v8globals.h revision 592a9fc1d8ea420377a2e7efd0600e20b058be2b
1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_V8GLOBALS_H_
29#define V8_V8GLOBALS_H_
30
31#include "globals.h"
32#include "checks.h"
33
34namespace v8 {
35namespace internal {
36
37// This file contains constants and global declarations related to the
38// V8 system.
39
40// Mask for the sign bit in a smi.
41const intptr_t kSmiSignMask = kIntptrSignBit;
42
43const int kObjectAlignmentBits = kPointerSizeLog2;
44const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
45const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
46
47// Desired alignment for pointers.
48const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
49const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
50
51// Desired alignment for maps.
52#if V8_HOST_ARCH_64_BIT
53const intptr_t kMapAlignmentBits = kObjectAlignmentBits;
54#else
55const intptr_t kMapAlignmentBits = kObjectAlignmentBits + 3;
56#endif
57const intptr_t kMapAlignment = (1 << kMapAlignmentBits);
58const intptr_t kMapAlignmentMask = kMapAlignment - 1;
59
60// Desired alignment for generated code is 32 bytes (to improve cache line
61// utilization).
62const int kCodeAlignmentBits = 5;
63const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
64const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
65
66// Tag information for Failure.
67const int kFailureTag = 3;
68const int kFailureTagSize = 2;
69const intptr_t kFailureTagMask = (1 << kFailureTagSize) - 1;
70
71
72// Zap-value: The value used for zapping dead objects.
73// Should be a recognizable hex value tagged as a failure.
74#ifdef V8_HOST_ARCH_64_BIT
75const Address kZapValue =
76    reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
77const Address kHandleZapValue =
78    reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
79const Address kFromSpaceZapValue =
80    reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
81const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
82const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
83const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
84#else
85const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
86const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
87const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
88const uint32_t kSlotsZapValue = 0xbeefdeef;
89const uint32_t kDebugZapValue = 0xbadbaddb;
90const uint32_t kFreeListZapValue = 0xfeed1eaf;
91#endif
92
93
94// Number of bits to represent the page size for paged spaces. The value of 20
95// gives 1Mb bytes per page.
96const int kPageSizeBits = 20;
97
98// On Intel architecture, cache line size is 64 bytes.
99// On ARM it may be less (32 bytes), but as far this constant is
100// used for aligning data, it doesn't hurt to align on a greater value.
101const int kProcessorCacheLineSize = 64;
102
103// Constants relevant to double precision floating point numbers.
104// If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
105const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
106
107
108// -----------------------------------------------------------------------------
109// Forward declarations for frequently used classes
110// (sorted alphabetically)
111
112class AccessorInfo;
113class Allocation;
114class Arguments;
115class Assembler;
116class AssertNoAllocation;
117class BreakableStatement;
118class Code;
119class CodeGenerator;
120class CodeStub;
121class Context;
122class Debug;
123class Debugger;
124class DebugInfo;
125class Descriptor;
126class DescriptorArray;
127class Expression;
128class ExternalReference;
129class FixedArray;
130class FunctionLiteral;
131class FunctionTemplateInfo;
132class MemoryChunk;
133class NumberDictionary;
134class StringDictionary;
135template <typename T> class Handle;
136class Heap;
137class HeapObject;
138class IC;
139class InterceptorInfo;
140class IterationStatement;
141class JSArray;
142class JSFunction;
143class JSObject;
144class LargeObjectSpace;
145class LookupResult;
146class MacroAssembler;
147class Map;
148class MapSpace;
149class MarkCompactCollector;
150class NewSpace;
151class NodeVisitor;
152class Object;
153class MaybeObject;
154class OldSpace;
155class Property;
156class Foreign;
157class RegExpNode;
158struct RegExpCompileData;
159class RegExpTree;
160class RegExpCompiler;
161class RegExpVisitor;
162class Scope;
163class ScopeInfo;
164class Script;
165class Slot;
166class Smi;
167template <typename Config, class Allocator = FreeStoreAllocationPolicy>
168    class SplayTree;
169class Statement;
170class String;
171class Struct;
172class SwitchStatement;
173class AstVisitor;
174class Variable;
175class VariableProxy;
176class RelocInfo;
177class Deserializer;
178class MessageLocation;
179class ObjectGroup;
180class TickSample;
181class VirtualMemory;
182class Mutex;
183
184typedef bool (*WeakSlotCallback)(Object** pointer);
185
186typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
187
188// -----------------------------------------------------------------------------
189// Miscellaneous
190
191// NOTE: SpaceIterator depends on AllocationSpace enumeration values being
192// consecutive.
193enum AllocationSpace {
194  NEW_SPACE,            // Semispaces collected with copying collector.
195  OLD_POINTER_SPACE,    // May contain pointers to new space.
196  OLD_DATA_SPACE,       // Must not have pointers to new space.
197  CODE_SPACE,           // No pointers to new space, marked executable.
198  MAP_SPACE,            // Only and all map objects.
199  CELL_SPACE,           // Only and all cell objects.
200  LO_SPACE,             // Promoted large objects.
201
202  FIRST_SPACE = NEW_SPACE,
203  LAST_SPACE = LO_SPACE,
204  FIRST_PAGED_SPACE = OLD_POINTER_SPACE,
205  LAST_PAGED_SPACE = CELL_SPACE
206};
207const int kSpaceTagSize = 3;
208const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;
209
210
211// A flag that indicates whether objects should be pretenured when
212// allocated (allocated directly into the old generation) or not
213// (allocated in the young generation if the object size and type
214// allows).
215enum PretenureFlag { NOT_TENURED, TENURED };
216
217enum GarbageCollector { SCAVENGER, MARK_COMPACTOR };
218
219enum Executability { NOT_EXECUTABLE, EXECUTABLE };
220
221enum VisitMode {
222  VISIT_ALL,
223  VISIT_ALL_IN_SCAVENGE,
224  VISIT_ALL_IN_SWEEP_NEWSPACE,
225  VISIT_ONLY_STRONG
226};
227
228// Flag indicating whether code is built into the VM (one of the natives files).
229enum NativesFlag { NOT_NATIVES_CODE, NATIVES_CODE };
230
231
232// A CodeDesc describes a buffer holding instructions and relocation
233// information. The instructions start at the beginning of the buffer
234// and grow forward, the relocation information starts at the end of
235// the buffer and grows backward.
236//
237//  |<--------------- buffer_size ---------------->|
238//  |<-- instr_size -->|        |<-- reloc_size -->|
239//  +==================+========+==================+
240//  |   instructions   |  free  |    reloc info    |
241//  +==================+========+==================+
242//  ^
243//  |
244//  buffer
245
246struct CodeDesc {
247  byte* buffer;
248  int buffer_size;
249  int instr_size;
250  int reloc_size;
251  Assembler* origin;
252};
253
254
255// Callback function used for iterating objects in heap spaces,
256// for example, scanning heap objects.
257typedef int (*HeapObjectCallback)(HeapObject* obj);
258
259
260// Callback function used for checking constraints when copying/relocating
261// objects. Returns true if an object can be copied/relocated from its
262// old_addr to a new_addr.
263typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
264
265
266// Callback function on inline caches, used for iterating over inline caches
267// in compiled code.
268typedef void (*InlineCacheCallback)(Code* code, Address ic);
269
270
271// State for inline cache call sites. Aliased as IC::State.
272enum InlineCacheState {
273  // Has never been executed.
274  UNINITIALIZED,
275  // Has been executed but monomorhic state has been delayed.
276  PREMONOMORPHIC,
277  // Has been executed and only one receiver type has been seen.
278  MONOMORPHIC,
279  // Like MONOMORPHIC but check failed due to prototype.
280  MONOMORPHIC_PROTOTYPE_FAILURE,
281  // Multiple receiver types have been seen.
282  MEGAMORPHIC,
283  // Special states for debug break or step in prepare stubs.
284  DEBUG_BREAK,
285  DEBUG_PREPARE_STEP_IN
286};
287
288
289enum CheckType {
290  RECEIVER_MAP_CHECK,
291  STRING_CHECK,
292  NUMBER_CHECK,
293  BOOLEAN_CHECK
294};
295
296
297enum CallFunctionFlags {
298  NO_CALL_FUNCTION_FLAGS = 0,
299  // Receiver might implicitly be the global objects. If it is, the
300  // hole is passed to the call function stub.
301  RECEIVER_MIGHT_BE_IMPLICIT = 1 << 0,
302  // The call target is cached in the instruction stream.
303  RECORD_CALL_TARGET = 1 << 1
304};
305
306
307enum InlineCacheHolderFlag {
308  OWN_MAP,  // For fast properties objects.
309  PROTOTYPE_MAP  // For slow properties objects (except GlobalObjects).
310};
311
312
313// The Store Buffer (GC).
314typedef enum {
315  kStoreBufferFullEvent,
316  kStoreBufferStartScanningPagesEvent,
317  kStoreBufferScanningPageEvent
318} StoreBufferEvent;
319
320
321typedef void (*StoreBufferCallback)(Heap* heap,
322                                    MemoryChunk* page,
323                                    StoreBufferEvent event);
324
325
326// Whether to remove map transitions and constant transitions from a
327// DescriptorArray.
328enum TransitionFlag {
329  REMOVE_TRANSITIONS,
330  KEEP_TRANSITIONS
331};
332
333
334// Union used for fast testing of specific double values.
335union DoubleRepresentation {
336  double  value;
337  int64_t bits;
338  DoubleRepresentation(double x) { value = x; }
339};
340
341
342// Union used for customized checking of the IEEE double types
343// inlined within v8 runtime, rather than going to the underlying
344// platform headers and libraries
345union IeeeDoubleLittleEndianArchType {
346  double d;
347  struct {
348    unsigned int man_low  :32;
349    unsigned int man_high :20;
350    unsigned int exp      :11;
351    unsigned int sign     :1;
352  } bits;
353};
354
355
356union IeeeDoubleBigEndianArchType {
357  double d;
358  struct {
359    unsigned int sign     :1;
360    unsigned int exp      :11;
361    unsigned int man_high :20;
362    unsigned int man_low  :32;
363  } bits;
364};
365
366
367// AccessorCallback
368struct AccessorDescriptor {
369  MaybeObject* (*getter)(Object* object, void* data);
370  MaybeObject* (*setter)(JSObject* object, Object* value, void* data);
371  void* data;
372};
373
374
375// Logging and profiling.  A StateTag represents a possible state of
376// the VM. The logger maintains a stack of these. Creating a VMState
377// object enters a state by pushing on the stack, and destroying a
378// VMState object leaves a state by popping the current state from the
379// stack.
380
381#define STATE_TAG_LIST(V) \
382  V(JS)                   \
383  V(GC)                   \
384  V(COMPILER)             \
385  V(OTHER)                \
386  V(EXTERNAL)
387
388enum StateTag {
389#define DEF_STATE_TAG(name) name,
390  STATE_TAG_LIST(DEF_STATE_TAG)
391#undef DEF_STATE_TAG
392  // Pseudo-types.
393  state_tag_count
394};
395
396
397// -----------------------------------------------------------------------------
398// Macros
399
400// Testers for test.
401
402#define HAS_SMI_TAG(value) \
403  ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag)
404
405#define HAS_FAILURE_TAG(value) \
406  ((reinterpret_cast<intptr_t>(value) & kFailureTagMask) == kFailureTag)
407
408// OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
409#define OBJECT_POINTER_ALIGN(value)                             \
410  (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
411
412// POINTER_SIZE_ALIGN returns the value aligned as a pointer.
413#define POINTER_SIZE_ALIGN(value)                               \
414  (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
415
416// MAP_POINTER_ALIGN returns the value aligned as a map pointer.
417#define MAP_POINTER_ALIGN(value)                                \
418  (((value) + kMapAlignmentMask) & ~kMapAlignmentMask)
419
420// CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
421#define CODE_POINTER_ALIGN(value)                               \
422  (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
423
424// Support for tracking C++ memory allocation.  Insert TRACK_MEMORY("Fisk")
425// inside a C++ class and new and delete will be overloaded so logging is
426// performed.
427// This file (globals.h) is included before log.h, so we use direct calls to
428// the Logger rather than the LOG macro.
429#ifdef DEBUG
430#define TRACK_MEMORY(name) \
431  void* operator new(size_t size) { \
432    void* result = ::operator new(size); \
433    Logger::NewEventStatic(name, result, size); \
434    return result; \
435  } \
436  void operator delete(void* object) { \
437    Logger::DeleteEventStatic(name, object); \
438    ::operator delete(object); \
439  }
440#else
441#define TRACK_MEMORY(name)
442#endif
443
444
445// Feature flags bit positions. They are mostly based on the CPUID spec.
446// (We assign CPUID itself to one of the currently reserved bits --
447// feel free to change this if needed.)
448// On X86/X64, values below 32 are bits in EDX, values above 32 are bits in ECX.
449enum CpuFeature { SSE4_1 = 32 + 19,  // x86
450                  SSE3 = 32 + 0,     // x86
451                  SSE2 = 26,   // x86
452                  CMOV = 15,   // x86
453                  RDTSC = 4,   // x86
454                  CPUID = 10,  // x86
455                  VFP3 = 1,    // ARM
456                  ARMv7 = 2,   // ARM
457                  SAHF = 0,    // x86
458                  FPU = 1};    // MIPS
459
460
461// Used to specify if a macro instruction must perform a smi check on tagged
462// values.
463enum SmiCheckType {
464  DONT_DO_SMI_CHECK,
465  DO_SMI_CHECK
466};
467
468
469// Used to specify whether a receiver is implicitly or explicitly
470// provided to a call.
471enum CallKind {
472  CALL_AS_METHOD,
473  CALL_AS_FUNCTION
474};
475
476
477enum ScopeType {
478  EVAL_SCOPE,      // The top-level scope for an eval source.
479  FUNCTION_SCOPE,  // The top-level scope for a function.
480  GLOBAL_SCOPE,    // The top-level scope for a program or a top-level eval.
481  CATCH_SCOPE,     // The scope introduced by catch.
482  BLOCK_SCOPE,     // The scope introduced by a new block.
483  WITH_SCOPE       // The scope introduced by with.
484};
485
486
487const uint32_t kHoleNanUpper32 = 0x7FFFFFFF;
488const uint32_t kHoleNanLower32 = 0xFFFFFFFF;
489const uint32_t kNaNOrInfinityLowerBoundUpper32 = 0x7FF00000;
490
491const uint64_t kHoleNanInt64 =
492    (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
493const uint64_t kLastNonNaNInt64 =
494    (static_cast<uint64_t>(kNaNOrInfinityLowerBoundUpper32) << 32);
495
496
497enum VariableMode {
498  // User declared variables:
499  VAR,             // declared via 'var', and 'function' declarations
500
501  CONST,           // declared via 'const' declarations
502
503  CONST_HARMONY,   // declared via 'const' declarations in harmony mode
504
505  LET,             // declared via 'let' declarations
506
507  // Variables introduced by the compiler:
508  DYNAMIC,         // always require dynamic lookup (we don't know
509                   // the declaration)
510
511  DYNAMIC_GLOBAL,  // requires dynamic lookup, but we know that the
512                   // variable is global unless it has been shadowed
513                   // by an eval-introduced variable
514
515  DYNAMIC_LOCAL,   // requires dynamic lookup, but we know that the
516                   // variable is local and where it is unless it
517                   // has been shadowed by an eval-introduced
518                   // variable
519
520  INTERNAL,        // like VAR, but not user-visible (may or may not
521                   // be in a context)
522
523  TEMPORARY        // temporary variables (not user-visible), never
524                   // in a context
525};
526
527
528// ES6 Draft Rev3 10.2 specifies declarative environment records with mutable
529// and immutable bindings that can be in two states: initialized and
530// uninitialized. In ES5 only immutable bindings have these two states. When
531// accessing a binding, it needs to be checked for initialization. However in
532// the following cases the binding is initialized immediately after creation
533// so the initialization check can always be skipped:
534// 1. Var declared local variables.
535//      var foo;
536// 2. A local variable introduced by a function declaration.
537//      function foo() {}
538// 3. Parameters
539//      function x(foo) {}
540// 4. Catch bound variables.
541//      try {} catch (foo) {}
542// 6. Function variables of named function expressions.
543//      var x = function foo() {}
544// 7. Implicit binding of 'this'.
545// 8. Implicit binding of 'arguments' in functions.
546//
547// ES5 specified object environment records which are introduced by ES elements
548// such as Program and WithStatement that associate identifier bindings with the
549// properties of some object. In the specification only mutable bindings exist
550// (which may be non-writable) and have no distinct initialization step. However
551// V8 allows const declarations in global code with distinct creation and
552// initialization steps which are represented by non-writable properties in the
553// global object. As a result also these bindings need to be checked for
554// initialization.
555//
556// The following enum specifies a flag that indicates if the binding needs a
557// distinct initialization step (kNeedsInitialization) or if the binding is
558// immediately initialized upon creation (kCreatedInitialized).
559enum InitializationFlag {
560  kNeedsInitialization,
561  kCreatedInitialized
562};
563
564
565enum ClearExceptionFlag {
566  KEEP_EXCEPTION,
567  CLEAR_EXCEPTION
568};
569
570
571} }  // namespace v8::internal
572
573#endif  // V8_V8GLOBALS_H_
574