Indent, ' ') << "// Pattern complexity = "
3200         << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
3201         << "  cost = "
3202         << getResultPatternCost(Pattern.getDstPattern(), *this)
3203         << "  size = "
3204         << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
3205    }
3206    if (FirstCodeLine.first != 1) {
3207      OS << std::string(Indent, ' ') << "{\n";
3208      Indent += 2;
3209    }
3210    EmitPatterns(Shared, Indent, OS);
3211    if (FirstCodeLine.first != 1) {
3212      Indent -= 2;
3213      OS << std::string(Indent, ' ') << "}\n";
3214    }
3215
3216    if (Other.size() == 1) {
3217      PatternToMatch &Pattern = *Other.back().first;
3218      OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
3219      Pattern.getSrcPattern()->print(OS);
3220      OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
3221      Pattern.getDstPattern()->print(OS);
3222      OS << "\n";
3223      unsigned AddedComplexity = Pattern.getAddedComplexity();
3224      OS << std::string(Indent, ' ') << "// Pattern complexity = "
3225         << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
3226         << "  cost = "
3227         << getResultPatternCost(Pattern.getDstPattern(), *this)
3228         << "  size = "
3229         << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
3230    }
3231    EmitPatterns(Other, Indent, OS);
3232    return;
3233  }
3234
3235  // Remove this code from all of the patterns that share it.
3236  bool ErasedPatterns = EraseCodeLine(Patterns);
3237
3238  bool isPredicate = FirstCodeLine.first == 1;
3239
3240  // Otherwise, every pattern in the list has this line.  Emit it.
3241  if (!isPredicate) {
3242    // Normal code.
3243    OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
3244  } else {
3245    OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
3246
3247    // If the next code line is another predicate, and if all of the pattern
3248    // in this group share the same next line, emit it inline now.  Do this
3249    // until we run out of common predicates.
3250    while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
3251      // Check that all of fhe patterns in Patterns end with the same predicate.
3252      bool AllEndWithSamePredicate = true;
3253      for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
3254        if (Patterns[i].second.back() != Patterns.back().second.back()) {
3255          AllEndWithSamePredicate = false;
3256          break;
3257        }
3258      // If all of the predicates aren't the same, we can't share them.
3259      if (!AllEndWithSamePredicate) break;
3260
3261      // Otherwise we can.  Emit it shared now.
3262      OS << " &&\n" << std::string(Indent+4, ' ')
3263         << Patterns.back().second.back().second;
3264      ErasedPatterns = EraseCodeLine(Patterns);
3265    }
3266
3267    OS << ") {\n";
3268    Indent += 2;
3269  }
3270
3271  EmitPatterns(Patterns, Indent, OS);
3272
3273  if (isPredicate)
3274    OS << std::string(Indent-2, ' ') << "}\n";
3275}
3276
3277
3278
3279namespace {
3280  /// CompareByRecordName - An ordering predicate that implements less-than by
3281  /// comparing the names records.
3282  struct CompareByRecordName {
3283    bool operator()(const Record *LHS, const Record *RHS) const {
3284      // Sort by name first.
3285      if (LHS->getName() < RHS->getName()) return true;
3286      // If both names are equal, sort by pointer.
3287      return LHS->getName() == RHS->getName() && LHS < RHS;
3288    }
3289  };
3290}
3291
3292void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
3293  std::string InstNS = Target.inst_begin()->second.Namespace;
3294  if (!InstNS.empty()) InstNS += "::";
3295
3296  // Group the patterns by their top-level opcodes.
3297  std::map<Record*, std::vector<PatternToMatch*>,
3298    CompareByRecordName> PatternsByOpcode;
3299  // All unique target node emission functions.
3300  std::map<std::string, unsigned> EmitFunctions;
3301  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3302    TreePatternNode *Node = PatternsToMatch[i].getSrcPattern();
3303    if (!Node->isLeaf()) {
3304      PatternsByOpcode[Node->getOperator()].push_back(&PatternsToMatch[i]);
3305    } else {
3306      const ComplexPattern *CP;
3307      if (IntInit *II =
3308          dynamic_cast<IntInit*>(Node->getLeafValue())) {
3309        PatternsByOpcode[getSDNodeNamed("imm")].push_back(&PatternsToMatch[i]);
3310      } else if ((CP = NodeGetComplexPattern(Node, *this))) {
3311        std::vector<Record*> OpNodes = CP->getRootNodes();
3312        for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
3313          PatternsByOpcode[OpNodes[j]]
3314            .insert(PatternsByOpcode[OpNodes[j]].begin(), &PatternsToMatch[i]);
3315        }
3316      } else {
3317        std::cerr << "Unrecognized opcode '";
3318        Node->dump();
3319        std::cerr << "' on tree pattern '";
3320        std::cerr <<
3321           PatternsToMatch[i].getDstPattern()->getOperator()->getName();
3322        std::cerr << "'!\n";
3323        exit(1);
3324      }
3325    }
3326  }
3327
3328  // For each opcode, there might be multiple select functions, one per
3329  // ValueType of the node (or its first operand if it doesn't produce a
3330  // non-chain result.
3331  std::map<std::string, std::vector<std::string> > OpcodeVTMap;
3332
3333  // Emit one Select_* method for each top-level opcode.  We do this instead of
3334  // emitting one giant switch statement to support compilers where this will
3335  // result in the recursive functions taking less stack space.
3336  for (std::map<Record*, std::vector<PatternToMatch*>,
3337       CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(),
3338       E = PatternsByOpcode.end(); PBOI != E; ++PBOI) {
3339    const std::string &OpName = PBOI->first->getName();
3340    const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first);
3341    std::vector<PatternToMatch*> &PatternsOfOp = PBOI->second;
3342    assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
3343
3344    // We want to emit all of the matching code now.  However, we want to emit
3345    // the matches in order of minimal cost.  Sort the patterns so the least
3346    // cost one is at the start.
3347    std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(),
3348                     PatternSortingPredicate(*this));
3349
3350    // Split them into groups by type.
3351    std::map<MVT::ValueType, std::vector<PatternToMatch*> > PatternsByType;
3352    for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
3353      PatternToMatch *Pat = PatternsOfOp[i];
3354      TreePatternNode *SrcPat = Pat->getSrcPattern();
3355      if (OpcodeInfo.getNumResults() == 0 && SrcPat->getNumChildren() > 0)
3356        SrcPat = SrcPat->getChild(0);
3357      MVT::ValueType VT = SrcPat->getTypeNum(0);
3358      std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator TI =
3359        PatternsByType.find(VT);
3360      if (TI != PatternsByType.end())
3361        TI->second.push_back(Pat);
3362      else {
3363        std::vector<PatternToMatch*> PVec;
3364        PVec.push_back(Pat);
3365        PatternsByType.insert(std::make_pair(VT, PVec));
3366      }
3367    }
3368
3369    for (std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator
3370           II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
3371         ++II) {
3372      MVT::ValueType OpVT = II->first;
3373      std::vector<PatternToMatch*> &Patterns = II->second;
3374      typedef std::vector<std::pair<unsigned,std::string> > CodeList;
3375      typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI;
3376
3377      std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns;
3378      std::vector<std::vector<std::string> > PatternOpcodes;
3379      std::vector<std::vector<std::string> > PatternVTs;
3380      std::vector<std::set<std::string> > PatternDecls;
3381      for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3382        CodeList GeneratedCode;
3383        std::set<std::string> GeneratedDecl;
3384        std::vector<std::string> TargetOpcodes;
3385        std::vector<std::string> TargetVTs;
3386        GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
3387                               TargetOpcodes, TargetVTs);
3388        CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
3389        PatternDecls.push_back(GeneratedDecl);
3390        PatternOpcodes.push_back(TargetOpcodes);
3391        PatternVTs.push_back(TargetVTs);
3392      }
3393
3394      // Scan the code to see if all of the patterns are reachable and if it is
3395      // possible that the last one might not match.
3396      bool mightNotMatch = true;
3397      for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
3398        CodeList &GeneratedCode = CodeForPatterns[i].second;
3399        mightNotMatch = false;
3400
3401        for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
3402          if (GeneratedCode[j].first == 1) { // predicate.
3403            mightNotMatch = true;
3404            break;
3405          }
3406        }
3407
3408        // If this pattern definitely matches, and if it isn't the last one, the
3409        // patterns after it CANNOT ever match.  Error out.
3410        if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
3411          std::cerr << "Pattern '";
3412          CodeForPatterns[i].first->getSrcPattern()->print(std::cerr);
3413          std::cerr << "' is impossible to select!\n";
3414          exit(1);
3415        }
3416      }
3417
3418      // Factor target node emission code (emitted by EmitResultCode) into
3419      // separate functions. Uniquing and share them among all instruction
3420      // selection routines.
3421      for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
3422        CodeList &GeneratedCode = CodeForPatterns[i].second;
3423        std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
3424        std::vector<std::string> &TargetVTs = PatternVTs[i];
3425        std::set<std::string> Decls = PatternDecls[i];
3426        std::vector<std::string> AddedInits;
3427        int CodeSize = (int)GeneratedCode.size();
3428        int LastPred = -1;
3429        for (int j = CodeSize-1; j >= 0; --j) {
3430          if (LastPred == -1 && GeneratedCode[j].first == 1)
3431            LastPred = j;
3432          else if (LastPred != -1 && GeneratedCode[j].first == 2)
3433            AddedInits.push_back(GeneratedCode[j].second);
3434        }
3435
3436        std::string CalleeCode = "(const SDOperand &N";
3437        std::string CallerCode = "(N";
3438        for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
3439          CalleeCode += ", unsigned Opc" + utostr(j);
3440          CallerCode += ", " + TargetOpcodes[j];
3441        }
3442        for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
3443          CalleeCode += ", MVT::ValueType VT" + utostr(j);
3444          CallerCode += ", " + TargetVTs[j];
3445        }
3446        for (std::set<std::string>::iterator
3447               I = Decls.begin(), E = Decls.end(); I != E; ++I) {
3448          std::string Name = *I;
3449          CalleeCode += ", SDOperand &" + Name;
3450          CallerCode += ", " + Name;
3451        }
3452        CallerCode += ");";
3453        CalleeCode += ") ";
3454        // Prevent emission routines from being inlined to reduce selection
3455        // routines stack frame sizes.
3456        CalleeCode += "DISABLE_INLINE ";
3457        CalleeCode += "{\n";
3458
3459        for (std::vector<std::string>::const_reverse_iterator
3460               I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
3461          CalleeCode += "  " + *I + "\n";
3462
3463        for (int j = LastPred+1; j < CodeSize; ++j)
3464          CalleeCode += "  " + GeneratedCode[j].second + "\n";
3465        for (int j = LastPred+1; j < CodeSize; ++j)
3466          GeneratedCode.pop_back();
3467        CalleeCode += "}\n";
3468
3469        // Uniquing the emission routines.
3470        unsigned EmitFuncNum;
3471        std::map<std::string, unsigned>::iterator EFI =
3472          EmitFunctions.find(CalleeCode);
3473        if (EFI != EmitFunctions.end()) {
3474          EmitFuncNum = EFI->second;
3475        } else {
3476          EmitFuncNum = EmitFunctions.size();
3477          EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
3478          OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
3479        }
3480
3481        // Replace the emission code within selection routines with calls to the
3482        // emission functions.
3483        CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode;
3484        GeneratedCode.push_back(std::make_pair(false, CallerCode));
3485      }
3486
3487      // Print function.
3488      std::string OpVTStr = (OpVT != MVT::isVoid && OpVT != MVT::iPTR)
3489        ? getEnumName(OpVT).substr(5) : "" ;
3490      std::map<std::string, std::vector<std::string> >::iterator OpVTI =
3491        OpcodeVTMap.find(OpName);
3492      if (OpVTI == OpcodeVTMap.end()) {
3493        std::vector<std::string> VTSet;
3494        VTSet.push_back(OpVTStr);
3495        OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
3496      } else
3497        OpVTI->second.push_back(OpVTStr);
3498
3499      OS << "SDNode *Select_" << OpName << (OpVTStr != "" ? "_" : "")
3500         << OpVTStr << "(const SDOperand &N) {\n";
3501
3502      // Loop through and reverse all of the CodeList vectors, as we will be
3503      // accessing them from their logical front, but accessing the end of a
3504      // vector is more efficient.
3505      for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
3506        CodeList &GeneratedCode = CodeForPatterns[i].second;
3507        std::reverse(GeneratedCode.begin(), GeneratedCode.end());
3508      }
3509
3510      // Next, reverse the list of patterns itself for the same reason.
3511      std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
3512
3513      // Emit all of the patterns now, grouped together to share code.
3514      EmitPatterns(CodeForPatterns, 2, OS);
3515
3516      // If the last pattern has predicates (which could fail) emit code to
3517      // catch the case where nothing handles a pattern.
3518      if (mightNotMatch) {
3519        OS << "  std::cerr << \"Cannot yet select: \";\n";
3520        if (OpcodeInfo.getEnumName() != "ISD::INTRINSIC_W_CHAIN" &&
3521            OpcodeInfo.getEnumName() != "ISD::INTRINSIC_WO_CHAIN" &&
3522            OpcodeInfo.getEnumName() != "ISD::INTRINSIC_VOID") {
3523          OS << "  N.Val->dump(CurDAG);\n";
3524        } else {
3525          OS << "  unsigned iid = cast<ConstantSDNode>(N.getOperand("
3526            "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
3527             << "  std::cerr << \"intrinsic %\"<< "
3528            "Intrinsic::getName((Intrinsic::ID)iid);\n";
3529        }
3530        OS << "  std::cerr << '\\n';\n"
3531           << "  abort();\n"
3532           << "  return NULL;\n";
3533      }
3534      OS << "}\n\n";
3535    }
3536  }
3537
3538  // Emit boilerplate.
3539  OS << "SDNode *Select_INLINEASM(SDOperand N) {\n"
3540     << "  std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n"
3541     << "  AddToISelQueue(N.getOperand(0)); // Select the chain.\n\n"
3542     << "  // Select the flag operand.\n"
3543     << "  if (Ops.back().getValueType() == MVT::Flag)\n"
3544     << "    AddToISelQueue(Ops.back());\n"
3545     << "  SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n"
3546     << "  std::vector<MVT::ValueType> VTs;\n"
3547     << "  VTs.push_back(MVT::Other);\n"
3548     << "  VTs.push_back(MVT::Flag);\n"
3549     << "  SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], "
3550                 "Ops.size());\n"
3551     << "  return New.Val;\n"
3552     << "}\n\n";
3553
3554  OS << "// The main instruction selector code.\n"
3555     << "SDNode *SelectCode(SDOperand N) {\n"
3556     << "  if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
3557     << "      N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
3558     << "INSTRUCTION_LIST_END)) {\n"
3559     << "    return NULL;   // Already selected.\n"
3560     << "  }\n\n"
3561     << "  switch (N.getOpcode()) {\n"
3562     << "  default: break;\n"
3563     << "  case ISD::EntryToken:       // These leaves remain the same.\n"
3564     << "  case ISD::BasicBlock:\n"
3565     << "  case ISD::Register:\n"
3566     << "  case ISD::HANDLENODE:\n"
3567     << "  case ISD::TargetConstant:\n"
3568     << "  case ISD::TargetConstantPool:\n"
3569     << "  case ISD::TargetFrameIndex:\n"
3570     << "  case ISD::TargetJumpTable:\n"
3571     << "  case ISD::TargetGlobalAddress: {\n"
3572     << "    return NULL;\n"
3573     << "  }\n"
3574     << "  case ISD::AssertSext:\n"
3575     << "  case ISD::AssertZext: {\n"
3576     << "    AddToISelQueue(N.getOperand(0));\n"
3577     << "    ReplaceUses(N, N.getOperand(0));\n"
3578     << "    return NULL;\n"
3579     << "  }\n"
3580     << "  case ISD::TokenFactor:\n"
3581     << "  case ISD::CopyFromReg:\n"
3582     << "  case ISD::CopyToReg: {\n"
3583     << "    for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
3584     << "      AddToISelQueue(N.getOperand(i));\n"
3585     << "    return NULL;\n"
3586     << "  }\n"
3587     << "  case ISD::INLINEASM:  return Select_INLINEASM(N);\n";
3588
3589
3590  // Loop over all of the case statements, emiting a call to each method we
3591  // emitted above.
3592  for (std::map<Record*, std::vector<PatternToMatch*>,
3593                CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(),
3594       E = PatternsByOpcode.end(); PBOI != E; ++PBOI) {
3595    const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first);
3596    const std::string &OpName = PBOI->first->getName();
3597    // Potentially multiple versions of select for this opcode. One for each
3598    // ValueType of the node (or its first true operand if it doesn't produce a
3599    // result.
3600    std::map<std::string, std::vector<std::string> >::iterator OpVTI =
3601      OpcodeVTMap.find(OpName);
3602    std::vector<std::string> &OpVTs = OpVTI->second;
3603    OS << "  case " << OpcodeInfo.getEnumName() << ": {\n";
3604    if (OpVTs.size() == 1) {
3605      std::string &VTStr = OpVTs[0];
3606      OS << "    return Select_" << OpName
3607         << (VTStr != "" ? "_" : "") << VTStr << "(N);\n";
3608    } else {
3609      if (OpcodeInfo.getNumResults())
3610        OS << "    MVT::ValueType NVT = N.Val->getValueType(0);\n";
3611      else if (OpcodeInfo.hasProperty(SDNPHasChain))
3612        OS << "    MVT::ValueType NVT = (N.getNumOperands() > 1) ?"
3613           << " N.getOperand(1).Val->getValueType(0) : MVT::isVoid;\n";
3614      else
3615        OS << "    MVT::ValueType NVT = (N.getNumOperands() > 0) ?"
3616           << " N.getOperand(0).Val->getValueType(0) : MVT::isVoid;\n";
3617      int Default = -1;
3618      OS << "    switch (NVT) {\n";
3619      for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
3620        std::string &VTStr = OpVTs[i];
3621        if (VTStr == "") {
3622          Default = i;
3623          continue;
3624        }
3625        OS << "    case MVT::" << VTStr << ":\n"
3626           << "      return Select_" << OpName
3627           << "_" << VTStr << "(N);\n";
3628      }
3629      OS << "    default:\n";
3630      if (Default != -1)
3631        OS << "      return Select_" << OpName << "(N);\n";
3632      else
3633	OS << "      break;\n";
3634      OS << "    }\n";
3635      OS << "    break;\n";
3636    }
3637    OS << "  }\n";
3638  }
3639
3640  OS << "  } // end of big switch.\n\n"
3641     << "  std::cerr << \"Cannot yet select: \";\n"
3642     << "  if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
3643     << "      N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
3644     << "      N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
3645     << "    N.Val->dump(CurDAG);\n"
3646     << "  } else {\n"
3647     << "    unsigned iid = cast<ConstantSDNode>(N.getOperand("
3648               "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
3649     << "    std::cerr << \"intrinsic %\"<< "
3650                        "Intrinsic::getName((Intrinsic::ID)iid);\n"
3651     << "  }\n"
3652     << "  std::cerr << '\\n';\n"
3653     << "  abort();\n"
3654     << "  return NULL;\n"
3655     << "}\n";
3656}
3657
3658void DAGISelEmitter::run(std::ostream &OS) {
3659  EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
3660                       " target", OS);
3661
3662  OS << "// *** NOTE: This file is #included into the middle of the target\n"
3663     << "// *** instruction selector class.  These functions are really "
3664     << "methods.\n\n";
3665
3666  OS << "#include \"llvm/Support/Compiler.h\"\n";
3667
3668  OS << "// Instruction selector priority queue:\n"
3669     << "std::vector<SDNode*> ISelQueue;\n";
3670  OS << "/// Keep track of nodes which have already been added to queue.\n"
3671     << "unsigned char *ISelQueued;\n";
3672  OS << "/// Keep track of nodes which have already been selected.\n"
3673     << "unsigned char *ISelSelected;\n";
3674  OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n"
3675     << "std::vector<SDNode*> ISelKilled;\n\n";
3676
3677  OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n";
3678  OS << "/// not reach Op.\n";
3679  OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n";
3680  OS << "  if (Chain->getOpcode() == ISD::EntryToken)\n";
3681  OS << "    return true;\n";
3682  OS << "  else if (Chain->getOpcode() == ISD::TokenFactor)\n";
3683  OS << "    return false;\n";
3684  OS << "  else if (Chain->getNumOperands() > 0) {\n";
3685  OS << "    SDOperand C0 = Chain->getOperand(0);\n";
3686  OS << "    if (C0.getValueType() == MVT::Other)\n";
3687  OS << "      return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n";
3688  OS << "  }\n";
3689  OS << "  return true;\n";
3690  OS << "}\n";
3691
3692  OS << "/// Sorting functions for the selection queue.\n"
3693     << "struct isel_sort : public std::binary_function"
3694     << "<SDNode*, SDNode*, bool> {\n"
3695     << "  bool operator()(const SDNode* left, const SDNode* right) "
3696     << "const {\n"
3697     << "    return (left->getNodeId() > right->getNodeId());\n"
3698     << "  }\n"
3699     << "};\n\n";
3700
3701  OS << "inline void setQueued(int Id) {\n";
3702  OS << "  ISelQueued[Id / 8] |= 1 << (Id % 8);\n";
3703  OS << "}\n";
3704  OS << "inline bool isQueued(int Id) {\n";
3705  OS << "  return ISelQueued[Id / 8] & (1 << (Id % 8));\n";
3706  OS << "}\n";
3707  OS << "inline void setSelected(int Id) {\n";
3708  OS << "  ISelSelected[Id / 8] |= 1 << (Id % 8);\n";
3709  OS << "}\n";
3710  OS << "inline bool isSelected(int Id) {\n";
3711  OS << "  return ISelSelected[Id / 8] & (1 << (Id % 8));\n";
3712  OS << "}\n\n";
3713
3714  OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n";
3715  OS << "  int Id = N.Val->getNodeId();\n";
3716  OS << "  if (Id != -1 && !isQueued(Id)) {\n";
3717  OS << "    ISelQueue.push_back(N.Val);\n";
3718 OS << "    std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
3719  OS << "    setQueued(Id);\n";
3720  OS << "  }\n";
3721  OS << "}\n\n";
3722
3723  OS << "inline void RemoveKilled() {\n";
3724OS << "  unsigned NumKilled = ISelKilled.size();\n";
3725  OS << "  if (NumKilled) {\n";
3726  OS << "    for (unsigned i = 0; i != NumKilled; ++i) {\n";
3727  OS << "      SDNode *Temp = ISelKilled[i];\n";
3728  OS << "      ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(), "
3729     << "Temp), ISelQueue.end());\n";
3730  OS << "    };\n";
3731 OS << "    std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
3732  OS << "    ISelKilled.clear();\n";
3733  OS << "  }\n";
3734  OS << "}\n\n";
3735
3736  OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n";
3737  OS << "  CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n";
3738  OS << "  setSelected(F.Val->getNodeId());\n";
3739  OS << "  RemoveKilled();\n";
3740  OS << "}\n";
3741  OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n";
3742  OS << "  CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n";
3743  OS << "  setSelected(F->getNodeId());\n";
3744  OS << "  RemoveKilled();\n";
3745  OS << "}\n\n";
3746
3747  OS << "// SelectRoot - Top level entry to DAG isel.\n";
3748  OS << "SDOperand SelectRoot(SDOperand Root) {\n";
3749  OS << "  SelectRootInit();\n";
3750  OS << "  unsigned NumBytes = (DAGSize + 7) / 8;\n";
3751  OS << "  ISelQueued   = new unsigned char[NumBytes];\n";
3752  OS << "  ISelSelected = new unsigned char[NumBytes];\n";
3753  OS << "  memset(ISelQueued,   0, NumBytes);\n";
3754  OS << "  memset(ISelSelected, 0, NumBytes);\n";
3755  OS << "\n";
3756  OS << "  // Create a dummy node (which is not added to allnodes), that adds\n"
3757     << "  // a reference to the root node, preventing it from being deleted,\n"
3758     << "  // and tracking any changes of the root.\n"
3759     << "  HandleSDNode Dummy(CurDAG->getRoot());\n"
3760     << "  ISelQueue.push_back(CurDAG->getRoot().Val);\n";
3761  OS << "  while (!ISelQueue.empty()) {\n";
3762  OS << "    SDNode *Node = ISelQueue.front();\n";
3763  OS << "    std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
3764  OS << "    ISelQueue.pop_back();\n";
3765  OS << "    if (!isSelected(Node->getNodeId())) {\n";
3766  OS << "      SDNode *ResNode = Select(SDOperand(Node, 0));\n";
3767  OS << "      if (ResNode != Node) {\n";
3768  OS << "        if (ResNode)\n";
3769  OS << "          ReplaceUses(Node, ResNode);\n";
3770  OS << "        if (Node->use_empty()) { // Don't delete EntryToken, etc.\n";
3771  OS << "          CurDAG->RemoveDeadNode(Node, ISelKilled);\n";
3772  OS << "          RemoveKilled();\n";
3773  OS << "        }\n";
3774  OS << "      }\n";
3775  OS << "    }\n";
3776  OS << "  }\n";
3777  OS << "\n";
3778  OS << "  delete[] ISelQueued;\n";
3779  OS << "  ISelQueued = NULL;\n";
3780  OS << "  delete[] ISelSelected;\n";
3781  OS << "  ISelSelected = NULL;\n";
3782  OS << "  return Dummy.getValue();\n";
3783  OS << "}\n";
3784
3785  Intrinsics = LoadIntrinsics(Records);
3786  ParseNodeInfo();
3787  ParseNodeTransforms(OS);
3788  ParseComplexPatterns();
3789  ParsePatternFragments(OS);
3790  ParseInstructions();
3791  ParsePatterns();
3792
3793  // Generate variants.  For example, commutative patterns can match
3794  // multiple ways.  Add them to PatternsToMatch as well.
3795  GenerateVariants();
3796
3797
3798  DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n";
3799        for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3800          std::cerr << "PATTERN: ";  PatternsToMatch[i].getSrcPattern()->dump();
3801          std::cerr << "\nRESULT:  ";PatternsToMatch[i].getDstPattern()->dump();
3802          std::cerr << "\n";
3803        });
3804
3805  // At this point, we have full information about the 'Patterns' we need to
3806  // parse, both implicitly from instructions as well as from explicit pattern
3807  // definitions.  Emit the resultant instruction selector.
3808  EmitInstructionSelector(OS);
3809
3810  for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
3811       E = PatternFragments.end(); I != E; ++I)
3812    delete I->second;
3813  PatternFragments.clear();
3814
3815  Instructions.clear();
3816}
3817