serialize.cc revision 592a9fc1d8ea420377a2e7efd0600e20b058be2b
1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "accessors.h"
31#include "api.h"
32#include "bootstrapper.h"
33#include "execution.h"
34#include "global-handles.h"
35#include "ic-inl.h"
36#include "natives.h"
37#include "platform.h"
38#include "runtime.h"
39#include "serialize.h"
40#include "stub-cache.h"
41#include "v8threads.h"
42
43namespace v8 {
44namespace internal {
45
46
47// -----------------------------------------------------------------------------
48// Coding of external references.
49
50// The encoding of an external reference. The type is in the high word.
51// The id is in the low word.
52static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
53  return static_cast<uint32_t>(type) << 16 | id;
54}
55
56
57static int* GetInternalPointer(StatsCounter* counter) {
58  // All counters refer to dummy_counter, if deserializing happens without
59  // setting up counters.
60  static int dummy_counter = 0;
61  return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
62}
63
64
65ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
66  ExternalReferenceTable* external_reference_table =
67      isolate->external_reference_table();
68  if (external_reference_table == NULL) {
69    external_reference_table = new ExternalReferenceTable(isolate);
70    isolate->set_external_reference_table(external_reference_table);
71  }
72  return external_reference_table;
73}
74
75
76void ExternalReferenceTable::AddFromId(TypeCode type,
77                                       uint16_t id,
78                                       const char* name,
79                                       Isolate* isolate) {
80  Address address;
81  switch (type) {
82    case C_BUILTIN: {
83      ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
84      address = ref.address();
85      break;
86    }
87    case BUILTIN: {
88      ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
89      address = ref.address();
90      break;
91    }
92    case RUNTIME_FUNCTION: {
93      ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
94      address = ref.address();
95      break;
96    }
97    case IC_UTILITY: {
98      ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
99                            isolate);
100      address = ref.address();
101      break;
102    }
103    default:
104      UNREACHABLE();
105      return;
106  }
107  Add(address, type, id, name);
108}
109
110
111void ExternalReferenceTable::Add(Address address,
112                                 TypeCode type,
113                                 uint16_t id,
114                                 const char* name) {
115  ASSERT_NE(NULL, address);
116  ExternalReferenceEntry entry;
117  entry.address = address;
118  entry.code = EncodeExternal(type, id);
119  entry.name = name;
120  ASSERT_NE(0, entry.code);
121  refs_.Add(entry);
122  if (id > max_id_[type]) max_id_[type] = id;
123}
124
125
126void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
127  for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
128    max_id_[type_code] = 0;
129  }
130
131  // The following populates all of the different type of external references
132  // into the ExternalReferenceTable.
133  //
134  // NOTE: This function was originally 100k of code.  It has since been
135  // rewritten to be mostly table driven, as the callback macro style tends to
136  // very easily cause code bloat.  Please be careful in the future when adding
137  // new references.
138
139  struct RefTableEntry {
140    TypeCode type;
141    uint16_t id;
142    const char* name;
143  };
144
145  static const RefTableEntry ref_table[] = {
146  // Builtins
147#define DEF_ENTRY_C(name, ignored) \
148  { C_BUILTIN, \
149    Builtins::c_##name, \
150    "Builtins::" #name },
151
152  BUILTIN_LIST_C(DEF_ENTRY_C)
153#undef DEF_ENTRY_C
154
155#define DEF_ENTRY_C(name, ignored) \
156  { BUILTIN, \
157    Builtins::k##name, \
158    "Builtins::" #name },
159#define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)
160
161  BUILTIN_LIST_C(DEF_ENTRY_C)
162  BUILTIN_LIST_A(DEF_ENTRY_A)
163  BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
164#undef DEF_ENTRY_C
165#undef DEF_ENTRY_A
166
167  // Runtime functions
168#define RUNTIME_ENTRY(name, nargs, ressize) \
169  { RUNTIME_FUNCTION, \
170    Runtime::k##name, \
171    "Runtime::" #name },
172
173  RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
174#undef RUNTIME_ENTRY
175
176  // IC utilities
177#define IC_ENTRY(name) \
178  { IC_UTILITY, \
179    IC::k##name, \
180    "IC::" #name },
181
182  IC_UTIL_LIST(IC_ENTRY)
183#undef IC_ENTRY
184  };  // end of ref_table[].
185
186  for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) {
187    AddFromId(ref_table[i].type,
188              ref_table[i].id,
189              ref_table[i].name,
190              isolate);
191  }
192
193#ifdef ENABLE_DEBUGGER_SUPPORT
194  // Debug addresses
195  Add(Debug_Address(Debug::k_after_break_target_address).address(isolate),
196      DEBUG_ADDRESS,
197      Debug::k_after_break_target_address << kDebugIdShift,
198      "Debug::after_break_target_address()");
199  Add(Debug_Address(Debug::k_debug_break_slot_address).address(isolate),
200      DEBUG_ADDRESS,
201      Debug::k_debug_break_slot_address << kDebugIdShift,
202      "Debug::debug_break_slot_address()");
203  Add(Debug_Address(Debug::k_debug_break_return_address).address(isolate),
204      DEBUG_ADDRESS,
205      Debug::k_debug_break_return_address << kDebugIdShift,
206      "Debug::debug_break_return_address()");
207  Add(Debug_Address(Debug::k_restarter_frame_function_pointer).address(isolate),
208      DEBUG_ADDRESS,
209      Debug::k_restarter_frame_function_pointer << kDebugIdShift,
210      "Debug::restarter_frame_function_pointer_address()");
211#endif
212
213  // Stat counters
214  struct StatsRefTableEntry {
215    StatsCounter* (Counters::*counter)();
216    uint16_t id;
217    const char* name;
218  };
219
220  const StatsRefTableEntry stats_ref_table[] = {
221#define COUNTER_ENTRY(name, caption) \
222  { &Counters::name,    \
223    Counters::k_##name, \
224    "Counters::" #name },
225
226  STATS_COUNTER_LIST_1(COUNTER_ENTRY)
227  STATS_COUNTER_LIST_2(COUNTER_ENTRY)
228#undef COUNTER_ENTRY
229  };  // end of stats_ref_table[].
230
231  Counters* counters = isolate->counters();
232  for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) {
233    Add(reinterpret_cast<Address>(GetInternalPointer(
234            (counters->*(stats_ref_table[i].counter))())),
235        STATS_COUNTER,
236        stats_ref_table[i].id,
237        stats_ref_table[i].name);
238  }
239
240  // Top addresses
241
242  const char* AddressNames[] = {
243#define BUILD_NAME_LITERAL(CamelName, hacker_name)      \
244    "Isolate::" #hacker_name "_address",
245    FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL)
246    NULL
247#undef C
248  };
249
250  for (uint16_t i = 0; i < Isolate::kIsolateAddressCount; ++i) {
251    Add(isolate->get_address_from_id((Isolate::AddressId)i),
252        TOP_ADDRESS, i, AddressNames[i]);
253  }
254
255  // Accessors
256#define ACCESSOR_DESCRIPTOR_DECLARATION(name) \
257  Add((Address)&Accessors::name, \
258      ACCESSOR, \
259      Accessors::k##name, \
260      "Accessors::" #name);
261
262  ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION)
263#undef ACCESSOR_DESCRIPTOR_DECLARATION
264
265  StubCache* stub_cache = isolate->stub_cache();
266
267  // Stub cache tables
268  Add(stub_cache->key_reference(StubCache::kPrimary).address(),
269      STUB_CACHE_TABLE,
270      1,
271      "StubCache::primary_->key");
272  Add(stub_cache->value_reference(StubCache::kPrimary).address(),
273      STUB_CACHE_TABLE,
274      2,
275      "StubCache::primary_->value");
276  Add(stub_cache->key_reference(StubCache::kSecondary).address(),
277      STUB_CACHE_TABLE,
278      3,
279      "StubCache::secondary_->key");
280  Add(stub_cache->value_reference(StubCache::kSecondary).address(),
281      STUB_CACHE_TABLE,
282      4,
283      "StubCache::secondary_->value");
284
285  // Runtime entries
286  Add(ExternalReference::perform_gc_function(isolate).address(),
287      RUNTIME_ENTRY,
288      1,
289      "Runtime::PerformGC");
290  Add(ExternalReference::fill_heap_number_with_random_function(
291          isolate).address(),
292      RUNTIME_ENTRY,
293      2,
294      "V8::FillHeapNumberWithRandom");
295  Add(ExternalReference::random_uint32_function(isolate).address(),
296      RUNTIME_ENTRY,
297      3,
298      "V8::Random");
299  Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
300      RUNTIME_ENTRY,
301      4,
302      "HandleScope::DeleteExtensions");
303  Add(ExternalReference::
304          incremental_marking_record_write_function(isolate).address(),
305      RUNTIME_ENTRY,
306      5,
307      "IncrementalMarking::RecordWrite");
308  Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
309      RUNTIME_ENTRY,
310      6,
311      "StoreBuffer::StoreBufferOverflow");
312  Add(ExternalReference::
313          incremental_evacuation_record_write_function(isolate).address(),
314      RUNTIME_ENTRY,
315      7,
316      "IncrementalMarking::RecordWrite");
317
318
319
320  // Miscellaneous
321  Add(ExternalReference::roots_array_start(isolate).address(),
322      UNCLASSIFIED,
323      3,
324      "Heap::roots_array_start()");
325  Add(ExternalReference::address_of_stack_limit(isolate).address(),
326      UNCLASSIFIED,
327      4,
328      "StackGuard::address_of_jslimit()");
329  Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
330      UNCLASSIFIED,
331      5,
332      "StackGuard::address_of_real_jslimit()");
333#ifndef V8_INTERPRETED_REGEXP
334  Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
335      UNCLASSIFIED,
336      6,
337      "RegExpStack::limit_address()");
338  Add(ExternalReference::address_of_regexp_stack_memory_address(
339          isolate).address(),
340      UNCLASSIFIED,
341      7,
342      "RegExpStack::memory_address()");
343  Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
344      UNCLASSIFIED,
345      8,
346      "RegExpStack::memory_size()");
347  Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
348      UNCLASSIFIED,
349      9,
350      "OffsetsVector::static_offsets_vector");
351#endif  // V8_INTERPRETED_REGEXP
352  Add(ExternalReference::new_space_start(isolate).address(),
353      UNCLASSIFIED,
354      10,
355      "Heap::NewSpaceStart()");
356  Add(ExternalReference::new_space_mask(isolate).address(),
357      UNCLASSIFIED,
358      11,
359      "Heap::NewSpaceMask()");
360  Add(ExternalReference::heap_always_allocate_scope_depth(isolate).address(),
361      UNCLASSIFIED,
362      12,
363      "Heap::always_allocate_scope_depth()");
364  Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
365      UNCLASSIFIED,
366      14,
367      "Heap::NewSpaceAllocationLimitAddress()");
368  Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
369      UNCLASSIFIED,
370      15,
371      "Heap::NewSpaceAllocationTopAddress()");
372#ifdef ENABLE_DEBUGGER_SUPPORT
373  Add(ExternalReference::debug_break(isolate).address(),
374      UNCLASSIFIED,
375      16,
376      "Debug::Break()");
377  Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
378      UNCLASSIFIED,
379      17,
380      "Debug::step_in_fp_addr()");
381#endif
382  Add(ExternalReference::double_fp_operation(Token::ADD, isolate).address(),
383      UNCLASSIFIED,
384      18,
385      "add_two_doubles");
386  Add(ExternalReference::double_fp_operation(Token::SUB, isolate).address(),
387      UNCLASSIFIED,
388      19,
389      "sub_two_doubles");
390  Add(ExternalReference::double_fp_operation(Token::MUL, isolate).address(),
391      UNCLASSIFIED,
392      20,
393      "mul_two_doubles");
394  Add(ExternalReference::double_fp_operation(Token::DIV, isolate).address(),
395      UNCLASSIFIED,
396      21,
397      "div_two_doubles");
398  Add(ExternalReference::double_fp_operation(Token::MOD, isolate).address(),
399      UNCLASSIFIED,
400      22,
401      "mod_two_doubles");
402  Add(ExternalReference::compare_doubles(isolate).address(),
403      UNCLASSIFIED,
404      23,
405      "compare_doubles");
406#ifndef V8_INTERPRETED_REGEXP
407  Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
408      UNCLASSIFIED,
409      24,
410      "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
411  Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
412      UNCLASSIFIED,
413      25,
414      "RegExpMacroAssembler*::CheckStackGuardState()");
415  Add(ExternalReference::re_grow_stack(isolate).address(),
416      UNCLASSIFIED,
417      26,
418      "NativeRegExpMacroAssembler::GrowStack()");
419  Add(ExternalReference::re_word_character_map().address(),
420      UNCLASSIFIED,
421      27,
422      "NativeRegExpMacroAssembler::word_character_map");
423#endif  // V8_INTERPRETED_REGEXP
424  // Keyed lookup cache.
425  Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
426      UNCLASSIFIED,
427      28,
428      "KeyedLookupCache::keys()");
429  Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
430      UNCLASSIFIED,
431      29,
432      "KeyedLookupCache::field_offsets()");
433  Add(ExternalReference::transcendental_cache_array_address(isolate).address(),
434      UNCLASSIFIED,
435      30,
436      "TranscendentalCache::caches()");
437  Add(ExternalReference::handle_scope_next_address().address(),
438      UNCLASSIFIED,
439      31,
440      "HandleScope::next");
441  Add(ExternalReference::handle_scope_limit_address().address(),
442      UNCLASSIFIED,
443      32,
444      "HandleScope::limit");
445  Add(ExternalReference::handle_scope_level_address().address(),
446      UNCLASSIFIED,
447      33,
448      "HandleScope::level");
449  Add(ExternalReference::new_deoptimizer_function(isolate).address(),
450      UNCLASSIFIED,
451      34,
452      "Deoptimizer::New()");
453  Add(ExternalReference::compute_output_frames_function(isolate).address(),
454      UNCLASSIFIED,
455      35,
456      "Deoptimizer::ComputeOutputFrames()");
457  Add(ExternalReference::address_of_min_int().address(),
458      UNCLASSIFIED,
459      36,
460      "LDoubleConstant::min_int");
461  Add(ExternalReference::address_of_one_half().address(),
462      UNCLASSIFIED,
463      37,
464      "LDoubleConstant::one_half");
465  Add(ExternalReference::isolate_address().address(),
466      UNCLASSIFIED,
467      38,
468      "isolate");
469  Add(ExternalReference::address_of_minus_zero().address(),
470      UNCLASSIFIED,
471      39,
472      "LDoubleConstant::minus_zero");
473  Add(ExternalReference::address_of_negative_infinity().address(),
474      UNCLASSIFIED,
475      40,
476      "LDoubleConstant::negative_infinity");
477  Add(ExternalReference::power_double_double_function(isolate).address(),
478      UNCLASSIFIED,
479      41,
480      "power_double_double_function");
481  Add(ExternalReference::power_double_int_function(isolate).address(),
482      UNCLASSIFIED,
483      42,
484      "power_double_int_function");
485  Add(ExternalReference::store_buffer_top(isolate).address(),
486      UNCLASSIFIED,
487      43,
488      "store_buffer_top");
489  Add(ExternalReference::address_of_canonical_non_hole_nan().address(),
490      UNCLASSIFIED,
491      44,
492      "canonical_nan");
493  Add(ExternalReference::address_of_the_hole_nan().address(),
494      UNCLASSIFIED,
495      45,
496      "the_hole_nan");
497}
498
499
500ExternalReferenceEncoder::ExternalReferenceEncoder()
501    : encodings_(Match),
502      isolate_(Isolate::Current()) {
503  ExternalReferenceTable* external_references =
504      ExternalReferenceTable::instance(isolate_);
505  for (int i = 0; i < external_references->size(); ++i) {
506    Put(external_references->address(i), i);
507  }
508}
509
510
511uint32_t ExternalReferenceEncoder::Encode(Address key) const {
512  int index = IndexOf(key);
513  ASSERT(key == NULL || index >= 0);
514  return index >=0 ?
515         ExternalReferenceTable::instance(isolate_)->code(index) : 0;
516}
517
518
519const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
520  int index = IndexOf(key);
521  return index >= 0 ?
522      ExternalReferenceTable::instance(isolate_)->name(index) : NULL;
523}
524
525
526int ExternalReferenceEncoder::IndexOf(Address key) const {
527  if (key == NULL) return -1;
528  HashMap::Entry* entry =
529      const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
530  return entry == NULL
531      ? -1
532      : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
533}
534
535
536void ExternalReferenceEncoder::Put(Address key, int index) {
537  HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
538  entry->value = reinterpret_cast<void*>(index);
539}
540
541
542ExternalReferenceDecoder::ExternalReferenceDecoder()
543    : encodings_(NewArray<Address*>(kTypeCodeCount)),
544      isolate_(Isolate::Current()) {
545  ExternalReferenceTable* external_references =
546      ExternalReferenceTable::instance(isolate_);
547  for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
548    int max = external_references->max_id(type) + 1;
549    encodings_[type] = NewArray<Address>(max + 1);
550  }
551  for (int i = 0; i < external_references->size(); ++i) {
552    Put(external_references->code(i), external_references->address(i));
553  }
554}
555
556
557ExternalReferenceDecoder::~ExternalReferenceDecoder() {
558  for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
559    DeleteArray(encodings_[type]);
560  }
561  DeleteArray(encodings_);
562}
563
564
565bool Serializer::serialization_enabled_ = false;
566bool Serializer::too_late_to_enable_now_ = false;
567
568
569Deserializer::Deserializer(SnapshotByteSource* source)
570    : isolate_(NULL),
571      source_(source),
572      external_reference_decoder_(NULL) {
573}
574
575
576// This routine both allocates a new object, and also keeps
577// track of where objects have been allocated so that we can
578// fix back references when deserializing.
579Address Deserializer::Allocate(int space_index, Space* space, int size) {
580  Address address;
581  if (!SpaceIsLarge(space_index)) {
582    ASSERT(!SpaceIsPaged(space_index) ||
583           size <= Page::kPageSize - Page::kObjectStartOffset);
584    MaybeObject* maybe_new_allocation;
585    if (space_index == NEW_SPACE) {
586      maybe_new_allocation =
587          reinterpret_cast<NewSpace*>(space)->AllocateRaw(size);
588    } else {
589      maybe_new_allocation =
590          reinterpret_cast<PagedSpace*>(space)->AllocateRaw(size);
591    }
592    ASSERT(!maybe_new_allocation->IsFailure());
593    Object* new_allocation = maybe_new_allocation->ToObjectUnchecked();
594    HeapObject* new_object = HeapObject::cast(new_allocation);
595    address = new_object->address();
596    high_water_[space_index] = address + size;
597  } else {
598    ASSERT(SpaceIsLarge(space_index));
599    LargeObjectSpace* lo_space = reinterpret_cast<LargeObjectSpace*>(space);
600    Object* new_allocation;
601    if (space_index == kLargeData || space_index == kLargeFixedArray) {
602      new_allocation =
603          lo_space->AllocateRaw(size, NOT_EXECUTABLE)->ToObjectUnchecked();
604    } else {
605      ASSERT_EQ(kLargeCode, space_index);
606      new_allocation =
607          lo_space->AllocateRaw(size, EXECUTABLE)->ToObjectUnchecked();
608    }
609    HeapObject* new_object = HeapObject::cast(new_allocation);
610    // Record all large objects in the same space.
611    address = new_object->address();
612    pages_[LO_SPACE].Add(address);
613  }
614  last_object_address_ = address;
615  return address;
616}
617
618
619// This returns the address of an object that has been described in the
620// snapshot as being offset bytes back in a particular space.
621HeapObject* Deserializer::GetAddressFromEnd(int space) {
622  int offset = source_->GetInt();
623  ASSERT(!SpaceIsLarge(space));
624  offset <<= kObjectAlignmentBits;
625  return HeapObject::FromAddress(high_water_[space] - offset);
626}
627
628
629// This returns the address of an object that has been described in the
630// snapshot as being offset bytes into a particular space.
631HeapObject* Deserializer::GetAddressFromStart(int space) {
632  int offset = source_->GetInt();
633  if (SpaceIsLarge(space)) {
634    // Large spaces have one object per 'page'.
635    return HeapObject::FromAddress(pages_[LO_SPACE][offset]);
636  }
637  offset <<= kObjectAlignmentBits;
638  if (space == NEW_SPACE) {
639    // New space has only one space - numbered 0.
640    return HeapObject::FromAddress(pages_[space][0] + offset);
641  }
642  ASSERT(SpaceIsPaged(space));
643  int page_of_pointee = offset >> kPageSizeBits;
644  Address object_address = pages_[space][page_of_pointee] +
645                           (offset & Page::kPageAlignmentMask);
646  return HeapObject::FromAddress(object_address);
647}
648
649
650void Deserializer::Deserialize() {
651  isolate_ = Isolate::Current();
652  ASSERT(isolate_ != NULL);
653  // Don't GC while deserializing - just expand the heap.
654  AlwaysAllocateScope always_allocate;
655  // Don't use the free lists while deserializing.
656  LinearAllocationScope allocate_linearly;
657  // No active threads.
658  ASSERT_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
659  // No active handles.
660  ASSERT(isolate_->handle_scope_implementer()->blocks()->is_empty());
661  // Make sure the entire partial snapshot cache is traversed, filling it with
662  // valid object pointers.
663  isolate_->set_serialize_partial_snapshot_cache_length(
664      Isolate::kPartialSnapshotCacheCapacity);
665  ASSERT_EQ(NULL, external_reference_decoder_);
666  external_reference_decoder_ = new ExternalReferenceDecoder();
667  isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
668  isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
669
670  isolate_->heap()->set_global_contexts_list(
671      isolate_->heap()->undefined_value());
672
673  // Update data pointers to the external strings containing natives sources.
674  for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
675    Object* source = isolate_->heap()->natives_source_cache()->get(i);
676    if (!source->IsUndefined()) {
677      ExternalAsciiString::cast(source)->update_data_cache();
678    }
679  }
680}
681
682
683void Deserializer::DeserializePartial(Object** root) {
684  isolate_ = Isolate::Current();
685  // Don't GC while deserializing - just expand the heap.
686  AlwaysAllocateScope always_allocate;
687  // Don't use the free lists while deserializing.
688  LinearAllocationScope allocate_linearly;
689  if (external_reference_decoder_ == NULL) {
690    external_reference_decoder_ = new ExternalReferenceDecoder();
691  }
692  VisitPointer(root);
693}
694
695
696Deserializer::~Deserializer() {
697  ASSERT(source_->AtEOF());
698  if (external_reference_decoder_) {
699    delete external_reference_decoder_;
700    external_reference_decoder_ = NULL;
701  }
702}
703
704
705// This is called on the roots.  It is the driver of the deserialization
706// process.  It is also called on the body of each function.
707void Deserializer::VisitPointers(Object** start, Object** end) {
708  // The space must be new space.  Any other space would cause ReadChunk to try
709  // to update the remembered using NULL as the address.
710  ReadChunk(start, end, NEW_SPACE, NULL);
711}
712
713
714// This routine writes the new object into the pointer provided and then
715// returns true if the new object was in young space and false otherwise.
716// The reason for this strange interface is that otherwise the object is
717// written very late, which means the FreeSpace map is not set up by the
718// time we need to use it to mark the space at the end of a page free.
719void Deserializer::ReadObject(int space_number,
720                              Space* space,
721                              Object** write_back) {
722  int size = source_->GetInt() << kObjectAlignmentBits;
723  Address address = Allocate(space_number, space, size);
724  *write_back = HeapObject::FromAddress(address);
725  Object** current = reinterpret_cast<Object**>(address);
726  Object** limit = current + (size >> kPointerSizeLog2);
727  if (FLAG_log_snapshot_positions) {
728    LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
729  }
730  ReadChunk(current, limit, space_number, address);
731#ifdef DEBUG
732  bool is_codespace = (space == HEAP->code_space()) ||
733      ((space == HEAP->lo_space()) && (space_number == kLargeCode));
734  ASSERT(HeapObject::FromAddress(address)->IsCode() == is_codespace);
735#endif
736}
737
738
739// This macro is always used with a constant argument so it should all fold
740// away to almost nothing in the generated code.  It might be nicer to do this
741// with the ternary operator but there are type issues with that.
742#define ASSIGN_DEST_SPACE(space_number)                                        \
743  Space* dest_space;                                                           \
744  if (space_number == NEW_SPACE) {                                             \
745    dest_space = isolate->heap()->new_space();                                \
746  } else if (space_number == OLD_POINTER_SPACE) {                              \
747    dest_space = isolate->heap()->old_pointer_space();                         \
748  } else if (space_number == OLD_DATA_SPACE) {                                 \
749    dest_space = isolate->heap()->old_data_space();                            \
750  } else if (space_number == CODE_SPACE) {                                     \
751    dest_space = isolate->heap()->code_space();                                \
752  } else if (space_number == MAP_SPACE) {                                      \
753    dest_space = isolate->heap()->map_space();                                 \
754  } else if (space_number == CELL_SPACE) {                                     \
755    dest_space = isolate->heap()->cell_space();                                \
756  } else {                                                                     \
757    ASSERT(space_number >= LO_SPACE);                                          \
758    dest_space = isolate->heap()->lo_space();                                  \
759  }
760
761
762static const int kUnknownOffsetFromStart = -1;
763
764
765void Deserializer::ReadChunk(Object** current,
766                             Object** limit,
767                             int source_space,
768                             Address current_object_address) {
769  Isolate* const isolate = isolate_;
770  bool write_barrier_needed = (current_object_address != NULL &&
771                               source_space != NEW_SPACE &&
772                               source_space != CELL_SPACE &&
773                               source_space != CODE_SPACE &&
774                               source_space != OLD_DATA_SPACE);
775  while (current < limit) {
776    int data = source_->Get();
777    switch (data) {
778#define CASE_STATEMENT(where, how, within, space_number)                       \
779      case where + how + within + space_number:                                \
780      ASSERT((where & ~kPointedToMask) == 0);                                  \
781      ASSERT((how & ~kHowToCodeMask) == 0);                                    \
782      ASSERT((within & ~kWhereToPointMask) == 0);                              \
783      ASSERT((space_number & ~kSpaceMask) == 0);
784
785#define CASE_BODY(where, how, within, space_number_if_any, offset_from_start)  \
786      {                                                                        \
787        bool emit_write_barrier = false;                                       \
788        bool current_was_incremented = false;                                  \
789        int space_number =  space_number_if_any == kAnyOldSpace ?              \
790                            (data & kSpaceMask) : space_number_if_any;         \
791        if (where == kNewObject && how == kPlain && within == kStartOfObject) {\
792          ASSIGN_DEST_SPACE(space_number)                                      \
793          ReadObject(space_number, dest_space, current);                       \
794          emit_write_barrier = (space_number == NEW_SPACE);                    \
795        } else {                                                               \
796          Object* new_object = NULL;  /* May not be a real Object pointer. */  \
797          if (where == kNewObject) {                                           \
798            ASSIGN_DEST_SPACE(space_number)                                    \
799            ReadObject(space_number, dest_space, &new_object);                 \
800          } else if (where == kRootArray) {                                    \
801            int root_id = source_->GetInt();                                   \
802            new_object = isolate->heap()->roots_array_start()[root_id];        \
803            emit_write_barrier = isolate->heap()->InNewSpace(new_object);      \
804          } else if (where == kPartialSnapshotCache) {                         \
805            int cache_index = source_->GetInt();                               \
806            new_object = isolate->serialize_partial_snapshot_cache()           \
807                [cache_index];                                                 \
808            emit_write_barrier = isolate->heap()->InNewSpace(new_object);      \
809          } else if (where == kExternalReference) {                            \
810            int reference_id = source_->GetInt();                              \
811            Address address = external_reference_decoder_->                    \
812                Decode(reference_id);                                          \
813            new_object = reinterpret_cast<Object*>(address);                   \
814          } else if (where == kBackref) {                                      \
815            emit_write_barrier = (space_number == NEW_SPACE);                  \
816            new_object = GetAddressFromEnd(data & kSpaceMask);                 \
817          } else {                                                             \
818            ASSERT(where == kFromStart);                                       \
819            if (offset_from_start == kUnknownOffsetFromStart) {                \
820              emit_write_barrier = (space_number == NEW_SPACE);                \
821              new_object = GetAddressFromStart(data & kSpaceMask);             \
822            } else {                                                           \
823              Address object_address = pages_[space_number][0] +               \
824                  (offset_from_start << kObjectAlignmentBits);                 \
825              new_object = HeapObject::FromAddress(object_address);            \
826            }                                                                  \
827          }                                                                    \
828          if (within == kFirstInstruction) {                                   \
829            Code* new_code_object = reinterpret_cast<Code*>(new_object);       \
830            new_object = reinterpret_cast<Object*>(                            \
831                new_code_object->instruction_start());                         \
832          }                                                                    \
833          if (how == kFromCode) {                                              \
834            Address location_of_branch_data =                                  \
835                reinterpret_cast<Address>(current);                            \
836            Assembler::set_target_at(location_of_branch_data,                  \
837                                     reinterpret_cast<Address>(new_object));   \
838            if (within == kFirstInstruction) {                                 \
839              location_of_branch_data += Assembler::kCallTargetSize;           \
840              current = reinterpret_cast<Object**>(location_of_branch_data);   \
841              current_was_incremented = true;                                  \
842            }                                                                  \
843          } else {                                                             \
844            *current = new_object;                                             \
845          }                                                                    \
846        }                                                                      \
847        if (emit_write_barrier && write_barrier_needed) {                      \
848          Address current_address = reinterpret_cast<Address>(current);        \
849          isolate->heap()->RecordWrite(                                        \
850              current_object_address,                                          \
851              static_cast<int>(current_address - current_object_address));     \
852        }                                                                      \
853        if (!current_was_incremented) {                                        \
854          current++;                                                           \
855        }                                                                      \
856        break;                                                                 \
857      }                                                                        \
858
859// This generates a case and a body for each space.  The large object spaces are
860// very rare in snapshots so they are grouped in one body.
861#define ONE_PER_SPACE(where, how, within)                                      \
862  CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
863  CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart)            \
864  CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
865  CASE_BODY(where, how, within, OLD_DATA_SPACE, kUnknownOffsetFromStart)       \
866  CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
867  CASE_BODY(where, how, within, OLD_POINTER_SPACE, kUnknownOffsetFromStart)    \
868  CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
869  CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart)           \
870  CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
871  CASE_BODY(where, how, within, CELL_SPACE, kUnknownOffsetFromStart)           \
872  CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
873  CASE_BODY(where, how, within, MAP_SPACE, kUnknownOffsetFromStart)            \
874  CASE_STATEMENT(where, how, within, kLargeData)                               \
875  CASE_STATEMENT(where, how, within, kLargeCode)                               \
876  CASE_STATEMENT(where, how, within, kLargeFixedArray)                         \
877  CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
878
879// This generates a case and a body for the new space (which has to do extra
880// write barrier handling) and handles the other spaces with 8 fall-through
881// cases and one body.
882#define ALL_SPACES(where, how, within)                                         \
883  CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
884  CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart)            \
885  CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
886  CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
887  CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
888  CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
889  CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
890  CASE_STATEMENT(where, how, within, kLargeData)                               \
891  CASE_STATEMENT(where, how, within, kLargeCode)                               \
892  CASE_STATEMENT(where, how, within, kLargeFixedArray)                         \
893  CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
894
895#define ONE_PER_CODE_SPACE(where, how, within)                                 \
896  CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
897  CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart)           \
898  CASE_STATEMENT(where, how, within, kLargeCode)                               \
899  CASE_BODY(where, how, within, kLargeCode, kUnknownOffsetFromStart)
900
901#define FOUR_CASES(byte_code)             \
902  case byte_code:                         \
903  case byte_code + 1:                     \
904  case byte_code + 2:                     \
905  case byte_code + 3:
906
907#define SIXTEEN_CASES(byte_code)          \
908  FOUR_CASES(byte_code)                   \
909  FOUR_CASES(byte_code + 4)               \
910  FOUR_CASES(byte_code + 8)               \
911  FOUR_CASES(byte_code + 12)
912
913      // We generate 15 cases and bodies that process special tags that combine
914      // the raw data tag and the length into one byte.
915#define RAW_CASE(index, size)                                      \
916      case kRawData + index: {                                     \
917        byte* raw_data_out = reinterpret_cast<byte*>(current);     \
918        source_->CopyRaw(raw_data_out, size);                      \
919        current = reinterpret_cast<Object**>(raw_data_out + size); \
920        break;                                                     \
921      }
922      COMMON_RAW_LENGTHS(RAW_CASE)
923#undef RAW_CASE
924
925      // Deserialize a chunk of raw data that doesn't have one of the popular
926      // lengths.
927      case kRawData: {
928        int size = source_->GetInt();
929        byte* raw_data_out = reinterpret_cast<byte*>(current);
930        source_->CopyRaw(raw_data_out, size);
931        current = reinterpret_cast<Object**>(raw_data_out + size);
932        break;
933      }
934
935      SIXTEEN_CASES(kRootArrayLowConstants)
936      SIXTEEN_CASES(kRootArrayHighConstants) {
937        int root_id = RootArrayConstantFromByteCode(data);
938        Object* object = isolate->heap()->roots_array_start()[root_id];
939        ASSERT(!isolate->heap()->InNewSpace(object));
940        *current++ = object;
941        break;
942      }
943
944      case kRepeat: {
945        int repeats = source_->GetInt();
946        Object* object = current[-1];
947        ASSERT(!isolate->heap()->InNewSpace(object));
948        for (int i = 0; i < repeats; i++) current[i] = object;
949        current += repeats;
950        break;
951      }
952
953      STATIC_ASSERT(kRootArrayNumberOfConstantEncodings ==
954                    Heap::kOldSpaceRoots);
955      STATIC_ASSERT(kMaxRepeats == 12);
956      FOUR_CASES(kConstantRepeat)
957      FOUR_CASES(kConstantRepeat + 4)
958      FOUR_CASES(kConstantRepeat + 8) {
959        int repeats = RepeatsForCode(data);
960        Object* object = current[-1];
961        ASSERT(!isolate->heap()->InNewSpace(object));
962        for (int i = 0; i < repeats; i++) current[i] = object;
963        current += repeats;
964        break;
965      }
966
967      // Deserialize a new object and write a pointer to it to the current
968      // object.
969      ONE_PER_SPACE(kNewObject, kPlain, kStartOfObject)
970      // Support for direct instruction pointers in functions
971      ONE_PER_CODE_SPACE(kNewObject, kPlain, kFirstInstruction)
972      // Deserialize a new code object and write a pointer to its first
973      // instruction to the current code object.
974      ONE_PER_SPACE(kNewObject, kFromCode, kFirstInstruction)
975      // Find a recently deserialized object using its offset from the current
976      // allocation point and write a pointer to it to the current object.
977      ALL_SPACES(kBackref, kPlain, kStartOfObject)
978      // Find a recently deserialized code object using its offset from the
979      // current allocation point and write a pointer to its first instruction
980      // to the current code object or the instruction pointer in a function
981      // object.
982      ALL_SPACES(kBackref, kFromCode, kFirstInstruction)
983      ALL_SPACES(kBackref, kPlain, kFirstInstruction)
984      // Find an already deserialized object using its offset from the start
985      // and write a pointer to it to the current object.
986      ALL_SPACES(kFromStart, kPlain, kStartOfObject)
987      ALL_SPACES(kFromStart, kPlain, kFirstInstruction)
988      // Find an already deserialized code object using its offset from the
989      // start and write a pointer to its first instruction to the current code
990      // object.
991      ALL_SPACES(kFromStart, kFromCode, kFirstInstruction)
992      // Find an object in the roots array and write a pointer to it to the
993      // current object.
994      CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
995      CASE_BODY(kRootArray, kPlain, kStartOfObject, 0, kUnknownOffsetFromStart)
996      // Find an object in the partial snapshots cache and write a pointer to it
997      // to the current object.
998      CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
999      CASE_BODY(kPartialSnapshotCache,
1000                kPlain,
1001                kStartOfObject,
1002                0,
1003                kUnknownOffsetFromStart)
1004      // Find an code entry in the partial snapshots cache and
1005      // write a pointer to it to the current object.
1006      CASE_STATEMENT(kPartialSnapshotCache, kPlain, kFirstInstruction, 0)
1007      CASE_BODY(kPartialSnapshotCache,
1008                kPlain,
1009                kFirstInstruction,
1010                0,
1011                kUnknownOffsetFromStart)
1012      // Find an external reference and write a pointer to it to the current
1013      // object.
1014      CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
1015      CASE_BODY(kExternalReference,
1016                kPlain,
1017                kStartOfObject,
1018                0,
1019                kUnknownOffsetFromStart)
1020      // Find an external reference and write a pointer to it in the current
1021      // code object.
1022      CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
1023      CASE_BODY(kExternalReference,
1024                kFromCode,
1025                kStartOfObject,
1026                0,
1027                kUnknownOffsetFromStart)
1028
1029#undef CASE_STATEMENT
1030#undef CASE_BODY
1031#undef ONE_PER_SPACE
1032#undef ALL_SPACES
1033#undef ASSIGN_DEST_SPACE
1034
1035      case kNewPage: {
1036        int space = source_->Get();
1037        pages_[space].Add(last_object_address_);
1038        if (space == CODE_SPACE) {
1039          CPU::FlushICache(last_object_address_, Page::kPageSize);
1040        }
1041        break;
1042      }
1043
1044      case kSkip: {
1045        current++;
1046        break;
1047      }
1048
1049      case kNativesStringResource: {
1050        int index = source_->Get();
1051        Vector<const char> source_vector = Natives::GetRawScriptSource(index);
1052        NativesExternalStringResource* resource =
1053            new NativesExternalStringResource(isolate->bootstrapper(),
1054                                              source_vector.start(),
1055                                              source_vector.length());
1056        *current++ = reinterpret_cast<Object*>(resource);
1057        break;
1058      }
1059
1060      case kSynchronize: {
1061        // If we get here then that indicates that you have a mismatch between
1062        // the number of GC roots when serializing and deserializing.
1063        UNREACHABLE();
1064      }
1065
1066      default:
1067        UNREACHABLE();
1068    }
1069  }
1070  ASSERT_EQ(current, limit);
1071}
1072
1073
1074void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
1075  const int max_shift = ((kPointerSize * kBitsPerByte) / 7) * 7;
1076  for (int shift = max_shift; shift > 0; shift -= 7) {
1077    if (integer >= static_cast<uintptr_t>(1u) << shift) {
1078      Put((static_cast<int>((integer >> shift)) & 0x7f) | 0x80, "IntPart");
1079    }
1080  }
1081  PutSection(static_cast<int>(integer & 0x7f), "IntLastPart");
1082}
1083
1084#ifdef DEBUG
1085
1086void Deserializer::Synchronize(const char* tag) {
1087  int data = source_->Get();
1088  // If this assert fails then that indicates that you have a mismatch between
1089  // the number of GC roots when serializing and deserializing.
1090  ASSERT_EQ(kSynchronize, data);
1091  do {
1092    int character = source_->Get();
1093    if (character == 0) break;
1094    if (FLAG_debug_serialization) {
1095      PrintF("%c", character);
1096    }
1097  } while (true);
1098  if (FLAG_debug_serialization) {
1099    PrintF("\n");
1100  }
1101}
1102
1103
1104void Serializer::Synchronize(const char* tag) {
1105  sink_->Put(kSynchronize, tag);
1106  int character;
1107  do {
1108    character = *tag++;
1109    sink_->PutSection(character, "TagCharacter");
1110  } while (character != 0);
1111}
1112
1113#endif
1114
1115Serializer::Serializer(SnapshotByteSink* sink)
1116    : sink_(sink),
1117      current_root_index_(0),
1118      external_reference_encoder_(new ExternalReferenceEncoder),
1119      large_object_total_(0),
1120      root_index_wave_front_(0) {
1121  isolate_ = Isolate::Current();
1122  // The serializer is meant to be used only to generate initial heap images
1123  // from a context in which there is only one isolate.
1124  ASSERT(isolate_->IsDefaultIsolate());
1125  for (int i = 0; i <= LAST_SPACE; i++) {
1126    fullness_[i] = 0;
1127  }
1128}
1129
1130
1131Serializer::~Serializer() {
1132  delete external_reference_encoder_;
1133}
1134
1135
1136void StartupSerializer::SerializeStrongReferences() {
1137  Isolate* isolate = Isolate::Current();
1138  // No active threads.
1139  CHECK_EQ(NULL, Isolate::Current()->thread_manager()->FirstThreadStateInUse());
1140  // No active or weak handles.
1141  CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1142  CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1143  // We don't support serializing installed extensions.
1144  CHECK(!isolate->has_installed_extensions());
1145
1146  HEAP->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1147}
1148
1149
1150void PartialSerializer::Serialize(Object** object) {
1151  this->VisitPointer(object);
1152  Isolate* isolate = Isolate::Current();
1153
1154  // After we have done the partial serialization the partial snapshot cache
1155  // will contain some references needed to decode the partial snapshot.  We
1156  // fill it up with undefineds so it has a predictable length so the
1157  // deserialization code doesn't need to know the length.
1158  for (int index = isolate->serialize_partial_snapshot_cache_length();
1159       index < Isolate::kPartialSnapshotCacheCapacity;
1160       index++) {
1161    isolate->serialize_partial_snapshot_cache()[index] =
1162        isolate->heap()->undefined_value();
1163    startup_serializer_->VisitPointer(
1164        &isolate->serialize_partial_snapshot_cache()[index]);
1165  }
1166  isolate->set_serialize_partial_snapshot_cache_length(
1167      Isolate::kPartialSnapshotCacheCapacity);
1168}
1169
1170
1171void Serializer::VisitPointers(Object** start, Object** end) {
1172  Isolate* isolate = Isolate::Current();
1173
1174  for (Object** current = start; current < end; current++) {
1175    if (start == isolate->heap()->roots_array_start()) {
1176      root_index_wave_front_ =
1177          Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
1178    }
1179    if (reinterpret_cast<Address>(current) ==
1180        isolate->heap()->store_buffer()->TopAddress()) {
1181      sink_->Put(kSkip, "Skip");
1182    } else if ((*current)->IsSmi()) {
1183      sink_->Put(kRawData, "RawData");
1184      sink_->PutInt(kPointerSize, "length");
1185      for (int i = 0; i < kPointerSize; i++) {
1186        sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1187      }
1188    } else {
1189      SerializeObject(*current, kPlain, kStartOfObject);
1190    }
1191  }
1192}
1193
1194
1195// This ensures that the partial snapshot cache keeps things alive during GC and
1196// tracks their movement.  When it is called during serialization of the startup
1197// snapshot the partial snapshot is empty, so nothing happens.  When the partial
1198// (context) snapshot is created, this array is populated with the pointers that
1199// the partial snapshot will need. As that happens we emit serialized objects to
1200// the startup snapshot that correspond to the elements of this cache array.  On
1201// deserialization we therefore need to visit the cache array.  This fills it up
1202// with pointers to deserialized objects.
1203void SerializerDeserializer::Iterate(ObjectVisitor* visitor) {
1204  Isolate* isolate = Isolate::Current();
1205  visitor->VisitPointers(
1206      isolate->serialize_partial_snapshot_cache(),
1207      &isolate->serialize_partial_snapshot_cache()[
1208          isolate->serialize_partial_snapshot_cache_length()]);
1209}
1210
1211
1212// When deserializing we need to set the size of the snapshot cache.  This means
1213// the root iteration code (above) will iterate over array elements, writing the
1214// references to deserialized objects in them.
1215void SerializerDeserializer::SetSnapshotCacheSize(int size) {
1216  Isolate::Current()->set_serialize_partial_snapshot_cache_length(size);
1217}
1218
1219
1220int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1221  Isolate* isolate = Isolate::Current();
1222
1223  for (int i = 0;
1224       i < isolate->serialize_partial_snapshot_cache_length();
1225       i++) {
1226    Object* entry = isolate->serialize_partial_snapshot_cache()[i];
1227    if (entry == heap_object) return i;
1228  }
1229
1230  // We didn't find the object in the cache.  So we add it to the cache and
1231  // then visit the pointer so that it becomes part of the startup snapshot
1232  // and we can refer to it from the partial snapshot.
1233  int length = isolate->serialize_partial_snapshot_cache_length();
1234  CHECK(length < Isolate::kPartialSnapshotCacheCapacity);
1235  isolate->serialize_partial_snapshot_cache()[length] = heap_object;
1236  startup_serializer_->VisitPointer(
1237      &isolate->serialize_partial_snapshot_cache()[length]);
1238  // We don't recurse from the startup snapshot generator into the partial
1239  // snapshot generator.
1240  ASSERT(length == isolate->serialize_partial_snapshot_cache_length());
1241  isolate->set_serialize_partial_snapshot_cache_length(length + 1);
1242  return length;
1243}
1244
1245
1246int Serializer::RootIndex(HeapObject* heap_object) {
1247  Heap* heap = HEAP;
1248  if (heap->InNewSpace(heap_object)) return kInvalidRootIndex;
1249  for (int i = 0; i < root_index_wave_front_; i++) {
1250    Object* root = heap->roots_array_start()[i];
1251    if (!root->IsSmi() && root == heap_object) return i;
1252  }
1253  return kInvalidRootIndex;
1254}
1255
1256
1257// Encode the location of an already deserialized object in order to write its
1258// location into a later object.  We can encode the location as an offset from
1259// the start of the deserialized objects or as an offset backwards from the
1260// current allocation pointer.
1261void Serializer::SerializeReferenceToPreviousObject(
1262    int space,
1263    int address,
1264    HowToCode how_to_code,
1265    WhereToPoint where_to_point) {
1266  int offset = CurrentAllocationAddress(space) - address;
1267  bool from_start = true;
1268  if (SpaceIsPaged(space)) {
1269    // For paged space it is simple to encode back from current allocation if
1270    // the object is on the same page as the current allocation pointer.
1271    if ((CurrentAllocationAddress(space) >> kPageSizeBits) ==
1272        (address >> kPageSizeBits)) {
1273      from_start = false;
1274      address = offset;
1275    }
1276  } else if (space == NEW_SPACE) {
1277    // For new space it is always simple to encode back from current allocation.
1278    if (offset < address) {
1279      from_start = false;
1280      address = offset;
1281    }
1282  }
1283  // If we are actually dealing with real offsets (and not a numbering of
1284  // all objects) then we should shift out the bits that are always 0.
1285  if (!SpaceIsLarge(space)) address >>= kObjectAlignmentBits;
1286  if (from_start) {
1287    sink_->Put(kFromStart + how_to_code + where_to_point + space, "RefSer");
1288    sink_->PutInt(address, "address");
1289  } else {
1290    sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
1291    sink_->PutInt(address, "address");
1292  }
1293}
1294
1295
1296void StartupSerializer::SerializeObject(
1297    Object* o,
1298    HowToCode how_to_code,
1299    WhereToPoint where_to_point) {
1300  CHECK(o->IsHeapObject());
1301  HeapObject* heap_object = HeapObject::cast(o);
1302
1303  int root_index;
1304  if ((root_index = RootIndex(heap_object)) != kInvalidRootIndex) {
1305    PutRoot(root_index, heap_object, how_to_code, where_to_point);
1306    return;
1307  }
1308
1309  if (address_mapper_.IsMapped(heap_object)) {
1310    int space = SpaceOfAlreadySerializedObject(heap_object);
1311    int address = address_mapper_.MappedTo(heap_object);
1312    SerializeReferenceToPreviousObject(space,
1313                                       address,
1314                                       how_to_code,
1315                                       where_to_point);
1316  } else {
1317    // Object has not yet been serialized.  Serialize it here.
1318    ObjectSerializer object_serializer(this,
1319                                       heap_object,
1320                                       sink_,
1321                                       how_to_code,
1322                                       where_to_point);
1323    object_serializer.Serialize();
1324  }
1325}
1326
1327
1328void StartupSerializer::SerializeWeakReferences() {
1329  for (int i = Isolate::Current()->serialize_partial_snapshot_cache_length();
1330       i < Isolate::kPartialSnapshotCacheCapacity;
1331       i++) {
1332    sink_->Put(kRootArray + kPlain + kStartOfObject, "RootSerialization");
1333    sink_->PutInt(Heap::kUndefinedValueRootIndex, "root_index");
1334  }
1335  HEAP->IterateWeakRoots(this, VISIT_ALL);
1336}
1337
1338
1339void Serializer::PutRoot(int root_index,
1340                         HeapObject* object,
1341                         SerializerDeserializer::HowToCode how_to_code,
1342                         SerializerDeserializer::WhereToPoint where_to_point) {
1343  if (how_to_code == kPlain &&
1344      where_to_point == kStartOfObject &&
1345      root_index < kRootArrayNumberOfConstantEncodings &&
1346      !HEAP->InNewSpace(object)) {
1347    if (root_index < kRootArrayNumberOfLowConstantEncodings) {
1348      sink_->Put(kRootArrayLowConstants + root_index, "RootLoConstant");
1349    } else {
1350      sink_->Put(kRootArrayHighConstants + root_index -
1351                     kRootArrayNumberOfLowConstantEncodings,
1352                 "RootHiConstant");
1353    }
1354  } else {
1355    sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1356    sink_->PutInt(root_index, "root_index");
1357  }
1358}
1359
1360
1361void PartialSerializer::SerializeObject(
1362    Object* o,
1363    HowToCode how_to_code,
1364    WhereToPoint where_to_point) {
1365  CHECK(o->IsHeapObject());
1366  HeapObject* heap_object = HeapObject::cast(o);
1367
1368  int root_index;
1369  if ((root_index = RootIndex(heap_object)) != kInvalidRootIndex) {
1370    PutRoot(root_index, heap_object, how_to_code, where_to_point);
1371    return;
1372  }
1373
1374  if (ShouldBeInThePartialSnapshotCache(heap_object)) {
1375    int cache_index = PartialSnapshotCacheIndex(heap_object);
1376    sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1377               "PartialSnapshotCache");
1378    sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1379    return;
1380  }
1381
1382  // Pointers from the partial snapshot to the objects in the startup snapshot
1383  // should go through the root array or through the partial snapshot cache.
1384  // If this is not the case you may have to add something to the root array.
1385  ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object));
1386  // All the symbols that the partial snapshot needs should be either in the
1387  // root table or in the partial snapshot cache.
1388  ASSERT(!heap_object->IsSymbol());
1389
1390  if (address_mapper_.IsMapped(heap_object)) {
1391    int space = SpaceOfAlreadySerializedObject(heap_object);
1392    int address = address_mapper_.MappedTo(heap_object);
1393    SerializeReferenceToPreviousObject(space,
1394                                       address,
1395                                       how_to_code,
1396                                       where_to_point);
1397  } else {
1398    // Object has not yet been serialized.  Serialize it here.
1399    ObjectSerializer serializer(this,
1400                                heap_object,
1401                                sink_,
1402                                how_to_code,
1403                                where_to_point);
1404    serializer.Serialize();
1405  }
1406}
1407
1408
1409void Serializer::ObjectSerializer::Serialize() {
1410  int space = Serializer::SpaceOfObject(object_);
1411  int size = object_->Size();
1412
1413  sink_->Put(kNewObject + reference_representation_ + space,
1414             "ObjectSerialization");
1415  sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
1416
1417  LOG(i::Isolate::Current(),
1418      SnapshotPositionEvent(object_->address(), sink_->Position()));
1419
1420  // Mark this object as already serialized.
1421  bool start_new_page;
1422  int offset = serializer_->Allocate(space, size, &start_new_page);
1423  serializer_->address_mapper()->AddMapping(object_, offset);
1424  if (start_new_page) {
1425    sink_->Put(kNewPage, "NewPage");
1426    sink_->PutSection(space, "NewPageSpace");
1427  }
1428
1429  // Serialize the map (first word of the object).
1430  serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject);
1431
1432  // Serialize the rest of the object.
1433  CHECK_EQ(0, bytes_processed_so_far_);
1434  bytes_processed_so_far_ = kPointerSize;
1435  object_->IterateBody(object_->map()->instance_type(), size, this);
1436  OutputRawData(object_->address() + size);
1437}
1438
1439
1440void Serializer::ObjectSerializer::VisitPointers(Object** start,
1441                                                 Object** end) {
1442  Object** current = start;
1443  while (current < end) {
1444    while (current < end && (*current)->IsSmi()) current++;
1445    if (current < end) OutputRawData(reinterpret_cast<Address>(current));
1446
1447    while (current < end && !(*current)->IsSmi()) {
1448      HeapObject* current_contents = HeapObject::cast(*current);
1449      int root_index = serializer_->RootIndex(current_contents);
1450      // Repeats are not subject to the write barrier so there are only some
1451      // objects that can be used in a repeat encoding.  These are the early
1452      // ones in the root array that are never in new space.
1453      if (current != start &&
1454          root_index != kInvalidRootIndex &&
1455          root_index < kRootArrayNumberOfConstantEncodings &&
1456          current_contents == current[-1]) {
1457        ASSERT(!HEAP->InNewSpace(current_contents));
1458        int repeat_count = 1;
1459        while (current < end - 1 && current[repeat_count] == current_contents) {
1460          repeat_count++;
1461        }
1462        current += repeat_count;
1463        bytes_processed_so_far_ += repeat_count * kPointerSize;
1464        if (repeat_count > kMaxRepeats) {
1465          sink_->Put(kRepeat, "SerializeRepeats");
1466          sink_->PutInt(repeat_count, "SerializeRepeats");
1467        } else {
1468          sink_->Put(CodeForRepeats(repeat_count), "SerializeRepeats");
1469        }
1470      } else {
1471        serializer_->SerializeObject(current_contents, kPlain, kStartOfObject);
1472        bytes_processed_so_far_ += kPointerSize;
1473        current++;
1474      }
1475    }
1476  }
1477}
1478
1479
1480void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
1481  Object** current = rinfo->target_object_address();
1482
1483  OutputRawData(rinfo->target_address_address());
1484  HowToCode representation = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1485  serializer_->SerializeObject(*current, representation, kStartOfObject);
1486  bytes_processed_so_far_ += rinfo->target_address_size();
1487}
1488
1489
1490void Serializer::ObjectSerializer::VisitExternalReferences(Address* start,
1491                                                           Address* end) {
1492  Address references_start = reinterpret_cast<Address>(start);
1493  OutputRawData(references_start);
1494
1495  for (Address* current = start; current < end; current++) {
1496    sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
1497    int reference_id = serializer_->EncodeExternalReference(*current);
1498    sink_->PutInt(reference_id, "reference id");
1499  }
1500  bytes_processed_so_far_ += static_cast<int>((end - start) * kPointerSize);
1501}
1502
1503
1504void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
1505  Address references_start = rinfo->target_address_address();
1506  OutputRawData(references_start);
1507
1508  Address* current = rinfo->target_reference_address();
1509  int representation = rinfo->IsCodedSpecially() ?
1510                       kFromCode + kStartOfObject : kPlain + kStartOfObject;
1511  sink_->Put(kExternalReference + representation, "ExternalRef");
1512  int reference_id = serializer_->EncodeExternalReference(*current);
1513  sink_->PutInt(reference_id, "reference id");
1514  bytes_processed_so_far_ += rinfo->target_address_size();
1515}
1516
1517
1518void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
1519  Address target_start = rinfo->target_address_address();
1520  OutputRawData(target_start);
1521  Address target = rinfo->target_address();
1522  uint32_t encoding = serializer_->EncodeExternalReference(target);
1523  CHECK(target == NULL ? encoding == 0 : encoding != 0);
1524  int representation;
1525  // Can't use a ternary operator because of gcc.
1526  if (rinfo->IsCodedSpecially()) {
1527    representation = kStartOfObject + kFromCode;
1528  } else {
1529    representation = kStartOfObject + kPlain;
1530  }
1531  sink_->Put(kExternalReference + representation, "ExternalReference");
1532  sink_->PutInt(encoding, "reference id");
1533  bytes_processed_so_far_ += rinfo->target_address_size();
1534}
1535
1536
1537void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
1538  CHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
1539  Address target_start = rinfo->target_address_address();
1540  OutputRawData(target_start);
1541  Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
1542  serializer_->SerializeObject(target, kFromCode, kFirstInstruction);
1543  bytes_processed_so_far_ += rinfo->target_address_size();
1544}
1545
1546
1547void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
1548  Code* target = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
1549  OutputRawData(entry_address);
1550  serializer_->SerializeObject(target, kPlain, kFirstInstruction);
1551  bytes_processed_so_far_ += kPointerSize;
1552}
1553
1554
1555void Serializer::ObjectSerializer::VisitGlobalPropertyCell(RelocInfo* rinfo) {
1556  // We shouldn't have any global property cell references in code
1557  // objects in the snapshot.
1558  UNREACHABLE();
1559}
1560
1561
1562void Serializer::ObjectSerializer::VisitExternalAsciiString(
1563    v8::String::ExternalAsciiStringResource** resource_pointer) {
1564  Address references_start = reinterpret_cast<Address>(resource_pointer);
1565  OutputRawData(references_start);
1566  for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
1567    Object* source = HEAP->natives_source_cache()->get(i);
1568    if (!source->IsUndefined()) {
1569      ExternalAsciiString* string = ExternalAsciiString::cast(source);
1570      typedef v8::String::ExternalAsciiStringResource Resource;
1571      const Resource* resource = string->resource();
1572      if (resource == *resource_pointer) {
1573        sink_->Put(kNativesStringResource, "NativesStringResource");
1574        sink_->PutSection(i, "NativesStringResourceEnd");
1575        bytes_processed_so_far_ += sizeof(resource);
1576        return;
1577      }
1578    }
1579  }
1580  // One of the strings in the natives cache should match the resource.  We
1581  // can't serialize any other kinds of external strings.
1582  UNREACHABLE();
1583}
1584
1585
1586void Serializer::ObjectSerializer::OutputRawData(Address up_to) {
1587  Address object_start = object_->address();
1588  int up_to_offset = static_cast<int>(up_to - object_start);
1589  int skipped = up_to_offset - bytes_processed_so_far_;
1590  // This assert will fail if the reloc info gives us the target_address_address
1591  // locations in a non-ascending order.  Luckily that doesn't happen.
1592  ASSERT(skipped >= 0);
1593  if (skipped != 0) {
1594    Address base = object_start + bytes_processed_so_far_;
1595#define RAW_CASE(index, length)                                                \
1596    if (skipped == length) {                                                   \
1597      sink_->PutSection(kRawData + index, "RawDataFixed");                     \
1598    } else  /* NOLINT */
1599    COMMON_RAW_LENGTHS(RAW_CASE)
1600#undef RAW_CASE
1601    {  /* NOLINT */
1602      sink_->Put(kRawData, "RawData");
1603      sink_->PutInt(skipped, "length");
1604    }
1605    for (int i = 0; i < skipped; i++) {
1606      unsigned int data = base[i];
1607      sink_->PutSection(data, "Byte");
1608    }
1609    bytes_processed_so_far_ += skipped;
1610  }
1611}
1612
1613
1614int Serializer::SpaceOfObject(HeapObject* object) {
1615  for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1616    AllocationSpace s = static_cast<AllocationSpace>(i);
1617    if (HEAP->InSpace(object, s)) {
1618      if (i == LO_SPACE) {
1619        if (object->IsCode()) {
1620          return kLargeCode;
1621        } else if (object->IsFixedArray()) {
1622          return kLargeFixedArray;
1623        } else {
1624          return kLargeData;
1625        }
1626      }
1627      return i;
1628    }
1629  }
1630  UNREACHABLE();
1631  return 0;
1632}
1633
1634
1635int Serializer::SpaceOfAlreadySerializedObject(HeapObject* object) {
1636  for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1637    AllocationSpace s = static_cast<AllocationSpace>(i);
1638    if (HEAP->InSpace(object, s)) {
1639      return i;
1640    }
1641  }
1642  UNREACHABLE();
1643  return 0;
1644}
1645
1646
1647int Serializer::Allocate(int space, int size, bool* new_page) {
1648  CHECK(space >= 0 && space < kNumberOfSpaces);
1649  if (SpaceIsLarge(space)) {
1650    // In large object space we merely number the objects instead of trying to
1651    // determine some sort of address.
1652    *new_page = true;
1653    large_object_total_ += size;
1654    return fullness_[LO_SPACE]++;
1655  }
1656  *new_page = false;
1657  if (fullness_[space] == 0) {
1658    *new_page = true;
1659  }
1660  if (SpaceIsPaged(space)) {
1661    // Paged spaces are a little special.  We encode their addresses as if the
1662    // pages were all contiguous and each page were filled up in the range
1663    // 0 - Page::kObjectAreaSize.  In practice the pages may not be contiguous
1664    // and allocation does not start at offset 0 in the page, but this scheme
1665    // means the deserializer can get the page number quickly by shifting the
1666    // serialized address.
1667    CHECK(IsPowerOf2(Page::kPageSize));
1668    int used_in_this_page = (fullness_[space] & (Page::kPageSize - 1));
1669    CHECK(size <= SpaceAreaSize(space));
1670    if (used_in_this_page + size > SpaceAreaSize(space)) {
1671      *new_page = true;
1672      fullness_[space] = RoundUp(fullness_[space], Page::kPageSize);
1673    }
1674  }
1675  int allocation_address = fullness_[space];
1676  fullness_[space] = allocation_address + size;
1677  return allocation_address;
1678}
1679
1680
1681int Serializer::SpaceAreaSize(int space) {
1682  if (space == CODE_SPACE) {
1683    return isolate_->memory_allocator()->CodePageAreaSize();
1684  } else {
1685    return Page::kPageSize - Page::kObjectStartOffset;
1686  }
1687}
1688
1689
1690} }  // namespace v8::internal
1691