macro-assembler-ia32.cc revision 402d937239b0e2fd11bf2f4fe972ad78aa9fd481
1// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "bootstrapper.h"
31#include "codegen-inl.h"
32#include "debug.h"
33#include "runtime.h"
34#include "serialize.h"
35
36namespace v8 {
37namespace internal {
38
39// -------------------------------------------------------------------------
40// MacroAssembler implementation.
41
42MacroAssembler::MacroAssembler(void* buffer, int size)
43    : Assembler(buffer, size),
44      generating_stub_(false),
45      allow_stub_calls_(true),
46      code_object_(Heap::undefined_value()) {
47}
48
49
50static void RecordWriteHelper(MacroAssembler* masm,
51                              Register object,
52                              Register addr,
53                              Register scratch) {
54  Label fast;
55
56  // Compute the page start address from the heap object pointer, and reuse
57  // the 'object' register for it.
58  masm->and_(object, ~Page::kPageAlignmentMask);
59  Register page_start = object;
60
61  // Compute the bit addr in the remembered set/index of the pointer in the
62  // page. Reuse 'addr' as pointer_offset.
63  masm->sub(addr, Operand(page_start));
64  masm->shr(addr, kObjectAlignmentBits);
65  Register pointer_offset = addr;
66
67  // If the bit offset lies beyond the normal remembered set range, it is in
68  // the extra remembered set area of a large object.
69  masm->cmp(pointer_offset, Page::kPageSize / kPointerSize);
70  masm->j(less, &fast);
71
72  // Adjust 'page_start' so that addressing using 'pointer_offset' hits the
73  // extra remembered set after the large object.
74
75  // Find the length of the large object (FixedArray).
76  masm->mov(scratch, Operand(page_start, Page::kObjectStartOffset
77                                         + FixedArray::kLengthOffset));
78  Register array_length = scratch;
79
80  // Extra remembered set starts right after the large object (a FixedArray), at
81  //   page_start + kObjectStartOffset + objectSize
82  // where objectSize is FixedArray::kHeaderSize + kPointerSize * array_length.
83  // Add the delta between the end of the normal RSet and the start of the
84  // extra RSet to 'page_start', so that addressing the bit using
85  // 'pointer_offset' hits the extra RSet words.
86  masm->lea(page_start,
87            Operand(page_start, array_length, times_pointer_size,
88                    Page::kObjectStartOffset + FixedArray::kHeaderSize
89                        - Page::kRSetEndOffset));
90
91  // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction
92  // to limit code size. We should probably evaluate this decision by
93  // measuring the performance of an equivalent implementation using
94  // "simpler" instructions
95  masm->bind(&fast);
96  masm->bts(Operand(page_start, Page::kRSetOffset), pointer_offset);
97}
98
99
100class RecordWriteStub : public CodeStub {
101 public:
102  RecordWriteStub(Register object, Register addr, Register scratch)
103      : object_(object), addr_(addr), scratch_(scratch) { }
104
105  void Generate(MacroAssembler* masm);
106
107 private:
108  Register object_;
109  Register addr_;
110  Register scratch_;
111
112#ifdef DEBUG
113  void Print() {
114    PrintF("RecordWriteStub (object reg %d), (addr reg %d), (scratch reg %d)\n",
115           object_.code(), addr_.code(), scratch_.code());
116  }
117#endif
118
119  // Minor key encoding in 12 bits of three registers (object, address and
120  // scratch) OOOOAAAASSSS.
121  class ScratchBits: public BitField<uint32_t, 0, 4> {};
122  class AddressBits: public BitField<uint32_t, 4, 4> {};
123  class ObjectBits: public BitField<uint32_t, 8, 4> {};
124
125  Major MajorKey() { return RecordWrite; }
126
127  int MinorKey() {
128    // Encode the registers.
129    return ObjectBits::encode(object_.code()) |
130           AddressBits::encode(addr_.code()) |
131           ScratchBits::encode(scratch_.code());
132  }
133};
134
135
136void RecordWriteStub::Generate(MacroAssembler* masm) {
137  RecordWriteHelper(masm, object_, addr_, scratch_);
138  masm->ret(0);
139}
140
141
142// Set the remembered set bit for [object+offset].
143// object is the object being stored into, value is the object being stored.
144// If offset is zero, then the scratch register contains the array index into
145// the elements array represented as a Smi.
146// All registers are clobbered by the operation.
147void MacroAssembler::RecordWrite(Register object, int offset,
148                                 Register value, Register scratch) {
149  // The compiled code assumes that record write doesn't change the
150  // context register, so we check that none of the clobbered
151  // registers are esi.
152  ASSERT(!object.is(esi) && !value.is(esi) && !scratch.is(esi));
153
154  // First, check if a remembered set write is even needed. The tests below
155  // catch stores of Smis and stores into young gen (which does not have space
156  // for the remembered set bits.
157  Label done;
158
159  // Skip barrier if writing a smi.
160  ASSERT_EQ(0, kSmiTag);
161  test(value, Immediate(kSmiTagMask));
162  j(zero, &done);
163
164  if (Serializer::enabled()) {
165    // Can't do arithmetic on external references if it might get serialized.
166    mov(value, Operand(object));
167    // The mask isn't really an address.  We load it as an external reference in
168    // case the size of the new space is different between the snapshot maker
169    // and the running system.
170    and_(Operand(value), Immediate(ExternalReference::new_space_mask()));
171    cmp(Operand(value), Immediate(ExternalReference::new_space_start()));
172    j(equal, &done);
173  } else {
174    int32_t new_space_start = reinterpret_cast<int32_t>(
175        ExternalReference::new_space_start().address());
176    lea(value, Operand(object, -new_space_start));
177    and_(value, Heap::NewSpaceMask());
178    j(equal, &done);
179  }
180
181  if ((offset > 0) && (offset < Page::kMaxHeapObjectSize)) {
182    // Compute the bit offset in the remembered set, leave it in 'value'.
183    lea(value, Operand(object, offset));
184    and_(value, Page::kPageAlignmentMask);
185    shr(value, kPointerSizeLog2);
186
187    // Compute the page address from the heap object pointer, leave it in
188    // 'object'.
189    and_(object, ~Page::kPageAlignmentMask);
190
191    // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction
192    // to limit code size. We should probably evaluate this decision by
193    // measuring the performance of an equivalent implementation using
194    // "simpler" instructions
195    bts(Operand(object, Page::kRSetOffset), value);
196  } else {
197    Register dst = scratch;
198    if (offset != 0) {
199      lea(dst, Operand(object, offset));
200    } else {
201      // array access: calculate the destination address in the same manner as
202      // KeyedStoreIC::GenerateGeneric.  Multiply a smi by 2 to get an offset
203      // into an array of words.
204      ASSERT_EQ(1, kSmiTagSize);
205      ASSERT_EQ(0, kSmiTag);
206      lea(dst, Operand(object, dst, times_half_pointer_size,
207                       FixedArray::kHeaderSize - kHeapObjectTag));
208    }
209    // If we are already generating a shared stub, not inlining the
210    // record write code isn't going to save us any memory.
211    if (generating_stub()) {
212      RecordWriteHelper(this, object, dst, value);
213    } else {
214      RecordWriteStub stub(object, dst, value);
215      CallStub(&stub);
216    }
217  }
218
219  bind(&done);
220
221  // Clobber all input registers when running with the debug-code flag
222  // turned on to provoke errors.
223  if (FLAG_debug_code) {
224    mov(object, Immediate(bit_cast<int32_t>(kZapValue)));
225    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
226    mov(scratch, Immediate(bit_cast<int32_t>(kZapValue)));
227  }
228}
229
230
231void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) {
232  cmp(esp,
233      Operand::StaticVariable(ExternalReference::address_of_stack_limit()));
234  j(below, on_stack_overflow);
235}
236
237
238#ifdef ENABLE_DEBUGGER_SUPPORT
239void MacroAssembler::SaveRegistersToMemory(RegList regs) {
240  ASSERT((regs & ~kJSCallerSaved) == 0);
241  // Copy the content of registers to memory location.
242  for (int i = 0; i < kNumJSCallerSaved; i++) {
243    int r = JSCallerSavedCode(i);
244    if ((regs & (1 << r)) != 0) {
245      Register reg = { r };
246      ExternalReference reg_addr =
247          ExternalReference(Debug_Address::Register(i));
248      mov(Operand::StaticVariable(reg_addr), reg);
249    }
250  }
251}
252
253
254void MacroAssembler::RestoreRegistersFromMemory(RegList regs) {
255  ASSERT((regs & ~kJSCallerSaved) == 0);
256  // Copy the content of memory location to registers.
257  for (int i = kNumJSCallerSaved; --i >= 0;) {
258    int r = JSCallerSavedCode(i);
259    if ((regs & (1 << r)) != 0) {
260      Register reg = { r };
261      ExternalReference reg_addr =
262          ExternalReference(Debug_Address::Register(i));
263      mov(reg, Operand::StaticVariable(reg_addr));
264    }
265  }
266}
267
268
269void MacroAssembler::PushRegistersFromMemory(RegList regs) {
270  ASSERT((regs & ~kJSCallerSaved) == 0);
271  // Push the content of the memory location to the stack.
272  for (int i = 0; i < kNumJSCallerSaved; i++) {
273    int r = JSCallerSavedCode(i);
274    if ((regs & (1 << r)) != 0) {
275      ExternalReference reg_addr =
276          ExternalReference(Debug_Address::Register(i));
277      push(Operand::StaticVariable(reg_addr));
278    }
279  }
280}
281
282
283void MacroAssembler::PopRegistersToMemory(RegList regs) {
284  ASSERT((regs & ~kJSCallerSaved) == 0);
285  // Pop the content from the stack to the memory location.
286  for (int i = kNumJSCallerSaved; --i >= 0;) {
287    int r = JSCallerSavedCode(i);
288    if ((regs & (1 << r)) != 0) {
289      ExternalReference reg_addr =
290          ExternalReference(Debug_Address::Register(i));
291      pop(Operand::StaticVariable(reg_addr));
292    }
293  }
294}
295
296
297void MacroAssembler::CopyRegistersFromStackToMemory(Register base,
298                                                    Register scratch,
299                                                    RegList regs) {
300  ASSERT((regs & ~kJSCallerSaved) == 0);
301  // Copy the content of the stack to the memory location and adjust base.
302  for (int i = kNumJSCallerSaved; --i >= 0;) {
303    int r = JSCallerSavedCode(i);
304    if ((regs & (1 << r)) != 0) {
305      mov(scratch, Operand(base, 0));
306      ExternalReference reg_addr =
307          ExternalReference(Debug_Address::Register(i));
308      mov(Operand::StaticVariable(reg_addr), scratch);
309      lea(base, Operand(base, kPointerSize));
310    }
311  }
312}
313
314void MacroAssembler::DebugBreak() {
315  Set(eax, Immediate(0));
316  mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak)));
317  CEntryStub ces(1);
318  call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
319}
320#endif
321
322void MacroAssembler::Set(Register dst, const Immediate& x) {
323  if (x.is_zero()) {
324    xor_(dst, Operand(dst));  // shorter than mov
325  } else {
326    mov(dst, x);
327  }
328}
329
330
331void MacroAssembler::Set(const Operand& dst, const Immediate& x) {
332  mov(dst, x);
333}
334
335
336void MacroAssembler::CmpObjectType(Register heap_object,
337                                   InstanceType type,
338                                   Register map) {
339  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
340  CmpInstanceType(map, type);
341}
342
343
344void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
345  cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
346       static_cast<int8_t>(type));
347}
348
349
350void MacroAssembler::CheckMap(Register obj,
351                              Handle<Map> map,
352                              Label* fail,
353                              bool is_heap_object) {
354  if (!is_heap_object) {
355    test(obj, Immediate(kSmiTagMask));
356    j(zero, fail);
357  }
358  cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
359  j(not_equal, fail);
360}
361
362
363Condition MacroAssembler::IsObjectStringType(Register heap_object,
364                                             Register map,
365                                             Register instance_type) {
366  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
367  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
368  ASSERT(kNotStringTag != 0);
369  test(instance_type, Immediate(kIsNotStringMask));
370  return zero;
371}
372
373
374void MacroAssembler::FCmp() {
375  if (CpuFeatures::IsSupported(CMOV)) {
376    fucomip();
377    ffree(0);
378    fincstp();
379  } else {
380    fucompp();
381    push(eax);
382    fnstsw_ax();
383    sahf();
384    pop(eax);
385  }
386}
387
388
389void MacroAssembler::AbortIfNotNumber(Register object, const char* msg) {
390  Label ok;
391  test(object, Immediate(kSmiTagMask));
392  j(zero, &ok);
393  cmp(FieldOperand(object, HeapObject::kMapOffset),
394      Factory::heap_number_map());
395  Assert(equal, msg);
396  bind(&ok);
397}
398
399
400void MacroAssembler::EnterFrame(StackFrame::Type type) {
401  push(ebp);
402  mov(ebp, Operand(esp));
403  push(esi);
404  push(Immediate(Smi::FromInt(type)));
405  push(Immediate(CodeObject()));
406  if (FLAG_debug_code) {
407    cmp(Operand(esp, 0), Immediate(Factory::undefined_value()));
408    Check(not_equal, "code object not properly patched");
409  }
410}
411
412
413void MacroAssembler::LeaveFrame(StackFrame::Type type) {
414  if (FLAG_debug_code) {
415    cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
416        Immediate(Smi::FromInt(type)));
417    Check(equal, "stack frame types must match");
418  }
419  leave();
420}
421
422void MacroAssembler::EnterExitFramePrologue(ExitFrame::Mode mode) {
423  // Setup the frame structure on the stack.
424  ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
425  ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
426  ASSERT(ExitFrameConstants::kCallerFPOffset ==  0 * kPointerSize);
427  push(ebp);
428  mov(ebp, Operand(esp));
429
430  // Reserve room for entry stack pointer and push the debug marker.
431  ASSERT(ExitFrameConstants::kSPOffset  == -1 * kPointerSize);
432  push(Immediate(0));  // Saved entry sp, patched before call.
433  push(Immediate(CodeObject()));  // Accessed from ExitFrame::code_slot.
434
435  // Save the frame pointer and the context in top.
436  ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address);
437  ExternalReference context_address(Top::k_context_address);
438  mov(Operand::StaticVariable(c_entry_fp_address), ebp);
439  mov(Operand::StaticVariable(context_address), esi);
440}
441
442void MacroAssembler::EnterExitFrameEpilogue(ExitFrame::Mode mode, int argc) {
443#ifdef ENABLE_DEBUGGER_SUPPORT
444  // Save the state of all registers to the stack from the memory
445  // location. This is needed to allow nested break points.
446  if (mode == ExitFrame::MODE_DEBUG) {
447    // TODO(1243899): This should be symmetric to
448    // CopyRegistersFromStackToMemory() but it isn't! esp is assumed
449    // correct here, but computed for the other call. Very error
450    // prone! FIX THIS.  Actually there are deeper problems with
451    // register saving than this asymmetry (see the bug report
452    // associated with this issue).
453    PushRegistersFromMemory(kJSCallerSaved);
454  }
455#endif
456
457  // Reserve space for arguments.
458  sub(Operand(esp), Immediate(argc * kPointerSize));
459
460  // Get the required frame alignment for the OS.
461  static const int kFrameAlignment = OS::ActivationFrameAlignment();
462  if (kFrameAlignment > 0) {
463    ASSERT(IsPowerOf2(kFrameAlignment));
464    and_(esp, -kFrameAlignment);
465  }
466
467  // Patch the saved entry sp.
468  mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
469}
470
471
472void MacroAssembler::EnterExitFrame(ExitFrame::Mode mode) {
473  EnterExitFramePrologue(mode);
474
475  // Setup argc and argv in callee-saved registers.
476  int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
477  mov(edi, Operand(eax));
478  lea(esi, Operand(ebp, eax, times_4, offset));
479
480  EnterExitFrameEpilogue(mode, 2);
481}
482
483
484void MacroAssembler::EnterApiExitFrame(ExitFrame::Mode mode,
485                                       int stack_space,
486                                       int argc) {
487  EnterExitFramePrologue(mode);
488
489  int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
490  lea(esi, Operand(ebp, (stack_space * kPointerSize) + offset));
491
492  EnterExitFrameEpilogue(mode, argc);
493}
494
495
496void MacroAssembler::LeaveExitFrame(ExitFrame::Mode mode) {
497#ifdef ENABLE_DEBUGGER_SUPPORT
498  // Restore the memory copy of the registers by digging them out from
499  // the stack. This is needed to allow nested break points.
500  if (mode == ExitFrame::MODE_DEBUG) {
501    // It's okay to clobber register ebx below because we don't need
502    // the function pointer after this.
503    const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize;
504    int kOffset = ExitFrameConstants::kCodeOffset - kCallerSavedSize;
505    lea(ebx, Operand(ebp, kOffset));
506    CopyRegistersFromStackToMemory(ebx, ecx, kJSCallerSaved);
507  }
508#endif
509
510  // Get the return address from the stack and restore the frame pointer.
511  mov(ecx, Operand(ebp, 1 * kPointerSize));
512  mov(ebp, Operand(ebp, 0 * kPointerSize));
513
514  // Pop the arguments and the receiver from the caller stack.
515  lea(esp, Operand(esi, 1 * kPointerSize));
516
517  // Restore current context from top and clear it in debug mode.
518  ExternalReference context_address(Top::k_context_address);
519  mov(esi, Operand::StaticVariable(context_address));
520#ifdef DEBUG
521  mov(Operand::StaticVariable(context_address), Immediate(0));
522#endif
523
524  // Push the return address to get ready to return.
525  push(ecx);
526
527  // Clear the top frame.
528  ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address);
529  mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
530}
531
532
533void MacroAssembler::PushTryHandler(CodeLocation try_location,
534                                    HandlerType type) {
535  // Adjust this code if not the case.
536  ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
537  // The pc (return address) is already on TOS.
538  if (try_location == IN_JAVASCRIPT) {
539    if (type == TRY_CATCH_HANDLER) {
540      push(Immediate(StackHandler::TRY_CATCH));
541    } else {
542      push(Immediate(StackHandler::TRY_FINALLY));
543    }
544    push(ebp);
545  } else {
546    ASSERT(try_location == IN_JS_ENTRY);
547    // The frame pointer does not point to a JS frame so we save NULL
548    // for ebp. We expect the code throwing an exception to check ebp
549    // before dereferencing it to restore the context.
550    push(Immediate(StackHandler::ENTRY));
551    push(Immediate(0));  // NULL frame pointer.
552  }
553  // Save the current handler as the next handler.
554  push(Operand::StaticVariable(ExternalReference(Top::k_handler_address)));
555  // Link this handler as the new current one.
556  mov(Operand::StaticVariable(ExternalReference(Top::k_handler_address)), esp);
557}
558
559
560void MacroAssembler::PopTryHandler() {
561  ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
562  pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address)));
563  add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize));
564}
565
566
567Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg,
568                                   JSObject* holder, Register holder_reg,
569                                   Register scratch,
570                                   int save_at_depth,
571                                   Label* miss) {
572  // Make sure there's no overlap between scratch and the other
573  // registers.
574  ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg));
575
576  // Keep track of the current object in register reg.
577  Register reg = object_reg;
578  int depth = 0;
579
580  if (save_at_depth == depth) {
581    mov(Operand(esp, kPointerSize), object_reg);
582  }
583
584  // Check the maps in the prototype chain.
585  // Traverse the prototype chain from the object and do map checks.
586  while (object != holder) {
587    depth++;
588
589    // Only global objects and objects that do not require access
590    // checks are allowed in stubs.
591    ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
592
593    JSObject* prototype = JSObject::cast(object->GetPrototype());
594    if (Heap::InNewSpace(prototype)) {
595      // Get the map of the current object.
596      mov(scratch, FieldOperand(reg, HeapObject::kMapOffset));
597      cmp(Operand(scratch), Immediate(Handle<Map>(object->map())));
598      // Branch on the result of the map check.
599      j(not_equal, miss, not_taken);
600      // Check access rights to the global object.  This has to happen
601      // after the map check so that we know that the object is
602      // actually a global object.
603      if (object->IsJSGlobalProxy()) {
604        CheckAccessGlobalProxy(reg, scratch, miss);
605
606        // Restore scratch register to be the map of the object.
607        // We load the prototype from the map in the scratch register.
608        mov(scratch, FieldOperand(reg, HeapObject::kMapOffset));
609      }
610      // The prototype is in new space; we cannot store a reference
611      // to it in the code. Load it from the map.
612      reg = holder_reg;  // from now the object is in holder_reg
613      mov(reg, FieldOperand(scratch, Map::kPrototypeOffset));
614    } else {
615      // Check the map of the current object.
616      cmp(FieldOperand(reg, HeapObject::kMapOffset),
617          Immediate(Handle<Map>(object->map())));
618      // Branch on the result of the map check.
619      j(not_equal, miss, not_taken);
620      // Check access rights to the global object.  This has to happen
621      // after the map check so that we know that the object is
622      // actually a global object.
623      if (object->IsJSGlobalProxy()) {
624        CheckAccessGlobalProxy(reg, scratch, miss);
625      }
626      // The prototype is in old space; load it directly.
627      reg = holder_reg;  // from now the object is in holder_reg
628      mov(reg, Handle<JSObject>(prototype));
629    }
630
631    if (save_at_depth == depth) {
632      mov(Operand(esp, kPointerSize), reg);
633    }
634
635    // Go to the next object in the prototype chain.
636    object = prototype;
637  }
638
639  // Check the holder map.
640  cmp(FieldOperand(reg, HeapObject::kMapOffset),
641      Immediate(Handle<Map>(holder->map())));
642  j(not_equal, miss, not_taken);
643
644  // Log the check depth.
645  LOG(IntEvent("check-maps-depth", depth + 1));
646
647  // Perform security check for access to the global object and return
648  // the holder register.
649  ASSERT(object == holder);
650  ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
651  if (object->IsJSGlobalProxy()) {
652    CheckAccessGlobalProxy(reg, scratch, miss);
653  }
654  return reg;
655}
656
657
658void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
659                                            Register scratch,
660                                            Label* miss) {
661  Label same_contexts;
662
663  ASSERT(!holder_reg.is(scratch));
664
665  // Load current lexical context from the stack frame.
666  mov(scratch, Operand(ebp, StandardFrameConstants::kContextOffset));
667
668  // When generating debug code, make sure the lexical context is set.
669  if (FLAG_debug_code) {
670    cmp(Operand(scratch), Immediate(0));
671    Check(not_equal, "we should not have an empty lexical context");
672  }
673  // Load the global context of the current context.
674  int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
675  mov(scratch, FieldOperand(scratch, offset));
676  mov(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
677
678  // Check the context is a global context.
679  if (FLAG_debug_code) {
680    push(scratch);
681    // Read the first word and compare to global_context_map.
682    mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
683    cmp(scratch, Factory::global_context_map());
684    Check(equal, "JSGlobalObject::global_context should be a global context.");
685    pop(scratch);
686  }
687
688  // Check if both contexts are the same.
689  cmp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
690  j(equal, &same_contexts, taken);
691
692  // Compare security tokens, save holder_reg on the stack so we can use it
693  // as a temporary register.
694  //
695  // TODO(119): avoid push(holder_reg)/pop(holder_reg)
696  push(holder_reg);
697  // Check that the security token in the calling global object is
698  // compatible with the security token in the receiving global
699  // object.
700  mov(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
701
702  // Check the context is a global context.
703  if (FLAG_debug_code) {
704    cmp(holder_reg, Factory::null_value());
705    Check(not_equal, "JSGlobalProxy::context() should not be null.");
706
707    push(holder_reg);
708    // Read the first word and compare to global_context_map(),
709    mov(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
710    cmp(holder_reg, Factory::global_context_map());
711    Check(equal, "JSGlobalObject::global_context should be a global context.");
712    pop(holder_reg);
713  }
714
715  int token_offset = Context::kHeaderSize +
716                     Context::SECURITY_TOKEN_INDEX * kPointerSize;
717  mov(scratch, FieldOperand(scratch, token_offset));
718  cmp(scratch, FieldOperand(holder_reg, token_offset));
719  pop(holder_reg);
720  j(not_equal, miss, not_taken);
721
722  bind(&same_contexts);
723}
724
725
726void MacroAssembler::LoadAllocationTopHelper(Register result,
727                                             Register result_end,
728                                             Register scratch,
729                                             AllocationFlags flags) {
730  ExternalReference new_space_allocation_top =
731      ExternalReference::new_space_allocation_top_address();
732
733  // Just return if allocation top is already known.
734  if ((flags & RESULT_CONTAINS_TOP) != 0) {
735    // No use of scratch if allocation top is provided.
736    ASSERT(scratch.is(no_reg));
737#ifdef DEBUG
738    // Assert that result actually contains top on entry.
739    cmp(result, Operand::StaticVariable(new_space_allocation_top));
740    Check(equal, "Unexpected allocation top");
741#endif
742    return;
743  }
744
745  // Move address of new object to result. Use scratch register if available.
746  if (scratch.is(no_reg)) {
747    mov(result, Operand::StaticVariable(new_space_allocation_top));
748  } else {
749    ASSERT(!scratch.is(result_end));
750    mov(Operand(scratch), Immediate(new_space_allocation_top));
751    mov(result, Operand(scratch, 0));
752  }
753}
754
755
756void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
757                                               Register scratch) {
758  if (FLAG_debug_code) {
759    test(result_end, Immediate(kObjectAlignmentMask));
760    Check(zero, "Unaligned allocation in new space");
761  }
762
763  ExternalReference new_space_allocation_top =
764      ExternalReference::new_space_allocation_top_address();
765
766  // Update new top. Use scratch if available.
767  if (scratch.is(no_reg)) {
768    mov(Operand::StaticVariable(new_space_allocation_top), result_end);
769  } else {
770    mov(Operand(scratch, 0), result_end);
771  }
772}
773
774
775void MacroAssembler::AllocateInNewSpace(int object_size,
776                                        Register result,
777                                        Register result_end,
778                                        Register scratch,
779                                        Label* gc_required,
780                                        AllocationFlags flags) {
781  ASSERT(!result.is(result_end));
782
783  // Load address of new object into result.
784  LoadAllocationTopHelper(result, result_end, scratch, flags);
785
786  // Calculate new top and bail out if new space is exhausted.
787  ExternalReference new_space_allocation_limit =
788      ExternalReference::new_space_allocation_limit_address();
789  lea(result_end, Operand(result, object_size));
790  cmp(result_end, Operand::StaticVariable(new_space_allocation_limit));
791  j(above, gc_required, not_taken);
792
793  // Tag result if requested.
794  if ((flags & TAG_OBJECT) != 0) {
795    lea(result, Operand(result, kHeapObjectTag));
796  }
797
798  // Update allocation top.
799  UpdateAllocationTopHelper(result_end, scratch);
800}
801
802
803void MacroAssembler::AllocateInNewSpace(int header_size,
804                                        ScaleFactor element_size,
805                                        Register element_count,
806                                        Register result,
807                                        Register result_end,
808                                        Register scratch,
809                                        Label* gc_required,
810                                        AllocationFlags flags) {
811  ASSERT(!result.is(result_end));
812
813  // Load address of new object into result.
814  LoadAllocationTopHelper(result, result_end, scratch, flags);
815
816  // Calculate new top and bail out if new space is exhausted.
817  ExternalReference new_space_allocation_limit =
818      ExternalReference::new_space_allocation_limit_address();
819  lea(result_end, Operand(result, element_count, element_size, header_size));
820  cmp(result_end, Operand::StaticVariable(new_space_allocation_limit));
821  j(above, gc_required);
822
823  // Tag result if requested.
824  if ((flags & TAG_OBJECT) != 0) {
825    lea(result, Operand(result, kHeapObjectTag));
826  }
827
828  // Update allocation top.
829  UpdateAllocationTopHelper(result_end, scratch);
830}
831
832
833void MacroAssembler::AllocateInNewSpace(Register object_size,
834                                        Register result,
835                                        Register result_end,
836                                        Register scratch,
837                                        Label* gc_required,
838                                        AllocationFlags flags) {
839  ASSERT(!result.is(result_end));
840
841  // Load address of new object into result.
842  LoadAllocationTopHelper(result, result_end, scratch, flags);
843
844  // Calculate new top and bail out if new space is exhausted.
845  ExternalReference new_space_allocation_limit =
846      ExternalReference::new_space_allocation_limit_address();
847  if (!object_size.is(result_end)) {
848    mov(result_end, object_size);
849  }
850  add(result_end, Operand(result));
851  cmp(result_end, Operand::StaticVariable(new_space_allocation_limit));
852  j(above, gc_required, not_taken);
853
854  // Tag result if requested.
855  if ((flags & TAG_OBJECT) != 0) {
856    lea(result, Operand(result, kHeapObjectTag));
857  }
858
859  // Update allocation top.
860  UpdateAllocationTopHelper(result_end, scratch);
861}
862
863
864void MacroAssembler::UndoAllocationInNewSpace(Register object) {
865  ExternalReference new_space_allocation_top =
866      ExternalReference::new_space_allocation_top_address();
867
868  // Make sure the object has no tag before resetting top.
869  and_(Operand(object), Immediate(~kHeapObjectTagMask));
870#ifdef DEBUG
871  cmp(object, Operand::StaticVariable(new_space_allocation_top));
872  Check(below, "Undo allocation of non allocated memory");
873#endif
874  mov(Operand::StaticVariable(new_space_allocation_top), object);
875}
876
877
878void MacroAssembler::AllocateHeapNumber(Register result,
879                                        Register scratch1,
880                                        Register scratch2,
881                                        Label* gc_required) {
882  // Allocate heap number in new space.
883  AllocateInNewSpace(HeapNumber::kSize,
884                     result,
885                     scratch1,
886                     scratch2,
887                     gc_required,
888                     TAG_OBJECT);
889
890  // Set the map.
891  mov(FieldOperand(result, HeapObject::kMapOffset),
892      Immediate(Factory::heap_number_map()));
893}
894
895
896void MacroAssembler::AllocateTwoByteString(Register result,
897                                           Register length,
898                                           Register scratch1,
899                                           Register scratch2,
900                                           Register scratch3,
901                                           Label* gc_required) {
902  // Calculate the number of bytes needed for the characters in the string while
903  // observing object alignment.
904  ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
905  ASSERT(kShortSize == 2);
906  // scratch1 = length * 2 + kObjectAlignmentMask.
907  lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
908  and_(Operand(scratch1), Immediate(~kObjectAlignmentMask));
909
910  // Allocate two byte string in new space.
911  AllocateInNewSpace(SeqTwoByteString::kHeaderSize,
912                     times_1,
913                     scratch1,
914                     result,
915                     scratch2,
916                     scratch3,
917                     gc_required,
918                     TAG_OBJECT);
919
920  // Set the map, length and hash field.
921  mov(FieldOperand(result, HeapObject::kMapOffset),
922      Immediate(Factory::string_map()));
923  mov(FieldOperand(result, String::kLengthOffset), length);
924  mov(FieldOperand(result, String::kHashFieldOffset),
925      Immediate(String::kEmptyHashField));
926}
927
928
929void MacroAssembler::AllocateAsciiString(Register result,
930                                         Register length,
931                                         Register scratch1,
932                                         Register scratch2,
933                                         Register scratch3,
934                                         Label* gc_required) {
935  // Calculate the number of bytes needed for the characters in the string while
936  // observing object alignment.
937  ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
938  mov(scratch1, length);
939  ASSERT(kCharSize == 1);
940  add(Operand(scratch1), Immediate(kObjectAlignmentMask));
941  and_(Operand(scratch1), Immediate(~kObjectAlignmentMask));
942
943  // Allocate ascii string in new space.
944  AllocateInNewSpace(SeqAsciiString::kHeaderSize,
945                     times_1,
946                     scratch1,
947                     result,
948                     scratch2,
949                     scratch3,
950                     gc_required,
951                     TAG_OBJECT);
952
953  // Set the map, length and hash field.
954  mov(FieldOperand(result, HeapObject::kMapOffset),
955      Immediate(Factory::ascii_string_map()));
956  mov(FieldOperand(result, String::kLengthOffset), length);
957  mov(FieldOperand(result, String::kHashFieldOffset),
958      Immediate(String::kEmptyHashField));
959}
960
961
962void MacroAssembler::AllocateConsString(Register result,
963                                        Register scratch1,
964                                        Register scratch2,
965                                        Label* gc_required) {
966  // Allocate heap number in new space.
967  AllocateInNewSpace(ConsString::kSize,
968                     result,
969                     scratch1,
970                     scratch2,
971                     gc_required,
972                     TAG_OBJECT);
973
974  // Set the map. The other fields are left uninitialized.
975  mov(FieldOperand(result, HeapObject::kMapOffset),
976      Immediate(Factory::cons_string_map()));
977}
978
979
980void MacroAssembler::AllocateAsciiConsString(Register result,
981                                             Register scratch1,
982                                             Register scratch2,
983                                             Label* gc_required) {
984  // Allocate heap number in new space.
985  AllocateInNewSpace(ConsString::kSize,
986                     result,
987                     scratch1,
988                     scratch2,
989                     gc_required,
990                     TAG_OBJECT);
991
992  // Set the map. The other fields are left uninitialized.
993  mov(FieldOperand(result, HeapObject::kMapOffset),
994      Immediate(Factory::cons_ascii_string_map()));
995}
996
997
998void MacroAssembler::NegativeZeroTest(CodeGenerator* cgen,
999                                      Register result,
1000                                      Register op,
1001                                      JumpTarget* then_target) {
1002  JumpTarget ok;
1003  test(result, Operand(result));
1004  ok.Branch(not_zero, taken);
1005  test(op, Operand(op));
1006  then_target->Branch(sign, not_taken);
1007  ok.Bind();
1008}
1009
1010
1011void MacroAssembler::NegativeZeroTest(Register result,
1012                                      Register op,
1013                                      Label* then_label) {
1014  Label ok;
1015  test(result, Operand(result));
1016  j(not_zero, &ok, taken);
1017  test(op, Operand(op));
1018  j(sign, then_label, not_taken);
1019  bind(&ok);
1020}
1021
1022
1023void MacroAssembler::NegativeZeroTest(Register result,
1024                                      Register op1,
1025                                      Register op2,
1026                                      Register scratch,
1027                                      Label* then_label) {
1028  Label ok;
1029  test(result, Operand(result));
1030  j(not_zero, &ok, taken);
1031  mov(scratch, Operand(op1));
1032  or_(scratch, Operand(op2));
1033  j(sign, then_label, not_taken);
1034  bind(&ok);
1035}
1036
1037
1038void MacroAssembler::TryGetFunctionPrototype(Register function,
1039                                             Register result,
1040                                             Register scratch,
1041                                             Label* miss) {
1042  // Check that the receiver isn't a smi.
1043  test(function, Immediate(kSmiTagMask));
1044  j(zero, miss, not_taken);
1045
1046  // Check that the function really is a function.
1047  CmpObjectType(function, JS_FUNCTION_TYPE, result);
1048  j(not_equal, miss, not_taken);
1049
1050  // Make sure that the function has an instance prototype.
1051  Label non_instance;
1052  movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
1053  test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
1054  j(not_zero, &non_instance, not_taken);
1055
1056  // Get the prototype or initial map from the function.
1057  mov(result,
1058      FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1059
1060  // If the prototype or initial map is the hole, don't return it and
1061  // simply miss the cache instead. This will allow us to allocate a
1062  // prototype object on-demand in the runtime system.
1063  cmp(Operand(result), Immediate(Factory::the_hole_value()));
1064  j(equal, miss, not_taken);
1065
1066  // If the function does not have an initial map, we're done.
1067  Label done;
1068  CmpObjectType(result, MAP_TYPE, scratch);
1069  j(not_equal, &done);
1070
1071  // Get the prototype from the initial map.
1072  mov(result, FieldOperand(result, Map::kPrototypeOffset));
1073  jmp(&done);
1074
1075  // Non-instance prototype: Fetch prototype from constructor field
1076  // in initial map.
1077  bind(&non_instance);
1078  mov(result, FieldOperand(result, Map::kConstructorOffset));
1079
1080  // All done.
1081  bind(&done);
1082}
1083
1084
1085void MacroAssembler::CallStub(CodeStub* stub) {
1086  ASSERT(allow_stub_calls());  // Calls are not allowed in some stubs.
1087  call(stub->GetCode(), RelocInfo::CODE_TARGET);
1088}
1089
1090
1091Object* MacroAssembler::TryCallStub(CodeStub* stub) {
1092  ASSERT(allow_stub_calls());  // Calls are not allowed in some stubs.
1093  Object* result = stub->TryGetCode();
1094  if (!result->IsFailure()) {
1095    call(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET);
1096  }
1097  return result;
1098}
1099
1100
1101void MacroAssembler::TailCallStub(CodeStub* stub) {
1102  ASSERT(allow_stub_calls());  // Calls are not allowed in some stubs.
1103  jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
1104}
1105
1106
1107Object* MacroAssembler::TryTailCallStub(CodeStub* stub) {
1108  ASSERT(allow_stub_calls());  // Calls are not allowed in some stubs.
1109  Object* result = stub->TryGetCode();
1110  if (!result->IsFailure()) {
1111    jmp(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET);
1112  }
1113  return result;
1114}
1115
1116
1117void MacroAssembler::StubReturn(int argc) {
1118  ASSERT(argc >= 1 && generating_stub());
1119  ret((argc - 1) * kPointerSize);
1120}
1121
1122
1123void MacroAssembler::IllegalOperation(int num_arguments) {
1124  if (num_arguments > 0) {
1125    add(Operand(esp), Immediate(num_arguments * kPointerSize));
1126  }
1127  mov(eax, Immediate(Factory::undefined_value()));
1128}
1129
1130
1131void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) {
1132  CallRuntime(Runtime::FunctionForId(id), num_arguments);
1133}
1134
1135
1136Object* MacroAssembler::TryCallRuntime(Runtime::FunctionId id,
1137                                       int num_arguments) {
1138  return TryCallRuntime(Runtime::FunctionForId(id), num_arguments);
1139}
1140
1141
1142void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) {
1143  // If the expected number of arguments of the runtime function is
1144  // constant, we check that the actual number of arguments match the
1145  // expectation.
1146  if (f->nargs >= 0 && f->nargs != num_arguments) {
1147    IllegalOperation(num_arguments);
1148    return;
1149  }
1150
1151  // TODO(1236192): Most runtime routines don't need the number of
1152  // arguments passed in because it is constant. At some point we
1153  // should remove this need and make the runtime routine entry code
1154  // smarter.
1155  Set(eax, Immediate(num_arguments));
1156  mov(ebx, Immediate(ExternalReference(f)));
1157  CEntryStub ces(1);
1158  CallStub(&ces);
1159}
1160
1161
1162void MacroAssembler::CallExternalReference(ExternalReference ref,
1163                                           int num_arguments) {
1164  mov(eax, Immediate(num_arguments));
1165  mov(ebx, Immediate(ref));
1166
1167  CEntryStub stub(1);
1168  CallStub(&stub);
1169}
1170
1171
1172Object* MacroAssembler::TryCallRuntime(Runtime::Function* f,
1173                                       int num_arguments) {
1174  if (f->nargs >= 0 && f->nargs != num_arguments) {
1175    IllegalOperation(num_arguments);
1176    // Since we did not call the stub, there was no allocation failure.
1177    // Return some non-failure object.
1178    return Heap::undefined_value();
1179  }
1180
1181  // TODO(1236192): Most runtime routines don't need the number of
1182  // arguments passed in because it is constant. At some point we
1183  // should remove this need and make the runtime routine entry code
1184  // smarter.
1185  Set(eax, Immediate(num_arguments));
1186  mov(ebx, Immediate(ExternalReference(f)));
1187  CEntryStub ces(1);
1188  return TryCallStub(&ces);
1189}
1190
1191
1192void MacroAssembler::TailCallRuntime(const ExternalReference& ext,
1193                                     int num_arguments,
1194                                     int result_size) {
1195  // TODO(1236192): Most runtime routines don't need the number of
1196  // arguments passed in because it is constant. At some point we
1197  // should remove this need and make the runtime routine entry code
1198  // smarter.
1199  Set(eax, Immediate(num_arguments));
1200  JumpToRuntime(ext);
1201}
1202
1203
1204void MacroAssembler::PushHandleScope(Register scratch) {
1205  // Push the number of extensions, smi-tagged so the gc will ignore it.
1206  ExternalReference extensions_address =
1207      ExternalReference::handle_scope_extensions_address();
1208  mov(scratch, Operand::StaticVariable(extensions_address));
1209  ASSERT_EQ(0, kSmiTag);
1210  shl(scratch, kSmiTagSize);
1211  push(scratch);
1212  mov(Operand::StaticVariable(extensions_address), Immediate(0));
1213  // Push next and limit pointers which will be wordsize aligned and
1214  // hence automatically smi tagged.
1215  ExternalReference next_address =
1216      ExternalReference::handle_scope_next_address();
1217  push(Operand::StaticVariable(next_address));
1218  ExternalReference limit_address =
1219      ExternalReference::handle_scope_limit_address();
1220  push(Operand::StaticVariable(limit_address));
1221}
1222
1223
1224Object* MacroAssembler::PopHandleScopeHelper(Register saved,
1225                                             Register scratch,
1226                                             bool gc_allowed) {
1227  Object* result = NULL;
1228  ExternalReference extensions_address =
1229        ExternalReference::handle_scope_extensions_address();
1230  Label write_back;
1231  mov(scratch, Operand::StaticVariable(extensions_address));
1232  cmp(Operand(scratch), Immediate(0));
1233  j(equal, &write_back);
1234  // Calling a runtime function messes with registers so we save and
1235  // restore any one we're asked not to change
1236  if (saved.is_valid()) push(saved);
1237  if (gc_allowed) {
1238    CallRuntime(Runtime::kDeleteHandleScopeExtensions, 0);
1239  } else {
1240    result = TryCallRuntime(Runtime::kDeleteHandleScopeExtensions, 0);
1241    if (result->IsFailure()) return result;
1242  }
1243  if (saved.is_valid()) pop(saved);
1244
1245  bind(&write_back);
1246  ExternalReference limit_address =
1247        ExternalReference::handle_scope_limit_address();
1248  pop(Operand::StaticVariable(limit_address));
1249  ExternalReference next_address =
1250        ExternalReference::handle_scope_next_address();
1251  pop(Operand::StaticVariable(next_address));
1252  pop(scratch);
1253  shr(scratch, kSmiTagSize);
1254  mov(Operand::StaticVariable(extensions_address), scratch);
1255
1256  return result;
1257}
1258
1259
1260void MacroAssembler::PopHandleScope(Register saved, Register scratch) {
1261  PopHandleScopeHelper(saved, scratch, true);
1262}
1263
1264
1265Object* MacroAssembler::TryPopHandleScope(Register saved, Register scratch) {
1266  return PopHandleScopeHelper(saved, scratch, false);
1267}
1268
1269
1270void MacroAssembler::JumpToRuntime(const ExternalReference& ext) {
1271  // Set the entry point and jump to the C entry runtime stub.
1272  mov(ebx, Immediate(ext));
1273  CEntryStub ces(1);
1274  jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
1275}
1276
1277
1278void MacroAssembler::InvokePrologue(const ParameterCount& expected,
1279                                    const ParameterCount& actual,
1280                                    Handle<Code> code_constant,
1281                                    const Operand& code_operand,
1282                                    Label* done,
1283                                    InvokeFlag flag) {
1284  bool definitely_matches = false;
1285  Label invoke;
1286  if (expected.is_immediate()) {
1287    ASSERT(actual.is_immediate());
1288    if (expected.immediate() == actual.immediate()) {
1289      definitely_matches = true;
1290    } else {
1291      mov(eax, actual.immediate());
1292      const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1293      if (expected.immediate() == sentinel) {
1294        // Don't worry about adapting arguments for builtins that
1295        // don't want that done. Skip adaption code by making it look
1296        // like we have a match between expected and actual number of
1297        // arguments.
1298        definitely_matches = true;
1299      } else {
1300        mov(ebx, expected.immediate());
1301      }
1302    }
1303  } else {
1304    if (actual.is_immediate()) {
1305      // Expected is in register, actual is immediate. This is the
1306      // case when we invoke function values without going through the
1307      // IC mechanism.
1308      cmp(expected.reg(), actual.immediate());
1309      j(equal, &invoke);
1310      ASSERT(expected.reg().is(ebx));
1311      mov(eax, actual.immediate());
1312    } else if (!expected.reg().is(actual.reg())) {
1313      // Both expected and actual are in (different) registers. This
1314      // is the case when we invoke functions using call and apply.
1315      cmp(expected.reg(), Operand(actual.reg()));
1316      j(equal, &invoke);
1317      ASSERT(actual.reg().is(eax));
1318      ASSERT(expected.reg().is(ebx));
1319    }
1320  }
1321
1322  if (!definitely_matches) {
1323    Handle<Code> adaptor =
1324        Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
1325    if (!code_constant.is_null()) {
1326      mov(edx, Immediate(code_constant));
1327      add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag));
1328    } else if (!code_operand.is_reg(edx)) {
1329      mov(edx, code_operand);
1330    }
1331
1332    if (flag == CALL_FUNCTION) {
1333      call(adaptor, RelocInfo::CODE_TARGET);
1334      jmp(done);
1335    } else {
1336      jmp(adaptor, RelocInfo::CODE_TARGET);
1337    }
1338    bind(&invoke);
1339  }
1340}
1341
1342
1343void MacroAssembler::InvokeCode(const Operand& code,
1344                                const ParameterCount& expected,
1345                                const ParameterCount& actual,
1346                                InvokeFlag flag) {
1347  Label done;
1348  InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag);
1349  if (flag == CALL_FUNCTION) {
1350    call(code);
1351  } else {
1352    ASSERT(flag == JUMP_FUNCTION);
1353    jmp(code);
1354  }
1355  bind(&done);
1356}
1357
1358
1359void MacroAssembler::InvokeCode(Handle<Code> code,
1360                                const ParameterCount& expected,
1361                                const ParameterCount& actual,
1362                                RelocInfo::Mode rmode,
1363                                InvokeFlag flag) {
1364  Label done;
1365  Operand dummy(eax);
1366  InvokePrologue(expected, actual, code, dummy, &done, flag);
1367  if (flag == CALL_FUNCTION) {
1368    call(code, rmode);
1369  } else {
1370    ASSERT(flag == JUMP_FUNCTION);
1371    jmp(code, rmode);
1372  }
1373  bind(&done);
1374}
1375
1376
1377void MacroAssembler::InvokeFunction(Register fun,
1378                                    const ParameterCount& actual,
1379                                    InvokeFlag flag) {
1380  ASSERT(fun.is(edi));
1381  mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1382  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
1383  mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
1384  mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset));
1385  lea(edx, FieldOperand(edx, Code::kHeaderSize));
1386
1387  ParameterCount expected(ebx);
1388  InvokeCode(Operand(edx), expected, actual, flag);
1389}
1390
1391
1392void MacroAssembler::InvokeFunction(JSFunction* function,
1393                                    const ParameterCount& actual,
1394                                    InvokeFlag flag) {
1395  ASSERT(function->is_compiled());
1396  // Get the function and setup the context.
1397  mov(edi, Immediate(Handle<JSFunction>(function)));
1398  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
1399
1400  // Invoke the cached code.
1401  Handle<Code> code(function->code());
1402  ParameterCount expected(function->shared()->formal_parameter_count());
1403  InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag);
1404}
1405
1406
1407void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag) {
1408  // Calls are not allowed in some stubs.
1409  ASSERT(flag == JUMP_FUNCTION || allow_stub_calls());
1410
1411  // Rely on the assertion to check that the number of provided
1412  // arguments match the expected number of arguments. Fake a
1413  // parameter count to avoid emitting code to do the check.
1414  ParameterCount expected(0);
1415  GetBuiltinEntry(edx, id);
1416  InvokeCode(Operand(edx), expected, expected, flag);
1417}
1418
1419
1420void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
1421  // Load the JavaScript builtin function from the builtins object.
1422  mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
1423  mov(edi, FieldOperand(edi, GlobalObject::kBuiltinsOffset));
1424  int builtins_offset =
1425      JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize);
1426  mov(edi, FieldOperand(edi, builtins_offset));
1427  // Load the code entry point from the function into the target register.
1428  mov(target, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1429  mov(target, FieldOperand(target, SharedFunctionInfo::kCodeOffset));
1430  add(Operand(target), Immediate(Code::kHeaderSize - kHeapObjectTag));
1431}
1432
1433
1434void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
1435  if (context_chain_length > 0) {
1436    // Move up the chain of contexts to the context containing the slot.
1437    mov(dst, Operand(esi, Context::SlotOffset(Context::CLOSURE_INDEX)));
1438    // Load the function context (which is the incoming, outer context).
1439    mov(dst, FieldOperand(dst, JSFunction::kContextOffset));
1440    for (int i = 1; i < context_chain_length; i++) {
1441      mov(dst, Operand(dst, Context::SlotOffset(Context::CLOSURE_INDEX)));
1442      mov(dst, FieldOperand(dst, JSFunction::kContextOffset));
1443    }
1444    // The context may be an intermediate context, not a function context.
1445    mov(dst, Operand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
1446  } else {  // Slot is in the current function context.
1447    // The context may be an intermediate context, not a function context.
1448    mov(dst, Operand(esi, Context::SlotOffset(Context::FCONTEXT_INDEX)));
1449  }
1450}
1451
1452
1453
1454void MacroAssembler::Ret() {
1455  ret(0);
1456}
1457
1458
1459void MacroAssembler::Drop(int stack_elements) {
1460  if (stack_elements > 0) {
1461    add(Operand(esp), Immediate(stack_elements * kPointerSize));
1462  }
1463}
1464
1465
1466void MacroAssembler::Move(Register dst, Handle<Object> value) {
1467  mov(dst, value);
1468}
1469
1470
1471void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
1472  if (FLAG_native_code_counters && counter->Enabled()) {
1473    mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
1474  }
1475}
1476
1477
1478void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
1479  ASSERT(value > 0);
1480  if (FLAG_native_code_counters && counter->Enabled()) {
1481    Operand operand = Operand::StaticVariable(ExternalReference(counter));
1482    if (value == 1) {
1483      inc(operand);
1484    } else {
1485      add(operand, Immediate(value));
1486    }
1487  }
1488}
1489
1490
1491void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
1492  ASSERT(value > 0);
1493  if (FLAG_native_code_counters && counter->Enabled()) {
1494    Operand operand = Operand::StaticVariable(ExternalReference(counter));
1495    if (value == 1) {
1496      dec(operand);
1497    } else {
1498      sub(operand, Immediate(value));
1499    }
1500  }
1501}
1502
1503
1504void MacroAssembler::IncrementCounter(Condition cc,
1505                                      StatsCounter* counter,
1506                                      int value) {
1507  ASSERT(value > 0);
1508  if (FLAG_native_code_counters && counter->Enabled()) {
1509    Label skip;
1510    j(NegateCondition(cc), &skip);
1511    pushfd();
1512    IncrementCounter(counter, value);
1513    popfd();
1514    bind(&skip);
1515  }
1516}
1517
1518
1519void MacroAssembler::DecrementCounter(Condition cc,
1520                                      StatsCounter* counter,
1521                                      int value) {
1522  ASSERT(value > 0);
1523  if (FLAG_native_code_counters && counter->Enabled()) {
1524    Label skip;
1525    j(NegateCondition(cc), &skip);
1526    pushfd();
1527    DecrementCounter(counter, value);
1528    popfd();
1529    bind(&skip);
1530  }
1531}
1532
1533
1534void MacroAssembler::Assert(Condition cc, const char* msg) {
1535  if (FLAG_debug_code) Check(cc, msg);
1536}
1537
1538
1539void MacroAssembler::Check(Condition cc, const char* msg) {
1540  Label L;
1541  j(cc, &L, taken);
1542  Abort(msg);
1543  // will not return here
1544  bind(&L);
1545}
1546
1547
1548void MacroAssembler::Abort(const char* msg) {
1549  // We want to pass the msg string like a smi to avoid GC
1550  // problems, however msg is not guaranteed to be aligned
1551  // properly. Instead, we pass an aligned pointer that is
1552  // a proper v8 smi, but also pass the alignment difference
1553  // from the real pointer as a smi.
1554  intptr_t p1 = reinterpret_cast<intptr_t>(msg);
1555  intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
1556  ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
1557#ifdef DEBUG
1558  if (msg != NULL) {
1559    RecordComment("Abort message: ");
1560    RecordComment(msg);
1561  }
1562#endif
1563  // Disable stub call restrictions to always allow calls to abort.
1564  set_allow_stub_calls(true);
1565
1566  push(eax);
1567  push(Immediate(p0));
1568  push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(p1 - p0))));
1569  CallRuntime(Runtime::kAbort, 2);
1570  // will not return here
1571  int3();
1572}
1573
1574
1575void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
1576    Register instance_type,
1577    Register scratch,
1578    Label *failure) {
1579  if (!scratch.is(instance_type)) {
1580    mov(scratch, instance_type);
1581  }
1582  and_(scratch,
1583       kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
1584  cmp(scratch, kStringTag | kSeqStringTag | kAsciiStringTag);
1585  j(not_equal, failure);
1586}
1587
1588
1589void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1,
1590                                                         Register object2,
1591                                                         Register scratch1,
1592                                                         Register scratch2,
1593                                                         Label* failure) {
1594  // Check that both objects are not smis.
1595  ASSERT_EQ(0, kSmiTag);
1596  mov(scratch1, Operand(object1));
1597  and_(scratch1, Operand(object2));
1598  test(scratch1, Immediate(kSmiTagMask));
1599  j(zero, failure);
1600
1601  // Load instance type for both strings.
1602  mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
1603  mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
1604  movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
1605  movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
1606
1607  // Check that both are flat ascii strings.
1608  const int kFlatAsciiStringMask =
1609      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
1610  const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
1611  // Interleave bits from both instance types and compare them in one check.
1612  ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
1613  and_(scratch1, kFlatAsciiStringMask);
1614  and_(scratch2, kFlatAsciiStringMask);
1615  lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
1616  cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3));
1617  j(not_equal, failure);
1618}
1619
1620
1621CodePatcher::CodePatcher(byte* address, int size)
1622    : address_(address), size_(size), masm_(address, size + Assembler::kGap) {
1623  // Create a new macro assembler pointing to the address of the code to patch.
1624  // The size is adjusted with kGap on order for the assembler to generate size
1625  // bytes of instructions without failing with buffer size constraints.
1626  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
1627}
1628
1629
1630CodePatcher::~CodePatcher() {
1631  // Indicate that code has changed.
1632  CPU::FlushICache(address_, size_);
1633
1634  // Check that the code was patched as expected.
1635  ASSERT(masm_.pc_ == address_ + size_);
1636  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
1637}
1638
1639
1640} }  // namespace v8::internal
1641