objects.h revision d0582a6c46733687d045e4188a1bcd0123c758a1
1// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_OBJECTS_H_
29#define V8_OBJECTS_H_
30
31#include "builtins.h"
32#include "code-stubs.h"
33#include "smart-pointer.h"
34#include "unicode-inl.h"
35#if V8_TARGET_ARCH_ARM
36#include "arm/constants-arm.h"
37#endif
38
39//
40// All object types in the V8 JavaScript are described in this file.
41//
42// Inheritance hierarchy:
43//   - Object
44//     - Smi          (immediate small integer)
45//     - Failure      (immediate for marking failed operation)
46//     - HeapObject   (superclass for everything allocated in the heap)
47//       - JSObject
48//         - JSArray
49//         - JSRegExp
50//         - JSFunction
51//         - GlobalObject
52//           - JSGlobalObject
53//           - JSBuiltinsObject
54//         - JSGlobalProxy
55//         - JSValue
56//       - Array
57//         - ByteArray
58//         - PixelArray
59//         - ExternalArray
60//           - ExternalByteArray
61//           - ExternalUnsignedByteArray
62//           - ExternalShortArray
63//           - ExternalUnsignedShortArray
64//           - ExternalIntArray
65//           - ExternalUnsignedIntArray
66//           - ExternalFloatArray
67//         - FixedArray
68//           - DescriptorArray
69//           - HashTable
70//             - Dictionary
71//             - SymbolTable
72//             - CompilationCacheTable
73//             - MapCache
74//           - Context
75//           - GlobalContext
76//       - String
77//         - SeqString
78//           - SeqAsciiString
79//           - SeqTwoByteString
80//         - ConsString
81//         - ExternalString
82//           - ExternalAsciiString
83//           - ExternalTwoByteString
84//       - HeapNumber
85//       - Code
86//       - Map
87//       - Oddball
88//       - Proxy
89//       - SharedFunctionInfo
90//       - Struct
91//         - AccessorInfo
92//         - AccessCheckInfo
93//         - InterceptorInfo
94//         - CallHandlerInfo
95//         - TemplateInfo
96//           - FunctionTemplateInfo
97//           - ObjectTemplateInfo
98//         - Script
99//         - SignatureInfo
100//         - TypeSwitchInfo
101//         - DebugInfo
102//         - BreakPointInfo
103//
104// Formats of Object*:
105//  Smi:        [31 bit signed int] 0
106//  HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
107//  Failure:    [30 bit signed int] 11
108
109// Ecma-262 3rd 8.6.1
110enum PropertyAttributes {
111  NONE              = v8::None,
112  READ_ONLY         = v8::ReadOnly,
113  DONT_ENUM         = v8::DontEnum,
114  DONT_DELETE       = v8::DontDelete,
115  ABSENT            = 16  // Used in runtime to indicate a property is absent.
116  // ABSENT can never be stored in or returned from a descriptor's attributes
117  // bitfield.  It is only used as a return value meaning the attributes of
118  // a non-existent property.
119};
120
121namespace v8 {
122namespace internal {
123
124
125// PropertyDetails captures type and attributes for a property.
126// They are used both in property dictionaries and instance descriptors.
127class PropertyDetails BASE_EMBEDDED {
128 public:
129
130  PropertyDetails(PropertyAttributes attributes,
131                  PropertyType type,
132                  int index = 0) {
133    ASSERT(TypeField::is_valid(type));
134    ASSERT(AttributesField::is_valid(attributes));
135    ASSERT(IndexField::is_valid(index));
136
137    value_ = TypeField::encode(type)
138        | AttributesField::encode(attributes)
139        | IndexField::encode(index);
140
141    ASSERT(type == this->type());
142    ASSERT(attributes == this->attributes());
143    ASSERT(index == this->index());
144  }
145
146  // Conversion for storing details as Object*.
147  inline PropertyDetails(Smi* smi);
148  inline Smi* AsSmi();
149
150  PropertyType type() { return TypeField::decode(value_); }
151
152  bool IsTransition() {
153    PropertyType t = type();
154    ASSERT(t != INTERCEPTOR);
155    return t == MAP_TRANSITION || t == CONSTANT_TRANSITION;
156  }
157
158  bool IsProperty() {
159    return type() < FIRST_PHANTOM_PROPERTY_TYPE;
160  }
161
162  PropertyAttributes attributes() { return AttributesField::decode(value_); }
163
164  int index() { return IndexField::decode(value_); }
165
166  inline PropertyDetails AsDeleted();
167
168  static bool IsValidIndex(int index) { return IndexField::is_valid(index); }
169
170  bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; }
171  bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; }
172  bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; }
173  bool IsDeleted() { return DeletedField::decode(value_) != 0;}
174
175  // Bit fields in value_ (type, shift, size). Must be public so the
176  // constants can be embedded in generated code.
177  class TypeField:       public BitField<PropertyType,       0, 3> {};
178  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
179  class DeletedField:    public BitField<uint32_t,           6, 1> {};
180  class IndexField:      public BitField<uint32_t,           7, 31-7> {};
181
182  static const int kInitialIndex = 1;
183 private:
184  uint32_t value_;
185};
186
187
188// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
189enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
190
191
192// PropertyNormalizationMode is used to specify whether to keep
193// inobject properties when normalizing properties of a JSObject.
194enum PropertyNormalizationMode {
195  CLEAR_INOBJECT_PROPERTIES,
196  KEEP_INOBJECT_PROPERTIES
197};
198
199
200// All Maps have a field instance_type containing a InstanceType.
201// It describes the type of the instances.
202//
203// As an example, a JavaScript object is a heap object and its map
204// instance_type is JS_OBJECT_TYPE.
205//
206// The names of the string instance types are intended to systematically
207// mirror their encoding in the instance_type field of the map.  The length
208// (SHORT, MEDIUM, or LONG) is always mentioned.  The default encoding is
209// considered TWO_BYTE.  It is not mentioned in the name.  ASCII encoding is
210// mentioned explicitly in the name.  Likewise, the default representation is
211// considered sequential.  It is not mentioned in the name.  The other
212// representations (eg, CONS, EXTERNAL) are explicitly mentioned.
213// Finally, the string is either a SYMBOL_TYPE (if it is a symbol) or a
214// STRING_TYPE (if it is not a symbol).
215//
216// NOTE: The following things are some that depend on the string types having
217// instance_types that are less than those of all other types:
218// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
219// Object::IsString.
220//
221// NOTE: Everything following JS_VALUE_TYPE is considered a
222// JSObject for GC purposes. The first four entries here have typeof
223// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
224#define INSTANCE_TYPE_LIST_ALL(V)                                              \
225  V(SYMBOL_TYPE)                                                               \
226  V(ASCII_SYMBOL_TYPE)                                                         \
227  V(CONS_SYMBOL_TYPE)                                                          \
228  V(CONS_ASCII_SYMBOL_TYPE)                                                    \
229  V(EXTERNAL_SYMBOL_TYPE)                                                      \
230  V(EXTERNAL_ASCII_SYMBOL_TYPE)                                                \
231  V(STRING_TYPE)                                                               \
232  V(ASCII_STRING_TYPE)                                                         \
233  V(CONS_STRING_TYPE)                                                          \
234  V(CONS_ASCII_STRING_TYPE)                                                    \
235  V(EXTERNAL_STRING_TYPE)                                                      \
236  V(EXTERNAL_ASCII_STRING_TYPE)                                                \
237  V(PRIVATE_EXTERNAL_ASCII_STRING_TYPE)                                        \
238                                                                               \
239  V(MAP_TYPE)                                                                  \
240  V(HEAP_NUMBER_TYPE)                                                          \
241  V(FIXED_ARRAY_TYPE)                                                          \
242  V(CODE_TYPE)                                                                 \
243  V(JS_GLOBAL_PROPERTY_CELL_TYPE)                                              \
244  V(ODDBALL_TYPE)                                                              \
245  V(PROXY_TYPE)                                                                \
246  V(BYTE_ARRAY_TYPE)                                                           \
247  V(PIXEL_ARRAY_TYPE)                                                          \
248  /* Note: the order of these external array */                                \
249  /* types is relied upon in */                                                \
250  /* Object::IsExternalArray(). */                                             \
251  V(EXTERNAL_BYTE_ARRAY_TYPE)                                                  \
252  V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)                                         \
253  V(EXTERNAL_SHORT_ARRAY_TYPE)                                                 \
254  V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)                                        \
255  V(EXTERNAL_INT_ARRAY_TYPE)                                                   \
256  V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)                                          \
257  V(EXTERNAL_FLOAT_ARRAY_TYPE)                                                 \
258  V(FILLER_TYPE)                                                               \
259                                                                               \
260  V(ACCESSOR_INFO_TYPE)                                                        \
261  V(ACCESS_CHECK_INFO_TYPE)                                                    \
262  V(INTERCEPTOR_INFO_TYPE)                                                     \
263  V(SHARED_FUNCTION_INFO_TYPE)                                                 \
264  V(CALL_HANDLER_INFO_TYPE)                                                    \
265  V(FUNCTION_TEMPLATE_INFO_TYPE)                                               \
266  V(OBJECT_TEMPLATE_INFO_TYPE)                                                 \
267  V(SIGNATURE_INFO_TYPE)                                                       \
268  V(TYPE_SWITCH_INFO_TYPE)                                                     \
269  V(SCRIPT_TYPE)                                                               \
270                                                                               \
271  V(JS_VALUE_TYPE)                                                             \
272  V(JS_OBJECT_TYPE)                                                            \
273  V(JS_CONTEXT_EXTENSION_OBJECT_TYPE)                                          \
274  V(JS_GLOBAL_OBJECT_TYPE)                                                     \
275  V(JS_BUILTINS_OBJECT_TYPE)                                                   \
276  V(JS_GLOBAL_PROXY_TYPE)                                                      \
277  V(JS_ARRAY_TYPE)                                                             \
278  V(JS_REGEXP_TYPE)                                                            \
279                                                                               \
280  V(JS_FUNCTION_TYPE)                                                          \
281
282#ifdef ENABLE_DEBUGGER_SUPPORT
283#define INSTANCE_TYPE_LIST_DEBUGGER(V)                                         \
284  V(DEBUG_INFO_TYPE)                                                           \
285  V(BREAK_POINT_INFO_TYPE)
286#else
287#define INSTANCE_TYPE_LIST_DEBUGGER(V)
288#endif
289
290#define INSTANCE_TYPE_LIST(V)                                                  \
291  INSTANCE_TYPE_LIST_ALL(V)                                                    \
292  INSTANCE_TYPE_LIST_DEBUGGER(V)
293
294
295// Since string types are not consecutive, this macro is used to
296// iterate over them.
297#define STRING_TYPE_LIST(V)                                                    \
298  V(SYMBOL_TYPE,                                                               \
299    SeqTwoByteString::kAlignedSize,                                            \
300    symbol,                                                                    \
301    Symbol)                                                                    \
302  V(ASCII_SYMBOL_TYPE,                                                         \
303    SeqAsciiString::kAlignedSize,                                              \
304    ascii_symbol,                                                              \
305    AsciiSymbol)                                                               \
306  V(CONS_SYMBOL_TYPE,                                                          \
307    ConsString::kSize,                                                         \
308    cons_symbol,                                                               \
309    ConsSymbol)                                                                \
310  V(CONS_ASCII_SYMBOL_TYPE,                                                    \
311    ConsString::kSize,                                                         \
312    cons_ascii_symbol,                                                         \
313    ConsAsciiSymbol)                                                           \
314  V(EXTERNAL_SYMBOL_TYPE,                                                      \
315    ExternalTwoByteString::kSize,                                              \
316    external_symbol,                                                           \
317    ExternalSymbol)                                                            \
318  V(EXTERNAL_ASCII_SYMBOL_TYPE,                                                \
319    ExternalAsciiString::kSize,                                                \
320    external_ascii_symbol,                                                     \
321    ExternalAsciiSymbol)                                                       \
322  V(STRING_TYPE,                                                               \
323    SeqTwoByteString::kAlignedSize,                                            \
324    string,                                                                    \
325    String)                                                                    \
326  V(ASCII_STRING_TYPE,                                                         \
327    SeqAsciiString::kAlignedSize,                                              \
328    ascii_string,                                                              \
329    AsciiString)                                                               \
330  V(CONS_STRING_TYPE,                                                          \
331    ConsString::kSize,                                                         \
332    cons_string,                                                               \
333    ConsString)                                                                \
334  V(CONS_ASCII_STRING_TYPE,                                                    \
335    ConsString::kSize,                                                         \
336    cons_ascii_string,                                                         \
337    ConsAsciiString)                                                           \
338  V(EXTERNAL_STRING_TYPE,                                                      \
339    ExternalTwoByteString::kSize,                                              \
340    external_string,                                                           \
341    ExternalString)                                                            \
342  V(EXTERNAL_ASCII_STRING_TYPE,                                                \
343    ExternalAsciiString::kSize,                                                \
344    external_ascii_string,                                                     \
345    ExternalAsciiString)                                                       \
346
347// A struct is a simple object a set of object-valued fields.  Including an
348// object type in this causes the compiler to generate most of the boilerplate
349// code for the class including allocation and garbage collection routines,
350// casts and predicates.  All you need to define is the class, methods and
351// object verification routines.  Easy, no?
352//
353// Note that for subtle reasons related to the ordering or numerical values of
354// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
355// manually.
356#define STRUCT_LIST_ALL(V)                                                     \
357  V(ACCESSOR_INFO, AccessorInfo, accessor_info)                                \
358  V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info)                     \
359  V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info)                       \
360  V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info)                     \
361  V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info)      \
362  V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info)            \
363  V(SIGNATURE_INFO, SignatureInfo, signature_info)                             \
364  V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info)                        \
365  V(SCRIPT, Script, script)
366
367#ifdef ENABLE_DEBUGGER_SUPPORT
368#define STRUCT_LIST_DEBUGGER(V)                                                \
369  V(DEBUG_INFO, DebugInfo, debug_info)                                         \
370  V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
371#else
372#define STRUCT_LIST_DEBUGGER(V)
373#endif
374
375#define STRUCT_LIST(V)                                                         \
376  STRUCT_LIST_ALL(V)                                                           \
377  STRUCT_LIST_DEBUGGER(V)
378
379// We use the full 8 bits of the instance_type field to encode heap object
380// instance types.  The high-order bit (bit 7) is set if the object is not a
381// string, and cleared if it is a string.
382const uint32_t kIsNotStringMask = 0x80;
383const uint32_t kStringTag = 0x0;
384const uint32_t kNotStringTag = 0x80;
385
386// If bit 7 is clear, bit 5 indicates that the string is a symbol (if set) or
387// not (if cleared).
388const uint32_t kIsSymbolMask = 0x20;
389const uint32_t kNotSymbolTag = 0x0;
390const uint32_t kSymbolTag = 0x20;
391
392// If bit 7 is clear then bit 2 indicates whether the string consists of
393// two-byte characters or one-byte characters.
394const uint32_t kStringEncodingMask = 0x4;
395const uint32_t kTwoByteStringTag = 0x0;
396const uint32_t kAsciiStringTag = 0x4;
397
398// If bit 7 is clear, the low-order 2 bits indicate the representation
399// of the string.
400const uint32_t kStringRepresentationMask = 0x03;
401enum StringRepresentationTag {
402  kSeqStringTag = 0x0,
403  kConsStringTag = 0x1,
404  kExternalStringTag = 0x3
405};
406
407
408// A ConsString with an empty string as the right side is a candidate
409// for being shortcut by the garbage collector unless it is a
410// symbol. It's not common to have non-flat symbols, so we do not
411// shortcut them thereby avoiding turning symbols into strings. See
412// heap.cc and mark-compact.cc.
413const uint32_t kShortcutTypeMask =
414    kIsNotStringMask |
415    kIsSymbolMask |
416    kStringRepresentationMask;
417const uint32_t kShortcutTypeTag = kConsStringTag;
418
419
420enum InstanceType {
421  SYMBOL_TYPE = kSymbolTag | kSeqStringTag,
422  ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kSeqStringTag,
423  CONS_SYMBOL_TYPE = kSymbolTag | kConsStringTag,
424  CONS_ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kConsStringTag,
425  EXTERNAL_SYMBOL_TYPE = kSymbolTag | kExternalStringTag,
426  EXTERNAL_ASCII_SYMBOL_TYPE =
427      kAsciiStringTag | kSymbolTag | kExternalStringTag,
428  STRING_TYPE = kSeqStringTag,
429  ASCII_STRING_TYPE = kAsciiStringTag | kSeqStringTag,
430  CONS_STRING_TYPE = kConsStringTag,
431  CONS_ASCII_STRING_TYPE = kAsciiStringTag | kConsStringTag,
432  EXTERNAL_STRING_TYPE = kExternalStringTag,
433  EXTERNAL_ASCII_STRING_TYPE = kAsciiStringTag | kExternalStringTag,
434  PRIVATE_EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_STRING_TYPE,
435
436  MAP_TYPE = kNotStringTag,
437  HEAP_NUMBER_TYPE,
438  FIXED_ARRAY_TYPE,
439  CODE_TYPE,
440  ODDBALL_TYPE,
441  JS_GLOBAL_PROPERTY_CELL_TYPE,
442  PROXY_TYPE,
443  BYTE_ARRAY_TYPE,
444  PIXEL_ARRAY_TYPE,
445  EXTERNAL_BYTE_ARRAY_TYPE,
446  EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
447  EXTERNAL_SHORT_ARRAY_TYPE,
448  EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
449  EXTERNAL_INT_ARRAY_TYPE,
450  EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
451  EXTERNAL_FLOAT_ARRAY_TYPE,
452  FILLER_TYPE,
453  SMI_TYPE,
454
455  ACCESSOR_INFO_TYPE,
456  ACCESS_CHECK_INFO_TYPE,
457  INTERCEPTOR_INFO_TYPE,
458  SHARED_FUNCTION_INFO_TYPE,
459  CALL_HANDLER_INFO_TYPE,
460  FUNCTION_TEMPLATE_INFO_TYPE,
461  OBJECT_TEMPLATE_INFO_TYPE,
462  SIGNATURE_INFO_TYPE,
463  TYPE_SWITCH_INFO_TYPE,
464#ifdef ENABLE_DEBUGGER_SUPPORT
465  DEBUG_INFO_TYPE,
466  BREAK_POINT_INFO_TYPE,
467#endif
468  SCRIPT_TYPE,
469
470  JS_VALUE_TYPE,
471  JS_OBJECT_TYPE,
472  JS_CONTEXT_EXTENSION_OBJECT_TYPE,
473  JS_GLOBAL_OBJECT_TYPE,
474  JS_BUILTINS_OBJECT_TYPE,
475  JS_GLOBAL_PROXY_TYPE,
476  JS_ARRAY_TYPE,
477  JS_REGEXP_TYPE,
478
479  JS_FUNCTION_TYPE,
480
481  // Pseudo-types
482  FIRST_NONSTRING_TYPE = MAP_TYPE,
483  FIRST_TYPE = 0x0,
484  INVALID_TYPE = FIRST_TYPE - 1,
485  LAST_TYPE = JS_FUNCTION_TYPE,
486  // Boundaries for testing the type is a JavaScript "object".  Note that
487  // function objects are not counted as objects, even though they are
488  // implemented as such; only values whose typeof is "object" are included.
489  FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
490  LAST_JS_OBJECT_TYPE = JS_REGEXP_TYPE
491};
492
493
494enum CompareResult {
495  LESS      = -1,
496  EQUAL     =  0,
497  GREATER   =  1,
498
499  NOT_EQUAL = GREATER
500};
501
502
503#define DECL_BOOLEAN_ACCESSORS(name)   \
504  inline bool name();                  \
505  inline void set_##name(bool value);  \
506
507
508#define DECL_ACCESSORS(name, type)                                      \
509  inline type* name();                                                  \
510  inline void set_##name(type* value,                                   \
511                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
512
513
514class StringStream;
515class ObjectVisitor;
516
517struct ValueInfo : public Malloced {
518  ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
519  InstanceType type;
520  Object* ptr;
521  const char* str;
522  double number;
523};
524
525
526// A template-ized version of the IsXXX functions.
527template <class C> static inline bool Is(Object* obj);
528
529
530// Object is the abstract superclass for all classes in the
531// object hierarchy.
532// Object does not use any virtual functions to avoid the
533// allocation of the C++ vtable.
534// Since Smi and Failure are subclasses of Object no
535// data members can be present in Object.
536class Object BASE_EMBEDDED {
537 public:
538  // Type testing.
539  inline bool IsSmi();
540  inline bool IsHeapObject();
541  inline bool IsHeapNumber();
542  inline bool IsString();
543  inline bool IsSymbol();
544  // See objects-inl.h for more details
545  inline bool IsSeqString();
546  inline bool IsExternalString();
547  inline bool IsExternalTwoByteString();
548  inline bool IsExternalAsciiString();
549  inline bool IsSeqTwoByteString();
550  inline bool IsSeqAsciiString();
551  inline bool IsConsString();
552
553  inline bool IsNumber();
554  inline bool IsByteArray();
555  inline bool IsPixelArray();
556  inline bool IsExternalArray();
557  inline bool IsExternalByteArray();
558  inline bool IsExternalUnsignedByteArray();
559  inline bool IsExternalShortArray();
560  inline bool IsExternalUnsignedShortArray();
561  inline bool IsExternalIntArray();
562  inline bool IsExternalUnsignedIntArray();
563  inline bool IsExternalFloatArray();
564  inline bool IsFailure();
565  inline bool IsRetryAfterGC();
566  inline bool IsOutOfMemoryFailure();
567  inline bool IsException();
568  inline bool IsJSObject();
569  inline bool IsJSContextExtensionObject();
570  inline bool IsMap();
571  inline bool IsFixedArray();
572  inline bool IsDescriptorArray();
573  inline bool IsContext();
574  inline bool IsCatchContext();
575  inline bool IsGlobalContext();
576  inline bool IsJSFunction();
577  inline bool IsCode();
578  inline bool IsOddball();
579  inline bool IsSharedFunctionInfo();
580  inline bool IsJSValue();
581  inline bool IsStringWrapper();
582  inline bool IsProxy();
583  inline bool IsBoolean();
584  inline bool IsJSArray();
585  inline bool IsJSRegExp();
586  inline bool IsHashTable();
587  inline bool IsDictionary();
588  inline bool IsSymbolTable();
589  inline bool IsCompilationCacheTable();
590  inline bool IsMapCache();
591  inline bool IsPrimitive();
592  inline bool IsGlobalObject();
593  inline bool IsJSGlobalObject();
594  inline bool IsJSBuiltinsObject();
595  inline bool IsJSGlobalProxy();
596  inline bool IsUndetectableObject();
597  inline bool IsAccessCheckNeeded();
598  inline bool IsJSGlobalPropertyCell();
599
600  // Returns true if this object is an instance of the specified
601  // function template.
602  inline bool IsInstanceOf(FunctionTemplateInfo* type);
603
604  inline bool IsStruct();
605#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
606  STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
607#undef DECLARE_STRUCT_PREDICATE
608
609  // Oddball testing.
610  INLINE(bool IsUndefined());
611  INLINE(bool IsTheHole());
612  INLINE(bool IsNull());
613  INLINE(bool IsTrue());
614  INLINE(bool IsFalse());
615
616  // Extract the number.
617  inline double Number();
618
619  inline bool HasSpecificClassOf(String* name);
620
621  Object* ToObject();             // ECMA-262 9.9.
622  Object* ToBoolean();            // ECMA-262 9.2.
623
624  // Convert to a JSObject if needed.
625  // global_context is used when creating wrapper object.
626  Object* ToObject(Context* global_context);
627
628  // Converts this to a Smi if possible.
629  // Failure is returned otherwise.
630  inline Object* ToSmi();
631
632  void Lookup(String* name, LookupResult* result);
633
634  // Property access.
635  inline Object* GetProperty(String* key);
636  inline Object* GetProperty(String* key, PropertyAttributes* attributes);
637  Object* GetPropertyWithReceiver(Object* receiver,
638                                  String* key,
639                                  PropertyAttributes* attributes);
640  Object* GetProperty(Object* receiver,
641                      LookupResult* result,
642                      String* key,
643                      PropertyAttributes* attributes);
644  Object* GetPropertyWithCallback(Object* receiver,
645                                  Object* structure,
646                                  String* name,
647                                  Object* holder);
648  Object* GetPropertyWithDefinedGetter(Object* receiver,
649                                       JSFunction* getter);
650
651  inline Object* GetElement(uint32_t index);
652  Object* GetElementWithReceiver(Object* receiver, uint32_t index);
653
654  // Return the object's prototype (might be Heap::null_value()).
655  Object* GetPrototype();
656
657  // Returns true if this is a JSValue containing a string and the index is
658  // < the length of the string.  Used to implement [] on strings.
659  inline bool IsStringObjectWithCharacterAt(uint32_t index);
660
661#ifdef DEBUG
662  // Prints this object with details.
663  void Print();
664  void PrintLn();
665  // Verifies the object.
666  void Verify();
667
668  // Verify a pointer is a valid object pointer.
669  static void VerifyPointer(Object* p);
670#endif
671
672  // Prints this object without details.
673  void ShortPrint();
674
675  // Prints this object without details to a message accumulator.
676  void ShortPrint(StringStream* accumulator);
677
678  // Casting: This cast is only needed to satisfy macros in objects-inl.h.
679  static Object* cast(Object* value) { return value; }
680
681  // Layout description.
682  static const int kHeaderSize = 0;  // Object does not take up any space.
683
684 private:
685  DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
686};
687
688
689// Smi represents integer Numbers that can be stored in 31 bits.
690// Smis are immediate which means they are NOT allocated in the heap.
691// The this pointer has the following format: [31 bit signed int] 0
692// For long smis it has the following format:
693//     [32 bit signed int] [31 bits zero padding] 0
694// Smi stands for small integer.
695class Smi: public Object {
696 public:
697  // Returns the integer value.
698  inline int value();
699
700  // Convert a value to a Smi object.
701  static inline Smi* FromInt(int value);
702
703  static inline Smi* FromIntptr(intptr_t value);
704
705  // Returns whether value can be represented in a Smi.
706  static inline bool IsValid(intptr_t value);
707
708  // Casting.
709  static inline Smi* cast(Object* object);
710
711  // Dispatched behavior.
712  void SmiPrint();
713  void SmiPrint(StringStream* accumulator);
714#ifdef DEBUG
715  void SmiVerify();
716#endif
717
718  static const int kMinValue = (-1 << (kSmiValueSize - 1));
719  static const int kMaxValue = -(kMinValue + 1);
720
721 private:
722  DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
723};
724
725
726// Failure is used for reporting out of memory situations and
727// propagating exceptions through the runtime system.  Failure objects
728// are transient and cannot occur as part of the object graph.
729//
730// Failures are a single word, encoded as follows:
731// +-------------------------+---+--+--+
732// |...rrrrrrrrrrrrrrrrrrrrrr|sss|tt|11|
733// +-------------------------+---+--+--+
734//                          7 6 4 32 10
735//
736//
737// The low two bits, 0-1, are the failure tag, 11.  The next two bits,
738// 2-3, are a failure type tag 'tt' with possible values:
739//   00 RETRY_AFTER_GC
740//   01 EXCEPTION
741//   10 INTERNAL_ERROR
742//   11 OUT_OF_MEMORY_EXCEPTION
743//
744// The next three bits, 4-6, are an allocation space tag 'sss'.  The
745// allocation space tag is 000 for all failure types except
746// RETRY_AFTER_GC.  For RETRY_AFTER_GC, the possible values are the
747// allocation spaces (the encoding is found in globals.h).
748//
749// The remaining bits is the size of the allocation request in units
750// of the pointer size, and is zeroed except for RETRY_AFTER_GC
751// failures.  The 25 bits (on a 32 bit platform) gives a representable
752// range of 2^27 bytes (128MB).
753
754// Failure type tag info.
755const int kFailureTypeTagSize = 2;
756const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
757
758class Failure: public Object {
759 public:
760  // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
761  enum Type {
762    RETRY_AFTER_GC = 0,
763    EXCEPTION = 1,       // Returning this marker tells the real exception
764                         // is in Top::pending_exception.
765    INTERNAL_ERROR = 2,
766    OUT_OF_MEMORY_EXCEPTION = 3
767  };
768
769  inline Type type() const;
770
771  // Returns the space that needs to be collected for RetryAfterGC failures.
772  inline AllocationSpace allocation_space() const;
773
774  // Returns the number of bytes requested (up to the representable maximum)
775  // for RetryAfterGC failures.
776  inline int requested() const;
777
778  inline bool IsInternalError() const;
779  inline bool IsOutOfMemoryException() const;
780
781  static Failure* RetryAfterGC(int requested_bytes, AllocationSpace space);
782  static inline Failure* RetryAfterGC(int requested_bytes);  // NEW_SPACE
783  static inline Failure* Exception();
784  static inline Failure* InternalError();
785  static inline Failure* OutOfMemoryException();
786  // Casting.
787  static inline Failure* cast(Object* object);
788
789  // Dispatched behavior.
790  void FailurePrint();
791  void FailurePrint(StringStream* accumulator);
792#ifdef DEBUG
793  void FailureVerify();
794#endif
795
796 private:
797  inline intptr_t value() const;
798  static inline Failure* Construct(Type type, intptr_t value = 0);
799
800  DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
801};
802
803
804// Heap objects typically have a map pointer in their first word.  However,
805// during GC other data (eg, mark bits, forwarding addresses) is sometimes
806// encoded in the first word.  The class MapWord is an abstraction of the
807// value in a heap object's first word.
808class MapWord BASE_EMBEDDED {
809 public:
810  // Normal state: the map word contains a map pointer.
811
812  // Create a map word from a map pointer.
813  static inline MapWord FromMap(Map* map);
814
815  // View this map word as a map pointer.
816  inline Map* ToMap();
817
818
819  // Scavenge collection: the map word of live objects in the from space
820  // contains a forwarding address (a heap object pointer in the to space).
821
822  // True if this map word is a forwarding address for a scavenge
823  // collection.  Only valid during a scavenge collection (specifically,
824  // when all map words are heap object pointers, ie. not during a full GC).
825  inline bool IsForwardingAddress();
826
827  // Create a map word from a forwarding address.
828  static inline MapWord FromForwardingAddress(HeapObject* object);
829
830  // View this map word as a forwarding address.
831  inline HeapObject* ToForwardingAddress();
832
833  // Marking phase of full collection: the map word of live objects is
834  // marked, and may be marked as overflowed (eg, the object is live, its
835  // children have not been visited, and it does not fit in the marking
836  // stack).
837
838  // True if this map word's mark bit is set.
839  inline bool IsMarked();
840
841  // Return this map word but with its mark bit set.
842  inline void SetMark();
843
844  // Return this map word but with its mark bit cleared.
845  inline void ClearMark();
846
847  // True if this map word's overflow bit is set.
848  inline bool IsOverflowed();
849
850  // Return this map word but with its overflow bit set.
851  inline void SetOverflow();
852
853  // Return this map word but with its overflow bit cleared.
854  inline void ClearOverflow();
855
856
857  // Compacting phase of a full compacting collection: the map word of live
858  // objects contains an encoding of the original map address along with the
859  // forwarding address (represented as an offset from the first live object
860  // in the same page as the (old) object address).
861
862  // Create a map word from a map address and a forwarding address offset.
863  static inline MapWord EncodeAddress(Address map_address, int offset);
864
865  // Return the map address encoded in this map word.
866  inline Address DecodeMapAddress(MapSpace* map_space);
867
868  // Return the forwarding offset encoded in this map word.
869  inline int DecodeOffset();
870
871
872  // During serialization: the map word is used to hold an encoded
873  // address, and possibly a mark bit (set and cleared with SetMark
874  // and ClearMark).
875
876  // Create a map word from an encoded address.
877  static inline MapWord FromEncodedAddress(Address address);
878
879  inline Address ToEncodedAddress();
880
881  // Bits used by the marking phase of the garbage collector.
882  //
883  // The first word of a heap object is normally a map pointer. The last two
884  // bits are tagged as '01' (kHeapObjectTag). We reuse the last two bits to
885  // mark an object as live and/or overflowed:
886  //   last bit = 0, marked as alive
887  //   second bit = 1, overflowed
888  // An object is only marked as overflowed when it is marked as live while
889  // the marking stack is overflowed.
890  static const int kMarkingBit = 0;  // marking bit
891  static const int kMarkingMask = (1 << kMarkingBit);  // marking mask
892  static const int kOverflowBit = 1;  // overflow bit
893  static const int kOverflowMask = (1 << kOverflowBit);  // overflow mask
894
895  // Forwarding pointers and map pointer encoding
896  //  31             21 20              10 9               0
897  // +-----------------+------------------+-----------------+
898  // |forwarding offset|page offset of map|page index of map|
899  // +-----------------+------------------+-----------------+
900  //  11 bits           11 bits            10 bits
901  static const int kMapPageIndexBits = 10;
902  static const int kMapPageOffsetBits = 11;
903  static const int kForwardingOffsetBits = 11;
904
905  static const int kMapPageIndexShift = 0;
906  static const int kMapPageOffsetShift =
907      kMapPageIndexShift + kMapPageIndexBits;
908  static const int kForwardingOffsetShift =
909      kMapPageOffsetShift + kMapPageOffsetBits;
910
911  // 0x000003FF
912  static const uint32_t kMapPageIndexMask =
913      (1 << kMapPageOffsetShift) - 1;
914
915  // 0x001FFC00
916  static const uint32_t kMapPageOffsetMask =
917      ((1 << kForwardingOffsetShift) - 1) & ~kMapPageIndexMask;
918
919  // 0xFFE00000
920  static const uint32_t kForwardingOffsetMask =
921      ~(kMapPageIndexMask | kMapPageOffsetMask);
922
923 private:
924  // HeapObject calls the private constructor and directly reads the value.
925  friend class HeapObject;
926
927  explicit MapWord(uintptr_t value) : value_(value) {}
928
929  uintptr_t value_;
930};
931
932
933// HeapObject is the superclass for all classes describing heap allocated
934// objects.
935class HeapObject: public Object {
936 public:
937  // [map]: Contains a map which contains the object's reflective
938  // information.
939  inline Map* map();
940  inline void set_map(Map* value);
941
942  // During garbage collection, the map word of a heap object does not
943  // necessarily contain a map pointer.
944  inline MapWord map_word();
945  inline void set_map_word(MapWord map_word);
946
947  // Converts an address to a HeapObject pointer.
948  static inline HeapObject* FromAddress(Address address);
949
950  // Returns the address of this HeapObject.
951  inline Address address();
952
953  // Iterates over pointers contained in the object (including the Map)
954  void Iterate(ObjectVisitor* v);
955
956  // Iterates over all pointers contained in the object except the
957  // first map pointer.  The object type is given in the first
958  // parameter. This function does not access the map pointer in the
959  // object, and so is safe to call while the map pointer is modified.
960  void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
961
962  // This method only applies to struct objects.  Iterates over all the fields
963  // of this struct.
964  void IterateStructBody(int object_size, ObjectVisitor* v);
965
966  // Returns the heap object's size in bytes
967  inline int Size();
968
969  // Given a heap object's map pointer, returns the heap size in bytes
970  // Useful when the map pointer field is used for other purposes.
971  // GC internal.
972  inline int SizeFromMap(Map* map);
973
974  // Support for the marking heap objects during the marking phase of GC.
975  // True if the object is marked live.
976  inline bool IsMarked();
977
978  // Mutate this object's map pointer to indicate that the object is live.
979  inline void SetMark();
980
981  // Mutate this object's map pointer to remove the indication that the
982  // object is live (ie, partially restore the map pointer).
983  inline void ClearMark();
984
985  // True if this object is marked as overflowed.  Overflowed objects have
986  // been reached and marked during marking of the heap, but their children
987  // have not necessarily been marked and they have not been pushed on the
988  // marking stack.
989  inline bool IsOverflowed();
990
991  // Mutate this object's map pointer to indicate that the object is
992  // overflowed.
993  inline void SetOverflow();
994
995  // Mutate this object's map pointer to remove the indication that the
996  // object is overflowed (ie, partially restore the map pointer).
997  inline void ClearOverflow();
998
999  // Returns the field at offset in obj, as a read/write Object* reference.
1000  // Does no checking, and is safe to use during GC, while maps are invalid.
1001  // Does not update remembered sets, so should only be assigned to
1002  // during marking GC.
1003  static inline Object** RawField(HeapObject* obj, int offset);
1004
1005  // Casting.
1006  static inline HeapObject* cast(Object* obj);
1007
1008  // Return the write barrier mode for this.
1009  inline WriteBarrierMode GetWriteBarrierMode();
1010
1011  // Dispatched behavior.
1012  void HeapObjectShortPrint(StringStream* accumulator);
1013#ifdef DEBUG
1014  void HeapObjectPrint();
1015  void HeapObjectVerify();
1016  inline void VerifyObjectField(int offset);
1017
1018  void PrintHeader(const char* id);
1019
1020  // Verify a pointer is a valid HeapObject pointer that points to object
1021  // areas in the heap.
1022  static void VerifyHeapPointer(Object* p);
1023#endif
1024
1025  // Layout description.
1026  // First field in a heap object is map.
1027  static const int kMapOffset = Object::kHeaderSize;
1028  static const int kHeaderSize = kMapOffset + kPointerSize;
1029
1030  STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
1031
1032 protected:
1033  // helpers for calling an ObjectVisitor to iterate over pointers in the
1034  // half-open range [start, end) specified as integer offsets
1035  inline void IteratePointers(ObjectVisitor* v, int start, int end);
1036  // as above, for the single element at "offset"
1037  inline void IteratePointer(ObjectVisitor* v, int offset);
1038
1039  // Computes the object size from the map.
1040  // Should only be used from SizeFromMap.
1041  int SlowSizeFromMap(Map* map);
1042
1043 private:
1044  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1045};
1046
1047
1048// The HeapNumber class describes heap allocated numbers that cannot be
1049// represented in a Smi (small integer)
1050class HeapNumber: public HeapObject {
1051 public:
1052  // [value]: number value.
1053  inline double value();
1054  inline void set_value(double value);
1055
1056  // Casting.
1057  static inline HeapNumber* cast(Object* obj);
1058
1059  // Dispatched behavior.
1060  Object* HeapNumberToBoolean();
1061  void HeapNumberPrint();
1062  void HeapNumberPrint(StringStream* accumulator);
1063#ifdef DEBUG
1064  void HeapNumberVerify();
1065#endif
1066
1067  // Layout description.
1068  static const int kValueOffset = HeapObject::kHeaderSize;
1069  // IEEE doubles are two 32 bit words.  The first is just mantissa, the second
1070  // is a mixture of sign, exponent and mantissa.  Our current platforms are all
1071  // little endian apart from non-EABI arm which is little endian with big
1072  // endian floating point word ordering!
1073#if !defined(V8_HOST_ARCH_ARM) || defined(USE_ARM_EABI)
1074  static const int kMantissaOffset = kValueOffset;
1075  static const int kExponentOffset = kValueOffset + 4;
1076#else
1077  static const int kMantissaOffset = kValueOffset + 4;
1078  static const int kExponentOffset = kValueOffset;
1079# define BIG_ENDIAN_FLOATING_POINT 1
1080#endif
1081  static const int kSize = kValueOffset + kDoubleSize;
1082
1083  static const uint32_t kSignMask = 0x80000000u;
1084  static const uint32_t kExponentMask = 0x7ff00000u;
1085  static const uint32_t kMantissaMask = 0xfffffu;
1086  static const int kExponentBias = 1023;
1087  static const int kExponentShift = 20;
1088  static const int kMantissaBitsInTopWord = 20;
1089  static const int kNonMantissaBitsInTopWord = 12;
1090
1091 private:
1092  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1093};
1094
1095
1096// The JSObject describes real heap allocated JavaScript objects with
1097// properties.
1098// Note that the map of JSObject changes during execution to enable inline
1099// caching.
1100class JSObject: public HeapObject {
1101 public:
1102  enum DeleteMode { NORMAL_DELETION, FORCE_DELETION };
1103  enum ElementsKind {
1104    FAST_ELEMENTS,
1105    DICTIONARY_ELEMENTS,
1106    PIXEL_ELEMENTS,
1107    EXTERNAL_BYTE_ELEMENTS,
1108    EXTERNAL_UNSIGNED_BYTE_ELEMENTS,
1109    EXTERNAL_SHORT_ELEMENTS,
1110    EXTERNAL_UNSIGNED_SHORT_ELEMENTS,
1111    EXTERNAL_INT_ELEMENTS,
1112    EXTERNAL_UNSIGNED_INT_ELEMENTS,
1113    EXTERNAL_FLOAT_ELEMENTS
1114  };
1115
1116  // [properties]: Backing storage for properties.
1117  // properties is a FixedArray in the fast case, and a Dictionary in the
1118  // slow case.
1119  DECL_ACCESSORS(properties, FixedArray)  // Get and set fast properties.
1120  inline void initialize_properties();
1121  inline bool HasFastProperties();
1122  inline StringDictionary* property_dictionary();  // Gets slow properties.
1123
1124  // [elements]: The elements (properties with names that are integers).
1125  // elements is a FixedArray in the fast case, and a Dictionary in the slow
1126  // case or a PixelArray in a special case.
1127  DECL_ACCESSORS(elements, Array)  // Get and set fast elements.
1128  inline void initialize_elements();
1129  inline ElementsKind GetElementsKind();
1130  inline bool HasFastElements();
1131  inline bool HasDictionaryElements();
1132  inline bool HasPixelElements();
1133  inline bool HasExternalArrayElements();
1134  inline bool HasExternalByteElements();
1135  inline bool HasExternalUnsignedByteElements();
1136  inline bool HasExternalShortElements();
1137  inline bool HasExternalUnsignedShortElements();
1138  inline bool HasExternalIntElements();
1139  inline bool HasExternalUnsignedIntElements();
1140  inline bool HasExternalFloatElements();
1141  inline NumberDictionary* element_dictionary();  // Gets slow elements.
1142
1143  // Collects elements starting at index 0.
1144  // Undefined values are placed after non-undefined values.
1145  // Returns the number of non-undefined values.
1146  Object* PrepareElementsForSort(uint32_t limit);
1147  // As PrepareElementsForSort, but only on objects where elements is
1148  // a dictionary, and it will stay a dictionary.
1149  Object* PrepareSlowElementsForSort(uint32_t limit);
1150
1151  Object* SetProperty(String* key,
1152                      Object* value,
1153                      PropertyAttributes attributes);
1154  Object* SetProperty(LookupResult* result,
1155                      String* key,
1156                      Object* value,
1157                      PropertyAttributes attributes);
1158  Object* SetPropertyWithFailedAccessCheck(LookupResult* result,
1159                                           String* name,
1160                                           Object* value);
1161  Object* SetPropertyWithCallback(Object* structure,
1162                                  String* name,
1163                                  Object* value,
1164                                  JSObject* holder);
1165  Object* SetPropertyWithDefinedSetter(JSFunction* setter,
1166                                       Object* value);
1167  Object* SetPropertyWithInterceptor(String* name,
1168                                     Object* value,
1169                                     PropertyAttributes attributes);
1170  Object* SetPropertyPostInterceptor(String* name,
1171                                     Object* value,
1172                                     PropertyAttributes attributes);
1173  Object* IgnoreAttributesAndSetLocalProperty(String* key,
1174                                              Object* value,
1175                                              PropertyAttributes attributes);
1176
1177  // Retrieve a value in a normalized object given a lookup result.
1178  // Handles the special representation of JS global objects.
1179  Object* GetNormalizedProperty(LookupResult* result);
1180
1181  // Sets the property value in a normalized object given a lookup result.
1182  // Handles the special representation of JS global objects.
1183  Object* SetNormalizedProperty(LookupResult* result, Object* value);
1184
1185  // Sets the property value in a normalized object given (key, value, details).
1186  // Handles the special representation of JS global objects.
1187  Object* SetNormalizedProperty(String* name,
1188                                Object* value,
1189                                PropertyDetails details);
1190
1191  // Deletes the named property in a normalized object.
1192  Object* DeleteNormalizedProperty(String* name, DeleteMode mode);
1193
1194  // Sets a property that currently has lazy loading.
1195  Object* SetLazyProperty(LookupResult* result,
1196                          String* name,
1197                          Object* value,
1198                          PropertyAttributes attributes);
1199
1200  // Returns the class name ([[Class]] property in the specification).
1201  String* class_name();
1202
1203  // Returns the constructor name (the name (possibly, inferred name) of the
1204  // function that was used to instantiate the object).
1205  String* constructor_name();
1206
1207  // Retrieve interceptors.
1208  InterceptorInfo* GetNamedInterceptor();
1209  InterceptorInfo* GetIndexedInterceptor();
1210
1211  inline PropertyAttributes GetPropertyAttribute(String* name);
1212  PropertyAttributes GetPropertyAttributeWithReceiver(JSObject* receiver,
1213                                                      String* name);
1214  PropertyAttributes GetLocalPropertyAttribute(String* name);
1215
1216  Object* DefineAccessor(String* name, bool is_getter, JSFunction* fun,
1217                         PropertyAttributes attributes);
1218  Object* LookupAccessor(String* name, bool is_getter);
1219
1220  // Used from Object::GetProperty().
1221  Object* GetPropertyWithFailedAccessCheck(Object* receiver,
1222                                           LookupResult* result,
1223                                           String* name,
1224                                           PropertyAttributes* attributes);
1225  Object* GetPropertyWithInterceptor(JSObject* receiver,
1226                                     String* name,
1227                                     PropertyAttributes* attributes);
1228  Object* GetPropertyPostInterceptor(JSObject* receiver,
1229                                     String* name,
1230                                     PropertyAttributes* attributes);
1231  Object* GetLocalPropertyPostInterceptor(JSObject* receiver,
1232                                          String* name,
1233                                          PropertyAttributes* attributes);
1234  Object* GetLazyProperty(Object* receiver,
1235                          LookupResult* result,
1236                          String* name,
1237                          PropertyAttributes* attributes);
1238
1239  // Tells whether this object needs to be loaded.
1240  inline bool IsLoaded();
1241
1242  // Returns true if this is an instance of an api function and has
1243  // been modified since it was created.  May give false positives.
1244  bool IsDirty();
1245
1246  bool HasProperty(String* name) {
1247    return GetPropertyAttribute(name) != ABSENT;
1248  }
1249
1250  // Can cause a GC if it hits an interceptor.
1251  bool HasLocalProperty(String* name) {
1252    return GetLocalPropertyAttribute(name) != ABSENT;
1253  }
1254
1255  // If the receiver is a JSGlobalProxy this method will return its prototype,
1256  // otherwise the result is the receiver itself.
1257  inline Object* BypassGlobalProxy();
1258
1259  // Accessors for hidden properties object.
1260  //
1261  // Hidden properties are not local properties of the object itself.
1262  // Instead they are stored on an auxiliary JSObject stored as a local
1263  // property with a special name Heap::hidden_symbol(). But if the
1264  // receiver is a JSGlobalProxy then the auxiliary object is a property
1265  // of its prototype.
1266  //
1267  // Has/Get/SetHiddenPropertiesObject methods don't allow the holder to be
1268  // a JSGlobalProxy. Use BypassGlobalProxy method above to get to the real
1269  // holder.
1270  //
1271  // These accessors do not touch interceptors or accessors.
1272  inline bool HasHiddenPropertiesObject();
1273  inline Object* GetHiddenPropertiesObject();
1274  inline Object* SetHiddenPropertiesObject(Object* hidden_obj);
1275
1276  Object* DeleteProperty(String* name, DeleteMode mode);
1277  Object* DeleteElement(uint32_t index, DeleteMode mode);
1278  Object* DeleteLazyProperty(LookupResult* result,
1279                             String* name,
1280                             DeleteMode mode);
1281
1282  // Tests for the fast common case for property enumeration.
1283  bool IsSimpleEnum();
1284
1285  // Do we want to keep the elements in fast case when increasing the
1286  // capacity?
1287  bool ShouldConvertToSlowElements(int new_capacity);
1288  // Returns true if the backing storage for the slow-case elements of
1289  // this object takes up nearly as much space as a fast-case backing
1290  // storage would.  In that case the JSObject should have fast
1291  // elements.
1292  bool ShouldConvertToFastElements();
1293
1294  // Return the object's prototype (might be Heap::null_value()).
1295  inline Object* GetPrototype();
1296
1297  // Tells whether the index'th element is present.
1298  inline bool HasElement(uint32_t index);
1299  bool HasElementWithReceiver(JSObject* receiver, uint32_t index);
1300  bool HasLocalElement(uint32_t index);
1301
1302  bool HasElementWithInterceptor(JSObject* receiver, uint32_t index);
1303  bool HasElementPostInterceptor(JSObject* receiver, uint32_t index);
1304
1305  Object* SetFastElement(uint32_t index, Object* value);
1306
1307  // Set the index'th array element.
1308  // A Failure object is returned if GC is needed.
1309  Object* SetElement(uint32_t index, Object* value);
1310
1311  // Returns the index'th element.
1312  // The undefined object if index is out of bounds.
1313  Object* GetElementWithReceiver(JSObject* receiver, uint32_t index);
1314
1315  void SetFastElements(FixedArray* elements);
1316  Object* SetSlowElements(Object* length);
1317
1318  // Lookup interceptors are used for handling properties controlled by host
1319  // objects.
1320  inline bool HasNamedInterceptor();
1321  inline bool HasIndexedInterceptor();
1322
1323  // Support functions for v8 api (needed for correct interceptor behavior).
1324  bool HasRealNamedProperty(String* key);
1325  bool HasRealElementProperty(uint32_t index);
1326  bool HasRealNamedCallbackProperty(String* key);
1327
1328  // Initializes the array to a certain length
1329  Object* SetElementsLength(Object* length);
1330
1331  // Get the header size for a JSObject.  Used to compute the index of
1332  // internal fields as well as the number of internal fields.
1333  inline int GetHeaderSize();
1334
1335  inline int GetInternalFieldCount();
1336  inline Object* GetInternalField(int index);
1337  inline void SetInternalField(int index, Object* value);
1338
1339  // Lookup a property.  If found, the result is valid and has
1340  // detailed information.
1341  void LocalLookup(String* name, LookupResult* result);
1342  void Lookup(String* name, LookupResult* result);
1343
1344  // The following lookup functions skip interceptors.
1345  void LocalLookupRealNamedProperty(String* name, LookupResult* result);
1346  void LookupRealNamedProperty(String* name, LookupResult* result);
1347  void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
1348  void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
1349  Object* LookupCallbackSetterInPrototypes(uint32_t index);
1350  void LookupCallback(String* name, LookupResult* result);
1351
1352  // Returns the number of properties on this object filtering out properties
1353  // with the specified attributes (ignoring interceptors).
1354  int NumberOfLocalProperties(PropertyAttributes filter);
1355  // Returns the number of enumerable properties (ignoring interceptors).
1356  int NumberOfEnumProperties();
1357  // Fill in details for properties into storage starting at the specified
1358  // index.
1359  void GetLocalPropertyNames(FixedArray* storage, int index);
1360
1361  // Returns the number of properties on this object filtering out properties
1362  // with the specified attributes (ignoring interceptors).
1363  int NumberOfLocalElements(PropertyAttributes filter);
1364  // Returns the number of enumerable elements (ignoring interceptors).
1365  int NumberOfEnumElements();
1366  // Returns the number of elements on this object filtering out elements
1367  // with the specified attributes (ignoring interceptors).
1368  int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
1369  // Count and fill in the enumerable elements into storage.
1370  // (storage->length() == NumberOfEnumElements()).
1371  // If storage is NULL, will count the elements without adding
1372  // them to any storage.
1373  // Returns the number of enumerable elements.
1374  int GetEnumElementKeys(FixedArray* storage);
1375
1376  // Add a property to a fast-case object using a map transition to
1377  // new_map.
1378  Object* AddFastPropertyUsingMap(Map* new_map,
1379                                  String* name,
1380                                  Object* value);
1381
1382  // Add a constant function property to a fast-case object.
1383  // This leaves a CONSTANT_TRANSITION in the old map, and
1384  // if it is called on a second object with this map, a
1385  // normal property is added instead, with a map transition.
1386  // This avoids the creation of many maps with the same constant
1387  // function, all orphaned.
1388  Object* AddConstantFunctionProperty(String* name,
1389                                      JSFunction* function,
1390                                      PropertyAttributes attributes);
1391
1392  Object* ReplaceSlowProperty(String* name,
1393                              Object* value,
1394                              PropertyAttributes attributes);
1395
1396  // Converts a descriptor of any other type to a real field,
1397  // backed by the properties array.  Descriptors of visible
1398  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1399  // Converts the descriptor on the original object's map to a
1400  // map transition, and the the new field is on the object's new map.
1401  Object* ConvertDescriptorToFieldAndMapTransition(
1402      String* name,
1403      Object* new_value,
1404      PropertyAttributes attributes);
1405
1406  // Converts a descriptor of any other type to a real field,
1407  // backed by the properties array.  Descriptors of visible
1408  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1409  Object* ConvertDescriptorToField(String* name,
1410                                   Object* new_value,
1411                                   PropertyAttributes attributes);
1412
1413  // Add a property to a fast-case object.
1414  Object* AddFastProperty(String* name,
1415                          Object* value,
1416                          PropertyAttributes attributes);
1417
1418  // Add a property to a slow-case object.
1419  Object* AddSlowProperty(String* name,
1420                          Object* value,
1421                          PropertyAttributes attributes);
1422
1423  // Add a property to an object.
1424  Object* AddProperty(String* name,
1425                      Object* value,
1426                      PropertyAttributes attributes);
1427
1428  // Convert the object to use the canonical dictionary
1429  // representation. If the object is expected to have additional properties
1430  // added this number can be indicated to have the backing store allocated to
1431  // an initial capacity for holding these properties.
1432  Object* NormalizeProperties(PropertyNormalizationMode mode,
1433                              int expected_additional_properties);
1434  Object* NormalizeElements();
1435
1436  // Transform slow named properties to fast variants.
1437  // Returns failure if allocation failed.
1438  Object* TransformToFastProperties(int unused_property_fields);
1439
1440  // Access fast-case object properties at index.
1441  inline Object* FastPropertyAt(int index);
1442  inline Object* FastPropertyAtPut(int index, Object* value);
1443
1444  // Access to in object properties.
1445  inline Object* InObjectPropertyAt(int index);
1446  inline Object* InObjectPropertyAtPut(int index,
1447                                       Object* value,
1448                                       WriteBarrierMode mode
1449                                       = UPDATE_WRITE_BARRIER);
1450
1451  // initializes the body after properties slot, properties slot is
1452  // initialized by set_properties
1453  // Note: this call does not update write barrier, it is caller's
1454  // reponsibility to ensure that *v* can be collected without WB here.
1455  inline void InitializeBody(int object_size);
1456
1457  // Check whether this object references another object
1458  bool ReferencesObject(Object* obj);
1459
1460  // Casting.
1461  static inline JSObject* cast(Object* obj);
1462
1463  // Dispatched behavior.
1464  void JSObjectIterateBody(int object_size, ObjectVisitor* v);
1465  void JSObjectShortPrint(StringStream* accumulator);
1466#ifdef DEBUG
1467  void JSObjectPrint();
1468  void JSObjectVerify();
1469  void PrintProperties();
1470  void PrintElements();
1471
1472  // Structure for collecting spill information about JSObjects.
1473  class SpillInformation {
1474   public:
1475    void Clear();
1476    void Print();
1477    int number_of_objects_;
1478    int number_of_objects_with_fast_properties_;
1479    int number_of_objects_with_fast_elements_;
1480    int number_of_fast_used_fields_;
1481    int number_of_fast_unused_fields_;
1482    int number_of_slow_used_properties_;
1483    int number_of_slow_unused_properties_;
1484    int number_of_fast_used_elements_;
1485    int number_of_fast_unused_elements_;
1486    int number_of_slow_used_elements_;
1487    int number_of_slow_unused_elements_;
1488  };
1489
1490  void IncrementSpillStatistics(SpillInformation* info);
1491#endif
1492  Object* SlowReverseLookup(Object* value);
1493
1494  static const uint32_t kMaxGap = 1024;
1495  static const int kMaxFastElementsLength = 5000;
1496  static const int kInitialMaxFastElementArray = 100000;
1497  static const int kMaxFastProperties = 8;
1498  static const int kMaxInstanceSize = 255 * kPointerSize;
1499  // When extending the backing storage for property values, we increase
1500  // its size by more than the 1 entry necessary, so sequentially adding fields
1501  // to the same object requires fewer allocations and copies.
1502  static const int kFieldsAdded = 3;
1503
1504  // Layout description.
1505  static const int kPropertiesOffset = HeapObject::kHeaderSize;
1506  static const int kElementsOffset = kPropertiesOffset + kPointerSize;
1507  static const int kHeaderSize = kElementsOffset + kPointerSize;
1508
1509  STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
1510
1511  Object* GetElementWithInterceptor(JSObject* receiver, uint32_t index);
1512
1513 private:
1514  Object* SetElementWithInterceptor(uint32_t index, Object* value);
1515  Object* SetElementWithoutInterceptor(uint32_t index, Object* value);
1516
1517  Object* GetElementPostInterceptor(JSObject* receiver, uint32_t index);
1518
1519  Object* DeletePropertyPostInterceptor(String* name, DeleteMode mode);
1520  Object* DeletePropertyWithInterceptor(String* name);
1521
1522  Object* DeleteElementPostInterceptor(uint32_t index, DeleteMode mode);
1523  Object* DeleteElementWithInterceptor(uint32_t index);
1524
1525  PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
1526                                                         String* name,
1527                                                         bool continue_search);
1528  PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
1529                                                         String* name,
1530                                                         bool continue_search);
1531  PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
1532      Object* receiver,
1533      LookupResult* result,
1534      String* name,
1535      bool continue_search);
1536  PropertyAttributes GetPropertyAttribute(JSObject* receiver,
1537                                          LookupResult* result,
1538                                          String* name,
1539                                          bool continue_search);
1540
1541  // Returns true if most of the elements backing storage is used.
1542  bool HasDenseElements();
1543
1544  Object* DefineGetterSetter(String* name, PropertyAttributes attributes);
1545
1546  void LookupInDescriptor(String* name, LookupResult* result);
1547
1548  DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
1549};
1550
1551
1552// Abstract super class arrays. It provides length behavior.
1553class Array: public HeapObject {
1554 public:
1555  // [length]: length of the array.
1556  inline int length();
1557  inline void set_length(int value);
1558
1559  // Convert an object to an array index.
1560  // Returns true if the conversion succeeded.
1561  static inline bool IndexFromObject(Object* object, uint32_t* index);
1562
1563  // Layout descriptor.
1564  static const int kLengthOffset = HeapObject::kHeaderSize;
1565
1566 protected:
1567  // No code should use the Array class directly, only its subclasses.
1568  // Use the kHeaderSize of the appropriate subclass, which may be aligned.
1569  static const int kHeaderSize = kLengthOffset + kIntSize;
1570  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
1571
1572 private:
1573  DISALLOW_IMPLICIT_CONSTRUCTORS(Array);
1574};
1575
1576
1577// FixedArray describes fixed sized arrays where element
1578// type is Object*.
1579
1580class FixedArray: public Array {
1581 public:
1582
1583  // Setter and getter for elements.
1584  inline Object* get(int index);
1585  // Setter that uses write barrier.
1586  inline void set(int index, Object* value);
1587
1588  // Setter that doesn't need write barrier).
1589  inline void set(int index, Smi* value);
1590  // Setter with explicit barrier mode.
1591  inline void set(int index, Object* value, WriteBarrierMode mode);
1592
1593  // Setters for frequently used oddballs located in old space.
1594  inline void set_undefined(int index);
1595  inline void set_null(int index);
1596  inline void set_the_hole(int index);
1597
1598  // Copy operations.
1599  inline Object* Copy();
1600  Object* CopySize(int new_length);
1601
1602  // Add the elements of a JSArray to this FixedArray.
1603  Object* AddKeysFromJSArray(JSArray* array);
1604
1605  // Compute the union of this and other.
1606  Object* UnionOfKeys(FixedArray* other);
1607
1608  // Copy a sub array from the receiver to dest.
1609  void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
1610
1611  // Garbage collection support.
1612  static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
1613
1614  // Code Generation support.
1615  static int OffsetOfElementAt(int index) { return SizeFor(index); }
1616
1617  // Casting.
1618  static inline FixedArray* cast(Object* obj);
1619
1620  // Align data at kPointerSize, even if Array.kHeaderSize isn't aligned.
1621  static const int kHeaderSize = POINTER_SIZE_ALIGN(Array::kHeaderSize);
1622
1623  // Dispatched behavior.
1624  int FixedArraySize() { return SizeFor(length()); }
1625  void FixedArrayIterateBody(ObjectVisitor* v);
1626#ifdef DEBUG
1627  void FixedArrayPrint();
1628  void FixedArrayVerify();
1629  // Checks if two FixedArrays have identical contents.
1630  bool IsEqualTo(FixedArray* other);
1631#endif
1632
1633  // Swap two elements in a pair of arrays.  If this array and the
1634  // numbers array are the same object, the elements are only swapped
1635  // once.
1636  void SwapPairs(FixedArray* numbers, int i, int j);
1637
1638  // Sort prefix of this array and the numbers array as pairs wrt. the
1639  // numbers.  If the numbers array and the this array are the same
1640  // object, the prefix of this array is sorted.
1641  void SortPairs(FixedArray* numbers, uint32_t len);
1642
1643 protected:
1644  // Set operation on FixedArray without using write barriers.
1645  static inline void fast_set(FixedArray* array, int index, Object* value);
1646
1647 private:
1648  DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
1649};
1650
1651
1652// DescriptorArrays are fixed arrays used to hold instance descriptors.
1653// The format of the these objects is:
1654//   [0]: point to a fixed array with (value, detail) pairs.
1655//   [1]: next enumeration index (Smi), or pointer to small fixed array:
1656//          [0]: next enumeration index (Smi)
1657//          [1]: pointer to fixed array with enum cache
1658//   [2]: first key
1659//   [length() - 1]: last key
1660//
1661class DescriptorArray: public FixedArray {
1662 public:
1663  // Is this the singleton empty_descriptor_array?
1664  inline bool IsEmpty();
1665  // Returns the number of descriptors in the array.
1666  int number_of_descriptors() {
1667    return IsEmpty() ? 0 : length() - kFirstIndex;
1668  }
1669
1670  int NextEnumerationIndex() {
1671    if (IsEmpty()) return PropertyDetails::kInitialIndex;
1672    Object* obj = get(kEnumerationIndexIndex);
1673    if (obj->IsSmi()) {
1674      return Smi::cast(obj)->value();
1675    } else {
1676      Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
1677      return Smi::cast(index)->value();
1678    }
1679  }
1680
1681  // Set next enumeration index and flush any enum cache.
1682  void SetNextEnumerationIndex(int value) {
1683    if (!IsEmpty()) {
1684      fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value));
1685    }
1686  }
1687  bool HasEnumCache() {
1688    return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi();
1689  }
1690
1691  Object* GetEnumCache() {
1692    ASSERT(HasEnumCache());
1693    FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
1694    return bridge->get(kEnumCacheBridgeCacheIndex);
1695  }
1696
1697  // Initialize or change the enum cache,
1698  // using the supplied storage for the small "bridge".
1699  void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache);
1700
1701  // Accessors for fetching instance descriptor at descriptor number.
1702  inline String* GetKey(int descriptor_number);
1703  inline Object* GetValue(int descriptor_number);
1704  inline Smi* GetDetails(int descriptor_number);
1705  inline PropertyType GetType(int descriptor_number);
1706  inline int GetFieldIndex(int descriptor_number);
1707  inline JSFunction* GetConstantFunction(int descriptor_number);
1708  inline Object* GetCallbacksObject(int descriptor_number);
1709  inline AccessorDescriptor* GetCallbacks(int descriptor_number);
1710  inline bool IsProperty(int descriptor_number);
1711  inline bool IsTransition(int descriptor_number);
1712  inline bool IsNullDescriptor(int descriptor_number);
1713  inline bool IsDontEnum(int descriptor_number);
1714
1715  // Accessor for complete descriptor.
1716  inline void Get(int descriptor_number, Descriptor* desc);
1717  inline void Set(int descriptor_number, Descriptor* desc);
1718
1719  // Transfer complete descriptor from another descriptor array to
1720  // this one.
1721  inline void CopyFrom(int index, DescriptorArray* src, int src_index);
1722
1723  // Copy the descriptor array, insert a new descriptor and optionally
1724  // remove map transitions.  If the descriptor is already present, it is
1725  // replaced.  If a replaced descriptor is a real property (not a transition
1726  // or null), its enumeration index is kept as is.
1727  // If adding a real property, map transitions must be removed.  If adding
1728  // a transition, they must not be removed.  All null descriptors are removed.
1729  Object* CopyInsert(Descriptor* descriptor, TransitionFlag transition_flag);
1730
1731  // Remove all transitions.  Return  a copy of the array with all transitions
1732  // removed, or a Failure object if the new array could not be allocated.
1733  Object* RemoveTransitions();
1734
1735  // Sort the instance descriptors by the hash codes of their keys.
1736  void Sort();
1737
1738  // Search the instance descriptors for given name.
1739  inline int Search(String* name);
1740
1741  // Tells whether the name is present int the array.
1742  bool Contains(String* name) { return kNotFound != Search(name); }
1743
1744  // Perform a binary search in the instance descriptors represented
1745  // by this fixed array.  low and high are descriptor indices.  If there
1746  // are three instance descriptors in this array it should be called
1747  // with low=0 and high=2.
1748  int BinarySearch(String* name, int low, int high);
1749
1750  // Perform a linear search in the instance descriptors represented
1751  // by this fixed array.  len is the number of descriptor indices that are
1752  // valid.  Does not require the descriptors to be sorted.
1753  int LinearSearch(String* name, int len);
1754
1755  // Allocates a DescriptorArray, but returns the singleton
1756  // empty descriptor array object if number_of_descriptors is 0.
1757  static Object* Allocate(int number_of_descriptors);
1758
1759  // Casting.
1760  static inline DescriptorArray* cast(Object* obj);
1761
1762  // Constant for denoting key was not found.
1763  static const int kNotFound = -1;
1764
1765  static const int kContentArrayIndex = 0;
1766  static const int kEnumerationIndexIndex = 1;
1767  static const int kFirstIndex = 2;
1768
1769  // The length of the "bridge" to the enum cache.
1770  static const int kEnumCacheBridgeLength = 2;
1771  static const int kEnumCacheBridgeEnumIndex = 0;
1772  static const int kEnumCacheBridgeCacheIndex = 1;
1773
1774  // Layout description.
1775  static const int kContentArrayOffset = FixedArray::kHeaderSize;
1776  static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
1777  static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
1778
1779  // Layout description for the bridge array.
1780  static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
1781  static const int kEnumCacheBridgeCacheOffset =
1782    kEnumCacheBridgeEnumOffset + kPointerSize;
1783
1784#ifdef DEBUG
1785  // Print all the descriptors.
1786  void PrintDescriptors();
1787
1788  // Is the descriptor array sorted and without duplicates?
1789  bool IsSortedNoDuplicates();
1790
1791  // Are two DescriptorArrays equal?
1792  bool IsEqualTo(DescriptorArray* other);
1793#endif
1794
1795  // The maximum number of descriptors we want in a descriptor array (should
1796  // fit in a page).
1797  static const int kMaxNumberOfDescriptors = 1024 + 512;
1798
1799 private:
1800  // Conversion from descriptor number to array indices.
1801  static int ToKeyIndex(int descriptor_number) {
1802    return descriptor_number+kFirstIndex;
1803  }
1804  static int ToValueIndex(int descriptor_number) {
1805    return descriptor_number << 1;
1806  }
1807  static int ToDetailsIndex(int descriptor_number) {
1808    return( descriptor_number << 1) + 1;
1809  }
1810
1811  bool is_null_descriptor(int descriptor_number) {
1812    return PropertyDetails(GetDetails(descriptor_number)).type() ==
1813        NULL_DESCRIPTOR;
1814  }
1815  // Swap operation on FixedArray without using write barriers.
1816  static inline void fast_swap(FixedArray* array, int first, int second);
1817
1818  // Swap descriptor first and second.
1819  inline void Swap(int first, int second);
1820
1821  FixedArray* GetContentArray() {
1822    return FixedArray::cast(get(kContentArrayIndex));
1823  }
1824  DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
1825};
1826
1827
1828// HashTable is a subclass of FixedArray that implements a hash table
1829// that uses open addressing and quadratic probing.
1830//
1831// In order for the quadratic probing to work, elements that have not
1832// yet been used and elements that have been deleted are
1833// distinguished.  Probing continues when deleted elements are
1834// encountered and stops when unused elements are encountered.
1835//
1836// - Elements with key == undefined have not been used yet.
1837// - Elements with key == null have been deleted.
1838//
1839// The hash table class is parameterized with a Shape and a Key.
1840// Shape must be a class with the following interface:
1841//   class ExampleShape {
1842//    public:
1843//      // Tells whether key matches other.
1844//     static bool IsMatch(Key key, Object* other);
1845//     // Returns the hash value for key.
1846//     static uint32_t Hash(Key key);
1847//     // Returns the hash value for object.
1848//     static uint32_t HashForObject(Key key, Object* object);
1849//     // Convert key to an object.
1850//     static inline Object* AsObject(Key key);
1851//     // The prefix size indicates number of elements in the beginning
1852//     // of the backing storage.
1853//     static const int kPrefixSize = ..;
1854//     // The Element size indicates number of elements per entry.
1855//     static const int kEntrySize = ..;
1856//   };
1857// The prefix size indicates an amount of memory in the
1858// beginning of the backing storage that can be used for non-element
1859// information by subclasses.
1860
1861template<typename Shape, typename Key>
1862class HashTable: public FixedArray {
1863 public:
1864  // Returns the number of elements in the hash table.
1865  int NumberOfElements() {
1866    return Smi::cast(get(kNumberOfElementsIndex))->value();
1867  }
1868
1869  // Returns the capacity of the hash table.
1870  int Capacity() {
1871    return Smi::cast(get(kCapacityIndex))->value();
1872  }
1873
1874  // ElementAdded should be called whenever an element is added to a
1875  // hash table.
1876  void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
1877
1878  // ElementRemoved should be called whenever an element is removed from
1879  // a hash table.
1880  void ElementRemoved() { SetNumberOfElements(NumberOfElements() - 1); }
1881  void ElementsRemoved(int n) { SetNumberOfElements(NumberOfElements() - n); }
1882
1883  // Returns a new HashTable object. Might return Failure.
1884  static Object* Allocate(int at_least_space_for);
1885
1886  // Returns the key at entry.
1887  Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
1888
1889  // Tells whether k is a real key.  Null and undefined are not allowed
1890  // as keys and can be used to indicate missing or deleted elements.
1891  bool IsKey(Object* k) {
1892    return !k->IsNull() && !k->IsUndefined();
1893  }
1894
1895  // Garbage collection support.
1896  void IteratePrefix(ObjectVisitor* visitor);
1897  void IterateElements(ObjectVisitor* visitor);
1898
1899  // Casting.
1900  static inline HashTable* cast(Object* obj);
1901
1902  // Compute the probe offset (quadratic probing).
1903  INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
1904    return (n + n * n) >> 1;
1905  }
1906
1907  static const int kNumberOfElementsIndex = 0;
1908  static const int kCapacityIndex         = 1;
1909  static const int kPrefixStartIndex      = 2;
1910  static const int kElementsStartIndex    =
1911      kPrefixStartIndex + Shape::kPrefixSize;
1912  static const int kEntrySize             = Shape::kEntrySize;
1913  static const int kElementsStartOffset   =
1914      kHeaderSize + kElementsStartIndex * kPointerSize;
1915
1916  // Constant used for denoting a absent entry.
1917  static const int kNotFound = -1;
1918
1919  // Find entry for key otherwise return -1.
1920  int FindEntry(Key key);
1921
1922 protected:
1923
1924  // Find the entry at which to insert element with the given key that
1925  // has the given hash value.
1926  uint32_t FindInsertionEntry(uint32_t hash);
1927
1928  // Returns the index for an entry (of the key)
1929  static inline int EntryToIndex(int entry) {
1930    return (entry * kEntrySize) + kElementsStartIndex;
1931  }
1932
1933  // Update the number of elements in the hash table.
1934  void SetNumberOfElements(int nof) {
1935    fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof));
1936  }
1937
1938  // Sets the capacity of the hash table.
1939  void SetCapacity(int capacity) {
1940    // To scale a computed hash code to fit within the hash table, we
1941    // use bit-wise AND with a mask, so the capacity must be positive
1942    // and non-zero.
1943    ASSERT(capacity > 0);
1944    fast_set(this, kCapacityIndex, Smi::FromInt(capacity));
1945  }
1946
1947
1948  // Returns probe entry.
1949  static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
1950    ASSERT(IsPowerOf2(size));
1951    return (hash + GetProbeOffset(number)) & (size - 1);
1952  }
1953
1954  // Ensure enough space for n additional elements.
1955  Object* EnsureCapacity(int n, Key key);
1956};
1957
1958
1959
1960// HashTableKey is an abstract superclass for virtual key behavior.
1961class HashTableKey {
1962 public:
1963  // Returns whether the other object matches this key.
1964  virtual bool IsMatch(Object* other) = 0;
1965  // Returns the hash value for this key.
1966  virtual uint32_t Hash() = 0;
1967  // Returns the hash value for object.
1968  virtual uint32_t HashForObject(Object* key) = 0;
1969  // Returns the key object for storing into the hash table.
1970  // If allocations fails a failure object is returned.
1971  virtual Object* AsObject() = 0;
1972  // Required.
1973  virtual ~HashTableKey() {}
1974};
1975
1976class SymbolTableShape {
1977 public:
1978  static bool IsMatch(HashTableKey* key, Object* value) {
1979    return key->IsMatch(value);
1980  }
1981  static uint32_t Hash(HashTableKey* key) {
1982    return key->Hash();
1983  }
1984  static uint32_t HashForObject(HashTableKey* key, Object* object) {
1985    return key->HashForObject(object);
1986  }
1987  static Object* AsObject(HashTableKey* key) {
1988    return key->AsObject();
1989  }
1990
1991  static const int kPrefixSize = 0;
1992  static const int kEntrySize = 1;
1993};
1994
1995// SymbolTable.
1996//
1997// No special elements in the prefix and the element size is 1
1998// because only the symbol itself (the key) needs to be stored.
1999class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
2000 public:
2001  // Find symbol in the symbol table.  If it is not there yet, it is
2002  // added.  The return value is the symbol table which might have
2003  // been enlarged.  If the return value is not a failure, the symbol
2004  // pointer *s is set to the symbol found.
2005  Object* LookupSymbol(Vector<const char> str, Object** s);
2006  Object* LookupString(String* key, Object** s);
2007
2008  // Looks up a symbol that is equal to the given string and returns
2009  // true if it is found, assigning the symbol to the given output
2010  // parameter.
2011  bool LookupSymbolIfExists(String* str, String** symbol);
2012  bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol);
2013
2014  // Casting.
2015  static inline SymbolTable* cast(Object* obj);
2016
2017 private:
2018  Object* LookupKey(HashTableKey* key, Object** s);
2019
2020  DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
2021};
2022
2023
2024class MapCacheShape {
2025 public:
2026  static bool IsMatch(HashTableKey* key, Object* value) {
2027    return key->IsMatch(value);
2028  }
2029  static uint32_t Hash(HashTableKey* key) {
2030    return key->Hash();
2031  }
2032
2033  static uint32_t HashForObject(HashTableKey* key, Object* object) {
2034    return key->HashForObject(object);
2035  }
2036
2037  static Object* AsObject(HashTableKey* key) {
2038    return key->AsObject();
2039  }
2040
2041  static const int kPrefixSize = 0;
2042  static const int kEntrySize = 2;
2043};
2044
2045
2046// MapCache.
2047//
2048// Maps keys that are a fixed array of symbols to a map.
2049// Used for canonicalize maps for object literals.
2050class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
2051 public:
2052  // Find cached value for a string key, otherwise return null.
2053  Object* Lookup(FixedArray* key);
2054  Object* Put(FixedArray* key, Map* value);
2055  static inline MapCache* cast(Object* obj);
2056
2057 private:
2058  DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
2059};
2060
2061
2062template <typename Shape, typename Key>
2063class Dictionary: public HashTable<Shape, Key> {
2064 public:
2065
2066  static inline Dictionary<Shape, Key>* cast(Object* obj) {
2067    return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
2068  }
2069
2070  // Returns the value at entry.
2071  Object* ValueAt(int entry) {
2072    return get(HashTable<Shape, Key>::EntryToIndex(entry)+1);
2073  }
2074
2075  // Set the value for entry.
2076  void ValueAtPut(int entry, Object* value) {
2077    set(HashTable<Shape, Key>::EntryToIndex(entry)+1, value);
2078  }
2079
2080  // Returns the property details for the property at entry.
2081  PropertyDetails DetailsAt(int entry) {
2082    ASSERT(entry >= 0);  // Not found is -1, which is not caught by get().
2083    return PropertyDetails(
2084        Smi::cast(get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
2085  }
2086
2087  // Set the details for entry.
2088  void DetailsAtPut(int entry, PropertyDetails value) {
2089    set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
2090  }
2091
2092  // Sorting support
2093  void CopyValuesTo(FixedArray* elements);
2094
2095  // Delete a property from the dictionary.
2096  Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
2097
2098  // Returns the number of elements in the dictionary filtering out properties
2099  // with the specified attributes.
2100  int NumberOfElementsFilterAttributes(PropertyAttributes filter);
2101
2102  // Returns the number of enumerable elements in the dictionary.
2103  int NumberOfEnumElements();
2104
2105  // Copies keys to preallocated fixed array.
2106  void CopyKeysTo(FixedArray* storage, PropertyAttributes filter);
2107  // Fill in details for properties into storage.
2108  void CopyKeysTo(FixedArray* storage);
2109
2110  // Accessors for next enumeration index.
2111  void SetNextEnumerationIndex(int index) {
2112    fast_set(this, kNextEnumerationIndexIndex, Smi::FromInt(index));
2113  }
2114
2115  int NextEnumerationIndex() {
2116    return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
2117  }
2118
2119  // Returns a new array for dictionary usage. Might return Failure.
2120  static Object* Allocate(int at_least_space_for);
2121
2122  // Ensure enough space for n additional elements.
2123  Object* EnsureCapacity(int n, Key key);
2124
2125#ifdef DEBUG
2126  void Print();
2127#endif
2128  // Returns the key (slow).
2129  Object* SlowReverseLookup(Object* value);
2130
2131  // Sets the entry to (key, value) pair.
2132  inline void SetEntry(int entry,
2133                       Object* key,
2134                       Object* value,
2135                       PropertyDetails details);
2136
2137  Object* Add(Key key, Object* value, PropertyDetails details);
2138
2139 protected:
2140  // Generic at put operation.
2141  Object* AtPut(Key key, Object* value);
2142
2143  // Add entry to dictionary.
2144  Object* AddEntry(Key key,
2145                   Object* value,
2146                   PropertyDetails details,
2147                   uint32_t hash);
2148
2149  // Generate new enumeration indices to avoid enumeration index overflow.
2150  Object* GenerateNewEnumerationIndices();
2151  static const int kMaxNumberKeyIndex =
2152      HashTable<Shape, Key>::kPrefixStartIndex;
2153  static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
2154};
2155
2156
2157class StringDictionaryShape {
2158 public:
2159  static inline bool IsMatch(String* key, Object* other);
2160  static inline uint32_t Hash(String* key);
2161  static inline uint32_t HashForObject(String* key, Object* object);
2162  static inline Object* AsObject(String* key);
2163  static const int kPrefixSize = 2;
2164  static const int kEntrySize = 3;
2165  static const bool kIsEnumerable = true;
2166};
2167
2168
2169class StringDictionary: public Dictionary<StringDictionaryShape, String*> {
2170 public:
2171  static inline StringDictionary* cast(Object* obj) {
2172    ASSERT(obj->IsDictionary());
2173    return reinterpret_cast<StringDictionary*>(obj);
2174  }
2175
2176  // Copies enumerable keys to preallocated fixed array.
2177  void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
2178
2179  // For transforming properties of a JSObject.
2180  Object* TransformPropertiesToFastFor(JSObject* obj,
2181                                       int unused_property_fields);
2182};
2183
2184
2185class NumberDictionaryShape {
2186 public:
2187  static inline bool IsMatch(uint32_t key, Object* other);
2188  static inline uint32_t Hash(uint32_t key);
2189  static inline uint32_t HashForObject(uint32_t key, Object* object);
2190  static inline Object* AsObject(uint32_t key);
2191  static const int kPrefixSize = 2;
2192  static const int kEntrySize = 3;
2193  static const bool kIsEnumerable = false;
2194};
2195
2196
2197class NumberDictionary: public Dictionary<NumberDictionaryShape, uint32_t> {
2198 public:
2199  static NumberDictionary* cast(Object* obj) {
2200    ASSERT(obj->IsDictionary());
2201    return reinterpret_cast<NumberDictionary*>(obj);
2202  }
2203
2204  // Type specific at put (default NONE attributes is used when adding).
2205  Object* AtNumberPut(uint32_t key, Object* value);
2206  Object* AddNumberEntry(uint32_t key,
2207                         Object* value,
2208                         PropertyDetails details);
2209
2210  // Set an existing entry or add a new one if needed.
2211  Object* Set(uint32_t key, Object* value, PropertyDetails details);
2212
2213  void UpdateMaxNumberKey(uint32_t key);
2214
2215  // If slow elements are required we will never go back to fast-case
2216  // for the elements kept in this dictionary.  We require slow
2217  // elements if an element has been added at an index larger than
2218  // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
2219  // when defining a getter or setter with a number key.
2220  inline bool requires_slow_elements();
2221  inline void set_requires_slow_elements();
2222
2223  // Get the value of the max number key that has been added to this
2224  // dictionary.  max_number_key can only be called if
2225  // requires_slow_elements returns false.
2226  inline uint32_t max_number_key();
2227
2228  // Remove all entries were key is a number and (from <= key && key < to).
2229  void RemoveNumberEntries(uint32_t from, uint32_t to);
2230
2231  // Bit masks.
2232  static const int kRequiresSlowElementsMask = 1;
2233  static const int kRequiresSlowElementsTagSize = 1;
2234  static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
2235};
2236
2237
2238// ByteArray represents fixed sized byte arrays.  Used by the outside world,
2239// such as PCRE, and also by the memory allocator and garbage collector to
2240// fill in free blocks in the heap.
2241class ByteArray: public Array {
2242 public:
2243  // Setter and getter.
2244  inline byte get(int index);
2245  inline void set(int index, byte value);
2246
2247  // Treat contents as an int array.
2248  inline int get_int(int index);
2249
2250  static int SizeFor(int length) {
2251    return OBJECT_SIZE_ALIGN(kHeaderSize + length);
2252  }
2253  // We use byte arrays for free blocks in the heap.  Given a desired size in
2254  // bytes that is a multiple of the word size and big enough to hold a byte
2255  // array, this function returns the number of elements a byte array should
2256  // have.
2257  static int LengthFor(int size_in_bytes) {
2258    ASSERT(IsAligned(size_in_bytes, kPointerSize));
2259    ASSERT(size_in_bytes >= kHeaderSize);
2260    return size_in_bytes - kHeaderSize;
2261  }
2262
2263  // Returns data start address.
2264  inline Address GetDataStartAddress();
2265
2266  // Returns a pointer to the ByteArray object for a given data start address.
2267  static inline ByteArray* FromDataStartAddress(Address address);
2268
2269  // Casting.
2270  static inline ByteArray* cast(Object* obj);
2271
2272  // Dispatched behavior.
2273  int ByteArraySize() { return SizeFor(length()); }
2274#ifdef DEBUG
2275  void ByteArrayPrint();
2276  void ByteArrayVerify();
2277#endif
2278
2279  // ByteArray headers are not quadword aligned.
2280  static const int kHeaderSize = Array::kHeaderSize;
2281  static const int kAlignedSize = Array::kAlignedSize;
2282
2283 private:
2284  DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
2285};
2286
2287
2288// A PixelArray represents a fixed-size byte array with special semantics
2289// used for implementing the CanvasPixelArray object. Please see the
2290// specification at:
2291// http://www.whatwg.org/specs/web-apps/current-work/
2292//                      multipage/the-canvas-element.html#canvaspixelarray
2293// In particular, write access clamps the value written to 0 or 255 if the
2294// value written is outside this range.
2295class PixelArray: public Array {
2296 public:
2297  // [external_pointer]: The pointer to the external memory area backing this
2298  // pixel array.
2299  DECL_ACCESSORS(external_pointer, uint8_t)  // Pointer to the data store.
2300
2301  // Setter and getter.
2302  inline uint8_t get(int index);
2303  inline void set(int index, uint8_t value);
2304
2305  // This accessor applies the correct conversion from Smi, HeapNumber and
2306  // undefined and clamps the converted value between 0 and 255.
2307  Object* SetValue(uint32_t index, Object* value);
2308
2309  // Casting.
2310  static inline PixelArray* cast(Object* obj);
2311
2312#ifdef DEBUG
2313  void PixelArrayPrint();
2314  void PixelArrayVerify();
2315#endif  // DEBUG
2316
2317  // Maximal acceptable length for a pixel array.
2318  static const int kMaxLength = 0x3fffffff;
2319
2320  // PixelArray headers are not quadword aligned.
2321  static const int kExternalPointerOffset = Array::kAlignedSize;
2322  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2323  static const int kAlignedSize = OBJECT_SIZE_ALIGN(kHeaderSize);
2324
2325 private:
2326  DISALLOW_IMPLICIT_CONSTRUCTORS(PixelArray);
2327};
2328
2329
2330// An ExternalArray represents a fixed-size array of primitive values
2331// which live outside the JavaScript heap. Its subclasses are used to
2332// implement the CanvasArray types being defined in the WebGL
2333// specification. As of this writing the first public draft is not yet
2334// available, but Khronos members can access the draft at:
2335//   https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
2336//
2337// The semantics of these arrays differ from CanvasPixelArray.
2338// Out-of-range values passed to the setter are converted via a C
2339// cast, not clamping. Out-of-range indices cause exceptions to be
2340// raised rather than being silently ignored.
2341class ExternalArray: public Array {
2342 public:
2343  // [external_pointer]: The pointer to the external memory area backing this
2344  // external array.
2345  DECL_ACCESSORS(external_pointer, void)  // Pointer to the data store.
2346
2347  // Casting.
2348  static inline ExternalArray* cast(Object* obj);
2349
2350  // Maximal acceptable length for an external array.
2351  static const int kMaxLength = 0x3fffffff;
2352
2353  // ExternalArray headers are not quadword aligned.
2354  static const int kExternalPointerOffset = Array::kAlignedSize;
2355  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2356  static const int kAlignedSize = OBJECT_SIZE_ALIGN(kHeaderSize);
2357
2358 private:
2359  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
2360};
2361
2362
2363class ExternalByteArray: public ExternalArray {
2364 public:
2365  // Setter and getter.
2366  inline int8_t get(int index);
2367  inline void set(int index, int8_t value);
2368
2369  // This accessor applies the correct conversion from Smi, HeapNumber
2370  // and undefined.
2371  Object* SetValue(uint32_t index, Object* value);
2372
2373  // Casting.
2374  static inline ExternalByteArray* cast(Object* obj);
2375
2376#ifdef DEBUG
2377  void ExternalByteArrayPrint();
2378  void ExternalByteArrayVerify();
2379#endif  // DEBUG
2380
2381 private:
2382  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray);
2383};
2384
2385
2386class ExternalUnsignedByteArray: public ExternalArray {
2387 public:
2388  // Setter and getter.
2389  inline uint8_t get(int index);
2390  inline void set(int index, uint8_t value);
2391
2392  // This accessor applies the correct conversion from Smi, HeapNumber
2393  // and undefined.
2394  Object* SetValue(uint32_t index, Object* value);
2395
2396  // Casting.
2397  static inline ExternalUnsignedByteArray* cast(Object* obj);
2398
2399#ifdef DEBUG
2400  void ExternalUnsignedByteArrayPrint();
2401  void ExternalUnsignedByteArrayVerify();
2402#endif  // DEBUG
2403
2404 private:
2405  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray);
2406};
2407
2408
2409class ExternalShortArray: public ExternalArray {
2410 public:
2411  // Setter and getter.
2412  inline int16_t get(int index);
2413  inline void set(int index, int16_t value);
2414
2415  // This accessor applies the correct conversion from Smi, HeapNumber
2416  // and undefined.
2417  Object* SetValue(uint32_t index, Object* value);
2418
2419  // Casting.
2420  static inline ExternalShortArray* cast(Object* obj);
2421
2422#ifdef DEBUG
2423  void ExternalShortArrayPrint();
2424  void ExternalShortArrayVerify();
2425#endif  // DEBUG
2426
2427 private:
2428  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray);
2429};
2430
2431
2432class ExternalUnsignedShortArray: public ExternalArray {
2433 public:
2434  // Setter and getter.
2435  inline uint16_t get(int index);
2436  inline void set(int index, uint16_t value);
2437
2438  // This accessor applies the correct conversion from Smi, HeapNumber
2439  // and undefined.
2440  Object* SetValue(uint32_t index, Object* value);
2441
2442  // Casting.
2443  static inline ExternalUnsignedShortArray* cast(Object* obj);
2444
2445#ifdef DEBUG
2446  void ExternalUnsignedShortArrayPrint();
2447  void ExternalUnsignedShortArrayVerify();
2448#endif  // DEBUG
2449
2450 private:
2451  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray);
2452};
2453
2454
2455class ExternalIntArray: public ExternalArray {
2456 public:
2457  // Setter and getter.
2458  inline int32_t get(int index);
2459  inline void set(int index, int32_t value);
2460
2461  // This accessor applies the correct conversion from Smi, HeapNumber
2462  // and undefined.
2463  Object* SetValue(uint32_t index, Object* value);
2464
2465  // Casting.
2466  static inline ExternalIntArray* cast(Object* obj);
2467
2468#ifdef DEBUG
2469  void ExternalIntArrayPrint();
2470  void ExternalIntArrayVerify();
2471#endif  // DEBUG
2472
2473 private:
2474  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray);
2475};
2476
2477
2478class ExternalUnsignedIntArray: public ExternalArray {
2479 public:
2480  // Setter and getter.
2481  inline uint32_t get(int index);
2482  inline void set(int index, uint32_t value);
2483
2484  // This accessor applies the correct conversion from Smi, HeapNumber
2485  // and undefined.
2486  Object* SetValue(uint32_t index, Object* value);
2487
2488  // Casting.
2489  static inline ExternalUnsignedIntArray* cast(Object* obj);
2490
2491#ifdef DEBUG
2492  void ExternalUnsignedIntArrayPrint();
2493  void ExternalUnsignedIntArrayVerify();
2494#endif  // DEBUG
2495
2496 private:
2497  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray);
2498};
2499
2500
2501class ExternalFloatArray: public ExternalArray {
2502 public:
2503  // Setter and getter.
2504  inline float get(int index);
2505  inline void set(int index, float value);
2506
2507  // This accessor applies the correct conversion from Smi, HeapNumber
2508  // and undefined.
2509  Object* SetValue(uint32_t index, Object* value);
2510
2511  // Casting.
2512  static inline ExternalFloatArray* cast(Object* obj);
2513
2514#ifdef DEBUG
2515  void ExternalFloatArrayPrint();
2516  void ExternalFloatArrayVerify();
2517#endif  // DEBUG
2518
2519 private:
2520  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray);
2521};
2522
2523
2524// Code describes objects with on-the-fly generated machine code.
2525class Code: public HeapObject {
2526 public:
2527  // Opaque data type for encapsulating code flags like kind, inline
2528  // cache state, and arguments count.
2529  enum Flags { };
2530
2531  enum Kind {
2532    FUNCTION,
2533    STUB,
2534    BUILTIN,
2535    LOAD_IC,
2536    KEYED_LOAD_IC,
2537    CALL_IC,
2538    STORE_IC,
2539    KEYED_STORE_IC,
2540    // No more than eight kinds. The value currently encoded in three bits in
2541    // Flags.
2542
2543    // Pseudo-kinds.
2544    REGEXP = BUILTIN,
2545    FIRST_IC_KIND = LOAD_IC,
2546    LAST_IC_KIND = KEYED_STORE_IC
2547  };
2548
2549  enum {
2550    NUMBER_OF_KINDS = KEYED_STORE_IC + 1
2551  };
2552
2553#ifdef ENABLE_DISASSEMBLER
2554  // Printing
2555  static const char* Kind2String(Kind kind);
2556  static const char* ICState2String(InlineCacheState state);
2557  static const char* PropertyType2String(PropertyType type);
2558  void Disassemble(const char* name);
2559#endif  // ENABLE_DISASSEMBLER
2560
2561  // [instruction_size]: Size of the native instructions
2562  inline int instruction_size();
2563  inline void set_instruction_size(int value);
2564
2565  // [relocation_size]: Size of relocation information.
2566  inline int relocation_size();
2567  inline void set_relocation_size(int value);
2568
2569  // [sinfo_size]: Size of scope information.
2570  inline int sinfo_size();
2571  inline void set_sinfo_size(int value);
2572
2573  // [flags]: Various code flags.
2574  inline Flags flags();
2575  inline void set_flags(Flags flags);
2576
2577  // [flags]: Access to specific code flags.
2578  inline Kind kind();
2579  inline InlineCacheState ic_state();  // Only valid for IC stubs.
2580  inline InLoopFlag ic_in_loop();  // Only valid for IC stubs.
2581  inline PropertyType type();  // Only valid for monomorphic IC stubs.
2582  inline int arguments_count();  // Only valid for call IC stubs.
2583
2584  // Testers for IC stub kinds.
2585  inline bool is_inline_cache_stub();
2586  inline bool is_load_stub() { return kind() == LOAD_IC; }
2587  inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
2588  inline bool is_store_stub() { return kind() == STORE_IC; }
2589  inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
2590  inline bool is_call_stub() { return kind() == CALL_IC; }
2591
2592  // [major_key]: For kind STUB, the major key.
2593  inline CodeStub::Major major_key();
2594  inline void set_major_key(CodeStub::Major major);
2595
2596  // Flags operations.
2597  static inline Flags ComputeFlags(Kind kind,
2598                                   InLoopFlag in_loop = NOT_IN_LOOP,
2599                                   InlineCacheState ic_state = UNINITIALIZED,
2600                                   PropertyType type = NORMAL,
2601                                   int argc = -1);
2602
2603  static inline Flags ComputeMonomorphicFlags(
2604      Kind kind,
2605      PropertyType type,
2606      InLoopFlag in_loop = NOT_IN_LOOP,
2607      int argc = -1);
2608
2609  static inline Kind ExtractKindFromFlags(Flags flags);
2610  static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
2611  static inline InLoopFlag ExtractICInLoopFromFlags(Flags flags);
2612  static inline PropertyType ExtractTypeFromFlags(Flags flags);
2613  static inline int ExtractArgumentsCountFromFlags(Flags flags);
2614  static inline Flags RemoveTypeFromFlags(Flags flags);
2615
2616  // Convert a target address into a code object.
2617  static inline Code* GetCodeFromTargetAddress(Address address);
2618
2619  // Returns the address of the first instruction.
2620  inline byte* instruction_start();
2621
2622  // Returns the size of the instructions, padding, and relocation information.
2623  inline int body_size();
2624
2625  // Returns the address of the first relocation info (read backwards!).
2626  inline byte* relocation_start();
2627
2628  // Code entry point.
2629  inline byte* entry();
2630
2631  // Returns true if pc is inside this object's instructions.
2632  inline bool contains(byte* pc);
2633
2634  // Returns the address of the scope information.
2635  inline byte* sinfo_start();
2636
2637  // Relocate the code by delta bytes. Called to signal that this code
2638  // object has been moved by delta bytes.
2639  void Relocate(intptr_t delta);
2640
2641  // Migrate code described by desc.
2642  void CopyFrom(const CodeDesc& desc);
2643
2644  // Returns the object size for a given body and sinfo size (Used for
2645  // allocation).
2646  static int SizeFor(int body_size, int sinfo_size) {
2647    ASSERT_SIZE_TAG_ALIGNED(body_size);
2648    ASSERT_SIZE_TAG_ALIGNED(sinfo_size);
2649    return RoundUp(kHeaderSize + body_size + sinfo_size, kCodeAlignment);
2650  }
2651
2652  // Calculate the size of the code object to report for log events. This takes
2653  // the layout of the code object into account.
2654  int ExecutableSize() {
2655    // Check that the assumptions about the layout of the code object holds.
2656    ASSERT_EQ(static_cast<int>(instruction_start() - address()),
2657              Code::kHeaderSize);
2658    return instruction_size() + Code::kHeaderSize;
2659  }
2660
2661  // Locating source position.
2662  int SourcePosition(Address pc);
2663  int SourceStatementPosition(Address pc);
2664
2665  // Casting.
2666  static inline Code* cast(Object* obj);
2667
2668  // Dispatched behavior.
2669  int CodeSize() { return SizeFor(body_size(), sinfo_size()); }
2670  void CodeIterateBody(ObjectVisitor* v);
2671#ifdef DEBUG
2672  void CodePrint();
2673  void CodeVerify();
2674#endif
2675  // Code entry points are aligned to 32 bytes.
2676  static const int kCodeAlignmentBits = 5;
2677  static const int kCodeAlignment = 1 << kCodeAlignmentBits;
2678  static const int kCodeAlignmentMask = kCodeAlignment - 1;
2679
2680  // Layout description.
2681  static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
2682  static const int kRelocationSizeOffset = kInstructionSizeOffset + kIntSize;
2683  static const int kSInfoSizeOffset = kRelocationSizeOffset + kIntSize;
2684  static const int kFlagsOffset = kSInfoSizeOffset + kIntSize;
2685  static const int kKindSpecificFlagsOffset  = kFlagsOffset + kIntSize;
2686  // Add padding to align the instruction start following right after
2687  // the Code object header.
2688  static const int kHeaderSize =
2689      (kKindSpecificFlagsOffset + kIntSize + kCodeAlignmentMask) &
2690          ~kCodeAlignmentMask;
2691
2692  // Byte offsets within kKindSpecificFlagsOffset.
2693  static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset + 1;
2694
2695  // Flags layout.
2696  static const int kFlagsICStateShift        = 0;
2697  static const int kFlagsICInLoopShift       = 3;
2698  static const int kFlagsKindShift           = 4;
2699  static const int kFlagsTypeShift           = 7;
2700  static const int kFlagsArgumentsCountShift = 10;
2701
2702  static const int kFlagsICStateMask        = 0x00000007;  // 0000000111
2703  static const int kFlagsICInLoopMask       = 0x00000008;  // 0000001000
2704  static const int kFlagsKindMask           = 0x00000070;  // 0001110000
2705  static const int kFlagsTypeMask           = 0x00000380;  // 1110000000
2706  static const int kFlagsArgumentsCountMask = 0xFFFFFC00;
2707
2708  static const int kFlagsNotUsedInLookup =
2709      (kFlagsICInLoopMask | kFlagsTypeMask);
2710
2711 private:
2712  DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
2713};
2714
2715
2716// All heap objects have a Map that describes their structure.
2717//  A Map contains information about:
2718//  - Size information about the object
2719//  - How to iterate over an object (for garbage collection)
2720class Map: public HeapObject {
2721 public:
2722  // Instance size.
2723  inline int instance_size();
2724  inline void set_instance_size(int value);
2725
2726  // Count of properties allocated in the object.
2727  inline int inobject_properties();
2728  inline void set_inobject_properties(int value);
2729
2730  // Count of property fields pre-allocated in the object when first allocated.
2731  inline int pre_allocated_property_fields();
2732  inline void set_pre_allocated_property_fields(int value);
2733
2734  // Instance type.
2735  inline InstanceType instance_type();
2736  inline void set_instance_type(InstanceType value);
2737
2738  // Tells how many unused property fields are available in the
2739  // instance (only used for JSObject in fast mode).
2740  inline int unused_property_fields();
2741  inline void set_unused_property_fields(int value);
2742
2743  // Bit field.
2744  inline byte bit_field();
2745  inline void set_bit_field(byte value);
2746
2747  // Bit field 2.
2748  inline byte bit_field2();
2749  inline void set_bit_field2(byte value);
2750
2751  // Tells whether the object in the prototype property will be used
2752  // for instances created from this function.  If the prototype
2753  // property is set to a value that is not a JSObject, the prototype
2754  // property will not be used to create instances of the function.
2755  // See ECMA-262, 13.2.2.
2756  inline void set_non_instance_prototype(bool value);
2757  inline bool has_non_instance_prototype();
2758
2759  // Tells whether the instance with this map should be ignored by the
2760  // __proto__ accessor.
2761  inline void set_is_hidden_prototype() {
2762    set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
2763  }
2764
2765  inline bool is_hidden_prototype() {
2766    return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
2767  }
2768
2769  // Records and queries whether the instance has a named interceptor.
2770  inline void set_has_named_interceptor() {
2771    set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
2772  }
2773
2774  inline bool has_named_interceptor() {
2775    return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
2776  }
2777
2778  // Records and queries whether the instance has an indexed interceptor.
2779  inline void set_has_indexed_interceptor() {
2780    set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
2781  }
2782
2783  inline bool has_indexed_interceptor() {
2784    return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
2785  }
2786
2787  // Tells whether the instance is undetectable.
2788  // An undetectable object is a special class of JSObject: 'typeof' operator
2789  // returns undefined, ToBoolean returns false. Otherwise it behaves like
2790  // a normal JS object.  It is useful for implementing undetectable
2791  // document.all in Firefox & Safari.
2792  // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
2793  inline void set_is_undetectable() {
2794    set_bit_field(bit_field() | (1 << kIsUndetectable));
2795  }
2796
2797  inline bool is_undetectable() {
2798    return ((1 << kIsUndetectable) & bit_field()) != 0;
2799  }
2800
2801  inline void set_needs_loading(bool value) {
2802    if (value) {
2803      set_bit_field2(bit_field2() | (1 << kNeedsLoading));
2804    } else {
2805      set_bit_field2(bit_field2() & ~(1 << kNeedsLoading));
2806    }
2807  }
2808
2809  // Does this object or function require a lazily loaded script to be
2810  // run before being used?
2811  inline bool needs_loading() {
2812    return ((1 << kNeedsLoading) & bit_field2()) != 0;
2813  }
2814
2815  // Tells whether the instance has a call-as-function handler.
2816  inline void set_has_instance_call_handler() {
2817    set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
2818  }
2819
2820  inline bool has_instance_call_handler() {
2821    return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
2822  }
2823
2824  // Tells whether the instance needs security checks when accessing its
2825  // properties.
2826  inline void set_is_access_check_needed(bool access_check_needed);
2827  inline bool is_access_check_needed();
2828
2829  // [prototype]: implicit prototype object.
2830  DECL_ACCESSORS(prototype, Object)
2831
2832  // [constructor]: points back to the function responsible for this map.
2833  DECL_ACCESSORS(constructor, Object)
2834
2835  // [instance descriptors]: describes the object.
2836  DECL_ACCESSORS(instance_descriptors, DescriptorArray)
2837
2838  // [stub cache]: contains stubs compiled for this map.
2839  DECL_ACCESSORS(code_cache, FixedArray)
2840
2841  // Returns a copy of the map.
2842  Object* CopyDropDescriptors();
2843
2844  // Returns a copy of the map, with all transitions dropped from the
2845  // instance descriptors.
2846  Object* CopyDropTransitions();
2847
2848  // Returns the property index for name (only valid for FAST MODE).
2849  int PropertyIndexFor(String* name);
2850
2851  // Returns the next free property index (only valid for FAST MODE).
2852  int NextFreePropertyIndex();
2853
2854  // Returns the number of properties described in instance_descriptors.
2855  int NumberOfDescribedProperties();
2856
2857  // Casting.
2858  static inline Map* cast(Object* obj);
2859
2860  // Locate an accessor in the instance descriptor.
2861  AccessorDescriptor* FindAccessor(String* name);
2862
2863  // Code cache operations.
2864
2865  // Clears the code cache.
2866  inline void ClearCodeCache();
2867
2868  // Update code cache.
2869  Object* UpdateCodeCache(String* name, Code* code);
2870
2871  // Returns the found code or undefined if absent.
2872  Object* FindInCodeCache(String* name, Code::Flags flags);
2873
2874  // Returns the non-negative index of the code object if it is in the
2875  // cache and -1 otherwise.
2876  int IndexInCodeCache(Code* code);
2877
2878  // Removes a code object from the code cache at the given index.
2879  void RemoveFromCodeCache(int index);
2880
2881  // For every transition in this map, makes the transition's
2882  // target's prototype pointer point back to this map.
2883  // This is undone in MarkCompactCollector::ClearNonLiveTransitions().
2884  void CreateBackPointers();
2885
2886  // Set all map transitions from this map to dead maps to null.
2887  // Also, restore the original prototype on the targets of these
2888  // transitions, so that we do not process this map again while
2889  // following back pointers.
2890  void ClearNonLiveTransitions(Object* real_prototype);
2891
2892  // Dispatched behavior.
2893  void MapIterateBody(ObjectVisitor* v);
2894#ifdef DEBUG
2895  void MapPrint();
2896  void MapVerify();
2897#endif
2898
2899  static const int kMaxPreAllocatedPropertyFields = 255;
2900
2901  // Layout description.
2902  static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
2903  static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
2904  static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
2905  static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
2906  static const int kInstanceDescriptorsOffset =
2907      kConstructorOffset + kPointerSize;
2908  static const int kCodeCacheOffset = kInstanceDescriptorsOffset + kPointerSize;
2909  static const int kSize = kCodeCacheOffset + kPointerSize;
2910
2911  // Byte offsets within kInstanceSizesOffset.
2912  static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
2913  static const int kInObjectPropertiesByte = 1;
2914  static const int kInObjectPropertiesOffset =
2915      kInstanceSizesOffset + kInObjectPropertiesByte;
2916  static const int kPreAllocatedPropertyFieldsByte = 2;
2917  static const int kPreAllocatedPropertyFieldsOffset =
2918      kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
2919  // The byte at position 3 is not in use at the moment.
2920
2921  // Byte offsets within kInstanceAttributesOffset attributes.
2922  static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
2923  static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
2924  static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
2925  static const int kBitField2Offset = kInstanceAttributesOffset + 3;
2926
2927  STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
2928
2929  // Bit positions for bit field.
2930  static const int kUnused = 0;  // To be used for marking recently used maps.
2931  static const int kHasNonInstancePrototype = 1;
2932  static const int kIsHiddenPrototype = 2;
2933  static const int kHasNamedInterceptor = 3;
2934  static const int kHasIndexedInterceptor = 4;
2935  static const int kIsUndetectable = 5;
2936  static const int kHasInstanceCallHandler = 6;
2937  static const int kIsAccessCheckNeeded = 7;
2938
2939  // Bit positions for bit field 2
2940  static const int kNeedsLoading = 0;
2941
2942 private:
2943  DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
2944};
2945
2946
2947// An abstract superclass, a marker class really, for simple structure classes.
2948// It doesn't carry much functionality but allows struct classes to me
2949// identified in the type system.
2950class Struct: public HeapObject {
2951 public:
2952  inline void InitializeBody(int object_size);
2953  static inline Struct* cast(Object* that);
2954};
2955
2956
2957// Script describes a script which has been added to the VM.
2958class Script: public Struct {
2959 public:
2960  // Script types.
2961  enum Type {
2962    TYPE_NATIVE = 0,
2963    TYPE_EXTENSION = 1,
2964    TYPE_NORMAL = 2
2965  };
2966
2967  // Script compilation types.
2968  enum CompilationType {
2969    COMPILATION_TYPE_HOST = 0,
2970    COMPILATION_TYPE_EVAL = 1,
2971    COMPILATION_TYPE_JSON = 2
2972  };
2973
2974  // [source]: the script source.
2975  DECL_ACCESSORS(source, Object)
2976
2977  // [name]: the script name.
2978  DECL_ACCESSORS(name, Object)
2979
2980  // [id]: the script id.
2981  DECL_ACCESSORS(id, Object)
2982
2983  // [line_offset]: script line offset in resource from where it was extracted.
2984  DECL_ACCESSORS(line_offset, Smi)
2985
2986  // [column_offset]: script column offset in resource from where it was
2987  // extracted.
2988  DECL_ACCESSORS(column_offset, Smi)
2989
2990  // [data]: additional data associated with this script.
2991  DECL_ACCESSORS(data, Object)
2992
2993  // [context_data]: context data for the context this script was compiled in.
2994  DECL_ACCESSORS(context_data, Object)
2995
2996  // [wrapper]: the wrapper cache.
2997  DECL_ACCESSORS(wrapper, Proxy)
2998
2999  // [type]: the script type.
3000  DECL_ACCESSORS(type, Smi)
3001
3002  // [compilation]: how the the script was compiled.
3003  DECL_ACCESSORS(compilation_type, Smi)
3004
3005  // [line_ends]: FixedArray of line ends positions.
3006  DECL_ACCESSORS(line_ends, Object)
3007
3008  // [eval_from_shared]: for eval scripts the shared funcion info for the
3009  // function from which eval was called.
3010  DECL_ACCESSORS(eval_from_shared, Object)
3011
3012  // [eval_from_instructions_offset]: the instruction offset in the code for the
3013  // function from which eval was called where eval was called.
3014  DECL_ACCESSORS(eval_from_instructions_offset, Smi)
3015
3016  static inline Script* cast(Object* obj);
3017
3018  // If script source is an external string, check that the underlying
3019  // resource is accessible. Otherwise, always return true.
3020  inline bool HasValidSource();
3021
3022#ifdef DEBUG
3023  void ScriptPrint();
3024  void ScriptVerify();
3025#endif
3026
3027  static const int kSourceOffset = HeapObject::kHeaderSize;
3028  static const int kNameOffset = kSourceOffset + kPointerSize;
3029  static const int kLineOffsetOffset = kNameOffset + kPointerSize;
3030  static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
3031  static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
3032  static const int kContextOffset = kDataOffset + kPointerSize;
3033  static const int kWrapperOffset = kContextOffset + kPointerSize;
3034  static const int kTypeOffset = kWrapperOffset + kPointerSize;
3035  static const int kCompilationTypeOffset = kTypeOffset + kPointerSize;
3036  static const int kLineEndsOffset = kCompilationTypeOffset + kPointerSize;
3037  static const int kIdOffset = kLineEndsOffset + kPointerSize;
3038  static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
3039  static const int kEvalFrominstructionsOffsetOffset =
3040      kEvalFromSharedOffset + kPointerSize;
3041  static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize;
3042
3043 private:
3044  DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
3045};
3046
3047
3048// SharedFunctionInfo describes the JSFunction information that can be
3049// shared by multiple instances of the function.
3050class SharedFunctionInfo: public HeapObject {
3051 public:
3052  // [name]: Function name.
3053  DECL_ACCESSORS(name, Object)
3054
3055  // [code]: Function code.
3056  DECL_ACCESSORS(code, Code)
3057
3058  // [construct stub]: Code stub for constructing instances of this function.
3059  DECL_ACCESSORS(construct_stub, Code)
3060
3061  // Returns if this function has been compiled to native code yet.
3062  inline bool is_compiled();
3063
3064  // [length]: The function length - usually the number of declared parameters.
3065  // Use up to 2^30 parameters.
3066  inline int length();
3067  inline void set_length(int value);
3068
3069  // [formal parameter count]: The declared number of parameters.
3070  inline int formal_parameter_count();
3071  inline void set_formal_parameter_count(int value);
3072
3073  // Set the formal parameter count so the function code will be
3074  // called without using argument adaptor frames.
3075  inline void DontAdaptArguments();
3076
3077  // [expected_nof_properties]: Expected number of properties for the function.
3078  inline int expected_nof_properties();
3079  inline void set_expected_nof_properties(int value);
3080
3081  // [instance class name]: class name for instances.
3082  DECL_ACCESSORS(instance_class_name, Object)
3083
3084  // [function data]: This field has been added for make benefit the API.
3085  // In the long run we don't want all functions to have this field but
3086  // we can fix that when we have a better model for storing hidden data
3087  // on objects.
3088  DECL_ACCESSORS(function_data, Object)
3089
3090  // [script info]: Script from which the function originates.
3091  DECL_ACCESSORS(script, Object)
3092
3093  // [start_position_and_type]: Field used to store both the source code
3094  // position, whether or not the function is a function expression,
3095  // and whether or not the function is a toplevel function. The two
3096  // least significants bit indicates whether the function is an
3097  // expression and the rest contains the source code position.
3098  inline int start_position_and_type();
3099  inline void set_start_position_and_type(int value);
3100
3101  // [debug info]: Debug information.
3102  DECL_ACCESSORS(debug_info, Object)
3103
3104  // [inferred name]: Name inferred from variable or property
3105  // assignment of this function. Used to facilitate debugging and
3106  // profiling of JavaScript code written in OO style, where almost
3107  // all functions are anonymous but are assigned to object
3108  // properties.
3109  DECL_ACCESSORS(inferred_name, String)
3110
3111  // Position of the 'function' token in the script source.
3112  inline int function_token_position();
3113  inline void set_function_token_position(int function_token_position);
3114
3115  // Position of this function in the script source.
3116  inline int start_position();
3117  inline void set_start_position(int start_position);
3118
3119  // End position of this function in the script source.
3120  inline int end_position();
3121  inline void set_end_position(int end_position);
3122
3123  // Is this function a function expression in the source code.
3124  inline bool is_expression();
3125  inline void set_is_expression(bool value);
3126
3127  // Is this function a top-level function (scripts, evals).
3128  inline bool is_toplevel();
3129  inline void set_is_toplevel(bool value);
3130
3131  // Bit field containing various information collected by the compiler to
3132  // drive optimization.
3133  inline int compiler_hints();
3134  inline void set_compiler_hints(int value);
3135
3136  // Add information on assignments of the form this.x = ...;
3137  void SetThisPropertyAssignmentsInfo(
3138      bool has_only_simple_this_property_assignments,
3139      FixedArray* this_property_assignments);
3140
3141  // Clear information on assignments of the form this.x = ...;
3142  void ClearThisPropertyAssignmentsInfo();
3143
3144  // Indicate that this function only consists of assignments of the form
3145  // this.x = y; where y is either a constant or refers to an argument.
3146  inline bool has_only_simple_this_property_assignments();
3147
3148  inline bool try_fast_codegen();
3149  inline void set_try_fast_codegen(bool flag);
3150
3151  // For functions which only contains this property assignments this provides
3152  // access to the names for the properties assigned.
3153  DECL_ACCESSORS(this_property_assignments, Object)
3154  inline int this_property_assignments_count();
3155  inline void set_this_property_assignments_count(int value);
3156  String* GetThisPropertyAssignmentName(int index);
3157  bool IsThisPropertyAssignmentArgument(int index);
3158  int GetThisPropertyAssignmentArgument(int index);
3159  Object* GetThisPropertyAssignmentConstant(int index);
3160
3161  // [source code]: Source code for the function.
3162  bool HasSourceCode();
3163  Object* GetSourceCode();
3164
3165  // Calculate the instance size.
3166  int CalculateInstanceSize();
3167
3168  // Calculate the number of in-object properties.
3169  int CalculateInObjectProperties();
3170
3171  // Dispatched behavior.
3172  void SharedFunctionInfoIterateBody(ObjectVisitor* v);
3173  // Set max_length to -1 for unlimited length.
3174  void SourceCodePrint(StringStream* accumulator, int max_length);
3175#ifdef DEBUG
3176  void SharedFunctionInfoPrint();
3177  void SharedFunctionInfoVerify();
3178#endif
3179
3180  // Casting.
3181  static inline SharedFunctionInfo* cast(Object* obj);
3182
3183  // Constants.
3184  static const int kDontAdaptArgumentsSentinel = -1;
3185
3186  // Layout description.
3187  // (An even number of integers has a size that is a multiple of a pointer.)
3188  static const int kNameOffset = HeapObject::kHeaderSize;
3189  static const int kCodeOffset = kNameOffset + kPointerSize;
3190  static const int kConstructStubOffset = kCodeOffset + kPointerSize;
3191  static const int kLengthOffset = kConstructStubOffset + kPointerSize;
3192  static const int kFormalParameterCountOffset = kLengthOffset + kIntSize;
3193  static const int kExpectedNofPropertiesOffset =
3194      kFormalParameterCountOffset + kIntSize;
3195  static const int kStartPositionAndTypeOffset =
3196      kExpectedNofPropertiesOffset + kIntSize;
3197  static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
3198  static const int kFunctionTokenPositionOffset = kEndPositionOffset + kIntSize;
3199  static const int kInstanceClassNameOffset =
3200      kFunctionTokenPositionOffset + kIntSize;
3201  static const int kExternalReferenceDataOffset =
3202      kInstanceClassNameOffset + kPointerSize;
3203  static const int kScriptOffset = kExternalReferenceDataOffset + kPointerSize;
3204  static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
3205  static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
3206  static const int kCompilerHintsOffset = kInferredNameOffset + kPointerSize;
3207  static const int kThisPropertyAssignmentsOffset =
3208      kCompilerHintsOffset + kPointerSize;
3209  static const int kThisPropertyAssignmentsCountOffset =
3210      kThisPropertyAssignmentsOffset + kPointerSize;
3211  static const int kSize = kThisPropertyAssignmentsCountOffset + kPointerSize;
3212
3213 private:
3214  // Bit positions in length_and_flg.
3215  // The least significant bit is used as the flag.
3216  static const int kFlagBit         = 0;
3217  static const int kLengthShift     = 1;
3218  static const int kLengthMask      = ~((1 << kLengthShift) - 1);
3219
3220  // Bit positions in start_position_and_type.
3221  // The source code start position is in the 30 most significant bits of
3222  // the start_position_and_type field.
3223  static const int kIsExpressionBit = 0;
3224  static const int kIsTopLevelBit   = 1;
3225  static const int kStartPositionShift = 2;
3226  static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
3227
3228  // Bit positions in compiler_hints.
3229  static const int kHasOnlySimpleThisPropertyAssignments = 0;
3230  static const int kTryFastCodegen = 1;
3231
3232  DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
3233};
3234
3235
3236// JSFunction describes JavaScript functions.
3237class JSFunction: public JSObject {
3238 public:
3239  // [prototype_or_initial_map]:
3240  DECL_ACCESSORS(prototype_or_initial_map, Object)
3241
3242  // [shared_function_info]: The information about the function that
3243  // can be shared by instances.
3244  DECL_ACCESSORS(shared, SharedFunctionInfo)
3245
3246  // [context]: The context for this function.
3247  inline Context* context();
3248  inline Object* unchecked_context();
3249  inline void set_context(Object* context);
3250
3251  // [code]: The generated code object for this function.  Executed
3252  // when the function is invoked, e.g. foo() or new foo(). See
3253  // [[Call]] and [[Construct]] description in ECMA-262, section
3254  // 8.6.2, page 27.
3255  inline Code* code();
3256  inline void set_code(Code* value);
3257
3258  // Tells whether this function is a context-independent boilerplate
3259  // function.
3260  inline bool IsBoilerplate();
3261
3262  // Tells whether this function is builtin.
3263  inline bool IsBuiltin();
3264
3265  // [literals]: Fixed array holding the materialized literals.
3266  //
3267  // If the function contains object, regexp or array literals, the
3268  // literals array prefix contains the object, regexp, and array
3269  // function to be used when creating these literals.  This is
3270  // necessary so that we do not dynamically lookup the object, regexp
3271  // or array functions.  Performing a dynamic lookup, we might end up
3272  // using the functions from a new context that we should not have
3273  // access to.
3274  DECL_ACCESSORS(literals, FixedArray)
3275
3276  // The initial map for an object created by this constructor.
3277  inline Map* initial_map();
3278  inline void set_initial_map(Map* value);
3279  inline bool has_initial_map();
3280
3281  // Get and set the prototype property on a JSFunction. If the
3282  // function has an initial map the prototype is set on the initial
3283  // map. Otherwise, the prototype is put in the initial map field
3284  // until an initial map is needed.
3285  inline bool has_prototype();
3286  inline bool has_instance_prototype();
3287  inline Object* prototype();
3288  inline Object* instance_prototype();
3289  Object* SetInstancePrototype(Object* value);
3290  Object* SetPrototype(Object* value);
3291
3292  // Accessor for this function's initial map's [[class]]
3293  // property. This is primarily used by ECMA native functions.  This
3294  // method sets the class_name field of this function's initial map
3295  // to a given value. It creates an initial map if this function does
3296  // not have one. Note that this method does not copy the initial map
3297  // if it has one already, but simply replaces it with the new value.
3298  // Instances created afterwards will have a map whose [[class]] is
3299  // set to 'value', but there is no guarantees on instances created
3300  // before.
3301  Object* SetInstanceClassName(String* name);
3302
3303  // Returns if this function has been compiled to native code yet.
3304  inline bool is_compiled();
3305
3306  // Casting.
3307  static inline JSFunction* cast(Object* obj);
3308
3309  // Dispatched behavior.
3310#ifdef DEBUG
3311  void JSFunctionPrint();
3312  void JSFunctionVerify();
3313#endif
3314
3315  // Returns the number of allocated literals.
3316  inline int NumberOfLiterals();
3317
3318  // Retrieve the global context from a function's literal array.
3319  static Context* GlobalContextFromLiterals(FixedArray* literals);
3320
3321  // Layout descriptors.
3322  static const int kPrototypeOrInitialMapOffset = JSObject::kHeaderSize;
3323  static const int kSharedFunctionInfoOffset =
3324      kPrototypeOrInitialMapOffset + kPointerSize;
3325  static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
3326  static const int kLiteralsOffset = kContextOffset + kPointerSize;
3327  static const int kSize = kLiteralsOffset + kPointerSize;
3328
3329  // Layout of the literals array.
3330  static const int kLiteralsPrefixSize = 1;
3331  static const int kLiteralGlobalContextIndex = 0;
3332 private:
3333  DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
3334};
3335
3336
3337// JSGlobalProxy's prototype must be a JSGlobalObject or null,
3338// and the prototype is hidden. JSGlobalProxy always delegates
3339// property accesses to its prototype if the prototype is not null.
3340//
3341// A JSGlobalProxy can be reinitialized which will preserve its identity.
3342//
3343// Accessing a JSGlobalProxy requires security check.
3344
3345class JSGlobalProxy : public JSObject {
3346 public:
3347  // [context]: the owner global context of this proxy object.
3348  // It is null value if this object is not used by any context.
3349  DECL_ACCESSORS(context, Object)
3350
3351  // Casting.
3352  static inline JSGlobalProxy* cast(Object* obj);
3353
3354  // Dispatched behavior.
3355#ifdef DEBUG
3356  void JSGlobalProxyPrint();
3357  void JSGlobalProxyVerify();
3358#endif
3359
3360  // Layout description.
3361  static const int kContextOffset = JSObject::kHeaderSize;
3362  static const int kSize = kContextOffset + kPointerSize;
3363
3364 private:
3365
3366  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
3367};
3368
3369
3370// Forward declaration.
3371class JSBuiltinsObject;
3372
3373// Common super class for JavaScript global objects and the special
3374// builtins global objects.
3375class GlobalObject: public JSObject {
3376 public:
3377  // [builtins]: the object holding the runtime routines written in JS.
3378  DECL_ACCESSORS(builtins, JSBuiltinsObject)
3379
3380  // [global context]: the global context corresponding to this global object.
3381  DECL_ACCESSORS(global_context, Context)
3382
3383  // [global receiver]: the global receiver object of the context
3384  DECL_ACCESSORS(global_receiver, JSObject)
3385
3386  // Retrieve the property cell used to store a property.
3387  Object* GetPropertyCell(LookupResult* result);
3388
3389  // Ensure that the global object has a cell for the given property name.
3390  Object* EnsurePropertyCell(String* name);
3391
3392  // Casting.
3393  static inline GlobalObject* cast(Object* obj);
3394
3395  // Layout description.
3396  static const int kBuiltinsOffset = JSObject::kHeaderSize;
3397  static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
3398  static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
3399  static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
3400
3401 private:
3402  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
3403
3404  DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
3405};
3406
3407
3408// JavaScript global object.
3409class JSGlobalObject: public GlobalObject {
3410 public:
3411
3412  // Casting.
3413  static inline JSGlobalObject* cast(Object* obj);
3414
3415  // Dispatched behavior.
3416#ifdef DEBUG
3417  void JSGlobalObjectPrint();
3418  void JSGlobalObjectVerify();
3419#endif
3420
3421  // Layout description.
3422  static const int kSize = GlobalObject::kHeaderSize;
3423
3424 private:
3425  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
3426};
3427
3428
3429// Builtins global object which holds the runtime routines written in
3430// JavaScript.
3431class JSBuiltinsObject: public GlobalObject {
3432 public:
3433  // Accessors for the runtime routines written in JavaScript.
3434  inline Object* javascript_builtin(Builtins::JavaScript id);
3435  inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
3436
3437  // Casting.
3438  static inline JSBuiltinsObject* cast(Object* obj);
3439
3440  // Dispatched behavior.
3441#ifdef DEBUG
3442  void JSBuiltinsObjectPrint();
3443  void JSBuiltinsObjectVerify();
3444#endif
3445
3446  // Layout description.  The size of the builtins object includes
3447  // room for one pointer per runtime routine written in javascript.
3448  static const int kJSBuiltinsCount = Builtins::id_count;
3449  static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
3450  static const int kSize =
3451      kJSBuiltinsOffset + (kJSBuiltinsCount * kPointerSize);
3452 private:
3453  DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
3454};
3455
3456
3457// Representation for JS Wrapper objects, String, Number, Boolean, Date, etc.
3458class JSValue: public JSObject {
3459 public:
3460  // [value]: the object being wrapped.
3461  DECL_ACCESSORS(value, Object)
3462
3463  // Casting.
3464  static inline JSValue* cast(Object* obj);
3465
3466  // Dispatched behavior.
3467#ifdef DEBUG
3468  void JSValuePrint();
3469  void JSValueVerify();
3470#endif
3471
3472  // Layout description.
3473  static const int kValueOffset = JSObject::kHeaderSize;
3474  static const int kSize = kValueOffset + kPointerSize;
3475
3476 private:
3477  DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
3478};
3479
3480// Regular expressions
3481// The regular expression holds a single reference to a FixedArray in
3482// the kDataOffset field.
3483// The FixedArray contains the following data:
3484// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
3485// - reference to the original source string
3486// - reference to the original flag string
3487// If it is an atom regexp
3488// - a reference to a literal string to search for
3489// If it is an irregexp regexp:
3490// - a reference to code for ASCII inputs (bytecode or compiled).
3491// - a reference to code for UC16 inputs (bytecode or compiled).
3492// - max number of registers used by irregexp implementations.
3493// - number of capture registers (output values) of the regexp.
3494class JSRegExp: public JSObject {
3495 public:
3496  // Meaning of Type:
3497  // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
3498  // ATOM: A simple string to match against using an indexOf operation.
3499  // IRREGEXP: Compiled with Irregexp.
3500  // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
3501  enum Type { NOT_COMPILED, ATOM, IRREGEXP };
3502  enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
3503
3504  class Flags {
3505   public:
3506    explicit Flags(uint32_t value) : value_(value) { }
3507    bool is_global() { return (value_ & GLOBAL) != 0; }
3508    bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
3509    bool is_multiline() { return (value_ & MULTILINE) != 0; }
3510    uint32_t value() { return value_; }
3511   private:
3512    uint32_t value_;
3513  };
3514
3515  DECL_ACCESSORS(data, Object)
3516
3517  inline Type TypeTag();
3518  inline int CaptureCount();
3519  inline Flags GetFlags();
3520  inline String* Pattern();
3521  inline Object* DataAt(int index);
3522  // Set implementation data after the object has been prepared.
3523  inline void SetDataAt(int index, Object* value);
3524  static int code_index(bool is_ascii) {
3525    if (is_ascii) {
3526      return kIrregexpASCIICodeIndex;
3527    } else {
3528      return kIrregexpUC16CodeIndex;
3529    }
3530  }
3531
3532  static inline JSRegExp* cast(Object* obj);
3533
3534  // Dispatched behavior.
3535#ifdef DEBUG
3536  void JSRegExpVerify();
3537#endif
3538
3539  static const int kDataOffset = JSObject::kHeaderSize;
3540  static const int kSize = kDataOffset + kPointerSize;
3541
3542  // Indices in the data array.
3543  static const int kTagIndex = 0;
3544  static const int kSourceIndex = kTagIndex + 1;
3545  static const int kFlagsIndex = kSourceIndex + 1;
3546  static const int kDataIndex = kFlagsIndex + 1;
3547  // The data fields are used in different ways depending on the
3548  // value of the tag.
3549  // Atom regexps (literal strings).
3550  static const int kAtomPatternIndex = kDataIndex;
3551
3552  static const int kAtomDataSize = kAtomPatternIndex + 1;
3553
3554  // Irregexp compiled code or bytecode for ASCII. If compilation
3555  // fails, this fields hold an exception object that should be
3556  // thrown if the regexp is used again.
3557  static const int kIrregexpASCIICodeIndex = kDataIndex;
3558  // Irregexp compiled code or bytecode for UC16.  If compilation
3559  // fails, this fields hold an exception object that should be
3560  // thrown if the regexp is used again.
3561  static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
3562  // Maximal number of registers used by either ASCII or UC16.
3563  // Only used to check that there is enough stack space
3564  static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 2;
3565  // Number of captures in the compiled regexp.
3566  static const int kIrregexpCaptureCountIndex = kDataIndex + 3;
3567
3568  static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
3569};
3570
3571
3572class CompilationCacheShape {
3573 public:
3574  static inline bool IsMatch(HashTableKey* key, Object* value) {
3575    return key->IsMatch(value);
3576  }
3577
3578  static inline uint32_t Hash(HashTableKey* key) {
3579    return key->Hash();
3580  }
3581
3582  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3583    return key->HashForObject(object);
3584  }
3585
3586  static Object* AsObject(HashTableKey* key) {
3587    return key->AsObject();
3588  }
3589
3590  static const int kPrefixSize = 0;
3591  static const int kEntrySize = 2;
3592};
3593
3594
3595class CompilationCacheTable: public HashTable<CompilationCacheShape,
3596                                              HashTableKey*> {
3597 public:
3598  // Find cached value for a string key, otherwise return null.
3599  Object* Lookup(String* src);
3600  Object* LookupEval(String* src, Context* context);
3601  Object* LookupRegExp(String* source, JSRegExp::Flags flags);
3602  Object* Put(String* src, Object* value);
3603  Object* PutEval(String* src, Context* context, Object* value);
3604  Object* PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value);
3605
3606  static inline CompilationCacheTable* cast(Object* obj);
3607
3608 private:
3609  DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
3610};
3611
3612
3613enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
3614enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
3615
3616
3617class StringHasher {
3618 public:
3619  inline StringHasher(int length);
3620
3621  // Returns true if the hash of this string can be computed without
3622  // looking at the contents.
3623  inline bool has_trivial_hash();
3624
3625  // Add a character to the hash and update the array index calculation.
3626  inline void AddCharacter(uc32 c);
3627
3628  // Adds a character to the hash but does not update the array index
3629  // calculation.  This can only be called when it has been verified
3630  // that the input is not an array index.
3631  inline void AddCharacterNoIndex(uc32 c);
3632
3633  // Returns the value to store in the hash field of a string with
3634  // the given length and contents.
3635  uint32_t GetHashField();
3636
3637  // Returns true if the characters seen so far make up a legal array
3638  // index.
3639  bool is_array_index() { return is_array_index_; }
3640
3641  bool is_valid() { return is_valid_; }
3642
3643  void invalidate() { is_valid_ = false; }
3644
3645 private:
3646
3647  uint32_t array_index() {
3648    ASSERT(is_array_index());
3649    return array_index_;
3650  }
3651
3652  inline uint32_t GetHash();
3653
3654  int length_;
3655  uint32_t raw_running_hash_;
3656  uint32_t array_index_;
3657  bool is_array_index_;
3658  bool is_first_char_;
3659  bool is_valid_;
3660  friend class TwoCharHashTableKey;
3661};
3662
3663
3664// The characteristics of a string are stored in its map.  Retrieving these
3665// few bits of information is moderately expensive, involving two memory
3666// loads where the second is dependent on the first.  To improve efficiency
3667// the shape of the string is given its own class so that it can be retrieved
3668// once and used for several string operations.  A StringShape is small enough
3669// to be passed by value and is immutable, but be aware that flattening a
3670// string can potentially alter its shape.  Also be aware that a GC caused by
3671// something else can alter the shape of a string due to ConsString
3672// shortcutting.  Keeping these restrictions in mind has proven to be error-
3673// prone and so we no longer put StringShapes in variables unless there is a
3674// concrete performance benefit at that particular point in the code.
3675class StringShape BASE_EMBEDDED {
3676 public:
3677  inline explicit StringShape(String* s);
3678  inline explicit StringShape(Map* s);
3679  inline explicit StringShape(InstanceType t);
3680  inline bool IsSequential();
3681  inline bool IsExternal();
3682  inline bool IsCons();
3683  inline bool IsExternalAscii();
3684  inline bool IsExternalTwoByte();
3685  inline bool IsSequentialAscii();
3686  inline bool IsSequentialTwoByte();
3687  inline bool IsSymbol();
3688  inline StringRepresentationTag representation_tag();
3689  inline uint32_t full_representation_tag();
3690  inline uint32_t size_tag();
3691#ifdef DEBUG
3692  inline uint32_t type() { return type_; }
3693  inline void invalidate() { valid_ = false; }
3694  inline bool valid() { return valid_; }
3695#else
3696  inline void invalidate() { }
3697#endif
3698 private:
3699  uint32_t type_;
3700#ifdef DEBUG
3701  inline void set_valid() { valid_ = true; }
3702  bool valid_;
3703#else
3704  inline void set_valid() { }
3705#endif
3706};
3707
3708
3709// The String abstract class captures JavaScript string values:
3710//
3711// Ecma-262:
3712//  4.3.16 String Value
3713//    A string value is a member of the type String and is a finite
3714//    ordered sequence of zero or more 16-bit unsigned integer values.
3715//
3716// All string values have a length field.
3717class String: public HeapObject {
3718 public:
3719  // Get and set the length of the string.
3720  inline int length();
3721  inline void set_length(int value);
3722
3723  // Get and set the hash field of the string.
3724  inline uint32_t hash_field();
3725  inline void set_hash_field(uint32_t value);
3726
3727  inline bool IsAsciiRepresentation();
3728  inline bool IsTwoByteRepresentation();
3729
3730  // Get and set individual two byte chars in the string.
3731  inline void Set(int index, uint16_t value);
3732  // Get individual two byte char in the string.  Repeated calls
3733  // to this method are not efficient unless the string is flat.
3734  inline uint16_t Get(int index);
3735
3736  // Try to flatten the top level ConsString that is hiding behind this
3737  // string.  This is a no-op unless the string is a ConsString.  Flatten
3738  // mutates the ConsString and might return a failure.
3739  Object* TryFlatten();
3740
3741  // Try to flatten the string.  Checks first inline to see if it is necessary.
3742  // Do not handle allocation failures.  After calling TryFlattenIfNotFlat, the
3743  // string could still be a ConsString, in which case a failure is returned.
3744  // Use FlattenString from Handles.cc to be sure to flatten.
3745  inline Object* TryFlattenIfNotFlat();
3746
3747  Vector<const char> ToAsciiVector();
3748  Vector<const uc16> ToUC16Vector();
3749
3750  // Mark the string as an undetectable object. It only applies to
3751  // ascii and two byte string types.
3752  bool MarkAsUndetectable();
3753
3754  // Return a substring.
3755  Object* SubString(int from, int to);
3756
3757  // String equality operations.
3758  inline bool Equals(String* other);
3759  bool IsEqualTo(Vector<const char> str);
3760
3761  // Return a UTF8 representation of the string.  The string is null
3762  // terminated but may optionally contain nulls.  Length is returned
3763  // in length_output if length_output is not a null pointer  The string
3764  // should be nearly flat, otherwise the performance of this method may
3765  // be very slow (quadratic in the length).  Setting robustness_flag to
3766  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
3767  // handles unexpected data without causing assert failures and it does not
3768  // do any heap allocations.  This is useful when printing stack traces.
3769  SmartPointer<char> ToCString(AllowNullsFlag allow_nulls,
3770                               RobustnessFlag robustness_flag,
3771                               int offset,
3772                               int length,
3773                               int* length_output = 0);
3774  SmartPointer<char> ToCString(
3775      AllowNullsFlag allow_nulls = DISALLOW_NULLS,
3776      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
3777      int* length_output = 0);
3778
3779  int Utf8Length();
3780
3781  // Return a 16 bit Unicode representation of the string.
3782  // The string should be nearly flat, otherwise the performance of
3783  // of this method may be very bad.  Setting robustness_flag to
3784  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
3785  // handles unexpected data without causing assert failures and it does not
3786  // do any heap allocations.  This is useful when printing stack traces.
3787  SmartPointer<uc16> ToWideCString(
3788      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
3789
3790  // Tells whether the hash code has been computed.
3791  inline bool HasHashCode();
3792
3793  // Returns a hash value used for the property table
3794  inline uint32_t Hash();
3795
3796  static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
3797                                   int length);
3798
3799  static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
3800                                uint32_t* index,
3801                                int length);
3802
3803  // Externalization.
3804  bool MakeExternal(v8::String::ExternalStringResource* resource);
3805  bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
3806
3807  // Conversion.
3808  inline bool AsArrayIndex(uint32_t* index);
3809
3810  // Casting.
3811  static inline String* cast(Object* obj);
3812
3813  void PrintOn(FILE* out);
3814
3815  // For use during stack traces.  Performs rudimentary sanity check.
3816  bool LooksValid();
3817
3818  // Dispatched behavior.
3819  void StringShortPrint(StringStream* accumulator);
3820#ifdef DEBUG
3821  void StringPrint();
3822  void StringVerify();
3823#endif
3824  inline bool IsFlat();
3825
3826  // Layout description.
3827  static const int kLengthOffset = HeapObject::kHeaderSize;
3828  static const int kHashFieldOffset = kLengthOffset + kIntSize;
3829  static const int kSize = kHashFieldOffset + kIntSize;
3830  // Notice: kSize is not pointer-size aligned if pointers are 64-bit.
3831
3832  // Maximum number of characters to consider when trying to convert a string
3833  // value into an array index.
3834  static const int kMaxArrayIndexSize = 10;
3835
3836  // Max ascii char code.
3837  static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar;
3838  static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar;
3839  static const int kMaxUC16CharCode = 0xffff;
3840
3841  // Minimum length for a cons string.
3842  static const int kMinNonFlatLength = 13;
3843
3844  // Mask constant for checking if a string has a computed hash code
3845  // and if it is an array index.  The least significant bit indicates
3846  // whether a hash code has been computed.  If the hash code has been
3847  // computed the 2nd bit tells whether the string can be used as an
3848  // array index.
3849  static const int kHashComputedMask = 1;
3850  static const int kIsArrayIndexMask = 1 << 1;
3851  static const int kNofLengthBitFields = 2;
3852
3853  // Shift constant retrieving hash code from hash field.
3854  static const int kHashShift = kNofLengthBitFields;
3855
3856  // Array index strings this short can keep their index in the hash
3857  // field.
3858  static const int kMaxCachedArrayIndexLength = 7;
3859
3860  // For strings which are array indexes the hash value has the string length
3861  // mixed into the hash, mainly to avoid a hash value of zero which would be
3862  // the case for the string '0'. 24 bits are used for the array index value.
3863  static const int kArrayIndexHashLengthShift = 24 + kNofLengthBitFields;
3864  static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
3865  static const int kArrayIndexValueBits =
3866      kArrayIndexHashLengthShift - kHashShift;
3867
3868  // Value of empty hash field indicating that the hash is not computed.
3869  static const int kEmptyHashField = 0;
3870
3871  // Maximal string length.
3872  static const int kMaxLength = (1 << (32 - 2)) - 1;
3873
3874  // Max length for computing hash. For strings longer than this limit the
3875  // string length is used as the hash value.
3876  static const int kMaxHashCalcLength = 16383;
3877
3878  // Limit for truncation in short printing.
3879  static const int kMaxShortPrintLength = 1024;
3880
3881  // Support for regular expressions.
3882  const uc16* GetTwoByteData();
3883  const uc16* GetTwoByteData(unsigned start);
3884
3885  // Support for StringInputBuffer
3886  static const unibrow::byte* ReadBlock(String* input,
3887                                        unibrow::byte* util_buffer,
3888                                        unsigned capacity,
3889                                        unsigned* remaining,
3890                                        unsigned* offset);
3891  static const unibrow::byte* ReadBlock(String** input,
3892                                        unibrow::byte* util_buffer,
3893                                        unsigned capacity,
3894                                        unsigned* remaining,
3895                                        unsigned* offset);
3896
3897  // Helper function for flattening strings.
3898  template <typename sinkchar>
3899  static void WriteToFlat(String* source,
3900                          sinkchar* sink,
3901                          int from,
3902                          int to);
3903
3904 protected:
3905  class ReadBlockBuffer {
3906   public:
3907    ReadBlockBuffer(unibrow::byte* util_buffer_,
3908                    unsigned cursor_,
3909                    unsigned capacity_,
3910                    unsigned remaining_) :
3911      util_buffer(util_buffer_),
3912      cursor(cursor_),
3913      capacity(capacity_),
3914      remaining(remaining_) {
3915    }
3916    unibrow::byte* util_buffer;
3917    unsigned       cursor;
3918    unsigned       capacity;
3919    unsigned       remaining;
3920  };
3921
3922  static inline const unibrow::byte* ReadBlock(String* input,
3923                                               ReadBlockBuffer* buffer,
3924                                               unsigned* offset,
3925                                               unsigned max_chars);
3926  static void ReadBlockIntoBuffer(String* input,
3927                                  ReadBlockBuffer* buffer,
3928                                  unsigned* offset_ptr,
3929                                  unsigned max_chars);
3930
3931 private:
3932  // Slow case of String::Equals.  This implementation works on any strings
3933  // but it is most efficient on strings that are almost flat.
3934  bool SlowEquals(String* other);
3935
3936  // Slow case of AsArrayIndex.
3937  bool SlowAsArrayIndex(uint32_t* index);
3938
3939  // Compute and set the hash code.
3940  uint32_t ComputeAndSetHash();
3941
3942  DISALLOW_IMPLICIT_CONSTRUCTORS(String);
3943};
3944
3945
3946// The SeqString abstract class captures sequential string values.
3947class SeqString: public String {
3948 public:
3949
3950  // Casting.
3951  static inline SeqString* cast(Object* obj);
3952
3953  // Dispatched behaviour.
3954  // For regexp code.
3955  uint16_t* SeqStringGetTwoByteAddress();
3956
3957 private:
3958  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
3959};
3960
3961
3962// The AsciiString class captures sequential ascii string objects.
3963// Each character in the AsciiString is an ascii character.
3964class SeqAsciiString: public SeqString {
3965 public:
3966  // Dispatched behavior.
3967  inline uint16_t SeqAsciiStringGet(int index);
3968  inline void SeqAsciiStringSet(int index, uint16_t value);
3969
3970  // Get the address of the characters in this string.
3971  inline Address GetCharsAddress();
3972
3973  inline char* GetChars();
3974
3975  // Casting
3976  static inline SeqAsciiString* cast(Object* obj);
3977
3978  // Garbage collection support.  This method is called by the
3979  // garbage collector to compute the actual size of an AsciiString
3980  // instance.
3981  inline int SeqAsciiStringSize(InstanceType instance_type);
3982
3983  // Computes the size for an AsciiString instance of a given length.
3984  static int SizeFor(int length) {
3985    return OBJECT_SIZE_ALIGN(kHeaderSize + length * kCharSize);
3986  }
3987
3988  // Layout description.
3989  static const int kHeaderSize = String::kSize;
3990  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
3991
3992  // Support for StringInputBuffer.
3993  inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
3994                                                unsigned* offset,
3995                                                unsigned chars);
3996  inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining,
3997                                                      unsigned* offset,
3998                                                      unsigned chars);
3999
4000 private:
4001  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString);
4002};
4003
4004
4005// The TwoByteString class captures sequential unicode string objects.
4006// Each character in the TwoByteString is a two-byte uint16_t.
4007class SeqTwoByteString: public SeqString {
4008 public:
4009  // Dispatched behavior.
4010  inline uint16_t SeqTwoByteStringGet(int index);
4011  inline void SeqTwoByteStringSet(int index, uint16_t value);
4012
4013  // Get the address of the characters in this string.
4014  inline Address GetCharsAddress();
4015
4016  inline uc16* GetChars();
4017
4018  // For regexp code.
4019  const uint16_t* SeqTwoByteStringGetData(unsigned start);
4020
4021  // Casting
4022  static inline SeqTwoByteString* cast(Object* obj);
4023
4024  // Garbage collection support.  This method is called by the
4025  // garbage collector to compute the actual size of a TwoByteString
4026  // instance.
4027  inline int SeqTwoByteStringSize(InstanceType instance_type);
4028
4029  // Computes the size for a TwoByteString instance of a given length.
4030  static int SizeFor(int length) {
4031    return OBJECT_SIZE_ALIGN(kHeaderSize + length * kShortSize);
4032  }
4033
4034  // Layout description.
4035  static const int kHeaderSize = String::kSize;
4036  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4037
4038  // Support for StringInputBuffer.
4039  inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4040                                                  unsigned* offset_ptr,
4041                                                  unsigned chars);
4042
4043 private:
4044  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
4045};
4046
4047
4048// The ConsString class describes string values built by using the
4049// addition operator on strings.  A ConsString is a pair where the
4050// first and second components are pointers to other string values.
4051// One or both components of a ConsString can be pointers to other
4052// ConsStrings, creating a binary tree of ConsStrings where the leaves
4053// are non-ConsString string values.  The string value represented by
4054// a ConsString can be obtained by concatenating the leaf string
4055// values in a left-to-right depth-first traversal of the tree.
4056class ConsString: public String {
4057 public:
4058  // First string of the cons cell.
4059  inline String* first();
4060  // Doesn't check that the result is a string, even in debug mode.  This is
4061  // useful during GC where the mark bits confuse the checks.
4062  inline Object* unchecked_first();
4063  inline void set_first(String* first,
4064                        WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4065
4066  // Second string of the cons cell.
4067  inline String* second();
4068  // Doesn't check that the result is a string, even in debug mode.  This is
4069  // useful during GC where the mark bits confuse the checks.
4070  inline Object* unchecked_second();
4071  inline void set_second(String* second,
4072                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4073
4074  // Dispatched behavior.
4075  uint16_t ConsStringGet(int index);
4076
4077  // Casting.
4078  static inline ConsString* cast(Object* obj);
4079
4080  // Garbage collection support.  This method is called during garbage
4081  // collection to iterate through the heap pointers in the body of
4082  // the ConsString.
4083  void ConsStringIterateBody(ObjectVisitor* v);
4084
4085  // Layout description.
4086  static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
4087  static const int kSecondOffset = kFirstOffset + kPointerSize;
4088  static const int kSize = kSecondOffset + kPointerSize;
4089
4090  // Support for StringInputBuffer.
4091  inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
4092                                                  unsigned* offset_ptr,
4093                                                  unsigned chars);
4094  inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4095                                            unsigned* offset_ptr,
4096                                            unsigned chars);
4097
4098  // Minimum length for a cons string.
4099  static const int kMinLength = 13;
4100
4101 private:
4102  DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
4103};
4104
4105
4106// The ExternalString class describes string values that are backed by
4107// a string resource that lies outside the V8 heap.  ExternalStrings
4108// consist of the length field common to all strings, a pointer to the
4109// external resource.  It is important to ensure (externally) that the
4110// resource is not deallocated while the ExternalString is live in the
4111// V8 heap.
4112//
4113// The API expects that all ExternalStrings are created through the
4114// API.  Therefore, ExternalStrings should not be used internally.
4115class ExternalString: public String {
4116 public:
4117  // Casting
4118  static inline ExternalString* cast(Object* obj);
4119
4120  // Layout description.
4121  static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
4122  static const int kSize = kResourceOffset + kPointerSize;
4123
4124  STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
4125
4126 private:
4127  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
4128};
4129
4130
4131// The ExternalAsciiString class is an external string backed by an
4132// ASCII string.
4133class ExternalAsciiString: public ExternalString {
4134 public:
4135  typedef v8::String::ExternalAsciiStringResource Resource;
4136
4137  // The underlying resource.
4138  inline Resource* resource();
4139  inline void set_resource(Resource* buffer);
4140
4141  // Dispatched behavior.
4142  uint16_t ExternalAsciiStringGet(int index);
4143
4144  // Casting.
4145  static inline ExternalAsciiString* cast(Object* obj);
4146
4147  // Garbage collection support.
4148  void ExternalAsciiStringIterateBody(ObjectVisitor* v);
4149
4150  // Support for StringInputBuffer.
4151  const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
4152                                                    unsigned* offset,
4153                                                    unsigned chars);
4154  inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4155                                                     unsigned* offset,
4156                                                     unsigned chars);
4157
4158 private:
4159  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
4160};
4161
4162
4163// The ExternalTwoByteString class is an external string backed by a UTF-16
4164// encoded string.
4165class ExternalTwoByteString: public ExternalString {
4166 public:
4167  typedef v8::String::ExternalStringResource Resource;
4168
4169  // The underlying string resource.
4170  inline Resource* resource();
4171  inline void set_resource(Resource* buffer);
4172
4173  // Dispatched behavior.
4174  uint16_t ExternalTwoByteStringGet(int index);
4175
4176  // For regexp code.
4177  const uint16_t* ExternalTwoByteStringGetData(unsigned start);
4178
4179  // Casting.
4180  static inline ExternalTwoByteString* cast(Object* obj);
4181
4182  // Garbage collection support.
4183  void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
4184
4185  // Support for StringInputBuffer.
4186  void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4187                                                unsigned* offset_ptr,
4188                                                unsigned chars);
4189
4190 private:
4191  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
4192};
4193
4194
4195// Utility superclass for stack-allocated objects that must be updated
4196// on gc.  It provides two ways for the gc to update instances, either
4197// iterating or updating after gc.
4198class Relocatable BASE_EMBEDDED {
4199 public:
4200  inline Relocatable() : prev_(top_) { top_ = this; }
4201  virtual ~Relocatable() {
4202    ASSERT_EQ(top_, this);
4203    top_ = prev_;
4204  }
4205  virtual void IterateInstance(ObjectVisitor* v) { }
4206  virtual void PostGarbageCollection() { }
4207
4208  static void PostGarbageCollectionProcessing();
4209  static int ArchiveSpacePerThread();
4210  static char* ArchiveState(char* to);
4211  static char* RestoreState(char* from);
4212  static void Iterate(ObjectVisitor* v);
4213  static void Iterate(ObjectVisitor* v, Relocatable* top);
4214  static char* Iterate(ObjectVisitor* v, char* t);
4215 private:
4216  static Relocatable* top_;
4217  Relocatable* prev_;
4218};
4219
4220
4221// A flat string reader provides random access to the contents of a
4222// string independent of the character width of the string.  The handle
4223// must be valid as long as the reader is being used.
4224class FlatStringReader : public Relocatable {
4225 public:
4226  explicit FlatStringReader(Handle<String> str);
4227  explicit FlatStringReader(Vector<const char> input);
4228  void PostGarbageCollection();
4229  inline uc32 Get(int index);
4230  int length() { return length_; }
4231 private:
4232  String** str_;
4233  bool is_ascii_;
4234  int length_;
4235  const void* start_;
4236};
4237
4238
4239// Note that StringInputBuffers are not valid across a GC!  To fix this
4240// it would have to store a String Handle instead of a String* and
4241// AsciiStringReadBlock would have to be modified to use memcpy.
4242//
4243// StringInputBuffer is able to traverse any string regardless of how
4244// deeply nested a sequence of ConsStrings it is made of.  However,
4245// performance will be better if deep strings are flattened before they
4246// are traversed.  Since flattening requires memory allocation this is
4247// not always desirable, however (esp. in debugging situations).
4248class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
4249 public:
4250  virtual void Seek(unsigned pos);
4251  inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
4252  inline StringInputBuffer(String* backing):
4253      unibrow::InputBuffer<String, String*, 1024>(backing) {}
4254};
4255
4256
4257class SafeStringInputBuffer
4258  : public unibrow::InputBuffer<String, String**, 256> {
4259 public:
4260  virtual void Seek(unsigned pos);
4261  inline SafeStringInputBuffer()
4262      : unibrow::InputBuffer<String, String**, 256>() {}
4263  inline SafeStringInputBuffer(String** backing)
4264      : unibrow::InputBuffer<String, String**, 256>(backing) {}
4265};
4266
4267
4268template <typename T>
4269class VectorIterator {
4270 public:
4271  VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
4272  explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
4273  T GetNext() { return data_[index_++]; }
4274  bool has_more() { return index_ < data_.length(); }
4275 private:
4276  Vector<const T> data_;
4277  int index_;
4278};
4279
4280
4281// The Oddball describes objects null, undefined, true, and false.
4282class Oddball: public HeapObject {
4283 public:
4284  // [to_string]: Cached to_string computed at startup.
4285  DECL_ACCESSORS(to_string, String)
4286
4287  // [to_number]: Cached to_number computed at startup.
4288  DECL_ACCESSORS(to_number, Object)
4289
4290  // Casting.
4291  static inline Oddball* cast(Object* obj);
4292
4293  // Dispatched behavior.
4294  void OddballIterateBody(ObjectVisitor* v);
4295#ifdef DEBUG
4296  void OddballVerify();
4297#endif
4298
4299  // Initialize the fields.
4300  Object* Initialize(const char* to_string, Object* to_number);
4301
4302  // Layout description.
4303  static const int kToStringOffset = HeapObject::kHeaderSize;
4304  static const int kToNumberOffset = kToStringOffset + kPointerSize;
4305  static const int kSize = kToNumberOffset + kPointerSize;
4306
4307 private:
4308  DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
4309};
4310
4311
4312class JSGlobalPropertyCell: public HeapObject {
4313 public:
4314  // [value]: value of the global property.
4315  DECL_ACCESSORS(value, Object)
4316
4317  // Casting.
4318  static inline JSGlobalPropertyCell* cast(Object* obj);
4319
4320  // Dispatched behavior.
4321  void JSGlobalPropertyCellIterateBody(ObjectVisitor* v);
4322#ifdef DEBUG
4323  void JSGlobalPropertyCellVerify();
4324  void JSGlobalPropertyCellPrint();
4325#endif
4326
4327  // Layout description.
4328  static const int kValueOffset = HeapObject::kHeaderSize;
4329  static const int kSize = kValueOffset + kPointerSize;
4330
4331 private:
4332  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell);
4333};
4334
4335
4336
4337// Proxy describes objects pointing from JavaScript to C structures.
4338// Since they cannot contain references to JS HeapObjects they can be
4339// placed in old_data_space.
4340class Proxy: public HeapObject {
4341 public:
4342  // [proxy]: field containing the address.
4343  inline Address proxy();
4344  inline void set_proxy(Address value);
4345
4346  // Casting.
4347  static inline Proxy* cast(Object* obj);
4348
4349  // Dispatched behavior.
4350  inline void ProxyIterateBody(ObjectVisitor* v);
4351#ifdef DEBUG
4352  void ProxyPrint();
4353  void ProxyVerify();
4354#endif
4355
4356  // Layout description.
4357
4358  static const int kProxyOffset = HeapObject::kHeaderSize;
4359  static const int kSize = kProxyOffset + kPointerSize;
4360
4361  STATIC_CHECK(kProxyOffset == Internals::kProxyProxyOffset);
4362
4363 private:
4364  DISALLOW_IMPLICIT_CONSTRUCTORS(Proxy);
4365};
4366
4367
4368// The JSArray describes JavaScript Arrays
4369//  Such an array can be in one of two modes:
4370//    - fast, backing storage is a FixedArray and length <= elements.length();
4371//       Please note: push and pop can be used to grow and shrink the array.
4372//    - slow, backing storage is a HashTable with numbers as keys.
4373class JSArray: public JSObject {
4374 public:
4375  // [length]: The length property.
4376  DECL_ACCESSORS(length, Object)
4377
4378  Object* JSArrayUpdateLengthFromIndex(uint32_t index, Object* value);
4379
4380  // Initialize the array with the given capacity. The function may
4381  // fail due to out-of-memory situations, but only if the requested
4382  // capacity is non-zero.
4383  Object* Initialize(int capacity);
4384
4385  // Set the content of the array to the content of storage.
4386  inline void SetContent(FixedArray* storage);
4387
4388  // Casting.
4389  static inline JSArray* cast(Object* obj);
4390
4391  // Uses handles.  Ensures that the fixed array backing the JSArray has at
4392  // least the stated size.
4393  inline void EnsureSize(int minimum_size_of_backing_fixed_array);
4394
4395  // Dispatched behavior.
4396#ifdef DEBUG
4397  void JSArrayPrint();
4398  void JSArrayVerify();
4399#endif
4400
4401  // Number of element slots to pre-allocate for an empty array.
4402  static const int kPreallocatedArrayElements = 4;
4403
4404  // Layout description.
4405  static const int kLengthOffset = JSObject::kHeaderSize;
4406  static const int kSize = kLengthOffset + kPointerSize;
4407
4408 private:
4409  // Expand the fixed array backing of a fast-case JSArray to at least
4410  // the requested size.
4411  void Expand(int minimum_size_of_backing_fixed_array);
4412
4413  DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
4414};
4415
4416
4417// An accessor must have a getter, but can have no setter.
4418//
4419// When setting a property, V8 searches accessors in prototypes.
4420// If an accessor was found and it does not have a setter,
4421// the request is ignored.
4422//
4423// If the accessor in the prototype has the READ_ONLY property attribute, then
4424// a new value is added to the local object when the property is set.
4425// This shadows the accessor in the prototype.
4426class AccessorInfo: public Struct {
4427 public:
4428  DECL_ACCESSORS(getter, Object)
4429  DECL_ACCESSORS(setter, Object)
4430  DECL_ACCESSORS(data, Object)
4431  DECL_ACCESSORS(name, Object)
4432  DECL_ACCESSORS(flag, Smi)
4433  DECL_ACCESSORS(load_stub_cache, Object)
4434
4435  inline bool all_can_read();
4436  inline void set_all_can_read(bool value);
4437
4438  inline bool all_can_write();
4439  inline void set_all_can_write(bool value);
4440
4441  inline bool prohibits_overwriting();
4442  inline void set_prohibits_overwriting(bool value);
4443
4444  inline PropertyAttributes property_attributes();
4445  inline void set_property_attributes(PropertyAttributes attributes);
4446
4447  static inline AccessorInfo* cast(Object* obj);
4448
4449#ifdef DEBUG
4450  void AccessorInfoPrint();
4451  void AccessorInfoVerify();
4452#endif
4453
4454  static const int kGetterOffset = HeapObject::kHeaderSize;
4455  static const int kSetterOffset = kGetterOffset + kPointerSize;
4456  static const int kDataOffset = kSetterOffset + kPointerSize;
4457  static const int kNameOffset = kDataOffset + kPointerSize;
4458  static const int kFlagOffset = kNameOffset + kPointerSize;
4459  static const int kLoadStubCacheOffset = kFlagOffset + kPointerSize;
4460  static const int kSize = kLoadStubCacheOffset + kPointerSize;
4461
4462 private:
4463  // Bit positions in flag.
4464  static const int kAllCanReadBit = 0;
4465  static const int kAllCanWriteBit = 1;
4466  static const int kProhibitsOverwritingBit = 2;
4467  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
4468
4469  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
4470};
4471
4472
4473class AccessCheckInfo: public Struct {
4474 public:
4475  DECL_ACCESSORS(named_callback, Object)
4476  DECL_ACCESSORS(indexed_callback, Object)
4477  DECL_ACCESSORS(data, Object)
4478
4479  static inline AccessCheckInfo* cast(Object* obj);
4480
4481#ifdef DEBUG
4482  void AccessCheckInfoPrint();
4483  void AccessCheckInfoVerify();
4484#endif
4485
4486  static const int kNamedCallbackOffset   = HeapObject::kHeaderSize;
4487  static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
4488  static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
4489  static const int kSize = kDataOffset + kPointerSize;
4490
4491 private:
4492  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
4493};
4494
4495
4496class InterceptorInfo: public Struct {
4497 public:
4498  DECL_ACCESSORS(getter, Object)
4499  DECL_ACCESSORS(setter, Object)
4500  DECL_ACCESSORS(query, Object)
4501  DECL_ACCESSORS(deleter, Object)
4502  DECL_ACCESSORS(enumerator, Object)
4503  DECL_ACCESSORS(data, Object)
4504
4505  static inline InterceptorInfo* cast(Object* obj);
4506
4507#ifdef DEBUG
4508  void InterceptorInfoPrint();
4509  void InterceptorInfoVerify();
4510#endif
4511
4512  static const int kGetterOffset = HeapObject::kHeaderSize;
4513  static const int kSetterOffset = kGetterOffset + kPointerSize;
4514  static const int kQueryOffset = kSetterOffset + kPointerSize;
4515  static const int kDeleterOffset = kQueryOffset + kPointerSize;
4516  static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
4517  static const int kDataOffset = kEnumeratorOffset + kPointerSize;
4518  static const int kSize = kDataOffset + kPointerSize;
4519
4520 private:
4521  DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
4522};
4523
4524
4525class CallHandlerInfo: public Struct {
4526 public:
4527  DECL_ACCESSORS(callback, Object)
4528  DECL_ACCESSORS(data, Object)
4529
4530  static inline CallHandlerInfo* cast(Object* obj);
4531
4532#ifdef DEBUG
4533  void CallHandlerInfoPrint();
4534  void CallHandlerInfoVerify();
4535#endif
4536
4537  static const int kCallbackOffset = HeapObject::kHeaderSize;
4538  static const int kDataOffset = kCallbackOffset + kPointerSize;
4539  static const int kSize = kDataOffset + kPointerSize;
4540
4541 private:
4542  DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
4543};
4544
4545
4546class TemplateInfo: public Struct {
4547 public:
4548  DECL_ACCESSORS(tag, Object)
4549  DECL_ACCESSORS(property_list, Object)
4550
4551#ifdef DEBUG
4552  void TemplateInfoVerify();
4553#endif
4554
4555  static const int kTagOffset          = HeapObject::kHeaderSize;
4556  static const int kPropertyListOffset = kTagOffset + kPointerSize;
4557  static const int kHeaderSize         = kPropertyListOffset + kPointerSize;
4558 protected:
4559  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
4560  DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
4561};
4562
4563
4564class FunctionTemplateInfo: public TemplateInfo {
4565 public:
4566  DECL_ACCESSORS(serial_number, Object)
4567  DECL_ACCESSORS(call_code, Object)
4568  DECL_ACCESSORS(property_accessors, Object)
4569  DECL_ACCESSORS(prototype_template, Object)
4570  DECL_ACCESSORS(parent_template, Object)
4571  DECL_ACCESSORS(named_property_handler, Object)
4572  DECL_ACCESSORS(indexed_property_handler, Object)
4573  DECL_ACCESSORS(instance_template, Object)
4574  DECL_ACCESSORS(class_name, Object)
4575  DECL_ACCESSORS(signature, Object)
4576  DECL_ACCESSORS(instance_call_handler, Object)
4577  DECL_ACCESSORS(access_check_info, Object)
4578  DECL_ACCESSORS(flag, Smi)
4579
4580  // Following properties use flag bits.
4581  DECL_BOOLEAN_ACCESSORS(hidden_prototype)
4582  DECL_BOOLEAN_ACCESSORS(undetectable)
4583  // If the bit is set, object instances created by this function
4584  // requires access check.
4585  DECL_BOOLEAN_ACCESSORS(needs_access_check)
4586
4587  static inline FunctionTemplateInfo* cast(Object* obj);
4588
4589#ifdef DEBUG
4590  void FunctionTemplateInfoPrint();
4591  void FunctionTemplateInfoVerify();
4592#endif
4593
4594  static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
4595  static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
4596  static const int kPropertyAccessorsOffset = kCallCodeOffset + kPointerSize;
4597  static const int kPrototypeTemplateOffset =
4598      kPropertyAccessorsOffset + kPointerSize;
4599  static const int kParentTemplateOffset =
4600      kPrototypeTemplateOffset + kPointerSize;
4601  static const int kNamedPropertyHandlerOffset =
4602      kParentTemplateOffset + kPointerSize;
4603  static const int kIndexedPropertyHandlerOffset =
4604      kNamedPropertyHandlerOffset + kPointerSize;
4605  static const int kInstanceTemplateOffset =
4606      kIndexedPropertyHandlerOffset + kPointerSize;
4607  static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
4608  static const int kSignatureOffset = kClassNameOffset + kPointerSize;
4609  static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
4610  static const int kAccessCheckInfoOffset =
4611      kInstanceCallHandlerOffset + kPointerSize;
4612  static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
4613  static const int kSize = kFlagOffset + kPointerSize;
4614
4615 private:
4616  // Bit position in the flag, from least significant bit position.
4617  static const int kHiddenPrototypeBit   = 0;
4618  static const int kUndetectableBit      = 1;
4619  static const int kNeedsAccessCheckBit  = 2;
4620
4621  DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
4622};
4623
4624
4625class ObjectTemplateInfo: public TemplateInfo {
4626 public:
4627  DECL_ACCESSORS(constructor, Object)
4628  DECL_ACCESSORS(internal_field_count, Object)
4629
4630  static inline ObjectTemplateInfo* cast(Object* obj);
4631
4632#ifdef DEBUG
4633  void ObjectTemplateInfoPrint();
4634  void ObjectTemplateInfoVerify();
4635#endif
4636
4637  static const int kConstructorOffset = TemplateInfo::kHeaderSize;
4638  static const int kInternalFieldCountOffset =
4639      kConstructorOffset + kPointerSize;
4640  static const int kSize = kInternalFieldCountOffset + kPointerSize;
4641};
4642
4643
4644class SignatureInfo: public Struct {
4645 public:
4646  DECL_ACCESSORS(receiver, Object)
4647  DECL_ACCESSORS(args, Object)
4648
4649  static inline SignatureInfo* cast(Object* obj);
4650
4651#ifdef DEBUG
4652  void SignatureInfoPrint();
4653  void SignatureInfoVerify();
4654#endif
4655
4656  static const int kReceiverOffset = Struct::kHeaderSize;
4657  static const int kArgsOffset     = kReceiverOffset + kPointerSize;
4658  static const int kSize           = kArgsOffset + kPointerSize;
4659
4660 private:
4661  DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
4662};
4663
4664
4665class TypeSwitchInfo: public Struct {
4666 public:
4667  DECL_ACCESSORS(types, Object)
4668
4669  static inline TypeSwitchInfo* cast(Object* obj);
4670
4671#ifdef DEBUG
4672  void TypeSwitchInfoPrint();
4673  void TypeSwitchInfoVerify();
4674#endif
4675
4676  static const int kTypesOffset = Struct::kHeaderSize;
4677  static const int kSize        = kTypesOffset + kPointerSize;
4678};
4679
4680
4681#ifdef ENABLE_DEBUGGER_SUPPORT
4682// The DebugInfo class holds additional information for a function being
4683// debugged.
4684class DebugInfo: public Struct {
4685 public:
4686  // The shared function info for the source being debugged.
4687  DECL_ACCESSORS(shared, SharedFunctionInfo)
4688  // Code object for the original code.
4689  DECL_ACCESSORS(original_code, Code)
4690  // Code object for the patched code. This code object is the code object
4691  // currently active for the function.
4692  DECL_ACCESSORS(code, Code)
4693  // Fixed array holding status information for each active break point.
4694  DECL_ACCESSORS(break_points, FixedArray)
4695
4696  // Check if there is a break point at a code position.
4697  bool HasBreakPoint(int code_position);
4698  // Get the break point info object for a code position.
4699  Object* GetBreakPointInfo(int code_position);
4700  // Clear a break point.
4701  static void ClearBreakPoint(Handle<DebugInfo> debug_info,
4702                              int code_position,
4703                              Handle<Object> break_point_object);
4704  // Set a break point.
4705  static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
4706                            int source_position, int statement_position,
4707                            Handle<Object> break_point_object);
4708  // Get the break point objects for a code position.
4709  Object* GetBreakPointObjects(int code_position);
4710  // Find the break point info holding this break point object.
4711  static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
4712                                    Handle<Object> break_point_object);
4713  // Get the number of break points for this function.
4714  int GetBreakPointCount();
4715
4716  static inline DebugInfo* cast(Object* obj);
4717
4718#ifdef DEBUG
4719  void DebugInfoPrint();
4720  void DebugInfoVerify();
4721#endif
4722
4723  static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
4724  static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
4725  static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
4726  static const int kActiveBreakPointsCountIndex =
4727      kPatchedCodeIndex + kPointerSize;
4728  static const int kBreakPointsStateIndex =
4729      kActiveBreakPointsCountIndex + kPointerSize;
4730  static const int kSize = kBreakPointsStateIndex + kPointerSize;
4731
4732 private:
4733  static const int kNoBreakPointInfo = -1;
4734
4735  // Lookup the index in the break_points array for a code position.
4736  int GetBreakPointInfoIndex(int code_position);
4737
4738  DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
4739};
4740
4741
4742// The BreakPointInfo class holds information for break points set in a
4743// function. The DebugInfo object holds a BreakPointInfo object for each code
4744// position with one or more break points.
4745class BreakPointInfo: public Struct {
4746 public:
4747  // The position in the code for the break point.
4748  DECL_ACCESSORS(code_position, Smi)
4749  // The position in the source for the break position.
4750  DECL_ACCESSORS(source_position, Smi)
4751  // The position in the source for the last statement before this break
4752  // position.
4753  DECL_ACCESSORS(statement_position, Smi)
4754  // List of related JavaScript break points.
4755  DECL_ACCESSORS(break_point_objects, Object)
4756
4757  // Removes a break point.
4758  static void ClearBreakPoint(Handle<BreakPointInfo> info,
4759                              Handle<Object> break_point_object);
4760  // Set a break point.
4761  static void SetBreakPoint(Handle<BreakPointInfo> info,
4762                            Handle<Object> break_point_object);
4763  // Check if break point info has this break point object.
4764  static bool HasBreakPointObject(Handle<BreakPointInfo> info,
4765                                  Handle<Object> break_point_object);
4766  // Get the number of break points for this code position.
4767  int GetBreakPointCount();
4768
4769  static inline BreakPointInfo* cast(Object* obj);
4770
4771#ifdef DEBUG
4772  void BreakPointInfoPrint();
4773  void BreakPointInfoVerify();
4774#endif
4775
4776  static const int kCodePositionIndex = Struct::kHeaderSize;
4777  static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
4778  static const int kStatementPositionIndex =
4779      kSourcePositionIndex + kPointerSize;
4780  static const int kBreakPointObjectsIndex =
4781      kStatementPositionIndex + kPointerSize;
4782  static const int kSize = kBreakPointObjectsIndex + kPointerSize;
4783
4784 private:
4785  DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
4786};
4787#endif  // ENABLE_DEBUGGER_SUPPORT
4788
4789
4790#undef DECL_BOOLEAN_ACCESSORS
4791#undef DECL_ACCESSORS
4792
4793
4794// Abstract base class for visiting, and optionally modifying, the
4795// pointers contained in Objects. Used in GC and serialization/deserialization.
4796class ObjectVisitor BASE_EMBEDDED {
4797 public:
4798  virtual ~ObjectVisitor() {}
4799
4800  // Visits a contiguous arrays of pointers in the half-open range
4801  // [start, end). Any or all of the values may be modified on return.
4802  virtual void VisitPointers(Object** start, Object** end) = 0;
4803
4804  // To allow lazy clearing of inline caches the visitor has
4805  // a rich interface for iterating over Code objects..
4806
4807  // Visits a code target in the instruction stream.
4808  virtual void VisitCodeTarget(RelocInfo* rinfo);
4809
4810  // Visits a runtime entry in the instruction stream.
4811  virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
4812
4813  // Visits the resource of an ASCII or two-byte string.
4814  virtual void VisitExternalAsciiString(
4815      v8::String::ExternalAsciiStringResource** resource) {}
4816  virtual void VisitExternalTwoByteString(
4817      v8::String::ExternalStringResource** resource) {}
4818
4819  // Visits a debug call target in the instruction stream.
4820  virtual void VisitDebugTarget(RelocInfo* rinfo);
4821
4822  // Handy shorthand for visiting a single pointer.
4823  virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
4824
4825  // Visits a contiguous arrays of external references (references to the C++
4826  // heap) in the half-open range [start, end). Any or all of the values
4827  // may be modified on return.
4828  virtual void VisitExternalReferences(Address* start, Address* end) {}
4829
4830  inline void VisitExternalReference(Address* p) {
4831    VisitExternalReferences(p, p + 1);
4832  }
4833
4834#ifdef DEBUG
4835  // Intended for serialization/deserialization checking: insert, or
4836  // check for the presence of, a tag at this position in the stream.
4837  virtual void Synchronize(const char* tag) {}
4838#else
4839  inline void Synchronize(const char* tag) {}
4840#endif
4841};
4842
4843
4844// BooleanBit is a helper class for setting and getting a bit in an
4845// integer or Smi.
4846class BooleanBit : public AllStatic {
4847 public:
4848  static inline bool get(Smi* smi, int bit_position) {
4849    return get(smi->value(), bit_position);
4850  }
4851
4852  static inline bool get(int value, int bit_position) {
4853    return (value & (1 << bit_position)) != 0;
4854  }
4855
4856  static inline Smi* set(Smi* smi, int bit_position, bool v) {
4857    return Smi::FromInt(set(smi->value(), bit_position, v));
4858  }
4859
4860  static inline int set(int value, int bit_position, bool v) {
4861    if (v) {
4862      value |= (1 << bit_position);
4863    } else {
4864      value &= ~(1 << bit_position);
4865    }
4866    return value;
4867  }
4868};
4869
4870} }  // namespace v8::internal
4871
4872#endif  // V8_OBJECTS_H_
4873