objects.h revision 888f6729be6a6f6fbe246cb5a9f122e2dbe455b7
1// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_OBJECTS_H_
29#define V8_OBJECTS_H_
30
31#include "builtins.h"
32#include "code-stubs.h"
33#include "smart-pointer.h"
34#include "unicode-inl.h"
35#if V8_TARGET_ARCH_ARM
36#include "arm/constants-arm.h"
37#endif
38
39//
40// All object types in the V8 JavaScript are described in this file.
41//
42// Inheritance hierarchy:
43//   - Object
44//     - Smi          (immediate small integer)
45//     - Failure      (immediate for marking failed operation)
46//     - HeapObject   (superclass for everything allocated in the heap)
47//       - JSObject
48//         - JSArray
49//         - JSRegExp
50//         - JSFunction
51//         - GlobalObject
52//           - JSGlobalObject
53//           - JSBuiltinsObject
54//         - JSGlobalProxy
55//         - JSValue
56//       - Array
57//         - ByteArray
58//         - PixelArray
59//         - ExternalArray
60//           - ExternalByteArray
61//           - ExternalUnsignedByteArray
62//           - ExternalShortArray
63//           - ExternalUnsignedShortArray
64//           - ExternalIntArray
65//           - ExternalUnsignedIntArray
66//           - ExternalFloatArray
67//         - FixedArray
68//           - DescriptorArray
69//           - HashTable
70//             - Dictionary
71//             - SymbolTable
72//             - CompilationCacheTable
73//             - MapCache
74//           - Context
75//           - GlobalContext
76//       - String
77//         - SeqString
78//           - SeqAsciiString
79//           - SeqTwoByteString
80//         - ConsString
81//         - ExternalString
82//           - ExternalAsciiString
83//           - ExternalTwoByteString
84//       - HeapNumber
85//       - Code
86//       - Map
87//       - Oddball
88//       - Proxy
89//       - SharedFunctionInfo
90//       - Struct
91//         - AccessorInfo
92//         - AccessCheckInfo
93//         - InterceptorInfo
94//         - CallHandlerInfo
95//         - TemplateInfo
96//           - FunctionTemplateInfo
97//           - ObjectTemplateInfo
98//         - Script
99//         - SignatureInfo
100//         - TypeSwitchInfo
101//         - DebugInfo
102//         - BreakPointInfo
103//
104// Formats of Object*:
105//  Smi:        [31 bit signed int] 0
106//  HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
107//  Failure:    [30 bit signed int] 11
108
109// Ecma-262 3rd 8.6.1
110enum PropertyAttributes {
111  NONE              = v8::None,
112  READ_ONLY         = v8::ReadOnly,
113  DONT_ENUM         = v8::DontEnum,
114  DONT_DELETE       = v8::DontDelete,
115  ABSENT            = 16  // Used in runtime to indicate a property is absent.
116  // ABSENT can never be stored in or returned from a descriptor's attributes
117  // bitfield.  It is only used as a return value meaning the attributes of
118  // a non-existent property.
119};
120
121namespace v8 {
122namespace internal {
123
124
125// PropertyDetails captures type and attributes for a property.
126// They are used both in property dictionaries and instance descriptors.
127class PropertyDetails BASE_EMBEDDED {
128 public:
129
130  PropertyDetails(PropertyAttributes attributes,
131                  PropertyType type,
132                  int index = 0) {
133    ASSERT(TypeField::is_valid(type));
134    ASSERT(AttributesField::is_valid(attributes));
135    ASSERT(IndexField::is_valid(index));
136
137    value_ = TypeField::encode(type)
138        | AttributesField::encode(attributes)
139        | IndexField::encode(index);
140
141    ASSERT(type == this->type());
142    ASSERT(attributes == this->attributes());
143    ASSERT(index == this->index());
144  }
145
146  // Conversion for storing details as Object*.
147  inline PropertyDetails(Smi* smi);
148  inline Smi* AsSmi();
149
150  PropertyType type() { return TypeField::decode(value_); }
151
152  bool IsTransition() {
153    PropertyType t = type();
154    ASSERT(t != INTERCEPTOR);
155    return t == MAP_TRANSITION || t == CONSTANT_TRANSITION;
156  }
157
158  bool IsProperty() {
159    return type() < FIRST_PHANTOM_PROPERTY_TYPE;
160  }
161
162  PropertyAttributes attributes() { return AttributesField::decode(value_); }
163
164  int index() { return IndexField::decode(value_); }
165
166  inline PropertyDetails AsDeleted();
167
168  static bool IsValidIndex(int index) { return IndexField::is_valid(index); }
169
170  bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; }
171  bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; }
172  bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; }
173  bool IsDeleted() { return DeletedField::decode(value_) != 0;}
174
175  // Bit fields in value_ (type, shift, size). Must be public so the
176  // constants can be embedded in generated code.
177  class TypeField:       public BitField<PropertyType,       0, 3> {};
178  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
179  class DeletedField:    public BitField<uint32_t,           6, 1> {};
180  class IndexField:      public BitField<uint32_t,           7, 31-7> {};
181
182  static const int kInitialIndex = 1;
183 private:
184  uint32_t value_;
185};
186
187
188// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
189enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
190
191
192// PropertyNormalizationMode is used to specify whether to keep
193// inobject properties when normalizing properties of a JSObject.
194enum PropertyNormalizationMode {
195  CLEAR_INOBJECT_PROPERTIES,
196  KEEP_INOBJECT_PROPERTIES
197};
198
199
200// All Maps have a field instance_type containing a InstanceType.
201// It describes the type of the instances.
202//
203// As an example, a JavaScript object is a heap object and its map
204// instance_type is JS_OBJECT_TYPE.
205//
206// The names of the string instance types are intended to systematically
207// mirror their encoding in the instance_type field of the map.  The default
208// encoding is considered TWO_BYTE.  It is not mentioned in the name.  ASCII
209// encoding is mentioned explicitly in the name.  Likewise, the default
210// representation is considered sequential.  It is not mentioned in the
211// name.  The other representations (eg, CONS, EXTERNAL) are explicitly
212// mentioned.  Finally, the string is either a SYMBOL_TYPE (if it is a
213// symbol) or a STRING_TYPE (if it is not a symbol).
214//
215// NOTE: The following things are some that depend on the string types having
216// instance_types that are less than those of all other types:
217// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
218// Object::IsString.
219//
220// NOTE: Everything following JS_VALUE_TYPE is considered a
221// JSObject for GC purposes. The first four entries here have typeof
222// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
223#define INSTANCE_TYPE_LIST_ALL(V)                                              \
224  V(SYMBOL_TYPE)                                                               \
225  V(ASCII_SYMBOL_TYPE)                                                         \
226  V(CONS_SYMBOL_TYPE)                                                          \
227  V(CONS_ASCII_SYMBOL_TYPE)                                                    \
228  V(EXTERNAL_SYMBOL_TYPE)                                                      \
229  V(EXTERNAL_ASCII_SYMBOL_TYPE)                                                \
230  V(STRING_TYPE)                                                               \
231  V(ASCII_STRING_TYPE)                                                         \
232  V(CONS_STRING_TYPE)                                                          \
233  V(CONS_ASCII_STRING_TYPE)                                                    \
234  V(EXTERNAL_STRING_TYPE)                                                      \
235  V(EXTERNAL_ASCII_STRING_TYPE)                                                \
236  V(PRIVATE_EXTERNAL_ASCII_STRING_TYPE)                                        \
237                                                                               \
238  V(MAP_TYPE)                                                                  \
239  V(CODE_TYPE)                                                                 \
240  V(JS_GLOBAL_PROPERTY_CELL_TYPE)                                              \
241  V(ODDBALL_TYPE)                                                              \
242                                                                               \
243  V(HEAP_NUMBER_TYPE)                                                          \
244  V(PROXY_TYPE)                                                                \
245  V(BYTE_ARRAY_TYPE)                                                           \
246  V(PIXEL_ARRAY_TYPE)                                                          \
247  /* Note: the order of these external array */                                \
248  /* types is relied upon in */                                                \
249  /* Object::IsExternalArray(). */                                             \
250  V(EXTERNAL_BYTE_ARRAY_TYPE)                                                  \
251  V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)                                         \
252  V(EXTERNAL_SHORT_ARRAY_TYPE)                                                 \
253  V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)                                        \
254  V(EXTERNAL_INT_ARRAY_TYPE)                                                   \
255  V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)                                          \
256  V(EXTERNAL_FLOAT_ARRAY_TYPE)                                                 \
257  V(FILLER_TYPE)                                                               \
258                                                                               \
259  V(FIXED_ARRAY_TYPE)                                                          \
260  V(ACCESSOR_INFO_TYPE)                                                        \
261  V(ACCESS_CHECK_INFO_TYPE)                                                    \
262  V(INTERCEPTOR_INFO_TYPE)                                                     \
263  V(SHARED_FUNCTION_INFO_TYPE)                                                 \
264  V(CALL_HANDLER_INFO_TYPE)                                                    \
265  V(FUNCTION_TEMPLATE_INFO_TYPE)                                               \
266  V(OBJECT_TEMPLATE_INFO_TYPE)                                                 \
267  V(SIGNATURE_INFO_TYPE)                                                       \
268  V(TYPE_SWITCH_INFO_TYPE)                                                     \
269  V(SCRIPT_TYPE)                                                               \
270                                                                               \
271  V(JS_VALUE_TYPE)                                                             \
272  V(JS_OBJECT_TYPE)                                                            \
273  V(JS_CONTEXT_EXTENSION_OBJECT_TYPE)                                          \
274  V(JS_GLOBAL_OBJECT_TYPE)                                                     \
275  V(JS_BUILTINS_OBJECT_TYPE)                                                   \
276  V(JS_GLOBAL_PROXY_TYPE)                                                      \
277  V(JS_ARRAY_TYPE)                                                             \
278  V(JS_REGEXP_TYPE)                                                            \
279                                                                               \
280  V(JS_FUNCTION_TYPE)                                                          \
281
282#ifdef ENABLE_DEBUGGER_SUPPORT
283#define INSTANCE_TYPE_LIST_DEBUGGER(V)                                         \
284  V(DEBUG_INFO_TYPE)                                                           \
285  V(BREAK_POINT_INFO_TYPE)
286#else
287#define INSTANCE_TYPE_LIST_DEBUGGER(V)
288#endif
289
290#define INSTANCE_TYPE_LIST(V)                                                  \
291  INSTANCE_TYPE_LIST_ALL(V)                                                    \
292  INSTANCE_TYPE_LIST_DEBUGGER(V)
293
294
295// Since string types are not consecutive, this macro is used to
296// iterate over them.
297#define STRING_TYPE_LIST(V)                                                    \
298  V(SYMBOL_TYPE,                                                               \
299    SeqTwoByteString::kAlignedSize,                                            \
300    symbol,                                                                    \
301    Symbol)                                                                    \
302  V(ASCII_SYMBOL_TYPE,                                                         \
303    SeqAsciiString::kAlignedSize,                                              \
304    ascii_symbol,                                                              \
305    AsciiSymbol)                                                               \
306  V(CONS_SYMBOL_TYPE,                                                          \
307    ConsString::kSize,                                                         \
308    cons_symbol,                                                               \
309    ConsSymbol)                                                                \
310  V(CONS_ASCII_SYMBOL_TYPE,                                                    \
311    ConsString::kSize,                                                         \
312    cons_ascii_symbol,                                                         \
313    ConsAsciiSymbol)                                                           \
314  V(EXTERNAL_SYMBOL_TYPE,                                                      \
315    ExternalTwoByteString::kSize,                                              \
316    external_symbol,                                                           \
317    ExternalSymbol)                                                            \
318  V(EXTERNAL_ASCII_SYMBOL_TYPE,                                                \
319    ExternalAsciiString::kSize,                                                \
320    external_ascii_symbol,                                                     \
321    ExternalAsciiSymbol)                                                       \
322  V(STRING_TYPE,                                                               \
323    SeqTwoByteString::kAlignedSize,                                            \
324    string,                                                                    \
325    String)                                                                    \
326  V(ASCII_STRING_TYPE,                                                         \
327    SeqAsciiString::kAlignedSize,                                              \
328    ascii_string,                                                              \
329    AsciiString)                                                               \
330  V(CONS_STRING_TYPE,                                                          \
331    ConsString::kSize,                                                         \
332    cons_string,                                                               \
333    ConsString)                                                                \
334  V(CONS_ASCII_STRING_TYPE,                                                    \
335    ConsString::kSize,                                                         \
336    cons_ascii_string,                                                         \
337    ConsAsciiString)                                                           \
338  V(EXTERNAL_STRING_TYPE,                                                      \
339    ExternalTwoByteString::kSize,                                              \
340    external_string,                                                           \
341    ExternalString)                                                            \
342  V(EXTERNAL_ASCII_STRING_TYPE,                                                \
343    ExternalAsciiString::kSize,                                                \
344    external_ascii_string,                                                     \
345    ExternalAsciiString)                                                       \
346
347// A struct is a simple object a set of object-valued fields.  Including an
348// object type in this causes the compiler to generate most of the boilerplate
349// code for the class including allocation and garbage collection routines,
350// casts and predicates.  All you need to define is the class, methods and
351// object verification routines.  Easy, no?
352//
353// Note that for subtle reasons related to the ordering or numerical values of
354// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
355// manually.
356#define STRUCT_LIST_ALL(V)                                                     \
357  V(ACCESSOR_INFO, AccessorInfo, accessor_info)                                \
358  V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info)                     \
359  V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info)                       \
360  V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info)                     \
361  V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info)      \
362  V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info)            \
363  V(SIGNATURE_INFO, SignatureInfo, signature_info)                             \
364  V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info)                        \
365  V(SCRIPT, Script, script)
366
367#ifdef ENABLE_DEBUGGER_SUPPORT
368#define STRUCT_LIST_DEBUGGER(V)                                                \
369  V(DEBUG_INFO, DebugInfo, debug_info)                                         \
370  V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
371#else
372#define STRUCT_LIST_DEBUGGER(V)
373#endif
374
375#define STRUCT_LIST(V)                                                         \
376  STRUCT_LIST_ALL(V)                                                           \
377  STRUCT_LIST_DEBUGGER(V)
378
379// We use the full 8 bits of the instance_type field to encode heap object
380// instance types.  The high-order bit (bit 7) is set if the object is not a
381// string, and cleared if it is a string.
382const uint32_t kIsNotStringMask = 0x80;
383const uint32_t kStringTag = 0x0;
384const uint32_t kNotStringTag = 0x80;
385
386// Bit 6 indicates that the object is a symbol (if set) or not (if cleared).
387// There are not enough types that the non-string types (with bit 7 set) can
388// have bit 6 set too.
389const uint32_t kIsSymbolMask = 0x40;
390const uint32_t kNotSymbolTag = 0x0;
391const uint32_t kSymbolTag = 0x40;
392
393// If bit 7 is clear then bit 2 indicates whether the string consists of
394// two-byte characters or one-byte characters.
395const uint32_t kStringEncodingMask = 0x4;
396const uint32_t kTwoByteStringTag = 0x0;
397const uint32_t kAsciiStringTag = 0x4;
398
399// If bit 7 is clear, the low-order 2 bits indicate the representation
400// of the string.
401const uint32_t kStringRepresentationMask = 0x03;
402enum StringRepresentationTag {
403  kSeqStringTag = 0x0,
404  kConsStringTag = 0x1,
405  kExternalStringTag = 0x3
406};
407
408
409// A ConsString with an empty string as the right side is a candidate
410// for being shortcut by the garbage collector unless it is a
411// symbol. It's not common to have non-flat symbols, so we do not
412// shortcut them thereby avoiding turning symbols into strings. See
413// heap.cc and mark-compact.cc.
414const uint32_t kShortcutTypeMask =
415    kIsNotStringMask |
416    kIsSymbolMask |
417    kStringRepresentationMask;
418const uint32_t kShortcutTypeTag = kConsStringTag;
419
420
421enum InstanceType {
422  // String types.
423  SYMBOL_TYPE = kSymbolTag | kSeqStringTag,
424  ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kSeqStringTag,
425  CONS_SYMBOL_TYPE = kSymbolTag | kConsStringTag,
426  CONS_ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kConsStringTag,
427  EXTERNAL_SYMBOL_TYPE = kSymbolTag | kExternalStringTag,
428  EXTERNAL_ASCII_SYMBOL_TYPE =
429      kAsciiStringTag | kSymbolTag | kExternalStringTag,
430  STRING_TYPE = kSeqStringTag,
431  ASCII_STRING_TYPE = kAsciiStringTag | kSeqStringTag,
432  CONS_STRING_TYPE = kConsStringTag,
433  CONS_ASCII_STRING_TYPE = kAsciiStringTag | kConsStringTag,
434  EXTERNAL_STRING_TYPE = kExternalStringTag,
435  EXTERNAL_ASCII_STRING_TYPE = kAsciiStringTag | kExternalStringTag,
436  PRIVATE_EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_STRING_TYPE,
437
438  // Objects allocated in their own spaces (never in new space).
439  MAP_TYPE = kNotStringTag,  // FIRST_NONSTRING_TYPE
440  CODE_TYPE,
441  ODDBALL_TYPE,
442  JS_GLOBAL_PROPERTY_CELL_TYPE,
443
444  // "Data", objects that cannot contain non-map-word pointers to heap
445  // objects.
446  HEAP_NUMBER_TYPE,
447  PROXY_TYPE,
448  BYTE_ARRAY_TYPE,
449  PIXEL_ARRAY_TYPE,
450  EXTERNAL_BYTE_ARRAY_TYPE,  // FIRST_EXTERNAL_ARRAY_TYPE
451  EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
452  EXTERNAL_SHORT_ARRAY_TYPE,
453  EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
454  EXTERNAL_INT_ARRAY_TYPE,
455  EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
456  EXTERNAL_FLOAT_ARRAY_TYPE,  // LAST_EXTERNAL_ARRAY_TYPE
457  FILLER_TYPE,  // LAST_DATA_TYPE
458
459  // Structs.
460  ACCESSOR_INFO_TYPE,
461  ACCESS_CHECK_INFO_TYPE,
462  INTERCEPTOR_INFO_TYPE,
463  CALL_HANDLER_INFO_TYPE,
464  FUNCTION_TEMPLATE_INFO_TYPE,
465  OBJECT_TEMPLATE_INFO_TYPE,
466  SIGNATURE_INFO_TYPE,
467  TYPE_SWITCH_INFO_TYPE,
468  SCRIPT_TYPE,
469#ifdef ENABLE_DEBUGGER_SUPPORT
470  DEBUG_INFO_TYPE,
471  BREAK_POINT_INFO_TYPE,
472#endif
473
474  FIXED_ARRAY_TYPE,
475  SHARED_FUNCTION_INFO_TYPE,
476
477  JS_VALUE_TYPE,  // FIRST_JS_OBJECT_TYPE
478  JS_OBJECT_TYPE,
479  JS_CONTEXT_EXTENSION_OBJECT_TYPE,
480  JS_GLOBAL_OBJECT_TYPE,
481  JS_BUILTINS_OBJECT_TYPE,
482  JS_GLOBAL_PROXY_TYPE,
483  JS_ARRAY_TYPE,
484  JS_REGEXP_TYPE,  // LAST_JS_OBJECT_TYPE
485
486  JS_FUNCTION_TYPE,
487
488  // Pseudo-types
489  FIRST_TYPE = 0x0,
490  LAST_TYPE = JS_FUNCTION_TYPE,
491  INVALID_TYPE = FIRST_TYPE - 1,
492  FIRST_NONSTRING_TYPE = MAP_TYPE,
493  // Boundaries for testing for an external array.
494  FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_BYTE_ARRAY_TYPE,
495  LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_FLOAT_ARRAY_TYPE,
496  // Boundary for promotion to old data space/old pointer space.
497  LAST_DATA_TYPE = FILLER_TYPE,
498  // Boundaries for testing the type is a JavaScript "object".  Note that
499  // function objects are not counted as objects, even though they are
500  // implemented as such; only values whose typeof is "object" are included.
501  FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
502  LAST_JS_OBJECT_TYPE = JS_REGEXP_TYPE
503};
504
505
506enum CompareResult {
507  LESS      = -1,
508  EQUAL     =  0,
509  GREATER   =  1,
510
511  NOT_EQUAL = GREATER
512};
513
514
515#define DECL_BOOLEAN_ACCESSORS(name)   \
516  inline bool name();                  \
517  inline void set_##name(bool value);  \
518
519
520#define DECL_ACCESSORS(name, type)                                      \
521  inline type* name();                                                  \
522  inline void set_##name(type* value,                                   \
523                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
524
525
526class StringStream;
527class ObjectVisitor;
528
529struct ValueInfo : public Malloced {
530  ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
531  InstanceType type;
532  Object* ptr;
533  const char* str;
534  double number;
535};
536
537
538// A template-ized version of the IsXXX functions.
539template <class C> static inline bool Is(Object* obj);
540
541
542// Object is the abstract superclass for all classes in the
543// object hierarchy.
544// Object does not use any virtual functions to avoid the
545// allocation of the C++ vtable.
546// Since Smi and Failure are subclasses of Object no
547// data members can be present in Object.
548class Object BASE_EMBEDDED {
549 public:
550  // Type testing.
551  inline bool IsSmi();
552  inline bool IsHeapObject();
553  inline bool IsHeapNumber();
554  inline bool IsString();
555  inline bool IsSymbol();
556  // See objects-inl.h for more details
557  inline bool IsSeqString();
558  inline bool IsExternalString();
559  inline bool IsExternalTwoByteString();
560  inline bool IsExternalAsciiString();
561  inline bool IsSeqTwoByteString();
562  inline bool IsSeqAsciiString();
563  inline bool IsConsString();
564
565  inline bool IsNumber();
566  inline bool IsByteArray();
567  inline bool IsPixelArray();
568  inline bool IsExternalArray();
569  inline bool IsExternalByteArray();
570  inline bool IsExternalUnsignedByteArray();
571  inline bool IsExternalShortArray();
572  inline bool IsExternalUnsignedShortArray();
573  inline bool IsExternalIntArray();
574  inline bool IsExternalUnsignedIntArray();
575  inline bool IsExternalFloatArray();
576  inline bool IsFailure();
577  inline bool IsRetryAfterGC();
578  inline bool IsOutOfMemoryFailure();
579  inline bool IsException();
580  inline bool IsJSObject();
581  inline bool IsJSContextExtensionObject();
582  inline bool IsMap();
583  inline bool IsFixedArray();
584  inline bool IsDescriptorArray();
585  inline bool IsContext();
586  inline bool IsCatchContext();
587  inline bool IsGlobalContext();
588  inline bool IsJSFunction();
589  inline bool IsCode();
590  inline bool IsOddball();
591  inline bool IsSharedFunctionInfo();
592  inline bool IsJSValue();
593  inline bool IsStringWrapper();
594  inline bool IsProxy();
595  inline bool IsBoolean();
596  inline bool IsJSArray();
597  inline bool IsJSRegExp();
598  inline bool IsHashTable();
599  inline bool IsDictionary();
600  inline bool IsSymbolTable();
601  inline bool IsCompilationCacheTable();
602  inline bool IsMapCache();
603  inline bool IsPrimitive();
604  inline bool IsGlobalObject();
605  inline bool IsJSGlobalObject();
606  inline bool IsJSBuiltinsObject();
607  inline bool IsJSGlobalProxy();
608  inline bool IsUndetectableObject();
609  inline bool IsAccessCheckNeeded();
610  inline bool IsJSGlobalPropertyCell();
611
612  // Returns true if this object is an instance of the specified
613  // function template.
614  inline bool IsInstanceOf(FunctionTemplateInfo* type);
615
616  inline bool IsStruct();
617#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
618  STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
619#undef DECLARE_STRUCT_PREDICATE
620
621  // Oddball testing.
622  INLINE(bool IsUndefined());
623  INLINE(bool IsTheHole());
624  INLINE(bool IsNull());
625  INLINE(bool IsTrue());
626  INLINE(bool IsFalse());
627
628  // Extract the number.
629  inline double Number();
630
631  inline bool HasSpecificClassOf(String* name);
632
633  Object* ToObject();             // ECMA-262 9.9.
634  Object* ToBoolean();            // ECMA-262 9.2.
635
636  // Convert to a JSObject if needed.
637  // global_context is used when creating wrapper object.
638  Object* ToObject(Context* global_context);
639
640  // Converts this to a Smi if possible.
641  // Failure is returned otherwise.
642  inline Object* ToSmi();
643
644  void Lookup(String* name, LookupResult* result);
645
646  // Property access.
647  inline Object* GetProperty(String* key);
648  inline Object* GetProperty(String* key, PropertyAttributes* attributes);
649  Object* GetPropertyWithReceiver(Object* receiver,
650                                  String* key,
651                                  PropertyAttributes* attributes);
652  Object* GetProperty(Object* receiver,
653                      LookupResult* result,
654                      String* key,
655                      PropertyAttributes* attributes);
656  Object* GetPropertyWithCallback(Object* receiver,
657                                  Object* structure,
658                                  String* name,
659                                  Object* holder);
660  Object* GetPropertyWithDefinedGetter(Object* receiver,
661                                       JSFunction* getter);
662
663  inline Object* GetElement(uint32_t index);
664  Object* GetElementWithReceiver(Object* receiver, uint32_t index);
665
666  // Return the object's prototype (might be Heap::null_value()).
667  Object* GetPrototype();
668
669  // Returns true if this is a JSValue containing a string and the index is
670  // < the length of the string.  Used to implement [] on strings.
671  inline bool IsStringObjectWithCharacterAt(uint32_t index);
672
673#ifdef DEBUG
674  // Prints this object with details.
675  void Print();
676  void PrintLn();
677  // Verifies the object.
678  void Verify();
679
680  // Verify a pointer is a valid object pointer.
681  static void VerifyPointer(Object* p);
682#endif
683
684  // Prints this object without details.
685  void ShortPrint();
686
687  // Prints this object without details to a message accumulator.
688  void ShortPrint(StringStream* accumulator);
689
690  // Casting: This cast is only needed to satisfy macros in objects-inl.h.
691  static Object* cast(Object* value) { return value; }
692
693  // Layout description.
694  static const int kHeaderSize = 0;  // Object does not take up any space.
695
696 private:
697  DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
698};
699
700
701// Smi represents integer Numbers that can be stored in 31 bits.
702// Smis are immediate which means they are NOT allocated in the heap.
703// The this pointer has the following format: [31 bit signed int] 0
704// For long smis it has the following format:
705//     [32 bit signed int] [31 bits zero padding] 0
706// Smi stands for small integer.
707class Smi: public Object {
708 public:
709  // Returns the integer value.
710  inline int value();
711
712  // Convert a value to a Smi object.
713  static inline Smi* FromInt(int value);
714
715  static inline Smi* FromIntptr(intptr_t value);
716
717  // Returns whether value can be represented in a Smi.
718  static inline bool IsValid(intptr_t value);
719
720  // Casting.
721  static inline Smi* cast(Object* object);
722
723  // Dispatched behavior.
724  void SmiPrint();
725  void SmiPrint(StringStream* accumulator);
726#ifdef DEBUG
727  void SmiVerify();
728#endif
729
730  static const int kMinValue = (-1 << (kSmiValueSize - 1));
731  static const int kMaxValue = -(kMinValue + 1);
732
733 private:
734  DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
735};
736
737
738// Failure is used for reporting out of memory situations and
739// propagating exceptions through the runtime system.  Failure objects
740// are transient and cannot occur as part of the object graph.
741//
742// Failures are a single word, encoded as follows:
743// +-------------------------+---+--+--+
744// |...rrrrrrrrrrrrrrrrrrrrrr|sss|tt|11|
745// +-------------------------+---+--+--+
746//                          7 6 4 32 10
747//
748//
749// The low two bits, 0-1, are the failure tag, 11.  The next two bits,
750// 2-3, are a failure type tag 'tt' with possible values:
751//   00 RETRY_AFTER_GC
752//   01 EXCEPTION
753//   10 INTERNAL_ERROR
754//   11 OUT_OF_MEMORY_EXCEPTION
755//
756// The next three bits, 4-6, are an allocation space tag 'sss'.  The
757// allocation space tag is 000 for all failure types except
758// RETRY_AFTER_GC.  For RETRY_AFTER_GC, the possible values are the
759// allocation spaces (the encoding is found in globals.h).
760//
761// The remaining bits is the size of the allocation request in units
762// of the pointer size, and is zeroed except for RETRY_AFTER_GC
763// failures.  The 25 bits (on a 32 bit platform) gives a representable
764// range of 2^27 bytes (128MB).
765
766// Failure type tag info.
767const int kFailureTypeTagSize = 2;
768const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
769
770class Failure: public Object {
771 public:
772  // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
773  enum Type {
774    RETRY_AFTER_GC = 0,
775    EXCEPTION = 1,       // Returning this marker tells the real exception
776                         // is in Top::pending_exception.
777    INTERNAL_ERROR = 2,
778    OUT_OF_MEMORY_EXCEPTION = 3
779  };
780
781  inline Type type() const;
782
783  // Returns the space that needs to be collected for RetryAfterGC failures.
784  inline AllocationSpace allocation_space() const;
785
786  // Returns the number of bytes requested (up to the representable maximum)
787  // for RetryAfterGC failures.
788  inline int requested() const;
789
790  inline bool IsInternalError() const;
791  inline bool IsOutOfMemoryException() const;
792
793  static Failure* RetryAfterGC(int requested_bytes, AllocationSpace space);
794  static inline Failure* RetryAfterGC(int requested_bytes);  // NEW_SPACE
795  static inline Failure* Exception();
796  static inline Failure* InternalError();
797  static inline Failure* OutOfMemoryException();
798  // Casting.
799  static inline Failure* cast(Object* object);
800
801  // Dispatched behavior.
802  void FailurePrint();
803  void FailurePrint(StringStream* accumulator);
804#ifdef DEBUG
805  void FailureVerify();
806#endif
807
808 private:
809  inline intptr_t value() const;
810  static inline Failure* Construct(Type type, intptr_t value = 0);
811
812  DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
813};
814
815
816// Heap objects typically have a map pointer in their first word.  However,
817// during GC other data (eg, mark bits, forwarding addresses) is sometimes
818// encoded in the first word.  The class MapWord is an abstraction of the
819// value in a heap object's first word.
820class MapWord BASE_EMBEDDED {
821 public:
822  // Normal state: the map word contains a map pointer.
823
824  // Create a map word from a map pointer.
825  static inline MapWord FromMap(Map* map);
826
827  // View this map word as a map pointer.
828  inline Map* ToMap();
829
830
831  // Scavenge collection: the map word of live objects in the from space
832  // contains a forwarding address (a heap object pointer in the to space).
833
834  // True if this map word is a forwarding address for a scavenge
835  // collection.  Only valid during a scavenge collection (specifically,
836  // when all map words are heap object pointers, ie. not during a full GC).
837  inline bool IsForwardingAddress();
838
839  // Create a map word from a forwarding address.
840  static inline MapWord FromForwardingAddress(HeapObject* object);
841
842  // View this map word as a forwarding address.
843  inline HeapObject* ToForwardingAddress();
844
845  // Marking phase of full collection: the map word of live objects is
846  // marked, and may be marked as overflowed (eg, the object is live, its
847  // children have not been visited, and it does not fit in the marking
848  // stack).
849
850  // True if this map word's mark bit is set.
851  inline bool IsMarked();
852
853  // Return this map word but with its mark bit set.
854  inline void SetMark();
855
856  // Return this map word but with its mark bit cleared.
857  inline void ClearMark();
858
859  // True if this map word's overflow bit is set.
860  inline bool IsOverflowed();
861
862  // Return this map word but with its overflow bit set.
863  inline void SetOverflow();
864
865  // Return this map word but with its overflow bit cleared.
866  inline void ClearOverflow();
867
868
869  // Compacting phase of a full compacting collection: the map word of live
870  // objects contains an encoding of the original map address along with the
871  // forwarding address (represented as an offset from the first live object
872  // in the same page as the (old) object address).
873
874  // Create a map word from a map address and a forwarding address offset.
875  static inline MapWord EncodeAddress(Address map_address, int offset);
876
877  // Return the map address encoded in this map word.
878  inline Address DecodeMapAddress(MapSpace* map_space);
879
880  // Return the forwarding offset encoded in this map word.
881  inline int DecodeOffset();
882
883
884  // During serialization: the map word is used to hold an encoded
885  // address, and possibly a mark bit (set and cleared with SetMark
886  // and ClearMark).
887
888  // Create a map word from an encoded address.
889  static inline MapWord FromEncodedAddress(Address address);
890
891  inline Address ToEncodedAddress();
892
893  // Bits used by the marking phase of the garbage collector.
894  //
895  // The first word of a heap object is normally a map pointer. The last two
896  // bits are tagged as '01' (kHeapObjectTag). We reuse the last two bits to
897  // mark an object as live and/or overflowed:
898  //   last bit = 0, marked as alive
899  //   second bit = 1, overflowed
900  // An object is only marked as overflowed when it is marked as live while
901  // the marking stack is overflowed.
902  static const int kMarkingBit = 0;  // marking bit
903  static const int kMarkingMask = (1 << kMarkingBit);  // marking mask
904  static const int kOverflowBit = 1;  // overflow bit
905  static const int kOverflowMask = (1 << kOverflowBit);  // overflow mask
906
907  // Forwarding pointers and map pointer encoding. On 32 bit all the bits are
908  // used.
909  // +-----------------+------------------+-----------------+
910  // |forwarding offset|page offset of map|page index of map|
911  // +-----------------+------------------+-----------------+
912  //          ^                 ^                  ^
913  //          |                 |                  |
914  //          |                 |          kMapPageIndexBits
915  //          |         kMapPageOffsetBits
916  // kForwardingOffsetBits
917  static const int kMapPageOffsetBits = kPageSizeBits - kMapAlignmentBits;
918  static const int kForwardingOffsetBits = kPageSizeBits - kObjectAlignmentBits;
919#ifdef V8_HOST_ARCH_64_BIT
920  static const int kMapPageIndexBits = 16;
921#else
922  // Use all the 32-bits to encode on a 32-bit platform.
923  static const int kMapPageIndexBits =
924      32 - (kMapPageOffsetBits + kForwardingOffsetBits);
925#endif
926
927  static const int kMapPageIndexShift = 0;
928  static const int kMapPageOffsetShift =
929      kMapPageIndexShift + kMapPageIndexBits;
930  static const int kForwardingOffsetShift =
931      kMapPageOffsetShift + kMapPageOffsetBits;
932
933  // Bit masks covering the different parts the encoding.
934  static const uintptr_t kMapPageIndexMask =
935      (1 << kMapPageOffsetShift) - 1;
936  static const uintptr_t kMapPageOffsetMask =
937      ((1 << kForwardingOffsetShift) - 1) & ~kMapPageIndexMask;
938  static const uintptr_t kForwardingOffsetMask =
939      ~(kMapPageIndexMask | kMapPageOffsetMask);
940
941 private:
942  // HeapObject calls the private constructor and directly reads the value.
943  friend class HeapObject;
944
945  explicit MapWord(uintptr_t value) : value_(value) {}
946
947  uintptr_t value_;
948};
949
950
951// HeapObject is the superclass for all classes describing heap allocated
952// objects.
953class HeapObject: public Object {
954 public:
955  // [map]: Contains a map which contains the object's reflective
956  // information.
957  inline Map* map();
958  inline void set_map(Map* value);
959
960  // During garbage collection, the map word of a heap object does not
961  // necessarily contain a map pointer.
962  inline MapWord map_word();
963  inline void set_map_word(MapWord map_word);
964
965  // Converts an address to a HeapObject pointer.
966  static inline HeapObject* FromAddress(Address address);
967
968  // Returns the address of this HeapObject.
969  inline Address address();
970
971  // Iterates over pointers contained in the object (including the Map)
972  void Iterate(ObjectVisitor* v);
973
974  // Iterates over all pointers contained in the object except the
975  // first map pointer.  The object type is given in the first
976  // parameter. This function does not access the map pointer in the
977  // object, and so is safe to call while the map pointer is modified.
978  void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
979
980  // This method only applies to struct objects.  Iterates over all the fields
981  // of this struct.
982  void IterateStructBody(int object_size, ObjectVisitor* v);
983
984  // Returns the heap object's size in bytes
985  inline int Size();
986
987  // Given a heap object's map pointer, returns the heap size in bytes
988  // Useful when the map pointer field is used for other purposes.
989  // GC internal.
990  inline int SizeFromMap(Map* map);
991
992  // Support for the marking heap objects during the marking phase of GC.
993  // True if the object is marked live.
994  inline bool IsMarked();
995
996  // Mutate this object's map pointer to indicate that the object is live.
997  inline void SetMark();
998
999  // Mutate this object's map pointer to remove the indication that the
1000  // object is live (ie, partially restore the map pointer).
1001  inline void ClearMark();
1002
1003  // True if this object is marked as overflowed.  Overflowed objects have
1004  // been reached and marked during marking of the heap, but their children
1005  // have not necessarily been marked and they have not been pushed on the
1006  // marking stack.
1007  inline bool IsOverflowed();
1008
1009  // Mutate this object's map pointer to indicate that the object is
1010  // overflowed.
1011  inline void SetOverflow();
1012
1013  // Mutate this object's map pointer to remove the indication that the
1014  // object is overflowed (ie, partially restore the map pointer).
1015  inline void ClearOverflow();
1016
1017  // Returns the field at offset in obj, as a read/write Object* reference.
1018  // Does no checking, and is safe to use during GC, while maps are invalid.
1019  // Does not update remembered sets, so should only be assigned to
1020  // during marking GC.
1021  static inline Object** RawField(HeapObject* obj, int offset);
1022
1023  // Casting.
1024  static inline HeapObject* cast(Object* obj);
1025
1026  // Return the write barrier mode for this.
1027  inline WriteBarrierMode GetWriteBarrierMode();
1028
1029  // Dispatched behavior.
1030  void HeapObjectShortPrint(StringStream* accumulator);
1031#ifdef DEBUG
1032  void HeapObjectPrint();
1033  void HeapObjectVerify();
1034  inline void VerifyObjectField(int offset);
1035
1036  void PrintHeader(const char* id);
1037
1038  // Verify a pointer is a valid HeapObject pointer that points to object
1039  // areas in the heap.
1040  static void VerifyHeapPointer(Object* p);
1041#endif
1042
1043  // Layout description.
1044  // First field in a heap object is map.
1045  static const int kMapOffset = Object::kHeaderSize;
1046  static const int kHeaderSize = kMapOffset + kPointerSize;
1047
1048  STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
1049
1050 protected:
1051  // helpers for calling an ObjectVisitor to iterate over pointers in the
1052  // half-open range [start, end) specified as integer offsets
1053  inline void IteratePointers(ObjectVisitor* v, int start, int end);
1054  // as above, for the single element at "offset"
1055  inline void IteratePointer(ObjectVisitor* v, int offset);
1056
1057  // Computes the object size from the map.
1058  // Should only be used from SizeFromMap.
1059  int SlowSizeFromMap(Map* map);
1060
1061 private:
1062  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1063};
1064
1065
1066// The HeapNumber class describes heap allocated numbers that cannot be
1067// represented in a Smi (small integer)
1068class HeapNumber: public HeapObject {
1069 public:
1070  // [value]: number value.
1071  inline double value();
1072  inline void set_value(double value);
1073
1074  // Casting.
1075  static inline HeapNumber* cast(Object* obj);
1076
1077  // Dispatched behavior.
1078  Object* HeapNumberToBoolean();
1079  void HeapNumberPrint();
1080  void HeapNumberPrint(StringStream* accumulator);
1081#ifdef DEBUG
1082  void HeapNumberVerify();
1083#endif
1084
1085  // Layout description.
1086  static const int kValueOffset = HeapObject::kHeaderSize;
1087  // IEEE doubles are two 32 bit words.  The first is just mantissa, the second
1088  // is a mixture of sign, exponent and mantissa.  Our current platforms are all
1089  // little endian apart from non-EABI arm which is little endian with big
1090  // endian floating point word ordering!
1091#if !defined(V8_HOST_ARCH_ARM) || defined(USE_ARM_EABI)
1092  static const int kMantissaOffset = kValueOffset;
1093  static const int kExponentOffset = kValueOffset + 4;
1094#else
1095  static const int kMantissaOffset = kValueOffset + 4;
1096  static const int kExponentOffset = kValueOffset;
1097# define BIG_ENDIAN_FLOATING_POINT 1
1098#endif
1099  static const int kSize = kValueOffset + kDoubleSize;
1100
1101  static const uint32_t kSignMask = 0x80000000u;
1102  static const uint32_t kExponentMask = 0x7ff00000u;
1103  static const uint32_t kMantissaMask = 0xfffffu;
1104  static const int kExponentBias = 1023;
1105  static const int kExponentShift = 20;
1106  static const int kMantissaBitsInTopWord = 20;
1107  static const int kNonMantissaBitsInTopWord = 12;
1108
1109 private:
1110  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1111};
1112
1113
1114// The JSObject describes real heap allocated JavaScript objects with
1115// properties.
1116// Note that the map of JSObject changes during execution to enable inline
1117// caching.
1118class JSObject: public HeapObject {
1119 public:
1120  enum DeleteMode { NORMAL_DELETION, FORCE_DELETION };
1121  enum ElementsKind {
1122    FAST_ELEMENTS,
1123    DICTIONARY_ELEMENTS,
1124    PIXEL_ELEMENTS,
1125    EXTERNAL_BYTE_ELEMENTS,
1126    EXTERNAL_UNSIGNED_BYTE_ELEMENTS,
1127    EXTERNAL_SHORT_ELEMENTS,
1128    EXTERNAL_UNSIGNED_SHORT_ELEMENTS,
1129    EXTERNAL_INT_ELEMENTS,
1130    EXTERNAL_UNSIGNED_INT_ELEMENTS,
1131    EXTERNAL_FLOAT_ELEMENTS
1132  };
1133
1134  // [properties]: Backing storage for properties.
1135  // properties is a FixedArray in the fast case, and a Dictionary in the
1136  // slow case.
1137  DECL_ACCESSORS(properties, FixedArray)  // Get and set fast properties.
1138  inline void initialize_properties();
1139  inline bool HasFastProperties();
1140  inline StringDictionary* property_dictionary();  // Gets slow properties.
1141
1142  // [elements]: The elements (properties with names that are integers).
1143  // elements is a FixedArray in the fast case, and a Dictionary in the slow
1144  // case or a PixelArray in a special case.
1145  DECL_ACCESSORS(elements, Array)  // Get and set fast elements.
1146  inline void initialize_elements();
1147  inline ElementsKind GetElementsKind();
1148  inline bool HasFastElements();
1149  inline bool HasDictionaryElements();
1150  inline bool HasPixelElements();
1151  inline bool HasExternalArrayElements();
1152  inline bool HasExternalByteElements();
1153  inline bool HasExternalUnsignedByteElements();
1154  inline bool HasExternalShortElements();
1155  inline bool HasExternalUnsignedShortElements();
1156  inline bool HasExternalIntElements();
1157  inline bool HasExternalUnsignedIntElements();
1158  inline bool HasExternalFloatElements();
1159  inline NumberDictionary* element_dictionary();  // Gets slow elements.
1160
1161  // Collects elements starting at index 0.
1162  // Undefined values are placed after non-undefined values.
1163  // Returns the number of non-undefined values.
1164  Object* PrepareElementsForSort(uint32_t limit);
1165  // As PrepareElementsForSort, but only on objects where elements is
1166  // a dictionary, and it will stay a dictionary.
1167  Object* PrepareSlowElementsForSort(uint32_t limit);
1168
1169  Object* SetProperty(String* key,
1170                      Object* value,
1171                      PropertyAttributes attributes);
1172  Object* SetProperty(LookupResult* result,
1173                      String* key,
1174                      Object* value,
1175                      PropertyAttributes attributes);
1176  Object* SetPropertyWithFailedAccessCheck(LookupResult* result,
1177                                           String* name,
1178                                           Object* value);
1179  Object* SetPropertyWithCallback(Object* structure,
1180                                  String* name,
1181                                  Object* value,
1182                                  JSObject* holder);
1183  Object* SetPropertyWithDefinedSetter(JSFunction* setter,
1184                                       Object* value);
1185  Object* SetPropertyWithInterceptor(String* name,
1186                                     Object* value,
1187                                     PropertyAttributes attributes);
1188  Object* SetPropertyPostInterceptor(String* name,
1189                                     Object* value,
1190                                     PropertyAttributes attributes);
1191  Object* IgnoreAttributesAndSetLocalProperty(String* key,
1192                                              Object* value,
1193                                              PropertyAttributes attributes);
1194
1195  // Retrieve a value in a normalized object given a lookup result.
1196  // Handles the special representation of JS global objects.
1197  Object* GetNormalizedProperty(LookupResult* result);
1198
1199  // Sets the property value in a normalized object given a lookup result.
1200  // Handles the special representation of JS global objects.
1201  Object* SetNormalizedProperty(LookupResult* result, Object* value);
1202
1203  // Sets the property value in a normalized object given (key, value, details).
1204  // Handles the special representation of JS global objects.
1205  Object* SetNormalizedProperty(String* name,
1206                                Object* value,
1207                                PropertyDetails details);
1208
1209  // Deletes the named property in a normalized object.
1210  Object* DeleteNormalizedProperty(String* name, DeleteMode mode);
1211
1212  // Sets a property that currently has lazy loading.
1213  Object* SetLazyProperty(LookupResult* result,
1214                          String* name,
1215                          Object* value,
1216                          PropertyAttributes attributes);
1217
1218  // Returns the class name ([[Class]] property in the specification).
1219  String* class_name();
1220
1221  // Returns the constructor name (the name (possibly, inferred name) of the
1222  // function that was used to instantiate the object).
1223  String* constructor_name();
1224
1225  // Retrieve interceptors.
1226  InterceptorInfo* GetNamedInterceptor();
1227  InterceptorInfo* GetIndexedInterceptor();
1228
1229  inline PropertyAttributes GetPropertyAttribute(String* name);
1230  PropertyAttributes GetPropertyAttributeWithReceiver(JSObject* receiver,
1231                                                      String* name);
1232  PropertyAttributes GetLocalPropertyAttribute(String* name);
1233
1234  Object* DefineAccessor(String* name, bool is_getter, JSFunction* fun,
1235                         PropertyAttributes attributes);
1236  Object* LookupAccessor(String* name, bool is_getter);
1237
1238  // Used from Object::GetProperty().
1239  Object* GetPropertyWithFailedAccessCheck(Object* receiver,
1240                                           LookupResult* result,
1241                                           String* name,
1242                                           PropertyAttributes* attributes);
1243  Object* GetPropertyWithInterceptor(JSObject* receiver,
1244                                     String* name,
1245                                     PropertyAttributes* attributes);
1246  Object* GetPropertyPostInterceptor(JSObject* receiver,
1247                                     String* name,
1248                                     PropertyAttributes* attributes);
1249  Object* GetLocalPropertyPostInterceptor(JSObject* receiver,
1250                                          String* name,
1251                                          PropertyAttributes* attributes);
1252  Object* GetLazyProperty(Object* receiver,
1253                          LookupResult* result,
1254                          String* name,
1255                          PropertyAttributes* attributes);
1256
1257  // Tells whether this object needs to be loaded.
1258  inline bool IsLoaded();
1259
1260  // Returns true if this is an instance of an api function and has
1261  // been modified since it was created.  May give false positives.
1262  bool IsDirty();
1263
1264  bool HasProperty(String* name) {
1265    return GetPropertyAttribute(name) != ABSENT;
1266  }
1267
1268  // Can cause a GC if it hits an interceptor.
1269  bool HasLocalProperty(String* name) {
1270    return GetLocalPropertyAttribute(name) != ABSENT;
1271  }
1272
1273  // If the receiver is a JSGlobalProxy this method will return its prototype,
1274  // otherwise the result is the receiver itself.
1275  inline Object* BypassGlobalProxy();
1276
1277  // Accessors for hidden properties object.
1278  //
1279  // Hidden properties are not local properties of the object itself.
1280  // Instead they are stored on an auxiliary JSObject stored as a local
1281  // property with a special name Heap::hidden_symbol(). But if the
1282  // receiver is a JSGlobalProxy then the auxiliary object is a property
1283  // of its prototype.
1284  //
1285  // Has/Get/SetHiddenPropertiesObject methods don't allow the holder to be
1286  // a JSGlobalProxy. Use BypassGlobalProxy method above to get to the real
1287  // holder.
1288  //
1289  // These accessors do not touch interceptors or accessors.
1290  inline bool HasHiddenPropertiesObject();
1291  inline Object* GetHiddenPropertiesObject();
1292  inline Object* SetHiddenPropertiesObject(Object* hidden_obj);
1293
1294  Object* DeleteProperty(String* name, DeleteMode mode);
1295  Object* DeleteElement(uint32_t index, DeleteMode mode);
1296  Object* DeleteLazyProperty(LookupResult* result,
1297                             String* name,
1298                             DeleteMode mode);
1299
1300  // Tests for the fast common case for property enumeration.
1301  bool IsSimpleEnum();
1302
1303  // Do we want to keep the elements in fast case when increasing the
1304  // capacity?
1305  bool ShouldConvertToSlowElements(int new_capacity);
1306  // Returns true if the backing storage for the slow-case elements of
1307  // this object takes up nearly as much space as a fast-case backing
1308  // storage would.  In that case the JSObject should have fast
1309  // elements.
1310  bool ShouldConvertToFastElements();
1311
1312  // Return the object's prototype (might be Heap::null_value()).
1313  inline Object* GetPrototype();
1314
1315  // Tells whether the index'th element is present.
1316  inline bool HasElement(uint32_t index);
1317  bool HasElementWithReceiver(JSObject* receiver, uint32_t index);
1318  bool HasLocalElement(uint32_t index);
1319
1320  bool HasElementWithInterceptor(JSObject* receiver, uint32_t index);
1321  bool HasElementPostInterceptor(JSObject* receiver, uint32_t index);
1322
1323  Object* SetFastElement(uint32_t index, Object* value);
1324
1325  // Set the index'th array element.
1326  // A Failure object is returned if GC is needed.
1327  Object* SetElement(uint32_t index, Object* value);
1328
1329  // Returns the index'th element.
1330  // The undefined object if index is out of bounds.
1331  Object* GetElementWithReceiver(JSObject* receiver, uint32_t index);
1332
1333  void SetFastElements(FixedArray* elements);
1334  Object* SetSlowElements(Object* length);
1335
1336  // Lookup interceptors are used for handling properties controlled by host
1337  // objects.
1338  inline bool HasNamedInterceptor();
1339  inline bool HasIndexedInterceptor();
1340
1341  // Support functions for v8 api (needed for correct interceptor behavior).
1342  bool HasRealNamedProperty(String* key);
1343  bool HasRealElementProperty(uint32_t index);
1344  bool HasRealNamedCallbackProperty(String* key);
1345
1346  // Initializes the array to a certain length
1347  Object* SetElementsLength(Object* length);
1348
1349  // Get the header size for a JSObject.  Used to compute the index of
1350  // internal fields as well as the number of internal fields.
1351  inline int GetHeaderSize();
1352
1353  inline int GetInternalFieldCount();
1354  inline Object* GetInternalField(int index);
1355  inline void SetInternalField(int index, Object* value);
1356
1357  // Lookup a property.  If found, the result is valid and has
1358  // detailed information.
1359  void LocalLookup(String* name, LookupResult* result);
1360  void Lookup(String* name, LookupResult* result);
1361
1362  // The following lookup functions skip interceptors.
1363  void LocalLookupRealNamedProperty(String* name, LookupResult* result);
1364  void LookupRealNamedProperty(String* name, LookupResult* result);
1365  void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
1366  void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
1367  Object* LookupCallbackSetterInPrototypes(uint32_t index);
1368  void LookupCallback(String* name, LookupResult* result);
1369
1370  // Returns the number of properties on this object filtering out properties
1371  // with the specified attributes (ignoring interceptors).
1372  int NumberOfLocalProperties(PropertyAttributes filter);
1373  // Returns the number of enumerable properties (ignoring interceptors).
1374  int NumberOfEnumProperties();
1375  // Fill in details for properties into storage starting at the specified
1376  // index.
1377  void GetLocalPropertyNames(FixedArray* storage, int index);
1378
1379  // Returns the number of properties on this object filtering out properties
1380  // with the specified attributes (ignoring interceptors).
1381  int NumberOfLocalElements(PropertyAttributes filter);
1382  // Returns the number of enumerable elements (ignoring interceptors).
1383  int NumberOfEnumElements();
1384  // Returns the number of elements on this object filtering out elements
1385  // with the specified attributes (ignoring interceptors).
1386  int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
1387  // Count and fill in the enumerable elements into storage.
1388  // (storage->length() == NumberOfEnumElements()).
1389  // If storage is NULL, will count the elements without adding
1390  // them to any storage.
1391  // Returns the number of enumerable elements.
1392  int GetEnumElementKeys(FixedArray* storage);
1393
1394  // Add a property to a fast-case object using a map transition to
1395  // new_map.
1396  Object* AddFastPropertyUsingMap(Map* new_map,
1397                                  String* name,
1398                                  Object* value);
1399
1400  // Add a constant function property to a fast-case object.
1401  // This leaves a CONSTANT_TRANSITION in the old map, and
1402  // if it is called on a second object with this map, a
1403  // normal property is added instead, with a map transition.
1404  // This avoids the creation of many maps with the same constant
1405  // function, all orphaned.
1406  Object* AddConstantFunctionProperty(String* name,
1407                                      JSFunction* function,
1408                                      PropertyAttributes attributes);
1409
1410  Object* ReplaceSlowProperty(String* name,
1411                              Object* value,
1412                              PropertyAttributes attributes);
1413
1414  // Converts a descriptor of any other type to a real field,
1415  // backed by the properties array.  Descriptors of visible
1416  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1417  // Converts the descriptor on the original object's map to a
1418  // map transition, and the the new field is on the object's new map.
1419  Object* ConvertDescriptorToFieldAndMapTransition(
1420      String* name,
1421      Object* new_value,
1422      PropertyAttributes attributes);
1423
1424  // Converts a descriptor of any other type to a real field,
1425  // backed by the properties array.  Descriptors of visible
1426  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1427  Object* ConvertDescriptorToField(String* name,
1428                                   Object* new_value,
1429                                   PropertyAttributes attributes);
1430
1431  // Add a property to a fast-case object.
1432  Object* AddFastProperty(String* name,
1433                          Object* value,
1434                          PropertyAttributes attributes);
1435
1436  // Add a property to a slow-case object.
1437  Object* AddSlowProperty(String* name,
1438                          Object* value,
1439                          PropertyAttributes attributes);
1440
1441  // Add a property to an object.
1442  Object* AddProperty(String* name,
1443                      Object* value,
1444                      PropertyAttributes attributes);
1445
1446  // Convert the object to use the canonical dictionary
1447  // representation. If the object is expected to have additional properties
1448  // added this number can be indicated to have the backing store allocated to
1449  // an initial capacity for holding these properties.
1450  Object* NormalizeProperties(PropertyNormalizationMode mode,
1451                              int expected_additional_properties);
1452  Object* NormalizeElements();
1453
1454  // Transform slow named properties to fast variants.
1455  // Returns failure if allocation failed.
1456  Object* TransformToFastProperties(int unused_property_fields);
1457
1458  // Access fast-case object properties at index.
1459  inline Object* FastPropertyAt(int index);
1460  inline Object* FastPropertyAtPut(int index, Object* value);
1461
1462  // Access to in object properties.
1463  inline Object* InObjectPropertyAt(int index);
1464  inline Object* InObjectPropertyAtPut(int index,
1465                                       Object* value,
1466                                       WriteBarrierMode mode
1467                                       = UPDATE_WRITE_BARRIER);
1468
1469  // initializes the body after properties slot, properties slot is
1470  // initialized by set_properties
1471  // Note: this call does not update write barrier, it is caller's
1472  // reponsibility to ensure that *v* can be collected without WB here.
1473  inline void InitializeBody(int object_size);
1474
1475  // Check whether this object references another object
1476  bool ReferencesObject(Object* obj);
1477
1478  // Casting.
1479  static inline JSObject* cast(Object* obj);
1480
1481  // Dispatched behavior.
1482  void JSObjectIterateBody(int object_size, ObjectVisitor* v);
1483  void JSObjectShortPrint(StringStream* accumulator);
1484#ifdef DEBUG
1485  void JSObjectPrint();
1486  void JSObjectVerify();
1487  void PrintProperties();
1488  void PrintElements();
1489
1490  // Structure for collecting spill information about JSObjects.
1491  class SpillInformation {
1492   public:
1493    void Clear();
1494    void Print();
1495    int number_of_objects_;
1496    int number_of_objects_with_fast_properties_;
1497    int number_of_objects_with_fast_elements_;
1498    int number_of_fast_used_fields_;
1499    int number_of_fast_unused_fields_;
1500    int number_of_slow_used_properties_;
1501    int number_of_slow_unused_properties_;
1502    int number_of_fast_used_elements_;
1503    int number_of_fast_unused_elements_;
1504    int number_of_slow_used_elements_;
1505    int number_of_slow_unused_elements_;
1506  };
1507
1508  void IncrementSpillStatistics(SpillInformation* info);
1509#endif
1510  Object* SlowReverseLookup(Object* value);
1511
1512  // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
1513  // Also maximal value of JSArray's length property.
1514  static const uint32_t kMaxElementCount = 0xffffffffu;
1515
1516  static const uint32_t kMaxGap = 1024;
1517  static const int kMaxFastElementsLength = 5000;
1518  static const int kInitialMaxFastElementArray = 100000;
1519  static const int kMaxFastProperties = 8;
1520  static const int kMaxInstanceSize = 255 * kPointerSize;
1521  // When extending the backing storage for property values, we increase
1522  // its size by more than the 1 entry necessary, so sequentially adding fields
1523  // to the same object requires fewer allocations and copies.
1524  static const int kFieldsAdded = 3;
1525
1526  // Layout description.
1527  static const int kPropertiesOffset = HeapObject::kHeaderSize;
1528  static const int kElementsOffset = kPropertiesOffset + kPointerSize;
1529  static const int kHeaderSize = kElementsOffset + kPointerSize;
1530
1531  STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
1532
1533  Object* GetElementWithInterceptor(JSObject* receiver, uint32_t index);
1534
1535 private:
1536  Object* SetElementWithInterceptor(uint32_t index, Object* value);
1537  Object* SetElementWithoutInterceptor(uint32_t index, Object* value);
1538
1539  Object* GetElementPostInterceptor(JSObject* receiver, uint32_t index);
1540
1541  Object* DeletePropertyPostInterceptor(String* name, DeleteMode mode);
1542  Object* DeletePropertyWithInterceptor(String* name);
1543
1544  Object* DeleteElementPostInterceptor(uint32_t index, DeleteMode mode);
1545  Object* DeleteElementWithInterceptor(uint32_t index);
1546
1547  PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
1548                                                         String* name,
1549                                                         bool continue_search);
1550  PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
1551                                                         String* name,
1552                                                         bool continue_search);
1553  PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
1554      Object* receiver,
1555      LookupResult* result,
1556      String* name,
1557      bool continue_search);
1558  PropertyAttributes GetPropertyAttribute(JSObject* receiver,
1559                                          LookupResult* result,
1560                                          String* name,
1561                                          bool continue_search);
1562
1563  // Returns true if most of the elements backing storage is used.
1564  bool HasDenseElements();
1565
1566  Object* DefineGetterSetter(String* name, PropertyAttributes attributes);
1567
1568  void LookupInDescriptor(String* name, LookupResult* result);
1569
1570  DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
1571};
1572
1573
1574// Abstract super class arrays. It provides length behavior.
1575class Array: public HeapObject {
1576 public:
1577  // [length]: length of the array.
1578  inline int length();
1579  inline void set_length(int value);
1580
1581  // Convert an object to an array index.
1582  // Returns true if the conversion succeeded.
1583  static inline bool IndexFromObject(Object* object, uint32_t* index);
1584
1585  // Layout descriptor.
1586  static const int kLengthOffset = HeapObject::kHeaderSize;
1587
1588 protected:
1589  // No code should use the Array class directly, only its subclasses.
1590  // Use the kHeaderSize of the appropriate subclass, which may be aligned.
1591  static const int kHeaderSize = kLengthOffset + kIntSize;
1592  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
1593
1594 private:
1595  DISALLOW_IMPLICIT_CONSTRUCTORS(Array);
1596};
1597
1598
1599// FixedArray describes fixed sized arrays where element
1600// type is Object*.
1601
1602class FixedArray: public Array {
1603 public:
1604
1605  // Setter and getter for elements.
1606  inline Object* get(int index);
1607  // Setter that uses write barrier.
1608  inline void set(int index, Object* value);
1609
1610  // Setter that doesn't need write barrier).
1611  inline void set(int index, Smi* value);
1612  // Setter with explicit barrier mode.
1613  inline void set(int index, Object* value, WriteBarrierMode mode);
1614
1615  // Setters for frequently used oddballs located in old space.
1616  inline void set_undefined(int index);
1617  inline void set_null(int index);
1618  inline void set_the_hole(int index);
1619
1620  // Copy operations.
1621  inline Object* Copy();
1622  Object* CopySize(int new_length);
1623
1624  // Add the elements of a JSArray to this FixedArray.
1625  Object* AddKeysFromJSArray(JSArray* array);
1626
1627  // Compute the union of this and other.
1628  Object* UnionOfKeys(FixedArray* other);
1629
1630  // Copy a sub array from the receiver to dest.
1631  void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
1632
1633  // Garbage collection support.
1634  static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
1635
1636  // Code Generation support.
1637  static int OffsetOfElementAt(int index) { return SizeFor(index); }
1638
1639  // Casting.
1640  static inline FixedArray* cast(Object* obj);
1641
1642  static const int kHeaderSize = Array::kAlignedSize;
1643
1644  // Maximal allowed size, in bytes, of a single FixedArray.
1645  // Prevents overflowing size computations, as well as extreme memory
1646  // consumption.
1647  static const int kMaxSize = 512 * MB;
1648  // Maximally allowed length of a FixedArray.
1649  static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
1650
1651  // Dispatched behavior.
1652  int FixedArraySize() { return SizeFor(length()); }
1653  void FixedArrayIterateBody(ObjectVisitor* v);
1654#ifdef DEBUG
1655  void FixedArrayPrint();
1656  void FixedArrayVerify();
1657  // Checks if two FixedArrays have identical contents.
1658  bool IsEqualTo(FixedArray* other);
1659#endif
1660
1661  // Swap two elements in a pair of arrays.  If this array and the
1662  // numbers array are the same object, the elements are only swapped
1663  // once.
1664  void SwapPairs(FixedArray* numbers, int i, int j);
1665
1666  // Sort prefix of this array and the numbers array as pairs wrt. the
1667  // numbers.  If the numbers array and the this array are the same
1668  // object, the prefix of this array is sorted.
1669  void SortPairs(FixedArray* numbers, uint32_t len);
1670
1671 protected:
1672  // Set operation on FixedArray without using write barriers.
1673  static inline void fast_set(FixedArray* array, int index, Object* value);
1674
1675 private:
1676  DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
1677};
1678
1679
1680// DescriptorArrays are fixed arrays used to hold instance descriptors.
1681// The format of the these objects is:
1682//   [0]: point to a fixed array with (value, detail) pairs.
1683//   [1]: next enumeration index (Smi), or pointer to small fixed array:
1684//          [0]: next enumeration index (Smi)
1685//          [1]: pointer to fixed array with enum cache
1686//   [2]: first key
1687//   [length() - 1]: last key
1688//
1689class DescriptorArray: public FixedArray {
1690 public:
1691  // Is this the singleton empty_descriptor_array?
1692  inline bool IsEmpty();
1693
1694  // Returns the number of descriptors in the array.
1695  int number_of_descriptors() {
1696    return IsEmpty() ? 0 : length() - kFirstIndex;
1697  }
1698
1699  int NextEnumerationIndex() {
1700    if (IsEmpty()) return PropertyDetails::kInitialIndex;
1701    Object* obj = get(kEnumerationIndexIndex);
1702    if (obj->IsSmi()) {
1703      return Smi::cast(obj)->value();
1704    } else {
1705      Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
1706      return Smi::cast(index)->value();
1707    }
1708  }
1709
1710  // Set next enumeration index and flush any enum cache.
1711  void SetNextEnumerationIndex(int value) {
1712    if (!IsEmpty()) {
1713      fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value));
1714    }
1715  }
1716  bool HasEnumCache() {
1717    return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi();
1718  }
1719
1720  Object* GetEnumCache() {
1721    ASSERT(HasEnumCache());
1722    FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
1723    return bridge->get(kEnumCacheBridgeCacheIndex);
1724  }
1725
1726  // Initialize or change the enum cache,
1727  // using the supplied storage for the small "bridge".
1728  void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache);
1729
1730  // Accessors for fetching instance descriptor at descriptor number.
1731  inline String* GetKey(int descriptor_number);
1732  inline Object* GetValue(int descriptor_number);
1733  inline Smi* GetDetails(int descriptor_number);
1734  inline PropertyType GetType(int descriptor_number);
1735  inline int GetFieldIndex(int descriptor_number);
1736  inline JSFunction* GetConstantFunction(int descriptor_number);
1737  inline Object* GetCallbacksObject(int descriptor_number);
1738  inline AccessorDescriptor* GetCallbacks(int descriptor_number);
1739  inline bool IsProperty(int descriptor_number);
1740  inline bool IsTransition(int descriptor_number);
1741  inline bool IsNullDescriptor(int descriptor_number);
1742  inline bool IsDontEnum(int descriptor_number);
1743
1744  // Accessor for complete descriptor.
1745  inline void Get(int descriptor_number, Descriptor* desc);
1746  inline void Set(int descriptor_number, Descriptor* desc);
1747
1748  // Transfer complete descriptor from another descriptor array to
1749  // this one.
1750  inline void CopyFrom(int index, DescriptorArray* src, int src_index);
1751
1752  // Copy the descriptor array, insert a new descriptor and optionally
1753  // remove map transitions.  If the descriptor is already present, it is
1754  // replaced.  If a replaced descriptor is a real property (not a transition
1755  // or null), its enumeration index is kept as is.
1756  // If adding a real property, map transitions must be removed.  If adding
1757  // a transition, they must not be removed.  All null descriptors are removed.
1758  Object* CopyInsert(Descriptor* descriptor, TransitionFlag transition_flag);
1759
1760  // Remove all transitions.  Return  a copy of the array with all transitions
1761  // removed, or a Failure object if the new array could not be allocated.
1762  Object* RemoveTransitions();
1763
1764  // Sort the instance descriptors by the hash codes of their keys.
1765  void Sort();
1766
1767  // Search the instance descriptors for given name.
1768  inline int Search(String* name);
1769
1770  // Tells whether the name is present int the array.
1771  bool Contains(String* name) { return kNotFound != Search(name); }
1772
1773  // Perform a binary search in the instance descriptors represented
1774  // by this fixed array.  low and high are descriptor indices.  If there
1775  // are three instance descriptors in this array it should be called
1776  // with low=0 and high=2.
1777  int BinarySearch(String* name, int low, int high);
1778
1779  // Perform a linear search in the instance descriptors represented
1780  // by this fixed array.  len is the number of descriptor indices that are
1781  // valid.  Does not require the descriptors to be sorted.
1782  int LinearSearch(String* name, int len);
1783
1784  // Allocates a DescriptorArray, but returns the singleton
1785  // empty descriptor array object if number_of_descriptors is 0.
1786  static Object* Allocate(int number_of_descriptors);
1787
1788  // Casting.
1789  static inline DescriptorArray* cast(Object* obj);
1790
1791  // Constant for denoting key was not found.
1792  static const int kNotFound = -1;
1793
1794  static const int kContentArrayIndex = 0;
1795  static const int kEnumerationIndexIndex = 1;
1796  static const int kFirstIndex = 2;
1797
1798  // The length of the "bridge" to the enum cache.
1799  static const int kEnumCacheBridgeLength = 2;
1800  static const int kEnumCacheBridgeEnumIndex = 0;
1801  static const int kEnumCacheBridgeCacheIndex = 1;
1802
1803  // Layout description.
1804  static const int kContentArrayOffset = FixedArray::kHeaderSize;
1805  static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
1806  static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
1807
1808  // Layout description for the bridge array.
1809  static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
1810  static const int kEnumCacheBridgeCacheOffset =
1811    kEnumCacheBridgeEnumOffset + kPointerSize;
1812
1813#ifdef DEBUG
1814  // Print all the descriptors.
1815  void PrintDescriptors();
1816
1817  // Is the descriptor array sorted and without duplicates?
1818  bool IsSortedNoDuplicates();
1819
1820  // Are two DescriptorArrays equal?
1821  bool IsEqualTo(DescriptorArray* other);
1822#endif
1823
1824  // The maximum number of descriptors we want in a descriptor array (should
1825  // fit in a page).
1826  static const int kMaxNumberOfDescriptors = 1024 + 512;
1827
1828 private:
1829  // Conversion from descriptor number to array indices.
1830  static int ToKeyIndex(int descriptor_number) {
1831    return descriptor_number+kFirstIndex;
1832  }
1833
1834  static int ToDetailsIndex(int descriptor_number) {
1835    return (descriptor_number << 1) + 1;
1836  }
1837
1838  static int ToValueIndex(int descriptor_number) {
1839    return descriptor_number << 1;
1840  }
1841
1842  bool is_null_descriptor(int descriptor_number) {
1843    return PropertyDetails(GetDetails(descriptor_number)).type() ==
1844        NULL_DESCRIPTOR;
1845  }
1846  // Swap operation on FixedArray without using write barriers.
1847  static inline void fast_swap(FixedArray* array, int first, int second);
1848
1849  // Swap descriptor first and second.
1850  inline void Swap(int first, int second);
1851
1852  FixedArray* GetContentArray() {
1853    return FixedArray::cast(get(kContentArrayIndex));
1854  }
1855  DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
1856};
1857
1858
1859// HashTable is a subclass of FixedArray that implements a hash table
1860// that uses open addressing and quadratic probing.
1861//
1862// In order for the quadratic probing to work, elements that have not
1863// yet been used and elements that have been deleted are
1864// distinguished.  Probing continues when deleted elements are
1865// encountered and stops when unused elements are encountered.
1866//
1867// - Elements with key == undefined have not been used yet.
1868// - Elements with key == null have been deleted.
1869//
1870// The hash table class is parameterized with a Shape and a Key.
1871// Shape must be a class with the following interface:
1872//   class ExampleShape {
1873//    public:
1874//      // Tells whether key matches other.
1875//     static bool IsMatch(Key key, Object* other);
1876//     // Returns the hash value for key.
1877//     static uint32_t Hash(Key key);
1878//     // Returns the hash value for object.
1879//     static uint32_t HashForObject(Key key, Object* object);
1880//     // Convert key to an object.
1881//     static inline Object* AsObject(Key key);
1882//     // The prefix size indicates number of elements in the beginning
1883//     // of the backing storage.
1884//     static const int kPrefixSize = ..;
1885//     // The Element size indicates number of elements per entry.
1886//     static const int kEntrySize = ..;
1887//   };
1888// The prefix size indicates an amount of memory in the
1889// beginning of the backing storage that can be used for non-element
1890// information by subclasses.
1891
1892template<typename Shape, typename Key>
1893class HashTable: public FixedArray {
1894 public:
1895  // Returns the number of elements in the hash table.
1896  int NumberOfElements() {
1897    return Smi::cast(get(kNumberOfElementsIndex))->value();
1898  }
1899
1900  // Returns the number of deleted elements in the hash table.
1901  int NumberOfDeletedElements() {
1902    return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
1903  }
1904
1905  // Returns the capacity of the hash table.
1906  int Capacity() {
1907    return Smi::cast(get(kCapacityIndex))->value();
1908  }
1909
1910  // ElementAdded should be called whenever an element is added to a
1911  // hash table.
1912  void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
1913
1914  // ElementRemoved should be called whenever an element is removed from
1915  // a hash table.
1916  void ElementRemoved() {
1917    SetNumberOfElements(NumberOfElements() - 1);
1918    SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
1919  }
1920  void ElementsRemoved(int n) {
1921    SetNumberOfElements(NumberOfElements() - n);
1922    SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
1923  }
1924
1925  // Returns a new HashTable object. Might return Failure.
1926  static Object* Allocate(int at_least_space_for);
1927
1928  // Returns the key at entry.
1929  Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
1930
1931  // Tells whether k is a real key.  Null and undefined are not allowed
1932  // as keys and can be used to indicate missing or deleted elements.
1933  bool IsKey(Object* k) {
1934    return !k->IsNull() && !k->IsUndefined();
1935  }
1936
1937  // Garbage collection support.
1938  void IteratePrefix(ObjectVisitor* visitor);
1939  void IterateElements(ObjectVisitor* visitor);
1940
1941  // Casting.
1942  static inline HashTable* cast(Object* obj);
1943
1944  // Compute the probe offset (quadratic probing).
1945  INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
1946    return (n + n * n) >> 1;
1947  }
1948
1949  static const int kNumberOfElementsIndex = 0;
1950  static const int kNumberOfDeletedElementsIndex = 1;
1951  static const int kCapacityIndex = 2;
1952  static const int kPrefixStartIndex = 3;
1953  static const int kElementsStartIndex =
1954      kPrefixStartIndex + Shape::kPrefixSize;
1955  static const int kEntrySize = Shape::kEntrySize;
1956  static const int kElementsStartOffset =
1957      kHeaderSize + kElementsStartIndex * kPointerSize;
1958
1959  // Constant used for denoting a absent entry.
1960  static const int kNotFound = -1;
1961
1962  // Maximal capacity of HashTable. Based on maximal length of underlying
1963  // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
1964  // cannot overflow.
1965  static const int kMaxCapacity =
1966      (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
1967
1968  // Find entry for key otherwise return -1.
1969  int FindEntry(Key key);
1970
1971 protected:
1972
1973  // Find the entry at which to insert element with the given key that
1974  // has the given hash value.
1975  uint32_t FindInsertionEntry(uint32_t hash);
1976
1977  // Returns the index for an entry (of the key)
1978  static inline int EntryToIndex(int entry) {
1979    return (entry * kEntrySize) + kElementsStartIndex;
1980  }
1981
1982  // Update the number of elements in the hash table.
1983  void SetNumberOfElements(int nof) {
1984    fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof));
1985  }
1986
1987  // Update the number of deleted elements in the hash table.
1988  void SetNumberOfDeletedElements(int nod) {
1989    fast_set(this, kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
1990  }
1991
1992  // Sets the capacity of the hash table.
1993  void SetCapacity(int capacity) {
1994    // To scale a computed hash code to fit within the hash table, we
1995    // use bit-wise AND with a mask, so the capacity must be positive
1996    // and non-zero.
1997    ASSERT(capacity > 0);
1998    ASSERT(capacity <= kMaxCapacity);
1999    fast_set(this, kCapacityIndex, Smi::FromInt(capacity));
2000  }
2001
2002
2003  // Returns probe entry.
2004  static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
2005    ASSERT(IsPowerOf2(size));
2006    return (hash + GetProbeOffset(number)) & (size - 1);
2007  }
2008
2009  static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
2010    return hash & (size - 1);
2011  }
2012
2013  static uint32_t NextProbe(uint32_t last, uint32_t number, uint32_t size) {
2014    return (last + number) & (size - 1);
2015  }
2016
2017  // Ensure enough space for n additional elements.
2018  Object* EnsureCapacity(int n, Key key);
2019};
2020
2021
2022
2023// HashTableKey is an abstract superclass for virtual key behavior.
2024class HashTableKey {
2025 public:
2026  // Returns whether the other object matches this key.
2027  virtual bool IsMatch(Object* other) = 0;
2028  // Returns the hash value for this key.
2029  virtual uint32_t Hash() = 0;
2030  // Returns the hash value for object.
2031  virtual uint32_t HashForObject(Object* key) = 0;
2032  // Returns the key object for storing into the hash table.
2033  // If allocations fails a failure object is returned.
2034  virtual Object* AsObject() = 0;
2035  // Required.
2036  virtual ~HashTableKey() {}
2037};
2038
2039class SymbolTableShape {
2040 public:
2041  static bool IsMatch(HashTableKey* key, Object* value) {
2042    return key->IsMatch(value);
2043  }
2044  static uint32_t Hash(HashTableKey* key) {
2045    return key->Hash();
2046  }
2047  static uint32_t HashForObject(HashTableKey* key, Object* object) {
2048    return key->HashForObject(object);
2049  }
2050  static Object* AsObject(HashTableKey* key) {
2051    return key->AsObject();
2052  }
2053
2054  static const int kPrefixSize = 0;
2055  static const int kEntrySize = 1;
2056};
2057
2058// SymbolTable.
2059//
2060// No special elements in the prefix and the element size is 1
2061// because only the symbol itself (the key) needs to be stored.
2062class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
2063 public:
2064  // Find symbol in the symbol table.  If it is not there yet, it is
2065  // added.  The return value is the symbol table which might have
2066  // been enlarged.  If the return value is not a failure, the symbol
2067  // pointer *s is set to the symbol found.
2068  Object* LookupSymbol(Vector<const char> str, Object** s);
2069  Object* LookupString(String* key, Object** s);
2070
2071  // Looks up a symbol that is equal to the given string and returns
2072  // true if it is found, assigning the symbol to the given output
2073  // parameter.
2074  bool LookupSymbolIfExists(String* str, String** symbol);
2075  bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol);
2076
2077  // Casting.
2078  static inline SymbolTable* cast(Object* obj);
2079
2080 private:
2081  Object* LookupKey(HashTableKey* key, Object** s);
2082
2083  DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
2084};
2085
2086
2087class MapCacheShape {
2088 public:
2089  static bool IsMatch(HashTableKey* key, Object* value) {
2090    return key->IsMatch(value);
2091  }
2092  static uint32_t Hash(HashTableKey* key) {
2093    return key->Hash();
2094  }
2095
2096  static uint32_t HashForObject(HashTableKey* key, Object* object) {
2097    return key->HashForObject(object);
2098  }
2099
2100  static Object* AsObject(HashTableKey* key) {
2101    return key->AsObject();
2102  }
2103
2104  static const int kPrefixSize = 0;
2105  static const int kEntrySize = 2;
2106};
2107
2108
2109// MapCache.
2110//
2111// Maps keys that are a fixed array of symbols to a map.
2112// Used for canonicalize maps for object literals.
2113class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
2114 public:
2115  // Find cached value for a string key, otherwise return null.
2116  Object* Lookup(FixedArray* key);
2117  Object* Put(FixedArray* key, Map* value);
2118  static inline MapCache* cast(Object* obj);
2119
2120 private:
2121  DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
2122};
2123
2124
2125template <typename Shape, typename Key>
2126class Dictionary: public HashTable<Shape, Key> {
2127 public:
2128
2129  static inline Dictionary<Shape, Key>* cast(Object* obj) {
2130    return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
2131  }
2132
2133  // Returns the value at entry.
2134  Object* ValueAt(int entry) {
2135    return get(HashTable<Shape, Key>::EntryToIndex(entry)+1);
2136  }
2137
2138  // Set the value for entry.
2139  void ValueAtPut(int entry, Object* value) {
2140    set(HashTable<Shape, Key>::EntryToIndex(entry)+1, value);
2141  }
2142
2143  // Returns the property details for the property at entry.
2144  PropertyDetails DetailsAt(int entry) {
2145    ASSERT(entry >= 0);  // Not found is -1, which is not caught by get().
2146    return PropertyDetails(
2147        Smi::cast(get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
2148  }
2149
2150  // Set the details for entry.
2151  void DetailsAtPut(int entry, PropertyDetails value) {
2152    set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
2153  }
2154
2155  // Sorting support
2156  void CopyValuesTo(FixedArray* elements);
2157
2158  // Delete a property from the dictionary.
2159  Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
2160
2161  // Returns the number of elements in the dictionary filtering out properties
2162  // with the specified attributes.
2163  int NumberOfElementsFilterAttributes(PropertyAttributes filter);
2164
2165  // Returns the number of enumerable elements in the dictionary.
2166  int NumberOfEnumElements();
2167
2168  // Copies keys to preallocated fixed array.
2169  void CopyKeysTo(FixedArray* storage, PropertyAttributes filter);
2170  // Fill in details for properties into storage.
2171  void CopyKeysTo(FixedArray* storage);
2172
2173  // Accessors for next enumeration index.
2174  void SetNextEnumerationIndex(int index) {
2175    fast_set(this, kNextEnumerationIndexIndex, Smi::FromInt(index));
2176  }
2177
2178  int NextEnumerationIndex() {
2179    return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
2180  }
2181
2182  // Returns a new array for dictionary usage. Might return Failure.
2183  static Object* Allocate(int at_least_space_for);
2184
2185  // Ensure enough space for n additional elements.
2186  Object* EnsureCapacity(int n, Key key);
2187
2188#ifdef DEBUG
2189  void Print();
2190#endif
2191  // Returns the key (slow).
2192  Object* SlowReverseLookup(Object* value);
2193
2194  // Sets the entry to (key, value) pair.
2195  inline void SetEntry(int entry,
2196                       Object* key,
2197                       Object* value,
2198                       PropertyDetails details);
2199
2200  Object* Add(Key key, Object* value, PropertyDetails details);
2201
2202 protected:
2203  // Generic at put operation.
2204  Object* AtPut(Key key, Object* value);
2205
2206  // Add entry to dictionary.
2207  Object* AddEntry(Key key,
2208                   Object* value,
2209                   PropertyDetails details,
2210                   uint32_t hash);
2211
2212  // Generate new enumeration indices to avoid enumeration index overflow.
2213  Object* GenerateNewEnumerationIndices();
2214  static const int kMaxNumberKeyIndex =
2215      HashTable<Shape, Key>::kPrefixStartIndex;
2216  static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
2217};
2218
2219
2220class StringDictionaryShape {
2221 public:
2222  static inline bool IsMatch(String* key, Object* other);
2223  static inline uint32_t Hash(String* key);
2224  static inline uint32_t HashForObject(String* key, Object* object);
2225  static inline Object* AsObject(String* key);
2226  static const int kPrefixSize = 2;
2227  static const int kEntrySize = 3;
2228  static const bool kIsEnumerable = true;
2229};
2230
2231
2232class StringDictionary: public Dictionary<StringDictionaryShape, String*> {
2233 public:
2234  static inline StringDictionary* cast(Object* obj) {
2235    ASSERT(obj->IsDictionary());
2236    return reinterpret_cast<StringDictionary*>(obj);
2237  }
2238
2239  // Copies enumerable keys to preallocated fixed array.
2240  void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
2241
2242  // For transforming properties of a JSObject.
2243  Object* TransformPropertiesToFastFor(JSObject* obj,
2244                                       int unused_property_fields);
2245};
2246
2247
2248class NumberDictionaryShape {
2249 public:
2250  static inline bool IsMatch(uint32_t key, Object* other);
2251  static inline uint32_t Hash(uint32_t key);
2252  static inline uint32_t HashForObject(uint32_t key, Object* object);
2253  static inline Object* AsObject(uint32_t key);
2254  static const int kPrefixSize = 2;
2255  static const int kEntrySize = 3;
2256  static const bool kIsEnumerable = false;
2257};
2258
2259
2260class NumberDictionary: public Dictionary<NumberDictionaryShape, uint32_t> {
2261 public:
2262  static NumberDictionary* cast(Object* obj) {
2263    ASSERT(obj->IsDictionary());
2264    return reinterpret_cast<NumberDictionary*>(obj);
2265  }
2266
2267  // Type specific at put (default NONE attributes is used when adding).
2268  Object* AtNumberPut(uint32_t key, Object* value);
2269  Object* AddNumberEntry(uint32_t key,
2270                         Object* value,
2271                         PropertyDetails details);
2272
2273  // Set an existing entry or add a new one if needed.
2274  Object* Set(uint32_t key, Object* value, PropertyDetails details);
2275
2276  void UpdateMaxNumberKey(uint32_t key);
2277
2278  // If slow elements are required we will never go back to fast-case
2279  // for the elements kept in this dictionary.  We require slow
2280  // elements if an element has been added at an index larger than
2281  // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
2282  // when defining a getter or setter with a number key.
2283  inline bool requires_slow_elements();
2284  inline void set_requires_slow_elements();
2285
2286  // Get the value of the max number key that has been added to this
2287  // dictionary.  max_number_key can only be called if
2288  // requires_slow_elements returns false.
2289  inline uint32_t max_number_key();
2290
2291  // Remove all entries were key is a number and (from <= key && key < to).
2292  void RemoveNumberEntries(uint32_t from, uint32_t to);
2293
2294  // Bit masks.
2295  static const int kRequiresSlowElementsMask = 1;
2296  static const int kRequiresSlowElementsTagSize = 1;
2297  static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
2298};
2299
2300
2301// ByteArray represents fixed sized byte arrays.  Used by the outside world,
2302// such as PCRE, and also by the memory allocator and garbage collector to
2303// fill in free blocks in the heap.
2304class ByteArray: public Array {
2305 public:
2306  // Setter and getter.
2307  inline byte get(int index);
2308  inline void set(int index, byte value);
2309
2310  // Treat contents as an int array.
2311  inline int get_int(int index);
2312
2313  static int SizeFor(int length) {
2314    return OBJECT_SIZE_ALIGN(kHeaderSize + length);
2315  }
2316  // We use byte arrays for free blocks in the heap.  Given a desired size in
2317  // bytes that is a multiple of the word size and big enough to hold a byte
2318  // array, this function returns the number of elements a byte array should
2319  // have.
2320  static int LengthFor(int size_in_bytes) {
2321    ASSERT(IsAligned(size_in_bytes, kPointerSize));
2322    ASSERT(size_in_bytes >= kHeaderSize);
2323    return size_in_bytes - kHeaderSize;
2324  }
2325
2326  // Returns data start address.
2327  inline Address GetDataStartAddress();
2328
2329  // Returns a pointer to the ByteArray object for a given data start address.
2330  static inline ByteArray* FromDataStartAddress(Address address);
2331
2332  // Casting.
2333  static inline ByteArray* cast(Object* obj);
2334
2335  // Dispatched behavior.
2336  int ByteArraySize() { return SizeFor(length()); }
2337#ifdef DEBUG
2338  void ByteArrayPrint();
2339  void ByteArrayVerify();
2340#endif
2341
2342  // ByteArray headers are not quadword aligned.
2343  static const int kHeaderSize = Array::kHeaderSize;
2344  static const int kAlignedSize = Array::kAlignedSize;
2345
2346  // Maximal memory consumption for a single ByteArray.
2347  static const int kMaxSize = 512 * MB;
2348  // Maximal length of a single ByteArray.
2349  static const int kMaxLength = kMaxSize - kHeaderSize;
2350
2351 private:
2352  DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
2353};
2354
2355
2356// A PixelArray represents a fixed-size byte array with special semantics
2357// used for implementing the CanvasPixelArray object. Please see the
2358// specification at:
2359// http://www.whatwg.org/specs/web-apps/current-work/
2360//                      multipage/the-canvas-element.html#canvaspixelarray
2361// In particular, write access clamps the value written to 0 or 255 if the
2362// value written is outside this range.
2363class PixelArray: public Array {
2364 public:
2365  // [external_pointer]: The pointer to the external memory area backing this
2366  // pixel array.
2367  DECL_ACCESSORS(external_pointer, uint8_t)  // Pointer to the data store.
2368
2369  // Setter and getter.
2370  inline uint8_t get(int index);
2371  inline void set(int index, uint8_t value);
2372
2373  // This accessor applies the correct conversion from Smi, HeapNumber and
2374  // undefined and clamps the converted value between 0 and 255.
2375  Object* SetValue(uint32_t index, Object* value);
2376
2377  // Casting.
2378  static inline PixelArray* cast(Object* obj);
2379
2380#ifdef DEBUG
2381  void PixelArrayPrint();
2382  void PixelArrayVerify();
2383#endif  // DEBUG
2384
2385  // Maximal acceptable length for a pixel array.
2386  static const int kMaxLength = 0x3fffffff;
2387
2388  // PixelArray headers are not quadword aligned.
2389  static const int kExternalPointerOffset = Array::kAlignedSize;
2390  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2391  static const int kAlignedSize = OBJECT_SIZE_ALIGN(kHeaderSize);
2392
2393 private:
2394  DISALLOW_IMPLICIT_CONSTRUCTORS(PixelArray);
2395};
2396
2397
2398// An ExternalArray represents a fixed-size array of primitive values
2399// which live outside the JavaScript heap. Its subclasses are used to
2400// implement the CanvasArray types being defined in the WebGL
2401// specification. As of this writing the first public draft is not yet
2402// available, but Khronos members can access the draft at:
2403//   https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
2404//
2405// The semantics of these arrays differ from CanvasPixelArray.
2406// Out-of-range values passed to the setter are converted via a C
2407// cast, not clamping. Out-of-range indices cause exceptions to be
2408// raised rather than being silently ignored.
2409class ExternalArray: public Array {
2410 public:
2411  // [external_pointer]: The pointer to the external memory area backing this
2412  // external array.
2413  DECL_ACCESSORS(external_pointer, void)  // Pointer to the data store.
2414
2415  // Casting.
2416  static inline ExternalArray* cast(Object* obj);
2417
2418  // Maximal acceptable length for an external array.
2419  static const int kMaxLength = 0x3fffffff;
2420
2421  // ExternalArray headers are not quadword aligned.
2422  static const int kExternalPointerOffset = Array::kAlignedSize;
2423  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2424  static const int kAlignedSize = OBJECT_SIZE_ALIGN(kHeaderSize);
2425
2426 private:
2427  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
2428};
2429
2430
2431class ExternalByteArray: public ExternalArray {
2432 public:
2433  // Setter and getter.
2434  inline int8_t get(int index);
2435  inline void set(int index, int8_t value);
2436
2437  // This accessor applies the correct conversion from Smi, HeapNumber
2438  // and undefined.
2439  Object* SetValue(uint32_t index, Object* value);
2440
2441  // Casting.
2442  static inline ExternalByteArray* cast(Object* obj);
2443
2444#ifdef DEBUG
2445  void ExternalByteArrayPrint();
2446  void ExternalByteArrayVerify();
2447#endif  // DEBUG
2448
2449 private:
2450  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray);
2451};
2452
2453
2454class ExternalUnsignedByteArray: public ExternalArray {
2455 public:
2456  // Setter and getter.
2457  inline uint8_t get(int index);
2458  inline void set(int index, uint8_t value);
2459
2460  // This accessor applies the correct conversion from Smi, HeapNumber
2461  // and undefined.
2462  Object* SetValue(uint32_t index, Object* value);
2463
2464  // Casting.
2465  static inline ExternalUnsignedByteArray* cast(Object* obj);
2466
2467#ifdef DEBUG
2468  void ExternalUnsignedByteArrayPrint();
2469  void ExternalUnsignedByteArrayVerify();
2470#endif  // DEBUG
2471
2472 private:
2473  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray);
2474};
2475
2476
2477class ExternalShortArray: public ExternalArray {
2478 public:
2479  // Setter and getter.
2480  inline int16_t get(int index);
2481  inline void set(int index, int16_t value);
2482
2483  // This accessor applies the correct conversion from Smi, HeapNumber
2484  // and undefined.
2485  Object* SetValue(uint32_t index, Object* value);
2486
2487  // Casting.
2488  static inline ExternalShortArray* cast(Object* obj);
2489
2490#ifdef DEBUG
2491  void ExternalShortArrayPrint();
2492  void ExternalShortArrayVerify();
2493#endif  // DEBUG
2494
2495 private:
2496  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray);
2497};
2498
2499
2500class ExternalUnsignedShortArray: public ExternalArray {
2501 public:
2502  // Setter and getter.
2503  inline uint16_t get(int index);
2504  inline void set(int index, uint16_t value);
2505
2506  // This accessor applies the correct conversion from Smi, HeapNumber
2507  // and undefined.
2508  Object* SetValue(uint32_t index, Object* value);
2509
2510  // Casting.
2511  static inline ExternalUnsignedShortArray* cast(Object* obj);
2512
2513#ifdef DEBUG
2514  void ExternalUnsignedShortArrayPrint();
2515  void ExternalUnsignedShortArrayVerify();
2516#endif  // DEBUG
2517
2518 private:
2519  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray);
2520};
2521
2522
2523class ExternalIntArray: public ExternalArray {
2524 public:
2525  // Setter and getter.
2526  inline int32_t get(int index);
2527  inline void set(int index, int32_t value);
2528
2529  // This accessor applies the correct conversion from Smi, HeapNumber
2530  // and undefined.
2531  Object* SetValue(uint32_t index, Object* value);
2532
2533  // Casting.
2534  static inline ExternalIntArray* cast(Object* obj);
2535
2536#ifdef DEBUG
2537  void ExternalIntArrayPrint();
2538  void ExternalIntArrayVerify();
2539#endif  // DEBUG
2540
2541 private:
2542  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray);
2543};
2544
2545
2546class ExternalUnsignedIntArray: public ExternalArray {
2547 public:
2548  // Setter and getter.
2549  inline uint32_t get(int index);
2550  inline void set(int index, uint32_t value);
2551
2552  // This accessor applies the correct conversion from Smi, HeapNumber
2553  // and undefined.
2554  Object* SetValue(uint32_t index, Object* value);
2555
2556  // Casting.
2557  static inline ExternalUnsignedIntArray* cast(Object* obj);
2558
2559#ifdef DEBUG
2560  void ExternalUnsignedIntArrayPrint();
2561  void ExternalUnsignedIntArrayVerify();
2562#endif  // DEBUG
2563
2564 private:
2565  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray);
2566};
2567
2568
2569class ExternalFloatArray: public ExternalArray {
2570 public:
2571  // Setter and getter.
2572  inline float get(int index);
2573  inline void set(int index, float value);
2574
2575  // This accessor applies the correct conversion from Smi, HeapNumber
2576  // and undefined.
2577  Object* SetValue(uint32_t index, Object* value);
2578
2579  // Casting.
2580  static inline ExternalFloatArray* cast(Object* obj);
2581
2582#ifdef DEBUG
2583  void ExternalFloatArrayPrint();
2584  void ExternalFloatArrayVerify();
2585#endif  // DEBUG
2586
2587 private:
2588  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray);
2589};
2590
2591
2592// Code describes objects with on-the-fly generated machine code.
2593class Code: public HeapObject {
2594 public:
2595  // Opaque data type for encapsulating code flags like kind, inline
2596  // cache state, and arguments count.
2597  enum Flags { };
2598
2599  enum Kind {
2600    FUNCTION,
2601    STUB,
2602    BUILTIN,
2603    LOAD_IC,
2604    KEYED_LOAD_IC,
2605    CALL_IC,
2606    STORE_IC,
2607    KEYED_STORE_IC,
2608    // No more than eight kinds. The value currently encoded in three bits in
2609    // Flags.
2610
2611    // Pseudo-kinds.
2612    REGEXP = BUILTIN,
2613    FIRST_IC_KIND = LOAD_IC,
2614    LAST_IC_KIND = KEYED_STORE_IC
2615  };
2616
2617  enum {
2618    NUMBER_OF_KINDS = KEYED_STORE_IC + 1
2619  };
2620
2621#ifdef ENABLE_DISASSEMBLER
2622  // Printing
2623  static const char* Kind2String(Kind kind);
2624  static const char* ICState2String(InlineCacheState state);
2625  static const char* PropertyType2String(PropertyType type);
2626  void Disassemble(const char* name);
2627#endif  // ENABLE_DISASSEMBLER
2628
2629  // [instruction_size]: Size of the native instructions
2630  inline int instruction_size();
2631  inline void set_instruction_size(int value);
2632
2633  // [relocation_size]: Size of relocation information.
2634  inline int relocation_size();
2635  inline void set_relocation_size(int value);
2636
2637  // [sinfo_size]: Size of scope information.
2638  inline int sinfo_size();
2639  inline void set_sinfo_size(int value);
2640
2641  // [flags]: Various code flags.
2642  inline Flags flags();
2643  inline void set_flags(Flags flags);
2644
2645  // [flags]: Access to specific code flags.
2646  inline Kind kind();
2647  inline InlineCacheState ic_state();  // Only valid for IC stubs.
2648  inline InLoopFlag ic_in_loop();  // Only valid for IC stubs.
2649  inline PropertyType type();  // Only valid for monomorphic IC stubs.
2650  inline int arguments_count();  // Only valid for call IC stubs.
2651
2652  // Testers for IC stub kinds.
2653  inline bool is_inline_cache_stub();
2654  inline bool is_load_stub() { return kind() == LOAD_IC; }
2655  inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
2656  inline bool is_store_stub() { return kind() == STORE_IC; }
2657  inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
2658  inline bool is_call_stub() { return kind() == CALL_IC; }
2659
2660  // [major_key]: For kind STUB, the major key.
2661  inline CodeStub::Major major_key();
2662  inline void set_major_key(CodeStub::Major major);
2663
2664  // Flags operations.
2665  static inline Flags ComputeFlags(Kind kind,
2666                                   InLoopFlag in_loop = NOT_IN_LOOP,
2667                                   InlineCacheState ic_state = UNINITIALIZED,
2668                                   PropertyType type = NORMAL,
2669                                   int argc = -1);
2670
2671  static inline Flags ComputeMonomorphicFlags(
2672      Kind kind,
2673      PropertyType type,
2674      InLoopFlag in_loop = NOT_IN_LOOP,
2675      int argc = -1);
2676
2677  static inline Kind ExtractKindFromFlags(Flags flags);
2678  static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
2679  static inline InLoopFlag ExtractICInLoopFromFlags(Flags flags);
2680  static inline PropertyType ExtractTypeFromFlags(Flags flags);
2681  static inline int ExtractArgumentsCountFromFlags(Flags flags);
2682  static inline Flags RemoveTypeFromFlags(Flags flags);
2683
2684  // Convert a target address into a code object.
2685  static inline Code* GetCodeFromTargetAddress(Address address);
2686
2687  // Returns the address of the first instruction.
2688  inline byte* instruction_start();
2689
2690  // Returns the size of the instructions, padding, and relocation information.
2691  inline int body_size();
2692
2693  // Returns the address of the first relocation info (read backwards!).
2694  inline byte* relocation_start();
2695
2696  // Code entry point.
2697  inline byte* entry();
2698
2699  // Returns true if pc is inside this object's instructions.
2700  inline bool contains(byte* pc);
2701
2702  // Returns the address of the scope information.
2703  inline byte* sinfo_start();
2704
2705  // Relocate the code by delta bytes. Called to signal that this code
2706  // object has been moved by delta bytes.
2707  void Relocate(intptr_t delta);
2708
2709  // Migrate code described by desc.
2710  void CopyFrom(const CodeDesc& desc);
2711
2712  // Returns the object size for a given body and sinfo size (Used for
2713  // allocation).
2714  static int SizeFor(int body_size, int sinfo_size) {
2715    ASSERT_SIZE_TAG_ALIGNED(body_size);
2716    ASSERT_SIZE_TAG_ALIGNED(sinfo_size);
2717    return RoundUp(kHeaderSize + body_size + sinfo_size, kCodeAlignment);
2718  }
2719
2720  // Calculate the size of the code object to report for log events. This takes
2721  // the layout of the code object into account.
2722  int ExecutableSize() {
2723    // Check that the assumptions about the layout of the code object holds.
2724    ASSERT_EQ(static_cast<int>(instruction_start() - address()),
2725              Code::kHeaderSize);
2726    return instruction_size() + Code::kHeaderSize;
2727  }
2728
2729  // Locating source position.
2730  int SourcePosition(Address pc);
2731  int SourceStatementPosition(Address pc);
2732
2733  // Casting.
2734  static inline Code* cast(Object* obj);
2735
2736  // Dispatched behavior.
2737  int CodeSize() { return SizeFor(body_size(), sinfo_size()); }
2738  void CodeIterateBody(ObjectVisitor* v);
2739#ifdef DEBUG
2740  void CodePrint();
2741  void CodeVerify();
2742#endif
2743  // Code entry points are aligned to 32 bytes.
2744  static const int kCodeAlignmentBits = 5;
2745  static const int kCodeAlignment = 1 << kCodeAlignmentBits;
2746  static const int kCodeAlignmentMask = kCodeAlignment - 1;
2747
2748  // Layout description.
2749  static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
2750  static const int kRelocationSizeOffset = kInstructionSizeOffset + kIntSize;
2751  static const int kSInfoSizeOffset = kRelocationSizeOffset + kIntSize;
2752  static const int kFlagsOffset = kSInfoSizeOffset + kIntSize;
2753  static const int kKindSpecificFlagsOffset  = kFlagsOffset + kIntSize;
2754  // Add padding to align the instruction start following right after
2755  // the Code object header.
2756  static const int kHeaderSize =
2757      (kKindSpecificFlagsOffset + kIntSize + kCodeAlignmentMask) &
2758          ~kCodeAlignmentMask;
2759
2760  // Byte offsets within kKindSpecificFlagsOffset.
2761  static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset + 1;
2762
2763  // Flags layout.
2764  static const int kFlagsICStateShift        = 0;
2765  static const int kFlagsICInLoopShift       = 3;
2766  static const int kFlagsKindShift           = 4;
2767  static const int kFlagsTypeShift           = 7;
2768  static const int kFlagsArgumentsCountShift = 10;
2769
2770  static const int kFlagsICStateMask        = 0x00000007;  // 0000000111
2771  static const int kFlagsICInLoopMask       = 0x00000008;  // 0000001000
2772  static const int kFlagsKindMask           = 0x00000070;  // 0001110000
2773  static const int kFlagsTypeMask           = 0x00000380;  // 1110000000
2774  static const int kFlagsArgumentsCountMask = 0xFFFFFC00;
2775
2776  static const int kFlagsNotUsedInLookup =
2777      (kFlagsICInLoopMask | kFlagsTypeMask);
2778
2779 private:
2780  DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
2781};
2782
2783
2784// All heap objects have a Map that describes their structure.
2785//  A Map contains information about:
2786//  - Size information about the object
2787//  - How to iterate over an object (for garbage collection)
2788class Map: public HeapObject {
2789 public:
2790  // Instance size.
2791  inline int instance_size();
2792  inline void set_instance_size(int value);
2793
2794  // Count of properties allocated in the object.
2795  inline int inobject_properties();
2796  inline void set_inobject_properties(int value);
2797
2798  // Count of property fields pre-allocated in the object when first allocated.
2799  inline int pre_allocated_property_fields();
2800  inline void set_pre_allocated_property_fields(int value);
2801
2802  // Instance type.
2803  inline InstanceType instance_type();
2804  inline void set_instance_type(InstanceType value);
2805
2806  // Tells how many unused property fields are available in the
2807  // instance (only used for JSObject in fast mode).
2808  inline int unused_property_fields();
2809  inline void set_unused_property_fields(int value);
2810
2811  // Bit field.
2812  inline byte bit_field();
2813  inline void set_bit_field(byte value);
2814
2815  // Bit field 2.
2816  inline byte bit_field2();
2817  inline void set_bit_field2(byte value);
2818
2819  // Tells whether the object in the prototype property will be used
2820  // for instances created from this function.  If the prototype
2821  // property is set to a value that is not a JSObject, the prototype
2822  // property will not be used to create instances of the function.
2823  // See ECMA-262, 13.2.2.
2824  inline void set_non_instance_prototype(bool value);
2825  inline bool has_non_instance_prototype();
2826
2827  // Tells whether the instance with this map should be ignored by the
2828  // __proto__ accessor.
2829  inline void set_is_hidden_prototype() {
2830    set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
2831  }
2832
2833  inline bool is_hidden_prototype() {
2834    return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
2835  }
2836
2837  // Records and queries whether the instance has a named interceptor.
2838  inline void set_has_named_interceptor() {
2839    set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
2840  }
2841
2842  inline bool has_named_interceptor() {
2843    return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
2844  }
2845
2846  // Records and queries whether the instance has an indexed interceptor.
2847  inline void set_has_indexed_interceptor() {
2848    set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
2849  }
2850
2851  inline bool has_indexed_interceptor() {
2852    return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
2853  }
2854
2855  // Tells whether the instance is undetectable.
2856  // An undetectable object is a special class of JSObject: 'typeof' operator
2857  // returns undefined, ToBoolean returns false. Otherwise it behaves like
2858  // a normal JS object.  It is useful for implementing undetectable
2859  // document.all in Firefox & Safari.
2860  // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
2861  inline void set_is_undetectable() {
2862    set_bit_field(bit_field() | (1 << kIsUndetectable));
2863  }
2864
2865  inline bool is_undetectable() {
2866    return ((1 << kIsUndetectable) & bit_field()) != 0;
2867  }
2868
2869  inline void set_needs_loading(bool value) {
2870    if (value) {
2871      set_bit_field2(bit_field2() | (1 << kNeedsLoading));
2872    } else {
2873      set_bit_field2(bit_field2() & ~(1 << kNeedsLoading));
2874    }
2875  }
2876
2877  // Does this object or function require a lazily loaded script to be
2878  // run before being used?
2879  inline bool needs_loading() {
2880    return ((1 << kNeedsLoading) & bit_field2()) != 0;
2881  }
2882
2883  // Tells whether the instance has a call-as-function handler.
2884  inline void set_has_instance_call_handler() {
2885    set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
2886  }
2887
2888  inline bool has_instance_call_handler() {
2889    return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
2890  }
2891
2892  inline void set_is_extensible() {
2893    set_bit_field2(bit_field2() | (1 << kIsExtensible));
2894  }
2895
2896  inline bool is_extensible() {
2897    return ((1 << kIsExtensible) & bit_field2()) != 0;
2898  }
2899
2900  // Tells whether the instance needs security checks when accessing its
2901  // properties.
2902  inline void set_is_access_check_needed(bool access_check_needed);
2903  inline bool is_access_check_needed();
2904
2905  // [prototype]: implicit prototype object.
2906  DECL_ACCESSORS(prototype, Object)
2907
2908  // [constructor]: points back to the function responsible for this map.
2909  DECL_ACCESSORS(constructor, Object)
2910
2911  // [instance descriptors]: describes the object.
2912  DECL_ACCESSORS(instance_descriptors, DescriptorArray)
2913
2914  // [stub cache]: contains stubs compiled for this map.
2915  DECL_ACCESSORS(code_cache, FixedArray)
2916
2917  Object* CopyDropDescriptors();
2918
2919  // Returns a copy of the map, with all transitions dropped from the
2920  // instance descriptors.
2921  Object* CopyDropTransitions();
2922
2923  // Returns the property index for name (only valid for FAST MODE).
2924  int PropertyIndexFor(String* name);
2925
2926  // Returns the next free property index (only valid for FAST MODE).
2927  int NextFreePropertyIndex();
2928
2929  // Returns the number of properties described in instance_descriptors.
2930  int NumberOfDescribedProperties();
2931
2932  // Casting.
2933  static inline Map* cast(Object* obj);
2934
2935  // Locate an accessor in the instance descriptor.
2936  AccessorDescriptor* FindAccessor(String* name);
2937
2938  // Code cache operations.
2939
2940  // Clears the code cache.
2941  inline void ClearCodeCache();
2942
2943  // Update code cache.
2944  Object* UpdateCodeCache(String* name, Code* code);
2945
2946  // Returns the found code or undefined if absent.
2947  Object* FindInCodeCache(String* name, Code::Flags flags);
2948
2949  // Returns the non-negative index of the code object if it is in the
2950  // cache and -1 otherwise.
2951  int IndexInCodeCache(Code* code);
2952
2953  // Removes a code object from the code cache at the given index.
2954  void RemoveFromCodeCache(int index);
2955
2956  // For every transition in this map, makes the transition's
2957  // target's prototype pointer point back to this map.
2958  // This is undone in MarkCompactCollector::ClearNonLiveTransitions().
2959  void CreateBackPointers();
2960
2961  // Set all map transitions from this map to dead maps to null.
2962  // Also, restore the original prototype on the targets of these
2963  // transitions, so that we do not process this map again while
2964  // following back pointers.
2965  void ClearNonLiveTransitions(Object* real_prototype);
2966
2967  // Dispatched behavior.
2968  void MapIterateBody(ObjectVisitor* v);
2969#ifdef DEBUG
2970  void MapPrint();
2971  void MapVerify();
2972#endif
2973
2974  static const int kMaxPreAllocatedPropertyFields = 255;
2975
2976  // Layout description.
2977  static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
2978  static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
2979  static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
2980  static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
2981  static const int kInstanceDescriptorsOffset =
2982      kConstructorOffset + kPointerSize;
2983  static const int kCodeCacheOffset = kInstanceDescriptorsOffset + kPointerSize;
2984  static const int kPadStart = kCodeCacheOffset + kPointerSize;
2985  static const int kSize = MAP_SIZE_ALIGN(kPadStart);
2986
2987  // Byte offsets within kInstanceSizesOffset.
2988  static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
2989  static const int kInObjectPropertiesByte = 1;
2990  static const int kInObjectPropertiesOffset =
2991      kInstanceSizesOffset + kInObjectPropertiesByte;
2992  static const int kPreAllocatedPropertyFieldsByte = 2;
2993  static const int kPreAllocatedPropertyFieldsOffset =
2994      kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
2995  // The byte at position 3 is not in use at the moment.
2996
2997  // Byte offsets within kInstanceAttributesOffset attributes.
2998  static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
2999  static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
3000  static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
3001  static const int kBitField2Offset = kInstanceAttributesOffset + 3;
3002
3003  STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
3004
3005  // Bit positions for bit field.
3006  static const int kUnused = 0;  // To be used for marking recently used maps.
3007  static const int kHasNonInstancePrototype = 1;
3008  static const int kIsHiddenPrototype = 2;
3009  static const int kHasNamedInterceptor = 3;
3010  static const int kHasIndexedInterceptor = 4;
3011  static const int kIsUndetectable = 5;
3012  static const int kHasInstanceCallHandler = 6;
3013  static const int kIsAccessCheckNeeded = 7;
3014
3015  // Bit positions for bit field 2
3016  static const int kNeedsLoading = 0;
3017  static const int kIsExtensible = 1;
3018
3019 private:
3020  DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
3021};
3022
3023
3024// An abstract superclass, a marker class really, for simple structure classes.
3025// It doesn't carry much functionality but allows struct classes to me
3026// identified in the type system.
3027class Struct: public HeapObject {
3028 public:
3029  inline void InitializeBody(int object_size);
3030  static inline Struct* cast(Object* that);
3031};
3032
3033
3034// Script describes a script which has been added to the VM.
3035class Script: public Struct {
3036 public:
3037  // Script types.
3038  enum Type {
3039    TYPE_NATIVE = 0,
3040    TYPE_EXTENSION = 1,
3041    TYPE_NORMAL = 2
3042  };
3043
3044  // Script compilation types.
3045  enum CompilationType {
3046    COMPILATION_TYPE_HOST = 0,
3047    COMPILATION_TYPE_EVAL = 1,
3048    COMPILATION_TYPE_JSON = 2
3049  };
3050
3051  // [source]: the script source.
3052  DECL_ACCESSORS(source, Object)
3053
3054  // [name]: the script name.
3055  DECL_ACCESSORS(name, Object)
3056
3057  // [id]: the script id.
3058  DECL_ACCESSORS(id, Object)
3059
3060  // [line_offset]: script line offset in resource from where it was extracted.
3061  DECL_ACCESSORS(line_offset, Smi)
3062
3063  // [column_offset]: script column offset in resource from where it was
3064  // extracted.
3065  DECL_ACCESSORS(column_offset, Smi)
3066
3067  // [data]: additional data associated with this script.
3068  DECL_ACCESSORS(data, Object)
3069
3070  // [context_data]: context data for the context this script was compiled in.
3071  DECL_ACCESSORS(context_data, Object)
3072
3073  // [wrapper]: the wrapper cache.
3074  DECL_ACCESSORS(wrapper, Proxy)
3075
3076  // [type]: the script type.
3077  DECL_ACCESSORS(type, Smi)
3078
3079  // [compilation]: how the the script was compiled.
3080  DECL_ACCESSORS(compilation_type, Smi)
3081
3082  // [line_ends]: FixedArray of line ends positions.
3083  DECL_ACCESSORS(line_ends, Object)
3084
3085  // [eval_from_shared]: for eval scripts the shared funcion info for the
3086  // function from which eval was called.
3087  DECL_ACCESSORS(eval_from_shared, Object)
3088
3089  // [eval_from_instructions_offset]: the instruction offset in the code for the
3090  // function from which eval was called where eval was called.
3091  DECL_ACCESSORS(eval_from_instructions_offset, Smi)
3092
3093  static inline Script* cast(Object* obj);
3094
3095  // If script source is an external string, check that the underlying
3096  // resource is accessible. Otherwise, always return true.
3097  inline bool HasValidSource();
3098
3099#ifdef DEBUG
3100  void ScriptPrint();
3101  void ScriptVerify();
3102#endif
3103
3104  static const int kSourceOffset = HeapObject::kHeaderSize;
3105  static const int kNameOffset = kSourceOffset + kPointerSize;
3106  static const int kLineOffsetOffset = kNameOffset + kPointerSize;
3107  static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
3108  static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
3109  static const int kContextOffset = kDataOffset + kPointerSize;
3110  static const int kWrapperOffset = kContextOffset + kPointerSize;
3111  static const int kTypeOffset = kWrapperOffset + kPointerSize;
3112  static const int kCompilationTypeOffset = kTypeOffset + kPointerSize;
3113  static const int kLineEndsOffset = kCompilationTypeOffset + kPointerSize;
3114  static const int kIdOffset = kLineEndsOffset + kPointerSize;
3115  static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
3116  static const int kEvalFrominstructionsOffsetOffset =
3117      kEvalFromSharedOffset + kPointerSize;
3118  static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize;
3119
3120 private:
3121  DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
3122};
3123
3124
3125// SharedFunctionInfo describes the JSFunction information that can be
3126// shared by multiple instances of the function.
3127class SharedFunctionInfo: public HeapObject {
3128 public:
3129  // [name]: Function name.
3130  DECL_ACCESSORS(name, Object)
3131
3132  // [code]: Function code.
3133  DECL_ACCESSORS(code, Code)
3134
3135  // [construct stub]: Code stub for constructing instances of this function.
3136  DECL_ACCESSORS(construct_stub, Code)
3137
3138  // Returns if this function has been compiled to native code yet.
3139  inline bool is_compiled();
3140
3141  // [length]: The function length - usually the number of declared parameters.
3142  // Use up to 2^30 parameters.
3143  inline int length();
3144  inline void set_length(int value);
3145
3146  // [formal parameter count]: The declared number of parameters.
3147  inline int formal_parameter_count();
3148  inline void set_formal_parameter_count(int value);
3149
3150  // Set the formal parameter count so the function code will be
3151  // called without using argument adaptor frames.
3152  inline void DontAdaptArguments();
3153
3154  // [expected_nof_properties]: Expected number of properties for the function.
3155  inline int expected_nof_properties();
3156  inline void set_expected_nof_properties(int value);
3157
3158  // [instance class name]: class name for instances.
3159  DECL_ACCESSORS(instance_class_name, Object)
3160
3161  // [function data]: This field has been added for make benefit the API.
3162  // In the long run we don't want all functions to have this field but
3163  // we can fix that when we have a better model for storing hidden data
3164  // on objects.
3165  DECL_ACCESSORS(function_data, Object)
3166
3167  // [script info]: Script from which the function originates.
3168  DECL_ACCESSORS(script, Object)
3169
3170  // [start_position_and_type]: Field used to store both the source code
3171  // position, whether or not the function is a function expression,
3172  // and whether or not the function is a toplevel function. The two
3173  // least significants bit indicates whether the function is an
3174  // expression and the rest contains the source code position.
3175  inline int start_position_and_type();
3176  inline void set_start_position_and_type(int value);
3177
3178  // [debug info]: Debug information.
3179  DECL_ACCESSORS(debug_info, Object)
3180
3181  // [inferred name]: Name inferred from variable or property
3182  // assignment of this function. Used to facilitate debugging and
3183  // profiling of JavaScript code written in OO style, where almost
3184  // all functions are anonymous but are assigned to object
3185  // properties.
3186  DECL_ACCESSORS(inferred_name, String)
3187
3188  // Position of the 'function' token in the script source.
3189  inline int function_token_position();
3190  inline void set_function_token_position(int function_token_position);
3191
3192  // Position of this function in the script source.
3193  inline int start_position();
3194  inline void set_start_position(int start_position);
3195
3196  // End position of this function in the script source.
3197  inline int end_position();
3198  inline void set_end_position(int end_position);
3199
3200  // Is this function a function expression in the source code.
3201  inline bool is_expression();
3202  inline void set_is_expression(bool value);
3203
3204  // Is this function a top-level function (scripts, evals).
3205  inline bool is_toplevel();
3206  inline void set_is_toplevel(bool value);
3207
3208  // Bit field containing various information collected by the compiler to
3209  // drive optimization.
3210  inline int compiler_hints();
3211  inline void set_compiler_hints(int value);
3212
3213  // Add information on assignments of the form this.x = ...;
3214  void SetThisPropertyAssignmentsInfo(
3215      bool has_only_simple_this_property_assignments,
3216      FixedArray* this_property_assignments);
3217
3218  // Clear information on assignments of the form this.x = ...;
3219  void ClearThisPropertyAssignmentsInfo();
3220
3221  // Indicate that this function only consists of assignments of the form
3222  // this.x = y; where y is either a constant or refers to an argument.
3223  inline bool has_only_simple_this_property_assignments();
3224
3225  inline bool try_fast_codegen();
3226  inline void set_try_fast_codegen(bool flag);
3227
3228  // For functions which only contains this property assignments this provides
3229  // access to the names for the properties assigned.
3230  DECL_ACCESSORS(this_property_assignments, Object)
3231  inline int this_property_assignments_count();
3232  inline void set_this_property_assignments_count(int value);
3233  String* GetThisPropertyAssignmentName(int index);
3234  bool IsThisPropertyAssignmentArgument(int index);
3235  int GetThisPropertyAssignmentArgument(int index);
3236  Object* GetThisPropertyAssignmentConstant(int index);
3237
3238  // [source code]: Source code for the function.
3239  bool HasSourceCode();
3240  Object* GetSourceCode();
3241
3242  // Calculate the instance size.
3243  int CalculateInstanceSize();
3244
3245  // Calculate the number of in-object properties.
3246  int CalculateInObjectProperties();
3247
3248  // Dispatched behavior.
3249  void SharedFunctionInfoIterateBody(ObjectVisitor* v);
3250  // Set max_length to -1 for unlimited length.
3251  void SourceCodePrint(StringStream* accumulator, int max_length);
3252#ifdef DEBUG
3253  void SharedFunctionInfoPrint();
3254  void SharedFunctionInfoVerify();
3255#endif
3256
3257  // Casting.
3258  static inline SharedFunctionInfo* cast(Object* obj);
3259
3260  // Constants.
3261  static const int kDontAdaptArgumentsSentinel = -1;
3262
3263  // Layout description.
3264  // (An even number of integers has a size that is a multiple of a pointer.)
3265  static const int kNameOffset = HeapObject::kHeaderSize;
3266  static const int kCodeOffset = kNameOffset + kPointerSize;
3267  static const int kConstructStubOffset = kCodeOffset + kPointerSize;
3268  static const int kLengthOffset = kConstructStubOffset + kPointerSize;
3269  static const int kFormalParameterCountOffset = kLengthOffset + kIntSize;
3270  static const int kExpectedNofPropertiesOffset =
3271      kFormalParameterCountOffset + kIntSize;
3272  static const int kStartPositionAndTypeOffset =
3273      kExpectedNofPropertiesOffset + kIntSize;
3274  static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
3275  static const int kFunctionTokenPositionOffset = kEndPositionOffset + kIntSize;
3276  static const int kInstanceClassNameOffset =
3277      kFunctionTokenPositionOffset + kIntSize;
3278  static const int kExternalReferenceDataOffset =
3279      kInstanceClassNameOffset + kPointerSize;
3280  static const int kScriptOffset = kExternalReferenceDataOffset + kPointerSize;
3281  static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
3282  static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
3283  static const int kCompilerHintsOffset = kInferredNameOffset + kPointerSize;
3284  static const int kThisPropertyAssignmentsOffset =
3285      kCompilerHintsOffset + kPointerSize;
3286  static const int kThisPropertyAssignmentsCountOffset =
3287      kThisPropertyAssignmentsOffset + kPointerSize;
3288  static const int kSize = kThisPropertyAssignmentsCountOffset + kPointerSize;
3289
3290 private:
3291  // Bit positions in length_and_flg.
3292  // The least significant bit is used as the flag.
3293  static const int kFlagBit         = 0;
3294  static const int kLengthShift     = 1;
3295  static const int kLengthMask      = ~((1 << kLengthShift) - 1);
3296
3297  // Bit positions in start_position_and_type.
3298  // The source code start position is in the 30 most significant bits of
3299  // the start_position_and_type field.
3300  static const int kIsExpressionBit = 0;
3301  static const int kIsTopLevelBit   = 1;
3302  static const int kStartPositionShift = 2;
3303  static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
3304
3305  // Bit positions in compiler_hints.
3306  static const int kHasOnlySimpleThisPropertyAssignments = 0;
3307  static const int kTryFastCodegen = 1;
3308
3309  DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
3310};
3311
3312
3313// JSFunction describes JavaScript functions.
3314class JSFunction: public JSObject {
3315 public:
3316  // [prototype_or_initial_map]:
3317  DECL_ACCESSORS(prototype_or_initial_map, Object)
3318
3319  // [shared_function_info]: The information about the function that
3320  // can be shared by instances.
3321  DECL_ACCESSORS(shared, SharedFunctionInfo)
3322
3323  // [context]: The context for this function.
3324  inline Context* context();
3325  inline Object* unchecked_context();
3326  inline void set_context(Object* context);
3327
3328  // [code]: The generated code object for this function.  Executed
3329  // when the function is invoked, e.g. foo() or new foo(). See
3330  // [[Call]] and [[Construct]] description in ECMA-262, section
3331  // 8.6.2, page 27.
3332  inline Code* code();
3333  inline void set_code(Code* value);
3334
3335  // Tells whether this function is a context-independent boilerplate
3336  // function.
3337  inline bool IsBoilerplate();
3338
3339  // Tells whether this function is builtin.
3340  inline bool IsBuiltin();
3341
3342  // [literals]: Fixed array holding the materialized literals.
3343  //
3344  // If the function contains object, regexp or array literals, the
3345  // literals array prefix contains the object, regexp, and array
3346  // function to be used when creating these literals.  This is
3347  // necessary so that we do not dynamically lookup the object, regexp
3348  // or array functions.  Performing a dynamic lookup, we might end up
3349  // using the functions from a new context that we should not have
3350  // access to.
3351  DECL_ACCESSORS(literals, FixedArray)
3352
3353  // The initial map for an object created by this constructor.
3354  inline Map* initial_map();
3355  inline void set_initial_map(Map* value);
3356  inline bool has_initial_map();
3357
3358  // Get and set the prototype property on a JSFunction. If the
3359  // function has an initial map the prototype is set on the initial
3360  // map. Otherwise, the prototype is put in the initial map field
3361  // until an initial map is needed.
3362  inline bool has_prototype();
3363  inline bool has_instance_prototype();
3364  inline Object* prototype();
3365  inline Object* instance_prototype();
3366  Object* SetInstancePrototype(Object* value);
3367  Object* SetPrototype(Object* value);
3368
3369  // Accessor for this function's initial map's [[class]]
3370  // property. This is primarily used by ECMA native functions.  This
3371  // method sets the class_name field of this function's initial map
3372  // to a given value. It creates an initial map if this function does
3373  // not have one. Note that this method does not copy the initial map
3374  // if it has one already, but simply replaces it with the new value.
3375  // Instances created afterwards will have a map whose [[class]] is
3376  // set to 'value', but there is no guarantees on instances created
3377  // before.
3378  Object* SetInstanceClassName(String* name);
3379
3380  // Returns if this function has been compiled to native code yet.
3381  inline bool is_compiled();
3382
3383  // Casting.
3384  static inline JSFunction* cast(Object* obj);
3385
3386  // Dispatched behavior.
3387#ifdef DEBUG
3388  void JSFunctionPrint();
3389  void JSFunctionVerify();
3390#endif
3391
3392  // Returns the number of allocated literals.
3393  inline int NumberOfLiterals();
3394
3395  // Retrieve the global context from a function's literal array.
3396  static Context* GlobalContextFromLiterals(FixedArray* literals);
3397
3398  // Layout descriptors.
3399  static const int kPrototypeOrInitialMapOffset = JSObject::kHeaderSize;
3400  static const int kSharedFunctionInfoOffset =
3401      kPrototypeOrInitialMapOffset + kPointerSize;
3402  static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
3403  static const int kLiteralsOffset = kContextOffset + kPointerSize;
3404  static const int kSize = kLiteralsOffset + kPointerSize;
3405
3406  // Layout of the literals array.
3407  static const int kLiteralsPrefixSize = 1;
3408  static const int kLiteralGlobalContextIndex = 0;
3409 private:
3410  DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
3411};
3412
3413
3414// JSGlobalProxy's prototype must be a JSGlobalObject or null,
3415// and the prototype is hidden. JSGlobalProxy always delegates
3416// property accesses to its prototype if the prototype is not null.
3417//
3418// A JSGlobalProxy can be reinitialized which will preserve its identity.
3419//
3420// Accessing a JSGlobalProxy requires security check.
3421
3422class JSGlobalProxy : public JSObject {
3423 public:
3424  // [context]: the owner global context of this proxy object.
3425  // It is null value if this object is not used by any context.
3426  DECL_ACCESSORS(context, Object)
3427
3428  // Casting.
3429  static inline JSGlobalProxy* cast(Object* obj);
3430
3431  // Dispatched behavior.
3432#ifdef DEBUG
3433  void JSGlobalProxyPrint();
3434  void JSGlobalProxyVerify();
3435#endif
3436
3437  // Layout description.
3438  static const int kContextOffset = JSObject::kHeaderSize;
3439  static const int kSize = kContextOffset + kPointerSize;
3440
3441 private:
3442
3443  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
3444};
3445
3446
3447// Forward declaration.
3448class JSBuiltinsObject;
3449
3450// Common super class for JavaScript global objects and the special
3451// builtins global objects.
3452class GlobalObject: public JSObject {
3453 public:
3454  // [builtins]: the object holding the runtime routines written in JS.
3455  DECL_ACCESSORS(builtins, JSBuiltinsObject)
3456
3457  // [global context]: the global context corresponding to this global object.
3458  DECL_ACCESSORS(global_context, Context)
3459
3460  // [global receiver]: the global receiver object of the context
3461  DECL_ACCESSORS(global_receiver, JSObject)
3462
3463  // Retrieve the property cell used to store a property.
3464  Object* GetPropertyCell(LookupResult* result);
3465
3466  // Ensure that the global object has a cell for the given property name.
3467  Object* EnsurePropertyCell(String* name);
3468
3469  // Casting.
3470  static inline GlobalObject* cast(Object* obj);
3471
3472  // Layout description.
3473  static const int kBuiltinsOffset = JSObject::kHeaderSize;
3474  static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
3475  static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
3476  static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
3477
3478 private:
3479  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
3480
3481  DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
3482};
3483
3484
3485// JavaScript global object.
3486class JSGlobalObject: public GlobalObject {
3487 public:
3488
3489  // Casting.
3490  static inline JSGlobalObject* cast(Object* obj);
3491
3492  // Dispatched behavior.
3493#ifdef DEBUG
3494  void JSGlobalObjectPrint();
3495  void JSGlobalObjectVerify();
3496#endif
3497
3498  // Layout description.
3499  static const int kSize = GlobalObject::kHeaderSize;
3500
3501 private:
3502  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
3503};
3504
3505
3506// Builtins global object which holds the runtime routines written in
3507// JavaScript.
3508class JSBuiltinsObject: public GlobalObject {
3509 public:
3510  // Accessors for the runtime routines written in JavaScript.
3511  inline Object* javascript_builtin(Builtins::JavaScript id);
3512  inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
3513
3514  // Casting.
3515  static inline JSBuiltinsObject* cast(Object* obj);
3516
3517  // Dispatched behavior.
3518#ifdef DEBUG
3519  void JSBuiltinsObjectPrint();
3520  void JSBuiltinsObjectVerify();
3521#endif
3522
3523  // Layout description.  The size of the builtins object includes
3524  // room for one pointer per runtime routine written in javascript.
3525  static const int kJSBuiltinsCount = Builtins::id_count;
3526  static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
3527  static const int kSize =
3528      kJSBuiltinsOffset + (kJSBuiltinsCount * kPointerSize);
3529 private:
3530  DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
3531};
3532
3533
3534// Representation for JS Wrapper objects, String, Number, Boolean, Date, etc.
3535class JSValue: public JSObject {
3536 public:
3537  // [value]: the object being wrapped.
3538  DECL_ACCESSORS(value, Object)
3539
3540  // Casting.
3541  static inline JSValue* cast(Object* obj);
3542
3543  // Dispatched behavior.
3544#ifdef DEBUG
3545  void JSValuePrint();
3546  void JSValueVerify();
3547#endif
3548
3549  // Layout description.
3550  static const int kValueOffset = JSObject::kHeaderSize;
3551  static const int kSize = kValueOffset + kPointerSize;
3552
3553 private:
3554  DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
3555};
3556
3557// Regular expressions
3558// The regular expression holds a single reference to a FixedArray in
3559// the kDataOffset field.
3560// The FixedArray contains the following data:
3561// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
3562// - reference to the original source string
3563// - reference to the original flag string
3564// If it is an atom regexp
3565// - a reference to a literal string to search for
3566// If it is an irregexp regexp:
3567// - a reference to code for ASCII inputs (bytecode or compiled).
3568// - a reference to code for UC16 inputs (bytecode or compiled).
3569// - max number of registers used by irregexp implementations.
3570// - number of capture registers (output values) of the regexp.
3571class JSRegExp: public JSObject {
3572 public:
3573  // Meaning of Type:
3574  // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
3575  // ATOM: A simple string to match against using an indexOf operation.
3576  // IRREGEXP: Compiled with Irregexp.
3577  // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
3578  enum Type { NOT_COMPILED, ATOM, IRREGEXP };
3579  enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
3580
3581  class Flags {
3582   public:
3583    explicit Flags(uint32_t value) : value_(value) { }
3584    bool is_global() { return (value_ & GLOBAL) != 0; }
3585    bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
3586    bool is_multiline() { return (value_ & MULTILINE) != 0; }
3587    uint32_t value() { return value_; }
3588   private:
3589    uint32_t value_;
3590  };
3591
3592  DECL_ACCESSORS(data, Object)
3593
3594  inline Type TypeTag();
3595  inline int CaptureCount();
3596  inline Flags GetFlags();
3597  inline String* Pattern();
3598  inline Object* DataAt(int index);
3599  // Set implementation data after the object has been prepared.
3600  inline void SetDataAt(int index, Object* value);
3601  static int code_index(bool is_ascii) {
3602    if (is_ascii) {
3603      return kIrregexpASCIICodeIndex;
3604    } else {
3605      return kIrregexpUC16CodeIndex;
3606    }
3607  }
3608
3609  static inline JSRegExp* cast(Object* obj);
3610
3611  // Dispatched behavior.
3612#ifdef DEBUG
3613  void JSRegExpVerify();
3614#endif
3615
3616  static const int kDataOffset = JSObject::kHeaderSize;
3617  static const int kSize = kDataOffset + kPointerSize;
3618
3619  // Indices in the data array.
3620  static const int kTagIndex = 0;
3621  static const int kSourceIndex = kTagIndex + 1;
3622  static const int kFlagsIndex = kSourceIndex + 1;
3623  static const int kDataIndex = kFlagsIndex + 1;
3624  // The data fields are used in different ways depending on the
3625  // value of the tag.
3626  // Atom regexps (literal strings).
3627  static const int kAtomPatternIndex = kDataIndex;
3628
3629  static const int kAtomDataSize = kAtomPatternIndex + 1;
3630
3631  // Irregexp compiled code or bytecode for ASCII. If compilation
3632  // fails, this fields hold an exception object that should be
3633  // thrown if the regexp is used again.
3634  static const int kIrregexpASCIICodeIndex = kDataIndex;
3635  // Irregexp compiled code or bytecode for UC16.  If compilation
3636  // fails, this fields hold an exception object that should be
3637  // thrown if the regexp is used again.
3638  static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
3639  // Maximal number of registers used by either ASCII or UC16.
3640  // Only used to check that there is enough stack space
3641  static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 2;
3642  // Number of captures in the compiled regexp.
3643  static const int kIrregexpCaptureCountIndex = kDataIndex + 3;
3644
3645  static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
3646
3647  // Offsets directly into the data fixed array.
3648  static const int kDataTagOffset =
3649      FixedArray::kHeaderSize + kTagIndex * kPointerSize;
3650  static const int kDataAsciiCodeOffset =
3651      FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize;
3652  static const int kDataUC16CodeOffset =
3653      FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
3654  static const int kIrregexpCaptureCountOffset =
3655      FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
3656};
3657
3658
3659class CompilationCacheShape {
3660 public:
3661  static inline bool IsMatch(HashTableKey* key, Object* value) {
3662    return key->IsMatch(value);
3663  }
3664
3665  static inline uint32_t Hash(HashTableKey* key) {
3666    return key->Hash();
3667  }
3668
3669  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3670    return key->HashForObject(object);
3671  }
3672
3673  static Object* AsObject(HashTableKey* key) {
3674    return key->AsObject();
3675  }
3676
3677  static const int kPrefixSize = 0;
3678  static const int kEntrySize = 2;
3679};
3680
3681
3682class CompilationCacheTable: public HashTable<CompilationCacheShape,
3683                                              HashTableKey*> {
3684 public:
3685  // Find cached value for a string key, otherwise return null.
3686  Object* Lookup(String* src);
3687  Object* LookupEval(String* src, Context* context);
3688  Object* LookupRegExp(String* source, JSRegExp::Flags flags);
3689  Object* Put(String* src, Object* value);
3690  Object* PutEval(String* src, Context* context, Object* value);
3691  Object* PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value);
3692
3693  static inline CompilationCacheTable* cast(Object* obj);
3694
3695 private:
3696  DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
3697};
3698
3699
3700enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
3701enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
3702
3703
3704class StringHasher {
3705 public:
3706  inline StringHasher(int length);
3707
3708  // Returns true if the hash of this string can be computed without
3709  // looking at the contents.
3710  inline bool has_trivial_hash();
3711
3712  // Add a character to the hash and update the array index calculation.
3713  inline void AddCharacter(uc32 c);
3714
3715  // Adds a character to the hash but does not update the array index
3716  // calculation.  This can only be called when it has been verified
3717  // that the input is not an array index.
3718  inline void AddCharacterNoIndex(uc32 c);
3719
3720  // Returns the value to store in the hash field of a string with
3721  // the given length and contents.
3722  uint32_t GetHashField();
3723
3724  // Returns true if the characters seen so far make up a legal array
3725  // index.
3726  bool is_array_index() { return is_array_index_; }
3727
3728  bool is_valid() { return is_valid_; }
3729
3730  void invalidate() { is_valid_ = false; }
3731
3732 private:
3733
3734  uint32_t array_index() {
3735    ASSERT(is_array_index());
3736    return array_index_;
3737  }
3738
3739  inline uint32_t GetHash();
3740
3741  int length_;
3742  uint32_t raw_running_hash_;
3743  uint32_t array_index_;
3744  bool is_array_index_;
3745  bool is_first_char_;
3746  bool is_valid_;
3747  friend class TwoCharHashTableKey;
3748};
3749
3750
3751// The characteristics of a string are stored in its map.  Retrieving these
3752// few bits of information is moderately expensive, involving two memory
3753// loads where the second is dependent on the first.  To improve efficiency
3754// the shape of the string is given its own class so that it can be retrieved
3755// once and used for several string operations.  A StringShape is small enough
3756// to be passed by value and is immutable, but be aware that flattening a
3757// string can potentially alter its shape.  Also be aware that a GC caused by
3758// something else can alter the shape of a string due to ConsString
3759// shortcutting.  Keeping these restrictions in mind has proven to be error-
3760// prone and so we no longer put StringShapes in variables unless there is a
3761// concrete performance benefit at that particular point in the code.
3762class StringShape BASE_EMBEDDED {
3763 public:
3764  inline explicit StringShape(String* s);
3765  inline explicit StringShape(Map* s);
3766  inline explicit StringShape(InstanceType t);
3767  inline bool IsSequential();
3768  inline bool IsExternal();
3769  inline bool IsCons();
3770  inline bool IsExternalAscii();
3771  inline bool IsExternalTwoByte();
3772  inline bool IsSequentialAscii();
3773  inline bool IsSequentialTwoByte();
3774  inline bool IsSymbol();
3775  inline StringRepresentationTag representation_tag();
3776  inline uint32_t full_representation_tag();
3777  inline uint32_t size_tag();
3778#ifdef DEBUG
3779  inline uint32_t type() { return type_; }
3780  inline void invalidate() { valid_ = false; }
3781  inline bool valid() { return valid_; }
3782#else
3783  inline void invalidate() { }
3784#endif
3785 private:
3786  uint32_t type_;
3787#ifdef DEBUG
3788  inline void set_valid() { valid_ = true; }
3789  bool valid_;
3790#else
3791  inline void set_valid() { }
3792#endif
3793};
3794
3795
3796// The String abstract class captures JavaScript string values:
3797//
3798// Ecma-262:
3799//  4.3.16 String Value
3800//    A string value is a member of the type String and is a finite
3801//    ordered sequence of zero or more 16-bit unsigned integer values.
3802//
3803// All string values have a length field.
3804class String: public HeapObject {
3805 public:
3806  // Get and set the length of the string.
3807  inline int length();
3808  inline void set_length(int value);
3809
3810  // Get and set the hash field of the string.
3811  inline uint32_t hash_field();
3812  inline void set_hash_field(uint32_t value);
3813
3814  inline bool IsAsciiRepresentation();
3815  inline bool IsTwoByteRepresentation();
3816
3817  // Get and set individual two byte chars in the string.
3818  inline void Set(int index, uint16_t value);
3819  // Get individual two byte char in the string.  Repeated calls
3820  // to this method are not efficient unless the string is flat.
3821  inline uint16_t Get(int index);
3822
3823  // Try to flatten the top level ConsString that is hiding behind this
3824  // string.  This is a no-op unless the string is a ConsString.  Flatten
3825  // mutates the ConsString and might return a failure.
3826  Object* TryFlatten();
3827
3828  // Try to flatten the string.  Checks first inline to see if it is necessary.
3829  // Do not handle allocation failures.  After calling TryFlattenIfNotFlat, the
3830  // string could still be a ConsString, in which case a failure is returned.
3831  // Use FlattenString from Handles.cc to be sure to flatten.
3832  inline Object* TryFlattenIfNotFlat();
3833
3834  Vector<const char> ToAsciiVector();
3835  Vector<const uc16> ToUC16Vector();
3836
3837  // Mark the string as an undetectable object. It only applies to
3838  // ascii and two byte string types.
3839  bool MarkAsUndetectable();
3840
3841  // Return a substring.
3842  Object* SubString(int from, int to);
3843
3844  // String equality operations.
3845  inline bool Equals(String* other);
3846  bool IsEqualTo(Vector<const char> str);
3847
3848  // Return a UTF8 representation of the string.  The string is null
3849  // terminated but may optionally contain nulls.  Length is returned
3850  // in length_output if length_output is not a null pointer  The string
3851  // should be nearly flat, otherwise the performance of this method may
3852  // be very slow (quadratic in the length).  Setting robustness_flag to
3853  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
3854  // handles unexpected data without causing assert failures and it does not
3855  // do any heap allocations.  This is useful when printing stack traces.
3856  SmartPointer<char> ToCString(AllowNullsFlag allow_nulls,
3857                               RobustnessFlag robustness_flag,
3858                               int offset,
3859                               int length,
3860                               int* length_output = 0);
3861  SmartPointer<char> ToCString(
3862      AllowNullsFlag allow_nulls = DISALLOW_NULLS,
3863      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
3864      int* length_output = 0);
3865
3866  int Utf8Length();
3867
3868  // Return a 16 bit Unicode representation of the string.
3869  // The string should be nearly flat, otherwise the performance of
3870  // of this method may be very bad.  Setting robustness_flag to
3871  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
3872  // handles unexpected data without causing assert failures and it does not
3873  // do any heap allocations.  This is useful when printing stack traces.
3874  SmartPointer<uc16> ToWideCString(
3875      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
3876
3877  // Tells whether the hash code has been computed.
3878  inline bool HasHashCode();
3879
3880  // Returns a hash value used for the property table
3881  inline uint32_t Hash();
3882
3883  static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
3884                                   int length);
3885
3886  static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
3887                                uint32_t* index,
3888                                int length);
3889
3890  // Externalization.
3891  bool MakeExternal(v8::String::ExternalStringResource* resource);
3892  bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
3893
3894  // Conversion.
3895  inline bool AsArrayIndex(uint32_t* index);
3896
3897  // Casting.
3898  static inline String* cast(Object* obj);
3899
3900  void PrintOn(FILE* out);
3901
3902  // For use during stack traces.  Performs rudimentary sanity check.
3903  bool LooksValid();
3904
3905  // Dispatched behavior.
3906  void StringShortPrint(StringStream* accumulator);
3907#ifdef DEBUG
3908  void StringPrint();
3909  void StringVerify();
3910#endif
3911  inline bool IsFlat();
3912
3913  // Layout description.
3914  static const int kLengthOffset = HeapObject::kHeaderSize;
3915  static const int kHashFieldOffset = kLengthOffset + kIntSize;
3916  static const int kSize = kHashFieldOffset + kIntSize;
3917  // Notice: kSize is not pointer-size aligned if pointers are 64-bit.
3918
3919  // Maximum number of characters to consider when trying to convert a string
3920  // value into an array index.
3921  static const int kMaxArrayIndexSize = 10;
3922
3923  // Max ascii char code.
3924  static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar;
3925  static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar;
3926  static const int kMaxUC16CharCode = 0xffff;
3927
3928  // Minimum length for a cons string.
3929  static const int kMinNonFlatLength = 13;
3930
3931  // Mask constant for checking if a string has a computed hash code
3932  // and if it is an array index.  The least significant bit indicates
3933  // whether a hash code has been computed.  If the hash code has been
3934  // computed the 2nd bit tells whether the string can be used as an
3935  // array index.
3936  static const int kHashComputedMask = 1;
3937  static const int kIsArrayIndexMask = 1 << 1;
3938  static const int kNofLengthBitFields = 2;
3939
3940  // Shift constant retrieving hash code from hash field.
3941  static const int kHashShift = kNofLengthBitFields;
3942
3943  // Array index strings this short can keep their index in the hash
3944  // field.
3945  static const int kMaxCachedArrayIndexLength = 7;
3946
3947  // For strings which are array indexes the hash value has the string length
3948  // mixed into the hash, mainly to avoid a hash value of zero which would be
3949  // the case for the string '0'. 24 bits are used for the array index value.
3950  static const int kArrayIndexHashLengthShift = 24 + kNofLengthBitFields;
3951  static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
3952  static const int kArrayIndexValueBits =
3953      kArrayIndexHashLengthShift - kHashShift;
3954
3955  // Value of empty hash field indicating that the hash is not computed.
3956  static const int kEmptyHashField = 0;
3957
3958  // Maximal string length.
3959  static const int kMaxLength = (1 << (32 - 2)) - 1;
3960
3961  // Max length for computing hash. For strings longer than this limit the
3962  // string length is used as the hash value.
3963  static const int kMaxHashCalcLength = 16383;
3964
3965  // Limit for truncation in short printing.
3966  static const int kMaxShortPrintLength = 1024;
3967
3968  // Support for regular expressions.
3969  const uc16* GetTwoByteData();
3970  const uc16* GetTwoByteData(unsigned start);
3971
3972  // Support for StringInputBuffer
3973  static const unibrow::byte* ReadBlock(String* input,
3974                                        unibrow::byte* util_buffer,
3975                                        unsigned capacity,
3976                                        unsigned* remaining,
3977                                        unsigned* offset);
3978  static const unibrow::byte* ReadBlock(String** input,
3979                                        unibrow::byte* util_buffer,
3980                                        unsigned capacity,
3981                                        unsigned* remaining,
3982                                        unsigned* offset);
3983
3984  // Helper function for flattening strings.
3985  template <typename sinkchar>
3986  static void WriteToFlat(String* source,
3987                          sinkchar* sink,
3988                          int from,
3989                          int to);
3990
3991 protected:
3992  class ReadBlockBuffer {
3993   public:
3994    ReadBlockBuffer(unibrow::byte* util_buffer_,
3995                    unsigned cursor_,
3996                    unsigned capacity_,
3997                    unsigned remaining_) :
3998      util_buffer(util_buffer_),
3999      cursor(cursor_),
4000      capacity(capacity_),
4001      remaining(remaining_) {
4002    }
4003    unibrow::byte* util_buffer;
4004    unsigned       cursor;
4005    unsigned       capacity;
4006    unsigned       remaining;
4007  };
4008
4009  static inline const unibrow::byte* ReadBlock(String* input,
4010                                               ReadBlockBuffer* buffer,
4011                                               unsigned* offset,
4012                                               unsigned max_chars);
4013  static void ReadBlockIntoBuffer(String* input,
4014                                  ReadBlockBuffer* buffer,
4015                                  unsigned* offset_ptr,
4016                                  unsigned max_chars);
4017
4018 private:
4019  // Slow case of String::Equals.  This implementation works on any strings
4020  // but it is most efficient on strings that are almost flat.
4021  bool SlowEquals(String* other);
4022
4023  // Slow case of AsArrayIndex.
4024  bool SlowAsArrayIndex(uint32_t* index);
4025
4026  // Compute and set the hash code.
4027  uint32_t ComputeAndSetHash();
4028
4029  DISALLOW_IMPLICIT_CONSTRUCTORS(String);
4030};
4031
4032
4033// The SeqString abstract class captures sequential string values.
4034class SeqString: public String {
4035 public:
4036
4037  // Casting.
4038  static inline SeqString* cast(Object* obj);
4039
4040  // Dispatched behaviour.
4041  // For regexp code.
4042  uint16_t* SeqStringGetTwoByteAddress();
4043
4044 private:
4045  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
4046};
4047
4048
4049// The AsciiString class captures sequential ascii string objects.
4050// Each character in the AsciiString is an ascii character.
4051class SeqAsciiString: public SeqString {
4052 public:
4053  // Dispatched behavior.
4054  inline uint16_t SeqAsciiStringGet(int index);
4055  inline void SeqAsciiStringSet(int index, uint16_t value);
4056
4057  // Get the address of the characters in this string.
4058  inline Address GetCharsAddress();
4059
4060  inline char* GetChars();
4061
4062  // Casting
4063  static inline SeqAsciiString* cast(Object* obj);
4064
4065  // Garbage collection support.  This method is called by the
4066  // garbage collector to compute the actual size of an AsciiString
4067  // instance.
4068  inline int SeqAsciiStringSize(InstanceType instance_type);
4069
4070  // Computes the size for an AsciiString instance of a given length.
4071  static int SizeFor(int length) {
4072    return OBJECT_SIZE_ALIGN(kHeaderSize + length * kCharSize);
4073  }
4074
4075  // Layout description.
4076  static const int kHeaderSize = String::kSize;
4077  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4078
4079  // Maximal memory usage for a single sequential ASCII string.
4080  static const int kMaxSize = 512 * MB;
4081  // Maximal length of a single sequential ASCII string.
4082  // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4083  static const int kMaxLength = (kMaxSize - kHeaderSize);
4084
4085  // Support for StringInputBuffer.
4086  inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4087                                                unsigned* offset,
4088                                                unsigned chars);
4089  inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining,
4090                                                      unsigned* offset,
4091                                                      unsigned chars);
4092
4093 private:
4094  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString);
4095};
4096
4097
4098// The TwoByteString class captures sequential unicode string objects.
4099// Each character in the TwoByteString is a two-byte uint16_t.
4100class SeqTwoByteString: public SeqString {
4101 public:
4102  // Dispatched behavior.
4103  inline uint16_t SeqTwoByteStringGet(int index);
4104  inline void SeqTwoByteStringSet(int index, uint16_t value);
4105
4106  // Get the address of the characters in this string.
4107  inline Address GetCharsAddress();
4108
4109  inline uc16* GetChars();
4110
4111  // For regexp code.
4112  const uint16_t* SeqTwoByteStringGetData(unsigned start);
4113
4114  // Casting
4115  static inline SeqTwoByteString* cast(Object* obj);
4116
4117  // Garbage collection support.  This method is called by the
4118  // garbage collector to compute the actual size of a TwoByteString
4119  // instance.
4120  inline int SeqTwoByteStringSize(InstanceType instance_type);
4121
4122  // Computes the size for a TwoByteString instance of a given length.
4123  static int SizeFor(int length) {
4124    return OBJECT_SIZE_ALIGN(kHeaderSize + length * kShortSize);
4125  }
4126
4127  // Layout description.
4128  static const int kHeaderSize = String::kSize;
4129  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4130
4131  // Maximal memory usage for a single sequential two-byte string.
4132  static const int kMaxSize = 512 * MB;
4133  // Maximal length of a single sequential two-byte string.
4134  // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4135  static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t);
4136
4137  // Support for StringInputBuffer.
4138  inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4139                                                  unsigned* offset_ptr,
4140                                                  unsigned chars);
4141
4142 private:
4143  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
4144};
4145
4146
4147// The ConsString class describes string values built by using the
4148// addition operator on strings.  A ConsString is a pair where the
4149// first and second components are pointers to other string values.
4150// One or both components of a ConsString can be pointers to other
4151// ConsStrings, creating a binary tree of ConsStrings where the leaves
4152// are non-ConsString string values.  The string value represented by
4153// a ConsString can be obtained by concatenating the leaf string
4154// values in a left-to-right depth-first traversal of the tree.
4155class ConsString: public String {
4156 public:
4157  // First string of the cons cell.
4158  inline String* first();
4159  // Doesn't check that the result is a string, even in debug mode.  This is
4160  // useful during GC where the mark bits confuse the checks.
4161  inline Object* unchecked_first();
4162  inline void set_first(String* first,
4163                        WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4164
4165  // Second string of the cons cell.
4166  inline String* second();
4167  // Doesn't check that the result is a string, even in debug mode.  This is
4168  // useful during GC where the mark bits confuse the checks.
4169  inline Object* unchecked_second();
4170  inline void set_second(String* second,
4171                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4172
4173  // Dispatched behavior.
4174  uint16_t ConsStringGet(int index);
4175
4176  // Casting.
4177  static inline ConsString* cast(Object* obj);
4178
4179  // Garbage collection support.  This method is called during garbage
4180  // collection to iterate through the heap pointers in the body of
4181  // the ConsString.
4182  void ConsStringIterateBody(ObjectVisitor* v);
4183
4184  // Layout description.
4185  static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
4186  static const int kSecondOffset = kFirstOffset + kPointerSize;
4187  static const int kSize = kSecondOffset + kPointerSize;
4188
4189  // Support for StringInputBuffer.
4190  inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
4191                                                  unsigned* offset_ptr,
4192                                                  unsigned chars);
4193  inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4194                                            unsigned* offset_ptr,
4195                                            unsigned chars);
4196
4197  // Minimum length for a cons string.
4198  static const int kMinLength = 13;
4199
4200 private:
4201  DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
4202};
4203
4204
4205// The ExternalString class describes string values that are backed by
4206// a string resource that lies outside the V8 heap.  ExternalStrings
4207// consist of the length field common to all strings, a pointer to the
4208// external resource.  It is important to ensure (externally) that the
4209// resource is not deallocated while the ExternalString is live in the
4210// V8 heap.
4211//
4212// The API expects that all ExternalStrings are created through the
4213// API.  Therefore, ExternalStrings should not be used internally.
4214class ExternalString: public String {
4215 public:
4216  // Casting
4217  static inline ExternalString* cast(Object* obj);
4218
4219  // Layout description.
4220  static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
4221  static const int kSize = kResourceOffset + kPointerSize;
4222
4223  STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
4224
4225 private:
4226  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
4227};
4228
4229
4230// The ExternalAsciiString class is an external string backed by an
4231// ASCII string.
4232class ExternalAsciiString: public ExternalString {
4233 public:
4234  typedef v8::String::ExternalAsciiStringResource Resource;
4235
4236  // The underlying resource.
4237  inline Resource* resource();
4238  inline void set_resource(Resource* buffer);
4239
4240  // Dispatched behavior.
4241  uint16_t ExternalAsciiStringGet(int index);
4242
4243  // Casting.
4244  static inline ExternalAsciiString* cast(Object* obj);
4245
4246  // Garbage collection support.
4247  void ExternalAsciiStringIterateBody(ObjectVisitor* v);
4248
4249  // Support for StringInputBuffer.
4250  const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
4251                                                    unsigned* offset,
4252                                                    unsigned chars);
4253  inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4254                                                     unsigned* offset,
4255                                                     unsigned chars);
4256
4257 private:
4258  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
4259};
4260
4261
4262// The ExternalTwoByteString class is an external string backed by a UTF-16
4263// encoded string.
4264class ExternalTwoByteString: public ExternalString {
4265 public:
4266  typedef v8::String::ExternalStringResource Resource;
4267
4268  // The underlying string resource.
4269  inline Resource* resource();
4270  inline void set_resource(Resource* buffer);
4271
4272  // Dispatched behavior.
4273  uint16_t ExternalTwoByteStringGet(int index);
4274
4275  // For regexp code.
4276  const uint16_t* ExternalTwoByteStringGetData(unsigned start);
4277
4278  // Casting.
4279  static inline ExternalTwoByteString* cast(Object* obj);
4280
4281  // Garbage collection support.
4282  void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
4283
4284  // Support for StringInputBuffer.
4285  void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4286                                                unsigned* offset_ptr,
4287                                                unsigned chars);
4288
4289 private:
4290  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
4291};
4292
4293
4294// Utility superclass for stack-allocated objects that must be updated
4295// on gc.  It provides two ways for the gc to update instances, either
4296// iterating or updating after gc.
4297class Relocatable BASE_EMBEDDED {
4298 public:
4299  inline Relocatable() : prev_(top_) { top_ = this; }
4300  virtual ~Relocatable() {
4301    ASSERT_EQ(top_, this);
4302    top_ = prev_;
4303  }
4304  virtual void IterateInstance(ObjectVisitor* v) { }
4305  virtual void PostGarbageCollection() { }
4306
4307  static void PostGarbageCollectionProcessing();
4308  static int ArchiveSpacePerThread();
4309  static char* ArchiveState(char* to);
4310  static char* RestoreState(char* from);
4311  static void Iterate(ObjectVisitor* v);
4312  static void Iterate(ObjectVisitor* v, Relocatable* top);
4313  static char* Iterate(ObjectVisitor* v, char* t);
4314 private:
4315  static Relocatable* top_;
4316  Relocatable* prev_;
4317};
4318
4319
4320// A flat string reader provides random access to the contents of a
4321// string independent of the character width of the string.  The handle
4322// must be valid as long as the reader is being used.
4323class FlatStringReader : public Relocatable {
4324 public:
4325  explicit FlatStringReader(Handle<String> str);
4326  explicit FlatStringReader(Vector<const char> input);
4327  void PostGarbageCollection();
4328  inline uc32 Get(int index);
4329  int length() { return length_; }
4330 private:
4331  String** str_;
4332  bool is_ascii_;
4333  int length_;
4334  const void* start_;
4335};
4336
4337
4338// Note that StringInputBuffers are not valid across a GC!  To fix this
4339// it would have to store a String Handle instead of a String* and
4340// AsciiStringReadBlock would have to be modified to use memcpy.
4341//
4342// StringInputBuffer is able to traverse any string regardless of how
4343// deeply nested a sequence of ConsStrings it is made of.  However,
4344// performance will be better if deep strings are flattened before they
4345// are traversed.  Since flattening requires memory allocation this is
4346// not always desirable, however (esp. in debugging situations).
4347class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
4348 public:
4349  virtual void Seek(unsigned pos);
4350  inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
4351  inline StringInputBuffer(String* backing):
4352      unibrow::InputBuffer<String, String*, 1024>(backing) {}
4353};
4354
4355
4356class SafeStringInputBuffer
4357  : public unibrow::InputBuffer<String, String**, 256> {
4358 public:
4359  virtual void Seek(unsigned pos);
4360  inline SafeStringInputBuffer()
4361      : unibrow::InputBuffer<String, String**, 256>() {}
4362  inline SafeStringInputBuffer(String** backing)
4363      : unibrow::InputBuffer<String, String**, 256>(backing) {}
4364};
4365
4366
4367template <typename T>
4368class VectorIterator {
4369 public:
4370  VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
4371  explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
4372  T GetNext() { return data_[index_++]; }
4373  bool has_more() { return index_ < data_.length(); }
4374 private:
4375  Vector<const T> data_;
4376  int index_;
4377};
4378
4379
4380// The Oddball describes objects null, undefined, true, and false.
4381class Oddball: public HeapObject {
4382 public:
4383  // [to_string]: Cached to_string computed at startup.
4384  DECL_ACCESSORS(to_string, String)
4385
4386  // [to_number]: Cached to_number computed at startup.
4387  DECL_ACCESSORS(to_number, Object)
4388
4389  // Casting.
4390  static inline Oddball* cast(Object* obj);
4391
4392  // Dispatched behavior.
4393  void OddballIterateBody(ObjectVisitor* v);
4394#ifdef DEBUG
4395  void OddballVerify();
4396#endif
4397
4398  // Initialize the fields.
4399  Object* Initialize(const char* to_string, Object* to_number);
4400
4401  // Layout description.
4402  static const int kToStringOffset = HeapObject::kHeaderSize;
4403  static const int kToNumberOffset = kToStringOffset + kPointerSize;
4404  static const int kSize = kToNumberOffset + kPointerSize;
4405
4406 private:
4407  DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
4408};
4409
4410
4411class JSGlobalPropertyCell: public HeapObject {
4412 public:
4413  // [value]: value of the global property.
4414  DECL_ACCESSORS(value, Object)
4415
4416  // Casting.
4417  static inline JSGlobalPropertyCell* cast(Object* obj);
4418
4419  // Dispatched behavior.
4420  void JSGlobalPropertyCellIterateBody(ObjectVisitor* v);
4421#ifdef DEBUG
4422  void JSGlobalPropertyCellVerify();
4423  void JSGlobalPropertyCellPrint();
4424#endif
4425
4426  // Layout description.
4427  static const int kValueOffset = HeapObject::kHeaderSize;
4428  static const int kSize = kValueOffset + kPointerSize;
4429
4430 private:
4431  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell);
4432};
4433
4434
4435
4436// Proxy describes objects pointing from JavaScript to C structures.
4437// Since they cannot contain references to JS HeapObjects they can be
4438// placed in old_data_space.
4439class Proxy: public HeapObject {
4440 public:
4441  // [proxy]: field containing the address.
4442  inline Address proxy();
4443  inline void set_proxy(Address value);
4444
4445  // Casting.
4446  static inline Proxy* cast(Object* obj);
4447
4448  // Dispatched behavior.
4449  inline void ProxyIterateBody(ObjectVisitor* v);
4450#ifdef DEBUG
4451  void ProxyPrint();
4452  void ProxyVerify();
4453#endif
4454
4455  // Layout description.
4456
4457  static const int kProxyOffset = HeapObject::kHeaderSize;
4458  static const int kSize = kProxyOffset + kPointerSize;
4459
4460  STATIC_CHECK(kProxyOffset == Internals::kProxyProxyOffset);
4461
4462 private:
4463  DISALLOW_IMPLICIT_CONSTRUCTORS(Proxy);
4464};
4465
4466
4467// The JSArray describes JavaScript Arrays
4468//  Such an array can be in one of two modes:
4469//    - fast, backing storage is a FixedArray and length <= elements.length();
4470//       Please note: push and pop can be used to grow and shrink the array.
4471//    - slow, backing storage is a HashTable with numbers as keys.
4472class JSArray: public JSObject {
4473 public:
4474  // [length]: The length property.
4475  DECL_ACCESSORS(length, Object)
4476
4477  Object* JSArrayUpdateLengthFromIndex(uint32_t index, Object* value);
4478
4479  // Initialize the array with the given capacity. The function may
4480  // fail due to out-of-memory situations, but only if the requested
4481  // capacity is non-zero.
4482  Object* Initialize(int capacity);
4483
4484  // Set the content of the array to the content of storage.
4485  inline void SetContent(FixedArray* storage);
4486
4487  // Casting.
4488  static inline JSArray* cast(Object* obj);
4489
4490  // Uses handles.  Ensures that the fixed array backing the JSArray has at
4491  // least the stated size.
4492  inline void EnsureSize(int minimum_size_of_backing_fixed_array);
4493
4494  // Dispatched behavior.
4495#ifdef DEBUG
4496  void JSArrayPrint();
4497  void JSArrayVerify();
4498#endif
4499
4500  // Number of element slots to pre-allocate for an empty array.
4501  static const int kPreallocatedArrayElements = 4;
4502
4503  // Layout description.
4504  static const int kLengthOffset = JSObject::kHeaderSize;
4505  static const int kSize = kLengthOffset + kPointerSize;
4506
4507 private:
4508  // Expand the fixed array backing of a fast-case JSArray to at least
4509  // the requested size.
4510  void Expand(int minimum_size_of_backing_fixed_array);
4511
4512  DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
4513};
4514
4515
4516// An accessor must have a getter, but can have no setter.
4517//
4518// When setting a property, V8 searches accessors in prototypes.
4519// If an accessor was found and it does not have a setter,
4520// the request is ignored.
4521//
4522// If the accessor in the prototype has the READ_ONLY property attribute, then
4523// a new value is added to the local object when the property is set.
4524// This shadows the accessor in the prototype.
4525class AccessorInfo: public Struct {
4526 public:
4527  DECL_ACCESSORS(getter, Object)
4528  DECL_ACCESSORS(setter, Object)
4529  DECL_ACCESSORS(data, Object)
4530  DECL_ACCESSORS(name, Object)
4531  DECL_ACCESSORS(flag, Smi)
4532  DECL_ACCESSORS(load_stub_cache, Object)
4533
4534  inline bool all_can_read();
4535  inline void set_all_can_read(bool value);
4536
4537  inline bool all_can_write();
4538  inline void set_all_can_write(bool value);
4539
4540  inline bool prohibits_overwriting();
4541  inline void set_prohibits_overwriting(bool value);
4542
4543  inline PropertyAttributes property_attributes();
4544  inline void set_property_attributes(PropertyAttributes attributes);
4545
4546  static inline AccessorInfo* cast(Object* obj);
4547
4548#ifdef DEBUG
4549  void AccessorInfoPrint();
4550  void AccessorInfoVerify();
4551#endif
4552
4553  static const int kGetterOffset = HeapObject::kHeaderSize;
4554  static const int kSetterOffset = kGetterOffset + kPointerSize;
4555  static const int kDataOffset = kSetterOffset + kPointerSize;
4556  static const int kNameOffset = kDataOffset + kPointerSize;
4557  static const int kFlagOffset = kNameOffset + kPointerSize;
4558  static const int kLoadStubCacheOffset = kFlagOffset + kPointerSize;
4559  static const int kSize = kLoadStubCacheOffset + kPointerSize;
4560
4561 private:
4562  // Bit positions in flag.
4563  static const int kAllCanReadBit = 0;
4564  static const int kAllCanWriteBit = 1;
4565  static const int kProhibitsOverwritingBit = 2;
4566  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
4567
4568  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
4569};
4570
4571
4572class AccessCheckInfo: public Struct {
4573 public:
4574  DECL_ACCESSORS(named_callback, Object)
4575  DECL_ACCESSORS(indexed_callback, Object)
4576  DECL_ACCESSORS(data, Object)
4577
4578  static inline AccessCheckInfo* cast(Object* obj);
4579
4580#ifdef DEBUG
4581  void AccessCheckInfoPrint();
4582  void AccessCheckInfoVerify();
4583#endif
4584
4585  static const int kNamedCallbackOffset   = HeapObject::kHeaderSize;
4586  static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
4587  static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
4588  static const int kSize = kDataOffset + kPointerSize;
4589
4590 private:
4591  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
4592};
4593
4594
4595class InterceptorInfo: public Struct {
4596 public:
4597  DECL_ACCESSORS(getter, Object)
4598  DECL_ACCESSORS(setter, Object)
4599  DECL_ACCESSORS(query, Object)
4600  DECL_ACCESSORS(deleter, Object)
4601  DECL_ACCESSORS(enumerator, Object)
4602  DECL_ACCESSORS(data, Object)
4603
4604  static inline InterceptorInfo* cast(Object* obj);
4605
4606#ifdef DEBUG
4607  void InterceptorInfoPrint();
4608  void InterceptorInfoVerify();
4609#endif
4610
4611  static const int kGetterOffset = HeapObject::kHeaderSize;
4612  static const int kSetterOffset = kGetterOffset + kPointerSize;
4613  static const int kQueryOffset = kSetterOffset + kPointerSize;
4614  static const int kDeleterOffset = kQueryOffset + kPointerSize;
4615  static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
4616  static const int kDataOffset = kEnumeratorOffset + kPointerSize;
4617  static const int kSize = kDataOffset + kPointerSize;
4618
4619 private:
4620  DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
4621};
4622
4623
4624class CallHandlerInfo: public Struct {
4625 public:
4626  DECL_ACCESSORS(callback, Object)
4627  DECL_ACCESSORS(data, Object)
4628
4629  static inline CallHandlerInfo* cast(Object* obj);
4630
4631#ifdef DEBUG
4632  void CallHandlerInfoPrint();
4633  void CallHandlerInfoVerify();
4634#endif
4635
4636  static const int kCallbackOffset = HeapObject::kHeaderSize;
4637  static const int kDataOffset = kCallbackOffset + kPointerSize;
4638  static const int kSize = kDataOffset + kPointerSize;
4639
4640 private:
4641  DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
4642};
4643
4644
4645class TemplateInfo: public Struct {
4646 public:
4647  DECL_ACCESSORS(tag, Object)
4648  DECL_ACCESSORS(property_list, Object)
4649
4650#ifdef DEBUG
4651  void TemplateInfoVerify();
4652#endif
4653
4654  static const int kTagOffset          = HeapObject::kHeaderSize;
4655  static const int kPropertyListOffset = kTagOffset + kPointerSize;
4656  static const int kHeaderSize         = kPropertyListOffset + kPointerSize;
4657 protected:
4658  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
4659  DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
4660};
4661
4662
4663class FunctionTemplateInfo: public TemplateInfo {
4664 public:
4665  DECL_ACCESSORS(serial_number, Object)
4666  DECL_ACCESSORS(call_code, Object)
4667  DECL_ACCESSORS(property_accessors, Object)
4668  DECL_ACCESSORS(prototype_template, Object)
4669  DECL_ACCESSORS(parent_template, Object)
4670  DECL_ACCESSORS(named_property_handler, Object)
4671  DECL_ACCESSORS(indexed_property_handler, Object)
4672  DECL_ACCESSORS(instance_template, Object)
4673  DECL_ACCESSORS(class_name, Object)
4674  DECL_ACCESSORS(signature, Object)
4675  DECL_ACCESSORS(instance_call_handler, Object)
4676  DECL_ACCESSORS(access_check_info, Object)
4677  DECL_ACCESSORS(flag, Smi)
4678
4679  // Following properties use flag bits.
4680  DECL_BOOLEAN_ACCESSORS(hidden_prototype)
4681  DECL_BOOLEAN_ACCESSORS(undetectable)
4682  // If the bit is set, object instances created by this function
4683  // requires access check.
4684  DECL_BOOLEAN_ACCESSORS(needs_access_check)
4685
4686  static inline FunctionTemplateInfo* cast(Object* obj);
4687
4688#ifdef DEBUG
4689  void FunctionTemplateInfoPrint();
4690  void FunctionTemplateInfoVerify();
4691#endif
4692
4693  static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
4694  static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
4695  static const int kPropertyAccessorsOffset = kCallCodeOffset + kPointerSize;
4696  static const int kPrototypeTemplateOffset =
4697      kPropertyAccessorsOffset + kPointerSize;
4698  static const int kParentTemplateOffset =
4699      kPrototypeTemplateOffset + kPointerSize;
4700  static const int kNamedPropertyHandlerOffset =
4701      kParentTemplateOffset + kPointerSize;
4702  static const int kIndexedPropertyHandlerOffset =
4703      kNamedPropertyHandlerOffset + kPointerSize;
4704  static const int kInstanceTemplateOffset =
4705      kIndexedPropertyHandlerOffset + kPointerSize;
4706  static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
4707  static const int kSignatureOffset = kClassNameOffset + kPointerSize;
4708  static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
4709  static const int kAccessCheckInfoOffset =
4710      kInstanceCallHandlerOffset + kPointerSize;
4711  static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
4712  static const int kSize = kFlagOffset + kPointerSize;
4713
4714 private:
4715  // Bit position in the flag, from least significant bit position.
4716  static const int kHiddenPrototypeBit   = 0;
4717  static const int kUndetectableBit      = 1;
4718  static const int kNeedsAccessCheckBit  = 2;
4719
4720  DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
4721};
4722
4723
4724class ObjectTemplateInfo: public TemplateInfo {
4725 public:
4726  DECL_ACCESSORS(constructor, Object)
4727  DECL_ACCESSORS(internal_field_count, Object)
4728
4729  static inline ObjectTemplateInfo* cast(Object* obj);
4730
4731#ifdef DEBUG
4732  void ObjectTemplateInfoPrint();
4733  void ObjectTemplateInfoVerify();
4734#endif
4735
4736  static const int kConstructorOffset = TemplateInfo::kHeaderSize;
4737  static const int kInternalFieldCountOffset =
4738      kConstructorOffset + kPointerSize;
4739  static const int kSize = kInternalFieldCountOffset + kPointerSize;
4740};
4741
4742
4743class SignatureInfo: public Struct {
4744 public:
4745  DECL_ACCESSORS(receiver, Object)
4746  DECL_ACCESSORS(args, Object)
4747
4748  static inline SignatureInfo* cast(Object* obj);
4749
4750#ifdef DEBUG
4751  void SignatureInfoPrint();
4752  void SignatureInfoVerify();
4753#endif
4754
4755  static const int kReceiverOffset = Struct::kHeaderSize;
4756  static const int kArgsOffset     = kReceiverOffset + kPointerSize;
4757  static const int kSize           = kArgsOffset + kPointerSize;
4758
4759 private:
4760  DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
4761};
4762
4763
4764class TypeSwitchInfo: public Struct {
4765 public:
4766  DECL_ACCESSORS(types, Object)
4767
4768  static inline TypeSwitchInfo* cast(Object* obj);
4769
4770#ifdef DEBUG
4771  void TypeSwitchInfoPrint();
4772  void TypeSwitchInfoVerify();
4773#endif
4774
4775  static const int kTypesOffset = Struct::kHeaderSize;
4776  static const int kSize        = kTypesOffset + kPointerSize;
4777};
4778
4779
4780#ifdef ENABLE_DEBUGGER_SUPPORT
4781// The DebugInfo class holds additional information for a function being
4782// debugged.
4783class DebugInfo: public Struct {
4784 public:
4785  // The shared function info for the source being debugged.
4786  DECL_ACCESSORS(shared, SharedFunctionInfo)
4787  // Code object for the original code.
4788  DECL_ACCESSORS(original_code, Code)
4789  // Code object for the patched code. This code object is the code object
4790  // currently active for the function.
4791  DECL_ACCESSORS(code, Code)
4792  // Fixed array holding status information for each active break point.
4793  DECL_ACCESSORS(break_points, FixedArray)
4794
4795  // Check if there is a break point at a code position.
4796  bool HasBreakPoint(int code_position);
4797  // Get the break point info object for a code position.
4798  Object* GetBreakPointInfo(int code_position);
4799  // Clear a break point.
4800  static void ClearBreakPoint(Handle<DebugInfo> debug_info,
4801                              int code_position,
4802                              Handle<Object> break_point_object);
4803  // Set a break point.
4804  static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
4805                            int source_position, int statement_position,
4806                            Handle<Object> break_point_object);
4807  // Get the break point objects for a code position.
4808  Object* GetBreakPointObjects(int code_position);
4809  // Find the break point info holding this break point object.
4810  static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
4811                                    Handle<Object> break_point_object);
4812  // Get the number of break points for this function.
4813  int GetBreakPointCount();
4814
4815  static inline DebugInfo* cast(Object* obj);
4816
4817#ifdef DEBUG
4818  void DebugInfoPrint();
4819  void DebugInfoVerify();
4820#endif
4821
4822  static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
4823  static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
4824  static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
4825  static const int kActiveBreakPointsCountIndex =
4826      kPatchedCodeIndex + kPointerSize;
4827  static const int kBreakPointsStateIndex =
4828      kActiveBreakPointsCountIndex + kPointerSize;
4829  static const int kSize = kBreakPointsStateIndex + kPointerSize;
4830
4831 private:
4832  static const int kNoBreakPointInfo = -1;
4833
4834  // Lookup the index in the break_points array for a code position.
4835  int GetBreakPointInfoIndex(int code_position);
4836
4837  DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
4838};
4839
4840
4841// The BreakPointInfo class holds information for break points set in a
4842// function. The DebugInfo object holds a BreakPointInfo object for each code
4843// position with one or more break points.
4844class BreakPointInfo: public Struct {
4845 public:
4846  // The position in the code for the break point.
4847  DECL_ACCESSORS(code_position, Smi)
4848  // The position in the source for the break position.
4849  DECL_ACCESSORS(source_position, Smi)
4850  // The position in the source for the last statement before this break
4851  // position.
4852  DECL_ACCESSORS(statement_position, Smi)
4853  // List of related JavaScript break points.
4854  DECL_ACCESSORS(break_point_objects, Object)
4855
4856  // Removes a break point.
4857  static void ClearBreakPoint(Handle<BreakPointInfo> info,
4858                              Handle<Object> break_point_object);
4859  // Set a break point.
4860  static void SetBreakPoint(Handle<BreakPointInfo> info,
4861                            Handle<Object> break_point_object);
4862  // Check if break point info has this break point object.
4863  static bool HasBreakPointObject(Handle<BreakPointInfo> info,
4864                                  Handle<Object> break_point_object);
4865  // Get the number of break points for this code position.
4866  int GetBreakPointCount();
4867
4868  static inline BreakPointInfo* cast(Object* obj);
4869
4870#ifdef DEBUG
4871  void BreakPointInfoPrint();
4872  void BreakPointInfoVerify();
4873#endif
4874
4875  static const int kCodePositionIndex = Struct::kHeaderSize;
4876  static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
4877  static const int kStatementPositionIndex =
4878      kSourcePositionIndex + kPointerSize;
4879  static const int kBreakPointObjectsIndex =
4880      kStatementPositionIndex + kPointerSize;
4881  static const int kSize = kBreakPointObjectsIndex + kPointerSize;
4882
4883 private:
4884  DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
4885};
4886#endif  // ENABLE_DEBUGGER_SUPPORT
4887
4888
4889#undef DECL_BOOLEAN_ACCESSORS
4890#undef DECL_ACCESSORS
4891
4892
4893// Abstract base class for visiting, and optionally modifying, the
4894// pointers contained in Objects. Used in GC and serialization/deserialization.
4895class ObjectVisitor BASE_EMBEDDED {
4896 public:
4897  virtual ~ObjectVisitor() {}
4898
4899  // Visits a contiguous arrays of pointers in the half-open range
4900  // [start, end). Any or all of the values may be modified on return.
4901  virtual void VisitPointers(Object** start, Object** end) = 0;
4902
4903  // To allow lazy clearing of inline caches the visitor has
4904  // a rich interface for iterating over Code objects..
4905
4906  // Visits a code target in the instruction stream.
4907  virtual void VisitCodeTarget(RelocInfo* rinfo);
4908
4909  // Visits a runtime entry in the instruction stream.
4910  virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
4911
4912  // Visits the resource of an ASCII or two-byte string.
4913  virtual void VisitExternalAsciiString(
4914      v8::String::ExternalAsciiStringResource** resource) {}
4915  virtual void VisitExternalTwoByteString(
4916      v8::String::ExternalStringResource** resource) {}
4917
4918  // Visits a debug call target in the instruction stream.
4919  virtual void VisitDebugTarget(RelocInfo* rinfo);
4920
4921  // Handy shorthand for visiting a single pointer.
4922  virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
4923
4924  // Visits a contiguous arrays of external references (references to the C++
4925  // heap) in the half-open range [start, end). Any or all of the values
4926  // may be modified on return.
4927  virtual void VisitExternalReferences(Address* start, Address* end) {}
4928
4929  inline void VisitExternalReference(Address* p) {
4930    VisitExternalReferences(p, p + 1);
4931  }
4932
4933#ifdef DEBUG
4934  // Intended for serialization/deserialization checking: insert, or
4935  // check for the presence of, a tag at this position in the stream.
4936  virtual void Synchronize(const char* tag) {}
4937#else
4938  inline void Synchronize(const char* tag) {}
4939#endif
4940};
4941
4942
4943// BooleanBit is a helper class for setting and getting a bit in an
4944// integer or Smi.
4945class BooleanBit : public AllStatic {
4946 public:
4947  static inline bool get(Smi* smi, int bit_position) {
4948    return get(smi->value(), bit_position);
4949  }
4950
4951  static inline bool get(int value, int bit_position) {
4952    return (value & (1 << bit_position)) != 0;
4953  }
4954
4955  static inline Smi* set(Smi* smi, int bit_position, bool v) {
4956    return Smi::FromInt(set(smi->value(), bit_position, v));
4957  }
4958
4959  static inline int set(int value, int bit_position, bool v) {
4960    if (v) {
4961      value |= (1 << bit_position);
4962    } else {
4963      value &= ~(1 << bit_position);
4964    }
4965    return value;
4966  }
4967};
4968
4969} }  // namespace v8::internal
4970
4971#endif  // V8_OBJECTS_H_
4972