mir_graph.cc revision 1fd4821f6b3ac57a44c2ce91025686da4641d197
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mir_graph.h"
18
19#include <inttypes.h>
20#include <queue>
21
22#include "base/stl_util.h"
23#include "compiler_internals.h"
24#include "dex_file-inl.h"
25#include "dex_instruction-inl.h"
26#include "dex/global_value_numbering.h"
27#include "dex/quick/dex_file_to_method_inliner_map.h"
28#include "dex/quick/dex_file_method_inliner.h"
29#include "leb128.h"
30#include "pass_driver_me_post_opt.h"
31#include "utils/scoped_arena_containers.h"
32
33namespace art {
34
35#define MAX_PATTERN_LEN 5
36
37const char* MIRGraph::extended_mir_op_names_[kMirOpLast - kMirOpFirst] = {
38  "Phi",
39  "Copy",
40  "FusedCmplFloat",
41  "FusedCmpgFloat",
42  "FusedCmplDouble",
43  "FusedCmpgDouble",
44  "FusedCmpLong",
45  "Nop",
46  "OpNullCheck",
47  "OpRangeCheck",
48  "OpDivZeroCheck",
49  "Check1",
50  "Check2",
51  "Select",
52  "ConstVector",
53  "MoveVector",
54  "PackedMultiply",
55  "PackedAddition",
56  "PackedSubtract",
57  "PackedShiftLeft",
58  "PackedSignedShiftRight",
59  "PackedUnsignedShiftRight",
60  "PackedAnd",
61  "PackedOr",
62  "PackedXor",
63  "PackedAddReduce",
64  "PackedReduce",
65  "PackedSet",
66  "ReserveVectorRegisters",
67  "ReturnVectorRegisters",
68};
69
70MIRGraph::MIRGraph(CompilationUnit* cu, ArenaAllocator* arena)
71    : reg_location_(NULL),
72      cu_(cu),
73      ssa_base_vregs_(NULL),
74      ssa_subscripts_(NULL),
75      vreg_to_ssa_map_(NULL),
76      ssa_last_defs_(NULL),
77      is_constant_v_(NULL),
78      constant_values_(NULL),
79      use_counts_(arena, 256, kGrowableArrayMisc),
80      raw_use_counts_(arena, 256, kGrowableArrayMisc),
81      num_reachable_blocks_(0),
82      max_num_reachable_blocks_(0),
83      dfs_order_(NULL),
84      dfs_post_order_(NULL),
85      dom_post_order_traversal_(NULL),
86      topological_order_(nullptr),
87      topological_order_loop_ends_(nullptr),
88      topological_order_indexes_(nullptr),
89      topological_order_loop_head_stack_(nullptr),
90      i_dom_list_(NULL),
91      def_block_matrix_(NULL),
92      temp_scoped_alloc_(),
93      temp_insn_data_(nullptr),
94      temp_bit_vector_size_(0u),
95      temp_bit_vector_(nullptr),
96      temp_gvn_(),
97      block_list_(arena, 100, kGrowableArrayBlockList),
98      try_block_addr_(NULL),
99      entry_block_(NULL),
100      exit_block_(NULL),
101      num_blocks_(0),
102      current_code_item_(NULL),
103      dex_pc_to_block_map_(arena, 0, kGrowableArrayMisc),
104      current_method_(kInvalidEntry),
105      current_offset_(kInvalidEntry),
106      def_count_(0),
107      opcode_count_(NULL),
108      num_ssa_regs_(0),
109      method_sreg_(0),
110      attributes_(METHOD_IS_LEAF),  // Start with leaf assumption, change on encountering invoke.
111      checkstats_(NULL),
112      arena_(arena),
113      backward_branches_(0),
114      forward_branches_(0),
115      compiler_temps_(arena, 6, kGrowableArrayMisc),
116      num_non_special_compiler_temps_(0),
117      max_available_non_special_compiler_temps_(0),
118      punt_to_interpreter_(false),
119      merged_df_flags_(0u),
120      ifield_lowering_infos_(arena, 0u),
121      sfield_lowering_infos_(arena, 0u),
122      method_lowering_infos_(arena, 0u),
123      gen_suspend_test_list_(arena, 0u) {
124  try_block_addr_ = new (arena_) ArenaBitVector(arena_, 0, true /* expandable */);
125  max_available_special_compiler_temps_ = std::abs(static_cast<int>(kVRegNonSpecialTempBaseReg))
126      - std::abs(static_cast<int>(kVRegTempBaseReg));
127}
128
129MIRGraph::~MIRGraph() {
130  STLDeleteElements(&m_units_);
131}
132
133/*
134 * Parse an instruction, return the length of the instruction
135 */
136int MIRGraph::ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction) {
137  const Instruction* inst = Instruction::At(code_ptr);
138  decoded_instruction->opcode = inst->Opcode();
139  decoded_instruction->vA = inst->HasVRegA() ? inst->VRegA() : 0;
140  decoded_instruction->vB = inst->HasVRegB() ? inst->VRegB() : 0;
141  decoded_instruction->vB_wide = inst->HasWideVRegB() ? inst->WideVRegB() : 0;
142  decoded_instruction->vC = inst->HasVRegC() ?  inst->VRegC() : 0;
143  if (inst->HasVarArgs()) {
144    inst->GetVarArgs(decoded_instruction->arg);
145  }
146  return inst->SizeInCodeUnits();
147}
148
149
150/* Split an existing block from the specified code offset into two */
151BasicBlock* MIRGraph::SplitBlock(DexOffset code_offset,
152                                 BasicBlock* orig_block, BasicBlock** immed_pred_block_p) {
153  DCHECK_GT(code_offset, orig_block->start_offset);
154  MIR* insn = orig_block->first_mir_insn;
155  MIR* prev = NULL;
156  while (insn) {
157    if (insn->offset == code_offset) break;
158    prev = insn;
159    insn = insn->next;
160  }
161  if (insn == NULL) {
162    LOG(FATAL) << "Break split failed";
163  }
164  BasicBlock* bottom_block = NewMemBB(kDalvikByteCode, num_blocks_++);
165  block_list_.Insert(bottom_block);
166
167  bottom_block->start_offset = code_offset;
168  bottom_block->first_mir_insn = insn;
169  bottom_block->last_mir_insn = orig_block->last_mir_insn;
170
171  /* If this block was terminated by a return, the flag needs to go with the bottom block */
172  bottom_block->terminated_by_return = orig_block->terminated_by_return;
173  orig_block->terminated_by_return = false;
174
175  /* Handle the taken path */
176  bottom_block->taken = orig_block->taken;
177  if (bottom_block->taken != NullBasicBlockId) {
178    orig_block->taken = NullBasicBlockId;
179    BasicBlock* bb_taken = GetBasicBlock(bottom_block->taken);
180    bb_taken->predecessors->Delete(orig_block->id);
181    bb_taken->predecessors->Insert(bottom_block->id);
182  }
183
184  /* Handle the fallthrough path */
185  bottom_block->fall_through = orig_block->fall_through;
186  orig_block->fall_through = bottom_block->id;
187  bottom_block->predecessors->Insert(orig_block->id);
188  if (bottom_block->fall_through != NullBasicBlockId) {
189    BasicBlock* bb_fall_through = GetBasicBlock(bottom_block->fall_through);
190    bb_fall_through->predecessors->Delete(orig_block->id);
191    bb_fall_through->predecessors->Insert(bottom_block->id);
192  }
193
194  /* Handle the successor list */
195  if (orig_block->successor_block_list_type != kNotUsed) {
196    bottom_block->successor_block_list_type = orig_block->successor_block_list_type;
197    bottom_block->successor_blocks = orig_block->successor_blocks;
198    orig_block->successor_block_list_type = kNotUsed;
199    orig_block->successor_blocks = nullptr;
200    GrowableArray<SuccessorBlockInfo*>::Iterator iterator(bottom_block->successor_blocks);
201    while (true) {
202      SuccessorBlockInfo* successor_block_info = iterator.Next();
203      if (successor_block_info == nullptr) break;
204      BasicBlock* bb = GetBasicBlock(successor_block_info->block);
205      if (bb != nullptr) {
206        bb->predecessors->Delete(orig_block->id);
207        bb->predecessors->Insert(bottom_block->id);
208      }
209    }
210  }
211
212  orig_block->last_mir_insn = prev;
213  prev->next = nullptr;
214
215  /*
216   * Update the immediate predecessor block pointer so that outgoing edges
217   * can be applied to the proper block.
218   */
219  if (immed_pred_block_p) {
220    DCHECK_EQ(*immed_pred_block_p, orig_block);
221    *immed_pred_block_p = bottom_block;
222  }
223
224  // Associate dex instructions in the bottom block with the new container.
225  DCHECK(insn != nullptr);
226  DCHECK(insn != orig_block->first_mir_insn);
227  DCHECK(insn == bottom_block->first_mir_insn);
228  DCHECK_EQ(insn->offset, bottom_block->start_offset);
229  DCHECK(static_cast<int>(insn->dalvikInsn.opcode) == kMirOpCheck ||
230         !MIR::DecodedInstruction::IsPseudoMirOp(insn->dalvikInsn.opcode));
231  DCHECK_EQ(dex_pc_to_block_map_.Get(insn->offset), orig_block->id);
232  MIR* p = insn;
233  dex_pc_to_block_map_.Put(p->offset, bottom_block->id);
234  while (p != bottom_block->last_mir_insn) {
235    p = p->next;
236    DCHECK(p != nullptr);
237    p->bb = bottom_block->id;
238    int opcode = p->dalvikInsn.opcode;
239    /*
240     * Some messiness here to ensure that we only enter real opcodes and only the
241     * first half of a potentially throwing instruction that has been split into
242     * CHECK and work portions. Since the 2nd half of a split operation is always
243     * the first in a BasicBlock, we can't hit it here.
244     */
245    if ((opcode == kMirOpCheck) || !MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
246      DCHECK_EQ(dex_pc_to_block_map_.Get(p->offset), orig_block->id);
247      dex_pc_to_block_map_.Put(p->offset, bottom_block->id);
248    }
249  }
250
251  return bottom_block;
252}
253
254/*
255 * Given a code offset, find out the block that starts with it. If the offset
256 * is in the middle of an existing block, split it into two.  If immed_pred_block_p
257 * is not non-null and is the block being split, update *immed_pred_block_p to
258 * point to the bottom block so that outgoing edges can be set up properly
259 * (by the caller)
260 * Utilizes a map for fast lookup of the typical cases.
261 */
262BasicBlock* MIRGraph::FindBlock(DexOffset code_offset, bool split, bool create,
263                                BasicBlock** immed_pred_block_p) {
264  if (code_offset >= cu_->code_item->insns_size_in_code_units_) {
265    return NULL;
266  }
267
268  int block_id = dex_pc_to_block_map_.Get(code_offset);
269  BasicBlock* bb = (block_id == 0) ? NULL : block_list_.Get(block_id);
270
271  if ((bb != NULL) && (bb->start_offset == code_offset)) {
272    // Does this containing block start with the desired instruction?
273    return bb;
274  }
275
276  // No direct hit.
277  if (!create) {
278    return NULL;
279  }
280
281  if (bb != NULL) {
282    // The target exists somewhere in an existing block.
283    return SplitBlock(code_offset, bb, bb == *immed_pred_block_p ?  immed_pred_block_p : NULL);
284  }
285
286  // Create a new block.
287  bb = NewMemBB(kDalvikByteCode, num_blocks_++);
288  block_list_.Insert(bb);
289  bb->start_offset = code_offset;
290  dex_pc_to_block_map_.Put(bb->start_offset, bb->id);
291  return bb;
292}
293
294
295/* Identify code range in try blocks and set up the empty catch blocks */
296void MIRGraph::ProcessTryCatchBlocks() {
297  int tries_size = current_code_item_->tries_size_;
298  DexOffset offset;
299
300  if (tries_size == 0) {
301    return;
302  }
303
304  for (int i = 0; i < tries_size; i++) {
305    const DexFile::TryItem* pTry =
306        DexFile::GetTryItems(*current_code_item_, i);
307    DexOffset start_offset = pTry->start_addr_;
308    DexOffset end_offset = start_offset + pTry->insn_count_;
309    for (offset = start_offset; offset < end_offset; offset++) {
310      try_block_addr_->SetBit(offset);
311    }
312  }
313
314  // Iterate over each of the handlers to enqueue the empty Catch blocks.
315  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*current_code_item_, 0);
316  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
317  for (uint32_t idx = 0; idx < handlers_size; idx++) {
318    CatchHandlerIterator iterator(handlers_ptr);
319    for (; iterator.HasNext(); iterator.Next()) {
320      uint32_t address = iterator.GetHandlerAddress();
321      FindBlock(address, false /* split */, true /*create*/,
322                /* immed_pred_block_p */ NULL);
323    }
324    handlers_ptr = iterator.EndDataPointer();
325  }
326}
327
328bool MIRGraph::IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset,
329                                     NarrowDexOffset catch_offset) {
330  // Catches for monitor-exit during stack unwinding have the pattern
331  //   move-exception (move)* (goto)? monitor-exit throw
332  // In the currently generated dex bytecode we see these catching a bytecode range including
333  // either its own or an identical monitor-exit, http://b/15745363 . This function checks if
334  // it's the case for a given monitor-exit and catch block so that we can ignore it.
335  // (We don't want to ignore all monitor-exit catches since one could enclose a synchronized
336  // block in a try-block and catch the NPE, Error or Throwable and we should let it through;
337  // even though a throwing monitor-exit certainly indicates a bytecode error.)
338  const Instruction* monitor_exit = Instruction::At(cu_->code_item->insns_ + monitor_exit_offset);
339  DCHECK(monitor_exit->Opcode() == Instruction::MONITOR_EXIT);
340  int monitor_reg = monitor_exit->VRegA_11x();
341  const Instruction* check_insn = Instruction::At(cu_->code_item->insns_ + catch_offset);
342  DCHECK(check_insn->Opcode() == Instruction::MOVE_EXCEPTION);
343  if (check_insn->VRegA_11x() == monitor_reg) {
344    // Unexpected move-exception to the same register. Probably not the pattern we're looking for.
345    return false;
346  }
347  check_insn = check_insn->Next();
348  while (true) {
349    int dest = -1;
350    bool wide = false;
351    switch (check_insn->Opcode()) {
352      case Instruction::MOVE_WIDE:
353        wide = true;
354        // Intentional fall-through.
355      case Instruction::MOVE_OBJECT:
356      case Instruction::MOVE:
357        dest = check_insn->VRegA_12x();
358        break;
359
360      case Instruction::MOVE_WIDE_FROM16:
361        wide = true;
362        // Intentional fall-through.
363      case Instruction::MOVE_OBJECT_FROM16:
364      case Instruction::MOVE_FROM16:
365        dest = check_insn->VRegA_22x();
366        break;
367
368      case Instruction::MOVE_WIDE_16:
369        wide = true;
370        // Intentional fall-through.
371      case Instruction::MOVE_OBJECT_16:
372      case Instruction::MOVE_16:
373        dest = check_insn->VRegA_32x();
374        break;
375
376      case Instruction::GOTO:
377      case Instruction::GOTO_16:
378      case Instruction::GOTO_32:
379        check_insn = check_insn->RelativeAt(check_insn->GetTargetOffset());
380        // Intentional fall-through.
381      default:
382        return check_insn->Opcode() == Instruction::MONITOR_EXIT &&
383            check_insn->VRegA_11x() == monitor_reg;
384    }
385
386    if (dest == monitor_reg || (wide && dest + 1 == monitor_reg)) {
387      return false;
388    }
389
390    check_insn = check_insn->Next();
391  }
392}
393
394/* Process instructions with the kBranch flag */
395BasicBlock* MIRGraph::ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
396                                       int width, int flags, const uint16_t* code_ptr,
397                                       const uint16_t* code_end) {
398  DexOffset target = cur_offset;
399  switch (insn->dalvikInsn.opcode) {
400    case Instruction::GOTO:
401    case Instruction::GOTO_16:
402    case Instruction::GOTO_32:
403      target += insn->dalvikInsn.vA;
404      break;
405    case Instruction::IF_EQ:
406    case Instruction::IF_NE:
407    case Instruction::IF_LT:
408    case Instruction::IF_GE:
409    case Instruction::IF_GT:
410    case Instruction::IF_LE:
411      cur_block->conditional_branch = true;
412      target += insn->dalvikInsn.vC;
413      break;
414    case Instruction::IF_EQZ:
415    case Instruction::IF_NEZ:
416    case Instruction::IF_LTZ:
417    case Instruction::IF_GEZ:
418    case Instruction::IF_GTZ:
419    case Instruction::IF_LEZ:
420      cur_block->conditional_branch = true;
421      target += insn->dalvikInsn.vB;
422      break;
423    default:
424      LOG(FATAL) << "Unexpected opcode(" << insn->dalvikInsn.opcode << ") with kBranch set";
425  }
426  CountBranch(target);
427  BasicBlock* taken_block = FindBlock(target, /* split */ true, /* create */ true,
428                                      /* immed_pred_block_p */ &cur_block);
429  cur_block->taken = taken_block->id;
430  taken_block->predecessors->Insert(cur_block->id);
431
432  /* Always terminate the current block for conditional branches */
433  if (flags & Instruction::kContinue) {
434    BasicBlock* fallthrough_block = FindBlock(cur_offset +  width,
435                                             /*
436                                              * If the method is processed
437                                              * in sequential order from the
438                                              * beginning, we don't need to
439                                              * specify split for continue
440                                              * blocks. However, this
441                                              * routine can be called by
442                                              * compileLoop, which starts
443                                              * parsing the method from an
444                                              * arbitrary address in the
445                                              * method body.
446                                              */
447                                             true,
448                                             /* create */
449                                             true,
450                                             /* immed_pred_block_p */
451                                             &cur_block);
452    cur_block->fall_through = fallthrough_block->id;
453    fallthrough_block->predecessors->Insert(cur_block->id);
454  } else if (code_ptr < code_end) {
455    FindBlock(cur_offset + width, /* split */ false, /* create */ true,
456                /* immed_pred_block_p */ NULL);
457  }
458  return cur_block;
459}
460
461/* Process instructions with the kSwitch flag */
462BasicBlock* MIRGraph::ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
463                                       int width, int flags) {
464  const uint16_t* switch_data =
465      reinterpret_cast<const uint16_t*>(GetCurrentInsns() + cur_offset + insn->dalvikInsn.vB);
466  int size;
467  const int* keyTable;
468  const int* target_table;
469  int i;
470  int first_key;
471
472  /*
473   * Packed switch data format:
474   *  ushort ident = 0x0100   magic value
475   *  ushort size             number of entries in the table
476   *  int first_key           first (and lowest) switch case value
477   *  int targets[size]       branch targets, relative to switch opcode
478   *
479   * Total size is (4+size*2) 16-bit code units.
480   */
481  if (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) {
482    DCHECK_EQ(static_cast<int>(switch_data[0]),
483              static_cast<int>(Instruction::kPackedSwitchSignature));
484    size = switch_data[1];
485    first_key = switch_data[2] | (switch_data[3] << 16);
486    target_table = reinterpret_cast<const int*>(&switch_data[4]);
487    keyTable = NULL;        // Make the compiler happy.
488  /*
489   * Sparse switch data format:
490   *  ushort ident = 0x0200   magic value
491   *  ushort size             number of entries in the table; > 0
492   *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
493   *  int targets[size]       branch targets, relative to switch opcode
494   *
495   * Total size is (2+size*4) 16-bit code units.
496   */
497  } else {
498    DCHECK_EQ(static_cast<int>(switch_data[0]),
499              static_cast<int>(Instruction::kSparseSwitchSignature));
500    size = switch_data[1];
501    keyTable = reinterpret_cast<const int*>(&switch_data[2]);
502    target_table = reinterpret_cast<const int*>(&switch_data[2 + size*2]);
503    first_key = 0;   // To make the compiler happy.
504  }
505
506  if (cur_block->successor_block_list_type != kNotUsed) {
507    LOG(FATAL) << "Successor block list already in use: "
508               << static_cast<int>(cur_block->successor_block_list_type);
509  }
510  cur_block->successor_block_list_type =
511      (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?  kPackedSwitch : kSparseSwitch;
512  cur_block->successor_blocks =
513      new (arena_) GrowableArray<SuccessorBlockInfo*>(arena_, size, kGrowableArraySuccessorBlocks);
514
515  for (i = 0; i < size; i++) {
516    BasicBlock* case_block = FindBlock(cur_offset + target_table[i], /* split */ true,
517                                      /* create */ true, /* immed_pred_block_p */ &cur_block);
518    SuccessorBlockInfo* successor_block_info =
519        static_cast<SuccessorBlockInfo*>(arena_->Alloc(sizeof(SuccessorBlockInfo),
520                                                       kArenaAllocSuccessor));
521    successor_block_info->block = case_block->id;
522    successor_block_info->key =
523        (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?
524        first_key + i : keyTable[i];
525    cur_block->successor_blocks->Insert(successor_block_info);
526    case_block->predecessors->Insert(cur_block->id);
527  }
528
529  /* Fall-through case */
530  BasicBlock* fallthrough_block = FindBlock(cur_offset +  width, /* split */ false,
531                                            /* create */ true, /* immed_pred_block_p */ NULL);
532  cur_block->fall_through = fallthrough_block->id;
533  fallthrough_block->predecessors->Insert(cur_block->id);
534  return cur_block;
535}
536
537/* Process instructions with the kThrow flag */
538BasicBlock* MIRGraph::ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
539                                      int width, int flags, ArenaBitVector* try_block_addr,
540                                      const uint16_t* code_ptr, const uint16_t* code_end) {
541  bool in_try_block = try_block_addr->IsBitSet(cur_offset);
542  bool is_throw = (insn->dalvikInsn.opcode == Instruction::THROW);
543  bool build_all_edges =
544      (cu_->disable_opt & (1 << kSuppressExceptionEdges)) || is_throw || in_try_block;
545
546  /* In try block */
547  if (in_try_block) {
548    CatchHandlerIterator iterator(*current_code_item_, cur_offset);
549
550    if (cur_block->successor_block_list_type != kNotUsed) {
551      LOG(INFO) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
552      LOG(FATAL) << "Successor block list already in use: "
553                 << static_cast<int>(cur_block->successor_block_list_type);
554    }
555
556    for (; iterator.HasNext(); iterator.Next()) {
557      BasicBlock* catch_block = FindBlock(iterator.GetHandlerAddress(), false /* split*/,
558                                         false /* creat */, NULL  /* immed_pred_block_p */);
559      if (insn->dalvikInsn.opcode == Instruction::MONITOR_EXIT &&
560          IsBadMonitorExitCatch(insn->offset, catch_block->start_offset)) {
561        // Don't allow monitor-exit to catch its own exception, http://b/15745363 .
562        continue;
563      }
564      if (cur_block->successor_block_list_type == kNotUsed) {
565        cur_block->successor_block_list_type = kCatch;
566        cur_block->successor_blocks = new (arena_) GrowableArray<SuccessorBlockInfo*>(
567            arena_, 2, kGrowableArraySuccessorBlocks);
568      }
569      catch_block->catch_entry = true;
570      if (kIsDebugBuild) {
571        catches_.insert(catch_block->start_offset);
572      }
573      SuccessorBlockInfo* successor_block_info = reinterpret_cast<SuccessorBlockInfo*>
574          (arena_->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
575      successor_block_info->block = catch_block->id;
576      successor_block_info->key = iterator.GetHandlerTypeIndex();
577      cur_block->successor_blocks->Insert(successor_block_info);
578      catch_block->predecessors->Insert(cur_block->id);
579    }
580    in_try_block = (cur_block->successor_block_list_type != kNotUsed);
581  }
582  if (!in_try_block && build_all_edges) {
583    BasicBlock* eh_block = NewMemBB(kExceptionHandling, num_blocks_++);
584    cur_block->taken = eh_block->id;
585    block_list_.Insert(eh_block);
586    eh_block->start_offset = cur_offset;
587    eh_block->predecessors->Insert(cur_block->id);
588  }
589
590  if (is_throw) {
591    cur_block->explicit_throw = true;
592    if (code_ptr < code_end) {
593      // Force creation of new block following THROW via side-effect.
594      FindBlock(cur_offset + width, /* split */ false, /* create */ true,
595                /* immed_pred_block_p */ NULL);
596    }
597    if (!in_try_block) {
598       // Don't split a THROW that can't rethrow - we're done.
599      return cur_block;
600    }
601  }
602
603  if (!build_all_edges) {
604    /*
605     * Even though there is an exception edge here, control cannot return to this
606     * method.  Thus, for the purposes of dataflow analysis and optimization, we can
607     * ignore the edge.  Doing this reduces compile time, and increases the scope
608     * of the basic-block level optimization pass.
609     */
610    return cur_block;
611  }
612
613  /*
614   * Split the potentially-throwing instruction into two parts.
615   * The first half will be a pseudo-op that captures the exception
616   * edges and terminates the basic block.  It always falls through.
617   * Then, create a new basic block that begins with the throwing instruction
618   * (minus exceptions).  Note: this new basic block must NOT be entered into
619   * the block_map.  If the potentially-throwing instruction is the target of a
620   * future branch, we need to find the check psuedo half.  The new
621   * basic block containing the work portion of the instruction should
622   * only be entered via fallthrough from the block containing the
623   * pseudo exception edge MIR.  Note also that this new block is
624   * not automatically terminated after the work portion, and may
625   * contain following instructions.
626   *
627   * Note also that the dex_pc_to_block_map_ entry for the potentially
628   * throwing instruction will refer to the original basic block.
629   */
630  BasicBlock* new_block = NewMemBB(kDalvikByteCode, num_blocks_++);
631  block_list_.Insert(new_block);
632  new_block->start_offset = insn->offset;
633  cur_block->fall_through = new_block->id;
634  new_block->predecessors->Insert(cur_block->id);
635  MIR* new_insn = NewMIR();
636  *new_insn = *insn;
637  insn->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheck);
638  // Associate the two halves.
639  insn->meta.throw_insn = new_insn;
640  new_block->AppendMIR(new_insn);
641  return new_block;
642}
643
644/* Parse a Dex method and insert it into the MIRGraph at the current insert point. */
645void MIRGraph::InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
646                           InvokeType invoke_type, uint16_t class_def_idx,
647                           uint32_t method_idx, jobject class_loader, const DexFile& dex_file) {
648  current_code_item_ = code_item;
649  method_stack_.push_back(std::make_pair(current_method_, current_offset_));
650  current_method_ = m_units_.size();
651  current_offset_ = 0;
652  // TODO: will need to snapshot stack image and use that as the mir context identification.
653  m_units_.push_back(new DexCompilationUnit(cu_, class_loader, Runtime::Current()->GetClassLinker(),
654                     dex_file, current_code_item_, class_def_idx, method_idx, access_flags,
655                     cu_->compiler_driver->GetVerifiedMethod(&dex_file, method_idx)));
656  const uint16_t* code_ptr = current_code_item_->insns_;
657  const uint16_t* code_end =
658      current_code_item_->insns_ + current_code_item_->insns_size_in_code_units_;
659
660  // TODO: need to rework expansion of block list & try_block_addr when inlining activated.
661  // TUNING: use better estimate of basic blocks for following resize.
662  block_list_.Resize(block_list_.Size() + current_code_item_->insns_size_in_code_units_);
663  dex_pc_to_block_map_.SetSize(dex_pc_to_block_map_.Size() + current_code_item_->insns_size_in_code_units_);
664
665  // TODO: replace with explicit resize routine.  Using automatic extension side effect for now.
666  try_block_addr_->SetBit(current_code_item_->insns_size_in_code_units_);
667  try_block_addr_->ClearBit(current_code_item_->insns_size_in_code_units_);
668
669  // If this is the first method, set up default entry and exit blocks.
670  if (current_method_ == 0) {
671    DCHECK(entry_block_ == NULL);
672    DCHECK(exit_block_ == NULL);
673    DCHECK_EQ(num_blocks_, 0U);
674    // Use id 0 to represent a null block.
675    BasicBlock* null_block = NewMemBB(kNullBlock, num_blocks_++);
676    DCHECK_EQ(null_block->id, NullBasicBlockId);
677    null_block->hidden = true;
678    block_list_.Insert(null_block);
679    entry_block_ = NewMemBB(kEntryBlock, num_blocks_++);
680    block_list_.Insert(entry_block_);
681    exit_block_ = NewMemBB(kExitBlock, num_blocks_++);
682    block_list_.Insert(exit_block_);
683    // TODO: deprecate all "cu->" fields; move what's left to wherever CompilationUnit is allocated.
684    cu_->dex_file = &dex_file;
685    cu_->class_def_idx = class_def_idx;
686    cu_->method_idx = method_idx;
687    cu_->access_flags = access_flags;
688    cu_->invoke_type = invoke_type;
689    cu_->shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
690    cu_->num_ins = current_code_item_->ins_size_;
691    cu_->num_regs = current_code_item_->registers_size_ - cu_->num_ins;
692    cu_->num_outs = current_code_item_->outs_size_;
693    cu_->num_dalvik_registers = current_code_item_->registers_size_;
694    cu_->insns = current_code_item_->insns_;
695    cu_->code_item = current_code_item_;
696  } else {
697    UNIMPLEMENTED(FATAL) << "Nested inlining not implemented.";
698    /*
699     * Will need to manage storage for ins & outs, push prevous state and update
700     * insert point.
701     */
702  }
703
704  /* Current block to record parsed instructions */
705  BasicBlock* cur_block = NewMemBB(kDalvikByteCode, num_blocks_++);
706  DCHECK_EQ(current_offset_, 0U);
707  cur_block->start_offset = current_offset_;
708  block_list_.Insert(cur_block);
709  // TODO: for inlining support, insert at the insert point rather than entry block.
710  entry_block_->fall_through = cur_block->id;
711  cur_block->predecessors->Insert(entry_block_->id);
712
713  /* Identify code range in try blocks and set up the empty catch blocks */
714  ProcessTryCatchBlocks();
715
716  uint64_t merged_df_flags = 0u;
717
718  /* Parse all instructions and put them into containing basic blocks */
719  while (code_ptr < code_end) {
720    MIR *insn = NewMIR();
721    insn->offset = current_offset_;
722    insn->m_unit_index = current_method_;
723    int width = ParseInsn(code_ptr, &insn->dalvikInsn);
724    Instruction::Code opcode = insn->dalvikInsn.opcode;
725    if (opcode_count_ != NULL) {
726      opcode_count_[static_cast<int>(opcode)]++;
727    }
728
729    int flags = Instruction::FlagsOf(insn->dalvikInsn.opcode);
730    int verify_flags = Instruction::VerifyFlagsOf(insn->dalvikInsn.opcode);
731
732    uint64_t df_flags = GetDataFlowAttributes(insn);
733    merged_df_flags |= df_flags;
734
735    if (df_flags & DF_HAS_DEFS) {
736      def_count_ += (df_flags & DF_A_WIDE) ? 2 : 1;
737    }
738
739    if (df_flags & DF_LVN) {
740      cur_block->use_lvn = true;  // Run local value numbering on this basic block.
741    }
742
743    // Check for inline data block signatures.
744    if (opcode == Instruction::NOP) {
745      // A simple NOP will have a width of 1 at this point, embedded data NOP > 1.
746      if ((width == 1) && ((current_offset_ & 0x1) == 0x1) && ((code_end - code_ptr) > 1)) {
747        // Could be an aligning nop.  If an embedded data NOP follows, treat pair as single unit.
748        uint16_t following_raw_instruction = code_ptr[1];
749        if ((following_raw_instruction == Instruction::kSparseSwitchSignature) ||
750            (following_raw_instruction == Instruction::kPackedSwitchSignature) ||
751            (following_raw_instruction == Instruction::kArrayDataSignature)) {
752          width += Instruction::At(code_ptr + 1)->SizeInCodeUnits();
753        }
754      }
755      if (width == 1) {
756        // It is a simple nop - treat normally.
757        cur_block->AppendMIR(insn);
758      } else {
759        DCHECK(cur_block->fall_through == NullBasicBlockId);
760        DCHECK(cur_block->taken == NullBasicBlockId);
761        // Unreachable instruction, mark for no continuation.
762        flags &= ~Instruction::kContinue;
763      }
764    } else {
765      cur_block->AppendMIR(insn);
766    }
767
768    // Associate the starting dex_pc for this opcode with its containing basic block.
769    dex_pc_to_block_map_.Put(insn->offset, cur_block->id);
770
771    code_ptr += width;
772
773    if (flags & Instruction::kBranch) {
774      cur_block = ProcessCanBranch(cur_block, insn, current_offset_,
775                                   width, flags, code_ptr, code_end);
776    } else if (flags & Instruction::kReturn) {
777      cur_block->terminated_by_return = true;
778      cur_block->fall_through = exit_block_->id;
779      exit_block_->predecessors->Insert(cur_block->id);
780      /*
781       * Terminate the current block if there are instructions
782       * afterwards.
783       */
784      if (code_ptr < code_end) {
785        /*
786         * Create a fallthrough block for real instructions
787         * (incl. NOP).
788         */
789         FindBlock(current_offset_ + width, /* split */ false, /* create */ true,
790                   /* immed_pred_block_p */ NULL);
791      }
792    } else if (flags & Instruction::kThrow) {
793      cur_block = ProcessCanThrow(cur_block, insn, current_offset_, width, flags, try_block_addr_,
794                                  code_ptr, code_end);
795    } else if (flags & Instruction::kSwitch) {
796      cur_block = ProcessCanSwitch(cur_block, insn, current_offset_, width, flags);
797    }
798    if (verify_flags & Instruction::kVerifyVarArgRange) {
799      /*
800       * The Quick backend's runtime model includes a gap between a method's
801       * argument ("in") vregs and the rest of its vregs.  Handling a range instruction
802       * which spans the gap is somewhat complicated, and should not happen
803       * in normal usage of dx.  Punt to the interpreter.
804       */
805      int first_reg_in_range = insn->dalvikInsn.vC;
806      int last_reg_in_range = first_reg_in_range + insn->dalvikInsn.vA - 1;
807      if (IsInVReg(first_reg_in_range) != IsInVReg(last_reg_in_range)) {
808        punt_to_interpreter_ = true;
809      }
810    }
811    current_offset_ += width;
812    BasicBlock* next_block = FindBlock(current_offset_, /* split */ false, /* create */
813                                      false, /* immed_pred_block_p */ NULL);
814    if (next_block) {
815      /*
816       * The next instruction could be the target of a previously parsed
817       * forward branch so a block is already created. If the current
818       * instruction is not an unconditional branch, connect them through
819       * the fall-through link.
820       */
821      DCHECK(cur_block->fall_through == NullBasicBlockId ||
822             GetBasicBlock(cur_block->fall_through) == next_block ||
823             GetBasicBlock(cur_block->fall_through) == exit_block_);
824
825      if ((cur_block->fall_through == NullBasicBlockId) && (flags & Instruction::kContinue)) {
826        cur_block->fall_through = next_block->id;
827        next_block->predecessors->Insert(cur_block->id);
828      }
829      cur_block = next_block;
830    }
831  }
832  merged_df_flags_ = merged_df_flags;
833
834  if (cu_->enable_debug & (1 << kDebugDumpCFG)) {
835    DumpCFG("/sdcard/1_post_parse_cfg/", true);
836  }
837
838  if (cu_->verbose) {
839    DumpMIRGraph();
840  }
841}
842
843void MIRGraph::ShowOpcodeStats() {
844  DCHECK(opcode_count_ != NULL);
845  LOG(INFO) << "Opcode Count";
846  for (int i = 0; i < kNumPackedOpcodes; i++) {
847    if (opcode_count_[i] != 0) {
848      LOG(INFO) << "-C- " << Instruction::Name(static_cast<Instruction::Code>(i))
849                << " " << opcode_count_[i];
850    }
851  }
852}
853
854uint64_t MIRGraph::GetDataFlowAttributes(Instruction::Code opcode) {
855  DCHECK_LT((size_t) opcode, (sizeof(oat_data_flow_attributes_) / sizeof(oat_data_flow_attributes_[0])));
856  return oat_data_flow_attributes_[opcode];
857}
858
859uint64_t MIRGraph::GetDataFlowAttributes(MIR* mir) {
860  DCHECK(mir != nullptr);
861  Instruction::Code opcode = mir->dalvikInsn.opcode;
862  return GetDataFlowAttributes(opcode);
863}
864
865// TODO: use a configurable base prefix, and adjust callers to supply pass name.
866/* Dump the CFG into a DOT graph */
867void MIRGraph::DumpCFG(const char* dir_prefix, bool all_blocks, const char *suffix) {
868  FILE* file;
869  static AtomicInteger cnt(0);
870
871  // Increment counter to get a unique file number.
872  cnt++;
873
874  std::string fname(PrettyMethod(cu_->method_idx, *cu_->dex_file));
875  ReplaceSpecialChars(fname);
876  fname = StringPrintf("%s%s%x%s_%d.dot", dir_prefix, fname.c_str(),
877                      GetBasicBlock(GetEntryBlock()->fall_through)->start_offset,
878                      suffix == nullptr ? "" : suffix,
879                      cnt.LoadRelaxed());
880  file = fopen(fname.c_str(), "w");
881  if (file == NULL) {
882    return;
883  }
884  fprintf(file, "digraph G {\n");
885
886  fprintf(file, "  rankdir=TB\n");
887
888  int num_blocks = all_blocks ? GetNumBlocks() : num_reachable_blocks_;
889  int idx;
890
891  for (idx = 0; idx < num_blocks; idx++) {
892    int block_idx = all_blocks ? idx : dfs_order_->Get(idx);
893    BasicBlock* bb = GetBasicBlock(block_idx);
894    if (bb == NULL) continue;
895    if (bb->block_type == kDead) continue;
896    if (bb->hidden) continue;
897    if (bb->block_type == kEntryBlock) {
898      fprintf(file, "  entry_%d [shape=Mdiamond];\n", bb->id);
899    } else if (bb->block_type == kExitBlock) {
900      fprintf(file, "  exit_%d [shape=Mdiamond];\n", bb->id);
901    } else if (bb->block_type == kDalvikByteCode) {
902      fprintf(file, "  block%04x_%d [shape=record,label = \"{ \\\n",
903              bb->start_offset, bb->id);
904      const MIR* mir;
905        fprintf(file, "    {block id %d\\l}%s\\\n", bb->id,
906                bb->first_mir_insn ? " | " : " ");
907        for (mir = bb->first_mir_insn; mir; mir = mir->next) {
908            int opcode = mir->dalvikInsn.opcode;
909            if (opcode > kMirOpSelect && opcode < kMirOpLast) {
910              if (opcode == kMirOpConstVector) {
911                fprintf(file, "    {%04x %s %d %d %d %d %d %d\\l}%s\\\n", mir->offset,
912                        extended_mir_op_names_[kMirOpConstVector - kMirOpFirst],
913                        mir->dalvikInsn.vA,
914                        mir->dalvikInsn.vB,
915                        mir->dalvikInsn.arg[0],
916                        mir->dalvikInsn.arg[1],
917                        mir->dalvikInsn.arg[2],
918                        mir->dalvikInsn.arg[3],
919                        mir->next ? " | " : " ");
920              } else {
921                fprintf(file, "    {%04x %s %d %d %d\\l}%s\\\n", mir->offset,
922                        extended_mir_op_names_[opcode - kMirOpFirst],
923                        mir->dalvikInsn.vA,
924                        mir->dalvikInsn.vB,
925                        mir->dalvikInsn.vC,
926                        mir->next ? " | " : " ");
927              }
928            } else {
929              fprintf(file, "    {%04x %s %s %s %s\\l}%s\\\n", mir->offset,
930                      mir->ssa_rep ? GetDalvikDisassembly(mir) :
931                      !MIR::DecodedInstruction::IsPseudoMirOp(opcode) ?
932                        Instruction::Name(mir->dalvikInsn.opcode) :
933                        extended_mir_op_names_[opcode - kMirOpFirst],
934                      (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0 ? " no_rangecheck" : " ",
935                      (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0 ? " no_nullcheck" : " ",
936                      (mir->optimization_flags & MIR_IGNORE_SUSPEND_CHECK) != 0 ? " no_suspendcheck" : " ",
937                      mir->next ? " | " : " ");
938            }
939        }
940        fprintf(file, "  }\"];\n\n");
941    } else if (bb->block_type == kExceptionHandling) {
942      char block_name[BLOCK_NAME_LEN];
943
944      GetBlockName(bb, block_name);
945      fprintf(file, "  %s [shape=invhouse];\n", block_name);
946    }
947
948    char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
949
950    if (bb->taken != NullBasicBlockId) {
951      GetBlockName(bb, block_name1);
952      GetBlockName(GetBasicBlock(bb->taken), block_name2);
953      fprintf(file, "  %s:s -> %s:n [style=dotted]\n",
954              block_name1, block_name2);
955    }
956    if (bb->fall_through != NullBasicBlockId) {
957      GetBlockName(bb, block_name1);
958      GetBlockName(GetBasicBlock(bb->fall_through), block_name2);
959      fprintf(file, "  %s:s -> %s:n\n", block_name1, block_name2);
960    }
961
962    if (bb->successor_block_list_type != kNotUsed) {
963      fprintf(file, "  succ%04x_%d [shape=%s,label = \"{ \\\n",
964              bb->start_offset, bb->id,
965              (bb->successor_block_list_type == kCatch) ?  "Mrecord" : "record");
966      GrowableArray<SuccessorBlockInfo*>::Iterator iterator(bb->successor_blocks);
967      SuccessorBlockInfo* successor_block_info = iterator.Next();
968
969      int succ_id = 0;
970      while (true) {
971        if (successor_block_info == NULL) break;
972
973        BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
974        SuccessorBlockInfo *next_successor_block_info = iterator.Next();
975
976        fprintf(file, "    {<f%d> %04x: %04x\\l}%s\\\n",
977                succ_id++,
978                successor_block_info->key,
979                dest_block->start_offset,
980                (next_successor_block_info != NULL) ? " | " : " ");
981
982        successor_block_info = next_successor_block_info;
983      }
984      fprintf(file, "  }\"];\n\n");
985
986      GetBlockName(bb, block_name1);
987      fprintf(file, "  %s:s -> succ%04x_%d:n [style=dashed]\n",
988              block_name1, bb->start_offset, bb->id);
989
990      // Link the successor pseudo-block with all of its potential targets.
991      GrowableArray<SuccessorBlockInfo*>::Iterator iter(bb->successor_blocks);
992
993      succ_id = 0;
994      while (true) {
995        SuccessorBlockInfo* successor_block_info = iter.Next();
996        if (successor_block_info == NULL) break;
997
998        BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
999
1000        GetBlockName(dest_block, block_name2);
1001        fprintf(file, "  succ%04x_%d:f%d:e -> %s:n\n", bb->start_offset,
1002                bb->id, succ_id++, block_name2);
1003      }
1004    }
1005    fprintf(file, "\n");
1006
1007    if (cu_->verbose) {
1008      /* Display the dominator tree */
1009      GetBlockName(bb, block_name1);
1010      fprintf(file, "  cfg%s [label=\"%s\", shape=none];\n",
1011              block_name1, block_name1);
1012      if (bb->i_dom) {
1013        GetBlockName(GetBasicBlock(bb->i_dom), block_name2);
1014        fprintf(file, "  cfg%s:s -> cfg%s:n\n\n", block_name2, block_name1);
1015      }
1016    }
1017  }
1018  fprintf(file, "}\n");
1019  fclose(file);
1020}
1021
1022/* Insert an MIR instruction to the end of a basic block. */
1023void BasicBlock::AppendMIR(MIR* mir) {
1024  // Insert it after the last MIR.
1025  InsertMIRListAfter(last_mir_insn, mir, mir);
1026}
1027
1028void BasicBlock::AppendMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1029  // Insert it after the last MIR.
1030  InsertMIRListAfter(last_mir_insn, first_list_mir, last_list_mir);
1031}
1032
1033void BasicBlock::AppendMIRList(const std::vector<MIR*>& insns) {
1034  for (std::vector<MIR*>::const_iterator it = insns.begin(); it != insns.end(); it++) {
1035    MIR* new_mir = *it;
1036
1037    // Add a copy of each MIR.
1038    InsertMIRListAfter(last_mir_insn, new_mir, new_mir);
1039  }
1040}
1041
1042/* Insert a MIR instruction after the specified MIR. */
1043void BasicBlock::InsertMIRAfter(MIR* current_mir, MIR* new_mir) {
1044  InsertMIRListAfter(current_mir, new_mir, new_mir);
1045}
1046
1047void BasicBlock::InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir) {
1048  // If no MIR, we are done.
1049  if (first_list_mir == nullptr || last_list_mir == nullptr) {
1050    return;
1051  }
1052
1053  // If insert_after is null, assume BB is empty.
1054  if (insert_after == nullptr) {
1055    first_mir_insn = first_list_mir;
1056    last_mir_insn = last_list_mir;
1057    last_list_mir->next = nullptr;
1058  } else {
1059    MIR* after_list = insert_after->next;
1060    insert_after->next = first_list_mir;
1061    last_list_mir->next = after_list;
1062    if (after_list == nullptr) {
1063      last_mir_insn = last_list_mir;
1064    }
1065  }
1066
1067  // Set this BB to be the basic block of the MIRs.
1068  MIR* last = last_list_mir->next;
1069  for (MIR* mir = first_list_mir; mir != last; mir = mir->next) {
1070    mir->bb = id;
1071  }
1072}
1073
1074/* Insert an MIR instruction to the head of a basic block. */
1075void BasicBlock::PrependMIR(MIR* mir) {
1076  InsertMIRListBefore(first_mir_insn, mir, mir);
1077}
1078
1079void BasicBlock::PrependMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1080  // Insert it before the first MIR.
1081  InsertMIRListBefore(first_mir_insn, first_list_mir, last_list_mir);
1082}
1083
1084void BasicBlock::PrependMIRList(const std::vector<MIR*>& to_add) {
1085  for (std::vector<MIR*>::const_iterator it = to_add.begin(); it != to_add.end(); it++) {
1086    MIR* mir = *it;
1087
1088    InsertMIRListBefore(first_mir_insn, mir, mir);
1089  }
1090}
1091
1092/* Insert a MIR instruction before the specified MIR. */
1093void BasicBlock::InsertMIRBefore(MIR* current_mir, MIR* new_mir) {
1094  // Insert as a single element list.
1095  return InsertMIRListBefore(current_mir, new_mir, new_mir);
1096}
1097
1098MIR* BasicBlock::FindPreviousMIR(MIR* mir) {
1099  MIR* current = first_mir_insn;
1100
1101  while (current != nullptr) {
1102    MIR* next = current->next;
1103
1104    if (next == mir) {
1105      return current;
1106    }
1107
1108    current = next;
1109  }
1110
1111  return nullptr;
1112}
1113
1114void BasicBlock::InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir) {
1115  // If no MIR, we are done.
1116  if (first_list_mir == nullptr || last_list_mir == nullptr) {
1117    return;
1118  }
1119
1120  // If insert_before is null, assume BB is empty.
1121  if (insert_before == nullptr) {
1122    first_mir_insn = first_list_mir;
1123    last_mir_insn = last_list_mir;
1124    last_list_mir->next = nullptr;
1125  } else {
1126    if (first_mir_insn == insert_before) {
1127      last_list_mir->next = first_mir_insn;
1128      first_mir_insn = first_list_mir;
1129    } else {
1130      // Find the preceding MIR.
1131      MIR* before_list = FindPreviousMIR(insert_before);
1132      DCHECK(before_list != nullptr);
1133      before_list->next = first_list_mir;
1134      last_list_mir->next = insert_before;
1135    }
1136  }
1137
1138  // Set this BB to be the basic block of the MIRs.
1139  for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) {
1140    mir->bb = id;
1141  }
1142}
1143
1144bool BasicBlock::RemoveMIR(MIR* mir) {
1145  // Remove as a single element list.
1146  return RemoveMIRList(mir, mir);
1147}
1148
1149bool BasicBlock::RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1150  if (first_list_mir == nullptr) {
1151    return false;
1152  }
1153
1154  // Try to find the MIR.
1155  MIR* before_list = nullptr;
1156  MIR* after_list = nullptr;
1157
1158  // If we are removing from the beginning of the MIR list.
1159  if (first_mir_insn == first_list_mir) {
1160    before_list = nullptr;
1161  } else {
1162    before_list = FindPreviousMIR(first_list_mir);
1163    if (before_list == nullptr) {
1164      // We did not find the mir.
1165      return false;
1166    }
1167  }
1168
1169  // Remove the BB information and also find the after_list.
1170  for (MIR* mir = first_list_mir; mir != last_list_mir; mir = mir->next) {
1171    mir->bb = NullBasicBlockId;
1172  }
1173
1174  after_list = last_list_mir->next;
1175
1176  // If there is nothing before the list, after_list is the first_mir.
1177  if (before_list == nullptr) {
1178    first_mir_insn = after_list;
1179  } else {
1180    before_list->next = after_list;
1181  }
1182
1183  // If there is nothing after the list, before_list is last_mir.
1184  if (after_list == nullptr) {
1185    last_mir_insn = before_list;
1186  }
1187
1188  return true;
1189}
1190
1191MIR* BasicBlock::GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current) {
1192  MIR* next_mir = nullptr;
1193
1194  if (current != nullptr) {
1195    next_mir = current->next;
1196  }
1197
1198  if (next_mir == nullptr) {
1199    // Only look for next MIR that follows unconditionally.
1200    if ((taken == NullBasicBlockId) && (fall_through != NullBasicBlockId)) {
1201      next_mir = mir_graph->GetBasicBlock(fall_through)->first_mir_insn;
1202    }
1203  }
1204
1205  return next_mir;
1206}
1207
1208char* MIRGraph::GetDalvikDisassembly(const MIR* mir) {
1209  MIR::DecodedInstruction insn = mir->dalvikInsn;
1210  std::string str;
1211  int flags = 0;
1212  int opcode = insn.opcode;
1213  char* ret;
1214  bool nop = false;
1215  SSARepresentation* ssa_rep = mir->ssa_rep;
1216  Instruction::Format dalvik_format = Instruction::k10x;  // Default to no-operand format.
1217  int defs = (ssa_rep != NULL) ? ssa_rep->num_defs : 0;
1218  int uses = (ssa_rep != NULL) ? ssa_rep->num_uses : 0;
1219
1220  // Handle special cases.
1221  if ((opcode == kMirOpCheck) || (opcode == kMirOpCheckPart2)) {
1222    str.append(extended_mir_op_names_[opcode - kMirOpFirst]);
1223    str.append(": ");
1224    // Recover the original Dex instruction.
1225    insn = mir->meta.throw_insn->dalvikInsn;
1226    ssa_rep = mir->meta.throw_insn->ssa_rep;
1227    defs = ssa_rep->num_defs;
1228    uses = ssa_rep->num_uses;
1229    opcode = insn.opcode;
1230  } else if (opcode == kMirOpNop) {
1231    str.append("[");
1232    // Recover original opcode.
1233    insn.opcode = Instruction::At(current_code_item_->insns_ + mir->offset)->Opcode();
1234    opcode = insn.opcode;
1235    nop = true;
1236  }
1237
1238  if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
1239    str.append(extended_mir_op_names_[opcode - kMirOpFirst]);
1240  } else {
1241    dalvik_format = Instruction::FormatOf(insn.opcode);
1242    flags = Instruction::FlagsOf(insn.opcode);
1243    str.append(Instruction::Name(insn.opcode));
1244  }
1245
1246  if (opcode == kMirOpPhi) {
1247    BasicBlockId* incoming = mir->meta.phi_incoming;
1248    str.append(StringPrintf(" %s = (%s",
1249               GetSSANameWithConst(ssa_rep->defs[0], true).c_str(),
1250               GetSSANameWithConst(ssa_rep->uses[0], true).c_str()));
1251    str.append(StringPrintf(":%d", incoming[0]));
1252    int i;
1253    for (i = 1; i < uses; i++) {
1254      str.append(StringPrintf(", %s:%d",
1255                              GetSSANameWithConst(ssa_rep->uses[i], true).c_str(),
1256                              incoming[i]));
1257    }
1258    str.append(")");
1259  } else if ((flags & Instruction::kBranch) != 0) {
1260    // For branches, decode the instructions to print out the branch targets.
1261    int offset = 0;
1262    switch (dalvik_format) {
1263      case Instruction::k21t:
1264        str.append(StringPrintf(" %s,", GetSSANameWithConst(ssa_rep->uses[0], false).c_str()));
1265        offset = insn.vB;
1266        break;
1267      case Instruction::k22t:
1268        str.append(StringPrintf(" %s, %s,", GetSSANameWithConst(ssa_rep->uses[0], false).c_str(),
1269                   GetSSANameWithConst(ssa_rep->uses[1], false).c_str()));
1270        offset = insn.vC;
1271        break;
1272      case Instruction::k10t:
1273      case Instruction::k20t:
1274      case Instruction::k30t:
1275        offset = insn.vA;
1276        break;
1277      default:
1278        LOG(FATAL) << "Unexpected branch format " << dalvik_format << " from " << insn.opcode;
1279    }
1280    str.append(StringPrintf(" 0x%x (%c%x)", mir->offset + offset,
1281                            offset > 0 ? '+' : '-', offset > 0 ? offset : -offset));
1282  } else {
1283    // For invokes-style formats, treat wide regs as a pair of singles.
1284    bool show_singles = ((dalvik_format == Instruction::k35c) ||
1285                         (dalvik_format == Instruction::k3rc));
1286    if (defs != 0) {
1287      str.append(StringPrintf(" %s", GetSSANameWithConst(ssa_rep->defs[0], false).c_str()));
1288      if (uses != 0) {
1289        str.append(", ");
1290      }
1291    }
1292    for (int i = 0; i < uses; i++) {
1293      str.append(
1294          StringPrintf(" %s", GetSSANameWithConst(ssa_rep->uses[i], show_singles).c_str()));
1295      if (!show_singles && (reg_location_ != NULL) && reg_location_[i].wide) {
1296        // For the listing, skip the high sreg.
1297        i++;
1298      }
1299      if (i != (uses -1)) {
1300        str.append(",");
1301      }
1302    }
1303    switch (dalvik_format) {
1304      case Instruction::k11n:  // Add one immediate from vB.
1305      case Instruction::k21s:
1306      case Instruction::k31i:
1307      case Instruction::k21h:
1308        str.append(StringPrintf(", #%d", insn.vB));
1309        break;
1310      case Instruction::k51l:  // Add one wide immediate.
1311        str.append(StringPrintf(", #%" PRId64, insn.vB_wide));
1312        break;
1313      case Instruction::k21c:  // One register, one string/type/method index.
1314      case Instruction::k31c:
1315        str.append(StringPrintf(", index #%d", insn.vB));
1316        break;
1317      case Instruction::k22c:  // Two registers, one string/type/method index.
1318        str.append(StringPrintf(", index #%d", insn.vC));
1319        break;
1320      case Instruction::k22s:  // Add one immediate from vC.
1321      case Instruction::k22b:
1322        str.append(StringPrintf(", #%d", insn.vC));
1323        break;
1324      default: {
1325        // Nothing left to print.
1326      }
1327    }
1328  }
1329  if (nop) {
1330    str.append("]--optimized away");
1331  }
1332  int length = str.length() + 1;
1333  ret = static_cast<char*>(arena_->Alloc(length, kArenaAllocDFInfo));
1334  strncpy(ret, str.c_str(), length);
1335  return ret;
1336}
1337
1338/* Turn method name into a legal Linux file name */
1339void MIRGraph::ReplaceSpecialChars(std::string& str) {
1340  static const struct { const char before; const char after; } match[] = {
1341    {'/', '-'}, {';', '#'}, {' ', '#'}, {'$', '+'},
1342    {'(', '@'}, {')', '@'}, {'<', '='}, {'>', '='}
1343  };
1344  for (unsigned int i = 0; i < sizeof(match)/sizeof(match[0]); i++) {
1345    std::replace(str.begin(), str.end(), match[i].before, match[i].after);
1346  }
1347}
1348
1349std::string MIRGraph::GetSSAName(int ssa_reg) {
1350  // TODO: This value is needed for LLVM and debugging. Currently, we compute this and then copy to
1351  //       the arena. We should be smarter and just place straight into the arena, or compute the
1352  //       value more lazily.
1353  return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1354}
1355
1356// Similar to GetSSAName, but if ssa name represents an immediate show that as well.
1357std::string MIRGraph::GetSSANameWithConst(int ssa_reg, bool singles_only) {
1358  if (reg_location_ == NULL) {
1359    // Pre-SSA - just use the standard name.
1360    return GetSSAName(ssa_reg);
1361  }
1362  if (IsConst(reg_location_[ssa_reg])) {
1363    if (!singles_only && reg_location_[ssa_reg].wide) {
1364      return StringPrintf("v%d_%d#0x%" PRIx64, SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
1365                          ConstantValueWide(reg_location_[ssa_reg]));
1366    } else {
1367      return StringPrintf("v%d_%d#0x%x", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
1368                          ConstantValue(reg_location_[ssa_reg]));
1369    }
1370  } else {
1371    return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1372  }
1373}
1374
1375void MIRGraph::GetBlockName(BasicBlock* bb, char* name) {
1376  switch (bb->block_type) {
1377    case kEntryBlock:
1378      snprintf(name, BLOCK_NAME_LEN, "entry_%d", bb->id);
1379      break;
1380    case kExitBlock:
1381      snprintf(name, BLOCK_NAME_LEN, "exit_%d", bb->id);
1382      break;
1383    case kDalvikByteCode:
1384      snprintf(name, BLOCK_NAME_LEN, "block%04x_%d", bb->start_offset, bb->id);
1385      break;
1386    case kExceptionHandling:
1387      snprintf(name, BLOCK_NAME_LEN, "exception%04x_%d", bb->start_offset,
1388               bb->id);
1389      break;
1390    default:
1391      snprintf(name, BLOCK_NAME_LEN, "_%d", bb->id);
1392      break;
1393  }
1394}
1395
1396const char* MIRGraph::GetShortyFromTargetIdx(int target_idx) {
1397  // TODO: for inlining support, use current code unit.
1398  const DexFile::MethodId& method_id = cu_->dex_file->GetMethodId(target_idx);
1399  return cu_->dex_file->GetShorty(method_id.proto_idx_);
1400}
1401
1402/* Debug Utility - dump a compilation unit */
1403void MIRGraph::DumpMIRGraph() {
1404  BasicBlock* bb;
1405  const char* block_type_names[] = {
1406    "Null Block",
1407    "Entry Block",
1408    "Code Block",
1409    "Exit Block",
1410    "Exception Handling",
1411    "Catch Block"
1412  };
1413
1414  LOG(INFO) << "Compiling " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1415  LOG(INFO) << cu_->insns << " insns";
1416  LOG(INFO) << GetNumBlocks() << " blocks in total";
1417  GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
1418
1419  while (true) {
1420    bb = iterator.Next();
1421    if (bb == NULL) break;
1422    LOG(INFO) << StringPrintf("Block %d (%s) (insn %04x - %04x%s)",
1423        bb->id,
1424        block_type_names[bb->block_type],
1425        bb->start_offset,
1426        bb->last_mir_insn ? bb->last_mir_insn->offset : bb->start_offset,
1427        bb->last_mir_insn ? "" : " empty");
1428    if (bb->taken != NullBasicBlockId) {
1429      LOG(INFO) << "  Taken branch: block " << bb->taken
1430                << "(0x" << std::hex << GetBasicBlock(bb->taken)->start_offset << ")";
1431    }
1432    if (bb->fall_through != NullBasicBlockId) {
1433      LOG(INFO) << "  Fallthrough : block " << bb->fall_through
1434                << " (0x" << std::hex << GetBasicBlock(bb->fall_through)->start_offset << ")";
1435    }
1436  }
1437}
1438
1439/*
1440 * Build an array of location records for the incoming arguments.
1441 * Note: one location record per word of arguments, with dummy
1442 * high-word loc for wide arguments.  Also pull up any following
1443 * MOVE_RESULT and incorporate it into the invoke.
1444 */
1445CallInfo* MIRGraph::NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type,
1446                                  bool is_range) {
1447  CallInfo* info = static_cast<CallInfo*>(arena_->Alloc(sizeof(CallInfo),
1448                                                        kArenaAllocMisc));
1449  MIR* move_result_mir = FindMoveResult(bb, mir);
1450  if (move_result_mir == NULL) {
1451    info->result.location = kLocInvalid;
1452  } else {
1453    info->result = GetRawDest(move_result_mir);
1454    move_result_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
1455  }
1456  info->num_arg_words = mir->ssa_rep->num_uses;
1457  info->args = (info->num_arg_words == 0) ? NULL : static_cast<RegLocation*>
1458      (arena_->Alloc(sizeof(RegLocation) * info->num_arg_words, kArenaAllocMisc));
1459  for (int i = 0; i < info->num_arg_words; i++) {
1460    info->args[i] = GetRawSrc(mir, i);
1461  }
1462  info->opt_flags = mir->optimization_flags;
1463  info->type = type;
1464  info->is_range = is_range;
1465  info->index = mir->dalvikInsn.vB;
1466  info->offset = mir->offset;
1467  info->mir = mir;
1468  return info;
1469}
1470
1471// Allocate a new MIR.
1472MIR* MIRGraph::NewMIR() {
1473  MIR* mir = new (arena_) MIR();
1474  return mir;
1475}
1476
1477// Allocate a new basic block.
1478BasicBlock* MIRGraph::NewMemBB(BBType block_type, int block_id) {
1479  BasicBlock* bb = new (arena_) BasicBlock();
1480
1481  bb->block_type = block_type;
1482  bb->id = block_id;
1483  // TUNING: better estimate of the exit block predecessors?
1484  bb->predecessors = new (arena_) GrowableArray<BasicBlockId>(arena_,
1485                                                             (block_type == kExitBlock) ? 2048 : 2,
1486                                                             kGrowableArrayPredecessors);
1487  bb->successor_block_list_type = kNotUsed;
1488  block_id_map_.Put(block_id, block_id);
1489  return bb;
1490}
1491
1492void MIRGraph::InitializeConstantPropagation() {
1493  is_constant_v_ = new (arena_) ArenaBitVector(arena_, GetNumSSARegs(), false);
1494  constant_values_ = static_cast<int*>(arena_->Alloc(sizeof(int) * GetNumSSARegs(), kArenaAllocDFInfo));
1495}
1496
1497void MIRGraph::InitializeMethodUses() {
1498  // The gate starts by initializing the use counts.
1499  int num_ssa_regs = GetNumSSARegs();
1500  use_counts_.Resize(num_ssa_regs + 32);
1501  raw_use_counts_.Resize(num_ssa_regs + 32);
1502  // Initialize list.
1503  for (int i = 0; i < num_ssa_regs; i++) {
1504    use_counts_.Insert(0);
1505    raw_use_counts_.Insert(0);
1506  }
1507}
1508
1509void MIRGraph::SSATransformationStart() {
1510  DCHECK(temp_scoped_alloc_.get() == nullptr);
1511  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1512  temp_bit_vector_size_ = cu_->num_dalvik_registers;
1513  temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1514      temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapRegisterV);
1515
1516  // Update the maximum number of reachable blocks.
1517  max_num_reachable_blocks_ = num_reachable_blocks_;
1518}
1519
1520void MIRGraph::SSATransformationEnd() {
1521  // Verify the dataflow information after the pass.
1522  if (cu_->enable_debug & (1 << kDebugVerifyDataflow)) {
1523    VerifyDataflow();
1524  }
1525
1526  temp_bit_vector_size_ = 0u;
1527  temp_bit_vector_ = nullptr;
1528  DCHECK(temp_scoped_alloc_.get() != nullptr);
1529  temp_scoped_alloc_.reset();
1530}
1531
1532static BasicBlock* SelectTopologicalSortOrderFallBack(
1533    MIRGraph* mir_graph, const ArenaBitVector* current_loop,
1534    const ScopedArenaVector<size_t>* visited_cnt_values, ScopedArenaAllocator* allocator,
1535    ScopedArenaVector<BasicBlockId>* tmp_stack) {
1536  // No true loop head has been found but there may be true loop heads after the mess we need
1537  // to resolve. To avoid taking one of those, pick the candidate with the highest number of
1538  // reachable unvisited nodes. That candidate will surely be a part of a loop.
1539  BasicBlock* fall_back = nullptr;
1540  size_t fall_back_num_reachable = 0u;
1541  // Reuse the same bit vector for each candidate to mark reachable unvisited blocks.
1542  ArenaBitVector candidate_reachable(allocator, mir_graph->GetNumBlocks(), false, kBitMapMisc);
1543  AllNodesIterator iter(mir_graph);
1544  for (BasicBlock* candidate = iter.Next(); candidate != nullptr; candidate = iter.Next()) {
1545    if (candidate->hidden ||                            // Hidden, or
1546        candidate->visited ||                           // already processed, or
1547        (*visited_cnt_values)[candidate->id] == 0u ||   // no processed predecessors, or
1548        (current_loop != nullptr &&                     // outside current loop.
1549         !current_loop->IsBitSet(candidate->id))) {
1550      continue;
1551    }
1552    DCHECK(tmp_stack->empty());
1553    tmp_stack->push_back(candidate->id);
1554    candidate_reachable.ClearAllBits();
1555    size_t num_reachable = 0u;
1556    while (!tmp_stack->empty()) {
1557      BasicBlockId current_id = tmp_stack->back();
1558      tmp_stack->pop_back();
1559      BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
1560      DCHECK(current_bb != nullptr);
1561      ChildBlockIterator child_iter(current_bb, mir_graph);
1562      BasicBlock* child_bb = child_iter.Next();
1563      for ( ; child_bb != nullptr; child_bb = child_iter.Next()) {
1564        DCHECK(!child_bb->hidden);
1565        if (child_bb->visited ||                            // Already processed, or
1566            (current_loop != nullptr &&                     // outside current loop.
1567             !current_loop->IsBitSet(child_bb->id))) {
1568          continue;
1569        }
1570        if (!candidate_reachable.IsBitSet(child_bb->id)) {
1571          candidate_reachable.SetBit(child_bb->id);
1572          tmp_stack->push_back(child_bb->id);
1573          num_reachable += 1u;
1574        }
1575      }
1576    }
1577    if (fall_back_num_reachable < num_reachable) {
1578      fall_back_num_reachable = num_reachable;
1579      fall_back = candidate;
1580    }
1581  }
1582  return fall_back;
1583}
1584
1585// Compute from which unvisited blocks is bb_id reachable through unvisited blocks.
1586static void ComputeUnvisitedReachableFrom(MIRGraph* mir_graph, BasicBlockId bb_id,
1587                                          ArenaBitVector* reachable,
1588                                          ScopedArenaVector<BasicBlockId>* tmp_stack) {
1589  // NOTE: Loop heads indicated by the "visited" flag.
1590  DCHECK(tmp_stack->empty());
1591  reachable->ClearAllBits();
1592  tmp_stack->push_back(bb_id);
1593  while (!tmp_stack->empty()) {
1594    BasicBlockId current_id = tmp_stack->back();
1595    tmp_stack->pop_back();
1596    BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
1597    DCHECK(current_bb != nullptr);
1598    GrowableArray<BasicBlockId>::Iterator iter(current_bb->predecessors);
1599    BasicBlock* pred_bb = mir_graph->GetBasicBlock(iter.Next());
1600    for ( ; pred_bb != nullptr; pred_bb = mir_graph->GetBasicBlock(iter.Next())) {
1601      if (!pred_bb->visited && !reachable->IsBitSet(pred_bb->id)) {
1602        reachable->SetBit(pred_bb->id);
1603        tmp_stack->push_back(pred_bb->id);
1604      }
1605    }
1606  }
1607}
1608
1609void MIRGraph::ComputeTopologicalSortOrder() {
1610  ScopedArenaAllocator allocator(&cu_->arena_stack);
1611  unsigned int num_blocks = GetNumBlocks();
1612
1613  ScopedArenaQueue<BasicBlock*> q(allocator.Adapter());
1614  ScopedArenaVector<size_t> visited_cnt_values(num_blocks, 0u, allocator.Adapter());
1615  ScopedArenaVector<BasicBlockId> loop_head_stack(allocator.Adapter());
1616  size_t max_nested_loops = 0u;
1617  ArenaBitVector loop_exit_blocks(&allocator, num_blocks, false, kBitMapMisc);
1618  loop_exit_blocks.ClearAllBits();
1619
1620  // Count the number of blocks to process and add the entry block(s).
1621  GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
1622  unsigned int num_blocks_to_process = 0u;
1623  for (BasicBlock* bb = iterator.Next(); bb != nullptr; bb = iterator.Next()) {
1624    if (bb->hidden == true) {
1625      continue;
1626    }
1627
1628    num_blocks_to_process += 1u;
1629
1630    if (bb->predecessors->Size() == 0u) {
1631      // Add entry block to the queue.
1632      q.push(bb);
1633    }
1634  }
1635
1636  // Create the topological order if need be.
1637  if (topological_order_ == nullptr) {
1638    topological_order_ = new (arena_) GrowableArray<BasicBlockId>(arena_, num_blocks);
1639    topological_order_loop_ends_ = new (arena_) GrowableArray<uint16_t>(arena_, num_blocks);
1640    topological_order_indexes_ = new (arena_) GrowableArray<uint16_t>(arena_, num_blocks);
1641  }
1642  topological_order_->Reset();
1643  topological_order_loop_ends_->Reset();
1644  topological_order_indexes_->Reset();
1645  topological_order_loop_ends_->Resize(num_blocks);
1646  topological_order_indexes_->Resize(num_blocks);
1647  for (BasicBlockId i = 0; i != num_blocks; ++i) {
1648    topological_order_loop_ends_->Insert(0u);
1649    topological_order_indexes_->Insert(static_cast<uint16_t>(-1));
1650  }
1651
1652  // Mark all blocks as unvisited.
1653  ClearAllVisitedFlags();
1654
1655  // For loop heads, keep track from which blocks they are reachable not going through other
1656  // loop heads. Other loop heads are excluded to detect the heads of nested loops. The children
1657  // in this set go into the loop body, the other children are jumping over the loop.
1658  ScopedArenaVector<ArenaBitVector*> loop_head_reachable_from(allocator.Adapter());
1659  loop_head_reachable_from.resize(num_blocks, nullptr);
1660  // Reuse the same temp stack whenever calculating a loop_head_reachable_from[loop_head_id].
1661  ScopedArenaVector<BasicBlockId> tmp_stack(allocator.Adapter());
1662
1663  while (num_blocks_to_process != 0u) {
1664    BasicBlock* bb = nullptr;
1665    if (!q.empty()) {
1666      num_blocks_to_process -= 1u;
1667      // Get top.
1668      bb = q.front();
1669      q.pop();
1670      if (bb->visited) {
1671        // Loop head: it was already processed, mark end and copy exit blocks to the queue.
1672        DCHECK(q.empty()) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1673        uint16_t idx = static_cast<uint16_t>(topological_order_->Size());
1674        topological_order_loop_ends_->Put(topological_order_indexes_->Get(bb->id), idx);
1675        DCHECK_EQ(loop_head_stack.back(), bb->id);
1676        loop_head_stack.pop_back();
1677        ArenaBitVector* reachable =
1678            loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
1679        for (BasicBlockId candidate_id : loop_exit_blocks.Indexes()) {
1680          if (reachable == nullptr || reachable->IsBitSet(candidate_id)) {
1681            q.push(GetBasicBlock(candidate_id));
1682            // NOTE: The BitVectorSet::IndexIterator will not check the pointed-to bit again,
1683            // so clearing the bit has no effect on the iterator.
1684            loop_exit_blocks.ClearBit(candidate_id);
1685          }
1686        }
1687        continue;
1688      }
1689    } else {
1690      // Find the new loop head.
1691      AllNodesIterator iter(this);
1692      while (true) {
1693        BasicBlock* candidate = iter.Next();
1694        if (candidate == nullptr) {
1695          // We did not find a true loop head, fall back to a reachable block in any loop.
1696          ArenaBitVector* current_loop =
1697              loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
1698          bb = SelectTopologicalSortOrderFallBack(this, current_loop, &visited_cnt_values,
1699                                                  &allocator, &tmp_stack);
1700          DCHECK(bb != nullptr) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1701          if (kIsDebugBuild && cu_->dex_file != nullptr) {
1702            LOG(INFO) << "Topological sort order: Using fall-back in "
1703                << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " BB #" << bb->id
1704                << " @0x" << std::hex << bb->start_offset
1705                << ", num_blocks = " << std::dec << num_blocks;
1706          }
1707          break;
1708        }
1709        if (candidate->hidden ||                            // Hidden, or
1710            candidate->visited ||                           // already processed, or
1711            visited_cnt_values[candidate->id] == 0u ||      // no processed predecessors, or
1712            (!loop_head_stack.empty() &&                    // outside current loop.
1713             !loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(candidate->id))) {
1714          continue;
1715        }
1716
1717        GrowableArray<BasicBlockId>::Iterator pred_iter(candidate->predecessors);
1718        BasicBlock* pred_bb = GetBasicBlock(pred_iter.Next());
1719        for ( ; pred_bb != nullptr; pred_bb = GetBasicBlock(pred_iter.Next())) {
1720          if (pred_bb != candidate && !pred_bb->visited &&
1721              !pred_bb->dominators->IsBitSet(candidate->id)) {
1722            break;  // Keep non-null pred_bb to indicate failure.
1723          }
1724        }
1725        if (pred_bb == nullptr) {
1726          bb = candidate;
1727          break;
1728        }
1729      }
1730      // Compute blocks from which the loop head is reachable and process those blocks first.
1731      ArenaBitVector* reachable =
1732          new (&allocator) ArenaBitVector(&allocator, num_blocks, false, kBitMapMisc);
1733      loop_head_reachable_from[bb->id] = reachable;
1734      ComputeUnvisitedReachableFrom(this, bb->id, reachable, &tmp_stack);
1735      // Now mark as loop head. (Even if it's only a fall back when we don't find a true loop.)
1736      loop_head_stack.push_back(bb->id);
1737      max_nested_loops = std::max(max_nested_loops, loop_head_stack.size());
1738    }
1739
1740    DCHECK_EQ(bb->hidden, false);
1741    DCHECK_EQ(bb->visited, false);
1742    bb->visited = true;
1743
1744    // Now add the basic block.
1745    uint16_t idx = static_cast<uint16_t>(topological_order_->Size());
1746    topological_order_indexes_->Put(bb->id, idx);
1747    topological_order_->Insert(bb->id);
1748
1749    // Update visited_cnt_values for children.
1750    ChildBlockIterator succIter(bb, this);
1751    BasicBlock* successor = succIter.Next();
1752    for ( ; successor != nullptr; successor = succIter.Next()) {
1753      if (successor->hidden) {
1754        continue;
1755      }
1756
1757      // One more predecessor was visited.
1758      visited_cnt_values[successor->id] += 1u;
1759      if (visited_cnt_values[successor->id] == successor->predecessors->Size()) {
1760        if (loop_head_stack.empty() ||
1761            loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(successor->id)) {
1762          q.push(successor);
1763        } else {
1764          DCHECK(!loop_exit_blocks.IsBitSet(successor->id));
1765          loop_exit_blocks.SetBit(successor->id);
1766        }
1767      }
1768    }
1769  }
1770
1771  // Prepare the loop head stack for iteration.
1772  topological_order_loop_head_stack_ =
1773      new (arena_) GrowableArray<std::pair<uint16_t, bool>>(arena_, max_nested_loops);
1774}
1775
1776bool BasicBlock::IsExceptionBlock() const {
1777  if (block_type == kExceptionHandling) {
1778    return true;
1779  }
1780  return false;
1781}
1782
1783bool MIRGraph::HasSuspendTestBetween(BasicBlock* source, BasicBlockId target_id) {
1784  BasicBlock* target = GetBasicBlock(target_id);
1785
1786  if (source == nullptr || target == nullptr)
1787    return false;
1788
1789  int idx;
1790  for (idx = gen_suspend_test_list_.Size() - 1; idx >= 0; idx--) {
1791    BasicBlock* bb = gen_suspend_test_list_.Get(idx);
1792    if (bb == source)
1793      return true;  // The block has been inserted by a suspend check before.
1794    if (source->dominators->IsBitSet(bb->id) && bb->dominators->IsBitSet(target_id))
1795      return true;
1796  }
1797
1798  return false;
1799}
1800
1801ChildBlockIterator::ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph)
1802    : basic_block_(bb), mir_graph_(mir_graph), visited_fallthrough_(false),
1803      visited_taken_(false), have_successors_(false) {
1804  // Check if we actually do have successors.
1805  if (basic_block_ != 0 && basic_block_->successor_block_list_type != kNotUsed) {
1806    have_successors_ = true;
1807    successor_iter_.Reset(basic_block_->successor_blocks);
1808  }
1809}
1810
1811BasicBlock* ChildBlockIterator::Next() {
1812  // We check if we have a basic block. If we don't we cannot get next child.
1813  if (basic_block_ == nullptr) {
1814    return nullptr;
1815  }
1816
1817  // If we haven't visited fallthrough, return that.
1818  if (visited_fallthrough_ == false) {
1819    visited_fallthrough_ = true;
1820
1821    BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->fall_through);
1822    if (result != nullptr) {
1823      return result;
1824    }
1825  }
1826
1827  // If we haven't visited taken, return that.
1828  if (visited_taken_ == false) {
1829    visited_taken_ = true;
1830
1831    BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->taken);
1832    if (result != nullptr) {
1833      return result;
1834    }
1835  }
1836
1837  // We visited both taken and fallthrough. Now check if we have successors we need to visit.
1838  if (have_successors_ == true) {
1839    // Get information about next successor block.
1840    for (SuccessorBlockInfo* successor_block_info = successor_iter_.Next();
1841      successor_block_info != nullptr;
1842      successor_block_info = successor_iter_.Next()) {
1843      // If block was replaced by zero block, take next one.
1844      if (successor_block_info->block != NullBasicBlockId) {
1845        return mir_graph_->GetBasicBlock(successor_block_info->block);
1846      }
1847    }
1848  }
1849
1850  // We do not have anything.
1851  return nullptr;
1852}
1853
1854BasicBlock* BasicBlock::Copy(CompilationUnit* c_unit) {
1855  MIRGraph* mir_graph = c_unit->mir_graph.get();
1856  return Copy(mir_graph);
1857}
1858
1859BasicBlock* BasicBlock::Copy(MIRGraph* mir_graph) {
1860  BasicBlock* result_bb = mir_graph->CreateNewBB(block_type);
1861
1862  // We don't do a memcpy style copy here because it would lead to a lot of things
1863  // to clean up. Let us do it by hand instead.
1864  // Copy in taken and fallthrough.
1865  result_bb->fall_through = fall_through;
1866  result_bb->taken = taken;
1867
1868  // Copy successor links if needed.
1869  ArenaAllocator* arena = mir_graph->GetArena();
1870
1871  result_bb->successor_block_list_type = successor_block_list_type;
1872  if (result_bb->successor_block_list_type != kNotUsed) {
1873    size_t size = successor_blocks->Size();
1874    result_bb->successor_blocks = new (arena) GrowableArray<SuccessorBlockInfo*>(arena, size, kGrowableArraySuccessorBlocks);
1875    GrowableArray<SuccessorBlockInfo*>::Iterator iterator(successor_blocks);
1876    while (true) {
1877      SuccessorBlockInfo* sbi_old = iterator.Next();
1878      if (sbi_old == nullptr) {
1879        break;
1880      }
1881      SuccessorBlockInfo* sbi_new = static_cast<SuccessorBlockInfo*>(arena->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
1882      memcpy(sbi_new, sbi_old, sizeof(SuccessorBlockInfo));
1883      result_bb->successor_blocks->Insert(sbi_new);
1884    }
1885  }
1886
1887  // Copy offset, method.
1888  result_bb->start_offset = start_offset;
1889
1890  // Now copy instructions.
1891  for (MIR* mir = first_mir_insn; mir != 0; mir = mir->next) {
1892    // Get a copy first.
1893    MIR* copy = mir->Copy(mir_graph);
1894
1895    // Append it.
1896    result_bb->AppendMIR(copy);
1897  }
1898
1899  return result_bb;
1900}
1901
1902MIR* MIR::Copy(MIRGraph* mir_graph) {
1903  MIR* res = mir_graph->NewMIR();
1904  *res = *this;
1905
1906  // Remove links
1907  res->next = nullptr;
1908  res->bb = NullBasicBlockId;
1909  res->ssa_rep = nullptr;
1910
1911  return res;
1912}
1913
1914MIR* MIR::Copy(CompilationUnit* c_unit) {
1915  return Copy(c_unit->mir_graph.get());
1916}
1917
1918uint32_t SSARepresentation::GetStartUseIndex(Instruction::Code opcode) {
1919  // Default result.
1920  int res = 0;
1921
1922  // We are basically setting the iputs to their igets counterparts.
1923  switch (opcode) {
1924    case Instruction::IPUT:
1925    case Instruction::IPUT_OBJECT:
1926    case Instruction::IPUT_BOOLEAN:
1927    case Instruction::IPUT_BYTE:
1928    case Instruction::IPUT_CHAR:
1929    case Instruction::IPUT_SHORT:
1930    case Instruction::IPUT_QUICK:
1931    case Instruction::IPUT_OBJECT_QUICK:
1932    case Instruction::APUT:
1933    case Instruction::APUT_OBJECT:
1934    case Instruction::APUT_BOOLEAN:
1935    case Instruction::APUT_BYTE:
1936    case Instruction::APUT_CHAR:
1937    case Instruction::APUT_SHORT:
1938    case Instruction::SPUT:
1939    case Instruction::SPUT_OBJECT:
1940    case Instruction::SPUT_BOOLEAN:
1941    case Instruction::SPUT_BYTE:
1942    case Instruction::SPUT_CHAR:
1943    case Instruction::SPUT_SHORT:
1944      // Skip the VR containing what to store.
1945      res = 1;
1946      break;
1947    case Instruction::IPUT_WIDE:
1948    case Instruction::IPUT_WIDE_QUICK:
1949    case Instruction::APUT_WIDE:
1950    case Instruction::SPUT_WIDE:
1951      // Skip the two VRs containing what to store.
1952      res = 2;
1953      break;
1954    default:
1955      // Do nothing in the general case.
1956      break;
1957  }
1958
1959  return res;
1960}
1961
1962/**
1963 * @brief Given a decoded instruction, it checks whether the instruction
1964 * sets a constant and if it does, more information is provided about the
1965 * constant being set.
1966 * @param ptr_value pointer to a 64-bit holder for the constant.
1967 * @param wide Updated by function whether a wide constant is being set by bytecode.
1968 * @return Returns false if the decoded instruction does not represent a constant bytecode.
1969 */
1970bool MIR::DecodedInstruction::GetConstant(int64_t* ptr_value, bool* wide) const {
1971  bool sets_const = true;
1972  int64_t value = vB;
1973
1974  DCHECK(ptr_value != nullptr);
1975  DCHECK(wide != nullptr);
1976
1977  switch (opcode) {
1978    case Instruction::CONST_4:
1979    case Instruction::CONST_16:
1980    case Instruction::CONST:
1981      *wide = false;
1982      value <<= 32;      // In order to get the sign extend.
1983      value >>= 32;
1984      break;
1985    case Instruction::CONST_HIGH16:
1986      *wide = false;
1987      value <<= 48;      // In order to get the sign extend.
1988      value >>= 32;
1989      break;
1990    case Instruction::CONST_WIDE_16:
1991    case Instruction::CONST_WIDE_32:
1992      *wide = true;
1993      value <<= 32;      // In order to get the sign extend.
1994      value >>= 32;
1995      break;
1996    case Instruction::CONST_WIDE:
1997      *wide = true;
1998      value = vB_wide;
1999      break;
2000    case Instruction::CONST_WIDE_HIGH16:
2001      *wide = true;
2002      value <<= 48;      // In order to get the sign extend.
2003      break;
2004    default:
2005      sets_const = false;
2006      break;
2007  }
2008
2009  if (sets_const) {
2010    *ptr_value = value;
2011  }
2012
2013  return sets_const;
2014}
2015
2016void BasicBlock::ResetOptimizationFlags(uint16_t reset_flags) {
2017  // Reset flags for all MIRs in bb.
2018  for (MIR* mir = first_mir_insn; mir != NULL; mir = mir->next) {
2019    mir->optimization_flags &= (~reset_flags);
2020  }
2021}
2022
2023void BasicBlock::Hide(CompilationUnit* c_unit) {
2024  // First lets make it a dalvik bytecode block so it doesn't have any special meaning.
2025  block_type = kDalvikByteCode;
2026
2027  // Mark it as hidden.
2028  hidden = true;
2029
2030  // Detach it from its MIRs so we don't generate code for them. Also detached MIRs
2031  // are updated to know that they no longer have a parent.
2032  for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2033    mir->bb = NullBasicBlockId;
2034  }
2035  first_mir_insn = nullptr;
2036  last_mir_insn = nullptr;
2037
2038  GrowableArray<BasicBlockId>::Iterator iterator(predecessors);
2039
2040  MIRGraph* mir_graph = c_unit->mir_graph.get();
2041  while (true) {
2042    BasicBlock* pred_bb = mir_graph->GetBasicBlock(iterator.Next());
2043    if (pred_bb == nullptr) {
2044      break;
2045    }
2046
2047    // Sadly we have to go through the children by hand here.
2048    pred_bb->ReplaceChild(id, NullBasicBlockId);
2049  }
2050
2051  // Iterate through children of bb we are hiding.
2052  ChildBlockIterator successorChildIter(this, mir_graph);
2053
2054  for (BasicBlock* childPtr = successorChildIter.Next(); childPtr != 0; childPtr = successorChildIter.Next()) {
2055    // Replace child with null child.
2056    childPtr->predecessors->Delete(id);
2057  }
2058}
2059
2060bool BasicBlock::IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg) {
2061  // In order to determine if the ssa reg is live out, we scan all the MIRs. We remember
2062  // the last SSA number of the same dalvik register. At the end, if it is different than ssa_reg,
2063  // then it is not live out of this BB.
2064  int dalvik_reg = c_unit->mir_graph->SRegToVReg(ssa_reg);
2065
2066  int last_ssa_reg = -1;
2067
2068  // Walk through the MIRs backwards.
2069  for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2070    // Get ssa rep.
2071    SSARepresentation *ssa_rep = mir->ssa_rep;
2072
2073    // Go through the defines for this MIR.
2074    for (int i = 0; i < ssa_rep->num_defs; i++) {
2075      DCHECK(ssa_rep->defs != nullptr);
2076
2077      // Get the ssa reg.
2078      int def_ssa_reg = ssa_rep->defs[i];
2079
2080      // Get dalvik reg.
2081      int def_dalvik_reg = c_unit->mir_graph->SRegToVReg(def_ssa_reg);
2082
2083      // Compare dalvik regs.
2084      if (dalvik_reg == def_dalvik_reg) {
2085        // We found a def of the register that we are being asked about.
2086        // Remember it.
2087        last_ssa_reg = def_ssa_reg;
2088      }
2089    }
2090  }
2091
2092  if (last_ssa_reg == -1) {
2093    // If we get to this point we couldn't find a define of register user asked about.
2094    // Let's assume the user knows what he's doing so we can be safe and say that if we
2095    // couldn't find a def, it is live out.
2096    return true;
2097  }
2098
2099  // If it is not -1, we found a match, is it ssa_reg?
2100  return (ssa_reg == last_ssa_reg);
2101}
2102
2103bool BasicBlock::ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb) {
2104  // We need to check taken, fall_through, and successor_blocks to replace.
2105  bool found = false;
2106  if (taken == old_bb) {
2107    taken = new_bb;
2108    found = true;
2109  }
2110
2111  if (fall_through == old_bb) {
2112    fall_through = new_bb;
2113    found = true;
2114  }
2115
2116  if (successor_block_list_type != kNotUsed) {
2117    GrowableArray<SuccessorBlockInfo*>::Iterator iterator(successor_blocks);
2118    while (true) {
2119      SuccessorBlockInfo* successor_block_info = iterator.Next();
2120      if (successor_block_info == nullptr) {
2121        break;
2122      }
2123      if (successor_block_info->block == old_bb) {
2124        successor_block_info->block = new_bb;
2125        found = true;
2126      }
2127    }
2128  }
2129
2130  return found;
2131}
2132
2133void BasicBlock::UpdatePredecessor(BasicBlockId old_parent, BasicBlockId new_parent) {
2134  GrowableArray<BasicBlockId>::Iterator iterator(predecessors);
2135  bool found = false;
2136
2137  while (true) {
2138    BasicBlockId pred_bb_id = iterator.Next();
2139
2140    if (pred_bb_id == NullBasicBlockId) {
2141      break;
2142    }
2143
2144    if (pred_bb_id == old_parent) {
2145      size_t idx = iterator.GetIndex() - 1;
2146      predecessors->Put(idx, new_parent);
2147      found = true;
2148      break;
2149    }
2150  }
2151
2152  // If not found, add it.
2153  if (found == false) {
2154    predecessors->Insert(new_parent);
2155  }
2156}
2157
2158// Create a new basic block with block_id as num_blocks_ that is
2159// post-incremented.
2160BasicBlock* MIRGraph::CreateNewBB(BBType block_type) {
2161  BasicBlock* res = NewMemBB(block_type, num_blocks_++);
2162  block_list_.Insert(res);
2163  return res;
2164}
2165
2166void MIRGraph::CalculateBasicBlockInformation() {
2167  PassDriverMEPostOpt driver(cu_);
2168  driver.Launch();
2169}
2170
2171void MIRGraph::InitializeBasicBlockData() {
2172  num_blocks_ = block_list_.Size();
2173}
2174
2175}  // namespace art
2176