LongSparseLongArray.java revision 5771302ca13c31cb85f17bc58da8f6f8227c9b85
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.util;
18
19import com.android.internal.util.ArrayUtils;
20
21import java.util.Arrays;
22
23/**
24 * Map of {@code long} to {@code long}. Unlike a normal array of longs, there
25 * can be gaps in the indices. It is intended to be more memory efficient than using a
26 * {@code HashMap}, both because it avoids
27 * auto-boxing keys and values and its data structure doesn't rely on an extra entry object
28 * for each mapping.
29 *
30 * <p>Note that this container keeps its mappings in an array data structure,
31 * using a binary search to find keys.  The implementation is not intended to be appropriate for
32 * data structures
33 * that may contain large numbers of items.  It is generally slower than a traditional
34 * HashMap, since lookups require a binary search and adds and removes require inserting
35 * and deleting entries in the array.  For containers holding up to hundreds of items,
36 * the performance difference is not significant, less than 50%.</p>
37 *
38 * <p>It is possible to iterate over the items in this container using
39 * {@link #keyAt(int)} and {@link #valueAt(int)}. Iterating over the keys using
40 * <code>keyAt(int)</code> with ascending values of the index will return the
41 * keys in ascending order, or the values corresponding to the keys in ascending
42 * order in the case of <code>valueAt(int)<code>.</p>
43 *
44 * @hide
45 */
46public class LongSparseLongArray implements Cloneable {
47    private long[] mKeys;
48    private long[] mValues;
49    private int mSize;
50
51    /**
52     * Creates a new SparseLongArray containing no mappings.
53     */
54    public LongSparseLongArray() {
55        this(10);
56    }
57
58    /**
59     * Creates a new SparseLongArray containing no mappings that will not
60     * require any additional memory allocation to store the specified
61     * number of mappings.  If you supply an initial capacity of 0, the
62     * sparse array will be initialized with a light-weight representation
63     * not requiring any additional array allocations.
64     */
65    public LongSparseLongArray(int initialCapacity) {
66        if (initialCapacity == 0) {
67            mKeys = ContainerHelpers.EMPTY_LONGS;
68            mValues = ContainerHelpers.EMPTY_LONGS;
69        } else {
70            initialCapacity = ArrayUtils.idealLongArraySize(initialCapacity);
71            mKeys = new long[initialCapacity];
72            mValues = new long[initialCapacity];
73        }
74        mSize = 0;
75    }
76
77    @Override
78    public LongSparseLongArray clone() {
79        LongSparseLongArray clone = null;
80        try {
81            clone = (LongSparseLongArray) super.clone();
82            clone.mKeys = mKeys.clone();
83            clone.mValues = mValues.clone();
84        } catch (CloneNotSupportedException cnse) {
85            /* ignore */
86        }
87        return clone;
88    }
89
90    /**
91     * Gets the long mapped from the specified key, or <code>0</code>
92     * if no such mapping has been made.
93     */
94    public long get(long key) {
95        return get(key, 0);
96    }
97
98    /**
99     * Gets the long mapped from the specified key, or the specified value
100     * if no such mapping has been made.
101     */
102    public long get(long key, long valueIfKeyNotFound) {
103        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
104
105        if (i < 0) {
106            return valueIfKeyNotFound;
107        } else {
108            return mValues[i];
109        }
110    }
111
112    /**
113     * Removes the mapping from the specified key, if there was any.
114     */
115    public void delete(long key) {
116        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
117
118        if (i >= 0) {
119            removeAt(i);
120        }
121    }
122
123    /**
124     * Removes the mapping at the given index.
125     */
126    public void removeAt(int index) {
127        System.arraycopy(mKeys, index + 1, mKeys, index, mSize - (index + 1));
128        System.arraycopy(mValues, index + 1, mValues, index, mSize - (index + 1));
129        mSize--;
130    }
131
132    /**
133     * Adds a mapping from the specified key to the specified value,
134     * replacing the previous mapping from the specified key if there
135     * was one.
136     */
137    public void put(long key, long value) {
138        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
139
140        if (i >= 0) {
141            mValues[i] = value;
142        } else {
143            i = ~i;
144
145            if (mSize >= mKeys.length) {
146                growKeyAndValueArrays(mSize + 1);
147            }
148
149            if (mSize - i != 0) {
150                System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i);
151                System.arraycopy(mValues, i, mValues, i + 1, mSize - i);
152            }
153
154            mKeys[i] = key;
155            mValues[i] = value;
156            mSize++;
157        }
158    }
159
160    /**
161     * Returns the number of key-value mappings that this SparseIntArray
162     * currently stores.
163     */
164    public int size() {
165        return mSize;
166    }
167
168    /**
169     * Given an index in the range <code>0...size()-1</code>, returns
170     * the key from the <code>index</code>th key-value mapping that this
171     * SparseLongArray stores.
172     *
173     * <p>The keys corresponding to indices in ascending order are guaranteed to
174     * be in ascending order, e.g., <code>keyAt(0)</code> will return the
175     * smallest key and <code>keyAt(size()-1)</code> will return the largest
176     * key.</p>
177     */
178    public long keyAt(int index) {
179        return mKeys[index];
180    }
181
182    /**
183     * Given an index in the range <code>0...size()-1</code>, returns
184     * the value from the <code>index</code>th key-value mapping that this
185     * SparseLongArray stores.
186     *
187     * <p>The values corresponding to indices in ascending order are guaranteed
188     * to be associated with keys in ascending order, e.g.,
189     * <code>valueAt(0)</code> will return the value associated with the
190     * smallest key and <code>valueAt(size()-1)</code> will return the value
191     * associated with the largest key.</p>
192     */
193    public long valueAt(int index) {
194        return mValues[index];
195    }
196
197    /**
198     * Returns the index for which {@link #keyAt} would return the
199     * specified key, or a negative number if the specified
200     * key is not mapped.
201     */
202    public int indexOfKey(long key) {
203        return ContainerHelpers.binarySearch(mKeys, mSize, key);
204    }
205
206    /**
207     * Returns an index for which {@link #valueAt} would return the
208     * specified key, or a negative number if no keys map to the
209     * specified value.
210     * Beware that this is a linear search, unlike lookups by key,
211     * and that multiple keys can map to the same value and this will
212     * find only one of them.
213     */
214    public int indexOfValue(long value) {
215        for (int i = 0; i < mSize; i++)
216            if (mValues[i] == value)
217                return i;
218
219        return -1;
220    }
221
222    /**
223     * Removes all key-value mappings from this SparseIntArray.
224     */
225    public void clear() {
226        mSize = 0;
227    }
228
229    /**
230     * Puts a key/value pair into the array, optimizing for the case where
231     * the key is greater than all existing keys in the array.
232     */
233    public void append(long key, long value) {
234        if (mSize != 0 && key <= mKeys[mSize - 1]) {
235            put(key, value);
236            return;
237        }
238
239        int pos = mSize;
240        if (pos >= mKeys.length) {
241            growKeyAndValueArrays(pos + 1);
242        }
243
244        mKeys[pos] = key;
245        mValues[pos] = value;
246        mSize = pos + 1;
247    }
248
249    private void growKeyAndValueArrays(int minNeededSize) {
250        int n = ArrayUtils.idealLongArraySize(minNeededSize);
251
252        long[] nkeys = new long[n];
253        long[] nvalues = new long[n];
254
255        System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
256        System.arraycopy(mValues, 0, nvalues, 0, mValues.length);
257
258        mKeys = nkeys;
259        mValues = nvalues;
260    }
261
262    /**
263     * {@inheritDoc}
264     *
265     * <p>This implementation composes a string by iterating over its mappings.
266     */
267    @Override
268    public String toString() {
269        if (size() <= 0) {
270            return "{}";
271        }
272
273        StringBuilder buffer = new StringBuilder(mSize * 28);
274        buffer.append('{');
275        for (int i=0; i<mSize; i++) {
276            if (i > 0) {
277                buffer.append(", ");
278            }
279            long key = keyAt(i);
280            buffer.append(key);
281            buffer.append('=');
282            long value = valueAt(i);
283            buffer.append(value);
284        }
285        buffer.append('}');
286        return buffer.toString();
287    }
288}
289