mir_graph.h revision 0d8ea4661c584fc095129f853d0d72b0fa09cda5
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
18#define ART_COMPILER_DEX_MIR_GRAPH_H_
19
20#include <stdint.h>
21
22#include "dex_file.h"
23#include "dex_instruction.h"
24#include "compiler_ir.h"
25#include "invoke_type.h"
26#include "mir_field_info.h"
27#include "mir_method_info.h"
28#include "utils/arena_bit_vector.h"
29#include "utils/growable_array.h"
30#include "reg_location.h"
31#include "reg_storage.h"
32
33namespace art {
34
35class GlobalValueNumbering;
36
37enum InstructionAnalysisAttributePos {
38  kUninterestingOp = 0,
39  kArithmeticOp,
40  kFPOp,
41  kSingleOp,
42  kDoubleOp,
43  kIntOp,
44  kLongOp,
45  kBranchOp,
46  kInvokeOp,
47  kArrayOp,
48  kHeavyweightOp,
49  kSimpleConstOp,
50  kMoveOp,
51  kSwitch
52};
53
54#define AN_NONE (1 << kUninterestingOp)
55#define AN_MATH (1 << kArithmeticOp)
56#define AN_FP (1 << kFPOp)
57#define AN_LONG (1 << kLongOp)
58#define AN_INT (1 << kIntOp)
59#define AN_SINGLE (1 << kSingleOp)
60#define AN_DOUBLE (1 << kDoubleOp)
61#define AN_FLOATMATH (1 << kFPOp)
62#define AN_BRANCH (1 << kBranchOp)
63#define AN_INVOKE (1 << kInvokeOp)
64#define AN_ARRAYOP (1 << kArrayOp)
65#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
66#define AN_SIMPLECONST (1 << kSimpleConstOp)
67#define AN_MOVE (1 << kMoveOp)
68#define AN_SWITCH (1 << kSwitch)
69#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
70
71enum DataFlowAttributePos {
72  kUA = 0,
73  kUB,
74  kUC,
75  kAWide,
76  kBWide,
77  kCWide,
78  kDA,
79  kIsMove,
80  kSetsConst,
81  kFormat35c,
82  kFormat3rc,
83  kFormatExtended,       // Extended format for extended MIRs.
84  kNullCheckSrc0,        // Null check of uses[0].
85  kNullCheckSrc1,        // Null check of uses[1].
86  kNullCheckSrc2,        // Null check of uses[2].
87  kNullCheckOut0,        // Null check out outgoing arg0.
88  kDstNonNull,           // May assume dst is non-null.
89  kRetNonNull,           // May assume retval is non-null.
90  kNullTransferSrc0,     // Object copy src[0] -> dst.
91  kNullTransferSrcN,     // Phi null check state transfer.
92  kRangeCheckSrc1,       // Range check of uses[1].
93  kRangeCheckSrc2,       // Range check of uses[2].
94  kRangeCheckSrc3,       // Range check of uses[3].
95  kFPA,
96  kFPB,
97  kFPC,
98  kCoreA,
99  kCoreB,
100  kCoreC,
101  kRefA,
102  kRefB,
103  kRefC,
104  kUsesMethodStar,       // Implicit use of Method*.
105  kUsesIField,           // Accesses an instance field (IGET/IPUT).
106  kUsesSField,           // Accesses a static field (SGET/SPUT).
107  kDoLVN,                // Worth computing local value numbers.
108};
109
110#define DF_NOP                  UINT64_C(0)
111#define DF_UA                   (UINT64_C(1) << kUA)
112#define DF_UB                   (UINT64_C(1) << kUB)
113#define DF_UC                   (UINT64_C(1) << kUC)
114#define DF_A_WIDE               (UINT64_C(1) << kAWide)
115#define DF_B_WIDE               (UINT64_C(1) << kBWide)
116#define DF_C_WIDE               (UINT64_C(1) << kCWide)
117#define DF_DA                   (UINT64_C(1) << kDA)
118#define DF_IS_MOVE              (UINT64_C(1) << kIsMove)
119#define DF_SETS_CONST           (UINT64_C(1) << kSetsConst)
120#define DF_FORMAT_35C           (UINT64_C(1) << kFormat35c)
121#define DF_FORMAT_3RC           (UINT64_C(1) << kFormat3rc)
122#define DF_FORMAT_EXTENDED      (UINT64_C(1) << kFormatExtended)
123#define DF_NULL_CHK_0           (UINT64_C(1) << kNullCheckSrc0)
124#define DF_NULL_CHK_1           (UINT64_C(1) << kNullCheckSrc1)
125#define DF_NULL_CHK_2           (UINT64_C(1) << kNullCheckSrc2)
126#define DF_NULL_CHK_OUT0        (UINT64_C(1) << kNullCheckOut0)
127#define DF_NON_NULL_DST         (UINT64_C(1) << kDstNonNull)
128#define DF_NON_NULL_RET         (UINT64_C(1) << kRetNonNull)
129#define DF_NULL_TRANSFER_0      (UINT64_C(1) << kNullTransferSrc0)
130#define DF_NULL_TRANSFER_N      (UINT64_C(1) << kNullTransferSrcN)
131#define DF_RANGE_CHK_1          (UINT64_C(1) << kRangeCheckSrc1)
132#define DF_RANGE_CHK_2          (UINT64_C(1) << kRangeCheckSrc2)
133#define DF_RANGE_CHK_3          (UINT64_C(1) << kRangeCheckSrc3)
134#define DF_FP_A                 (UINT64_C(1) << kFPA)
135#define DF_FP_B                 (UINT64_C(1) << kFPB)
136#define DF_FP_C                 (UINT64_C(1) << kFPC)
137#define DF_CORE_A               (UINT64_C(1) << kCoreA)
138#define DF_CORE_B               (UINT64_C(1) << kCoreB)
139#define DF_CORE_C               (UINT64_C(1) << kCoreC)
140#define DF_REF_A                (UINT64_C(1) << kRefA)
141#define DF_REF_B                (UINT64_C(1) << kRefB)
142#define DF_REF_C                (UINT64_C(1) << kRefC)
143#define DF_UMS                  (UINT64_C(1) << kUsesMethodStar)
144#define DF_IFIELD               (UINT64_C(1) << kUsesIField)
145#define DF_SFIELD               (UINT64_C(1) << kUsesSField)
146#define DF_LVN                  (UINT64_C(1) << kDoLVN)
147
148#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
149
150#define DF_HAS_DEFS             (DF_DA)
151
152#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
153                                 DF_NULL_CHK_1 | \
154                                 DF_NULL_CHK_2 | \
155                                 DF_NULL_CHK_OUT0)
156
157#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
158                                 DF_RANGE_CHK_2 | \
159                                 DF_RANGE_CHK_3)
160
161#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
162                                 DF_HAS_RANGE_CHKS)
163
164#define DF_A_IS_REG             (DF_UA | DF_DA)
165#define DF_B_IS_REG             (DF_UB)
166#define DF_C_IS_REG             (DF_UC)
167#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
168#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
169#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
170enum OatMethodAttributes {
171  kIsLeaf,            // Method is leaf.
172  kHasLoop,           // Method contains simple loop.
173};
174
175#define METHOD_IS_LEAF          (1 << kIsLeaf)
176#define METHOD_HAS_LOOP         (1 << kHasLoop)
177
178// Minimum field size to contain Dalvik v_reg number.
179#define VREG_NUM_WIDTH 16
180
181#define INVALID_SREG (-1)
182#define INVALID_VREG (0xFFFFU)
183#define INVALID_OFFSET (0xDEADF00FU)
184
185#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
186#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
187#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
188#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
189#define MIR_IGNORE_CLINIT_CHECK         (1 << kMIRIgnoreClInitCheck)
190#define MIR_INLINED                     (1 << kMIRInlined)
191#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
192#define MIR_CALLEE                      (1 << kMIRCallee)
193#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
194#define MIR_DUP                         (1 << kMIRDup)
195
196#define BLOCK_NAME_LEN 80
197
198typedef uint16_t BasicBlockId;
199static const BasicBlockId NullBasicBlockId = 0;
200static constexpr bool kLeafOptimization = false;
201
202/*
203 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
204 * it is useful to have compiler-generated temporary registers and have them treated
205 * in the same manner as dx-generated virtual registers.  This struct records the SSA
206 * name of compiler-introduced temporaries.
207 */
208struct CompilerTemp {
209  int32_t v_reg;      // Virtual register number for temporary.
210  int32_t s_reg_low;  // SSA name for low Dalvik word.
211};
212
213enum CompilerTempType {
214  kCompilerTempVR,                // A virtual register temporary.
215  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
216};
217
218// When debug option enabled, records effectiveness of null and range check elimination.
219struct Checkstats {
220  int32_t null_checks;
221  int32_t null_checks_eliminated;
222  int32_t range_checks;
223  int32_t range_checks_eliminated;
224};
225
226// Dataflow attributes of a basic block.
227struct BasicBlockDataFlow {
228  ArenaBitVector* use_v;
229  ArenaBitVector* def_v;
230  ArenaBitVector* live_in_v;
231  ArenaBitVector* phi_v;
232  int32_t* vreg_to_ssa_map_exit;
233  ArenaBitVector* ending_check_v;  // For null check and class init check elimination.
234};
235
236/*
237 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
238 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
239 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
240 * Following SSA renaming, this is the primary struct used by code generators to locate
241 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
242 * we may want to revisit in the future.
243 *
244 * TODO:
245 *  1. Add accessors for uses/defs and make data private
246 *  2. Change fp_use/fp_def to a bit array (could help memory usage)
247 *  3. Combine array storage into internal array and handled via accessors from 1.
248 */
249struct SSARepresentation {
250  int32_t* uses;
251  bool* fp_use;
252  int32_t* defs;
253  bool* fp_def;
254  int16_t num_uses_allocated;
255  int16_t num_defs_allocated;
256  int16_t num_uses;
257  int16_t num_defs;
258
259  static uint32_t GetStartUseIndex(Instruction::Code opcode);
260};
261
262/*
263 * The Midlevel Intermediate Representation node, which may be largely considered a
264 * wrapper around a Dalvik byte code.
265 */
266struct MIR {
267  /*
268   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
269   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
270   * need to carry aux data pointer.
271   */
272  struct DecodedInstruction {
273    uint32_t vA;
274    uint32_t vB;
275    uint64_t vB_wide;        /* for k51l */
276    uint32_t vC;
277    uint32_t arg[5];         /* vC/D/E/F/G in invoke or filled-new-array */
278    Instruction::Code opcode;
279
280    explicit DecodedInstruction():vA(0), vB(0), vB_wide(0), vC(0), opcode(Instruction::NOP) {
281    }
282
283    /*
284     * Given a decoded instruction representing a const bytecode, it updates
285     * the out arguments with proper values as dictated by the constant bytecode.
286     */
287    bool GetConstant(int64_t* ptr_value, bool* wide) const;
288
289    static bool IsPseudoMirOp(Instruction::Code opcode) {
290      return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
291    }
292
293    static bool IsPseudoMirOp(int opcode) {
294      return opcode >= static_cast<int>(kMirOpFirst);
295    }
296
297    bool IsInvoke() const {
298      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kInvoke) == Instruction::kInvoke);
299    }
300
301    bool IsStore() const {
302      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kStore) == Instruction::kStore);
303    }
304
305    bool IsLoad() const {
306      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kLoad) == Instruction::kLoad);
307    }
308
309    bool IsConditionalBranch() const {
310      return !IsPseudoMirOp(opcode) && (Instruction::FlagsOf(opcode) == (Instruction::kContinue | Instruction::kBranch));
311    }
312
313    /**
314     * @brief Is the register C component of the decoded instruction a constant?
315     */
316    bool IsCFieldOrConstant() const {
317      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kRegCFieldOrConstant) == Instruction::kRegCFieldOrConstant);
318    }
319
320    /**
321     * @brief Is the register C component of the decoded instruction a constant?
322     */
323    bool IsBFieldOrConstant() const {
324      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kRegBFieldOrConstant) == Instruction::kRegBFieldOrConstant);
325    }
326
327    bool IsCast() const {
328      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kCast) == Instruction::kCast);
329    }
330
331    /**
332     * @brief Does the instruction clobber memory?
333     * @details Clobber means that the instruction changes the memory not in a punctual way.
334     *          Therefore any supposition on memory aliasing or memory contents should be disregarded
335     *            when crossing such an instruction.
336     */
337    bool Clobbers() const {
338      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kClobber) == Instruction::kClobber);
339    }
340
341    bool IsLinear() const {
342      return !IsPseudoMirOp(opcode) && (Instruction::FlagsOf(opcode) & (Instruction::kAdd | Instruction::kSubtract)) != 0;
343    }
344  } dalvikInsn;
345
346  NarrowDexOffset offset;         // Offset of the instruction in code units.
347  uint16_t optimization_flags;
348  int16_t m_unit_index;           // From which method was this MIR included
349  BasicBlockId bb;
350  MIR* next;
351  SSARepresentation* ssa_rep;
352  union {
353    // Incoming edges for phi node.
354    BasicBlockId* phi_incoming;
355    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
356    MIR* throw_insn;
357    // Branch condition for fused cmp or select.
358    ConditionCode ccode;
359    // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
360    // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
361    uint32_t ifield_lowering_info;
362    // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
363    // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
364    uint32_t sfield_lowering_info;
365    // INVOKE data index, points to MIRGraph::method_lowering_infos_.
366    uint32_t method_lowering_info;
367  } meta;
368
369  explicit MIR():offset(0), optimization_flags(0), m_unit_index(0), bb(NullBasicBlockId),
370                 next(nullptr), ssa_rep(nullptr) {
371    memset(&meta, 0, sizeof(meta));
372  }
373
374  uint32_t GetStartUseIndex() const {
375    return SSARepresentation::GetStartUseIndex(dalvikInsn.opcode);
376  }
377
378  MIR* Copy(CompilationUnit *c_unit);
379  MIR* Copy(MIRGraph* mir_Graph);
380
381  static void* operator new(size_t size, ArenaAllocator* arena) {
382    return arena->Alloc(sizeof(MIR), kArenaAllocMIR);
383  }
384  static void operator delete(void* p) {}  // Nop.
385};
386
387struct SuccessorBlockInfo;
388
389struct BasicBlock {
390  BasicBlockId id;
391  BasicBlockId dfs_id;
392  NarrowDexOffset start_offset;     // Offset in code units.
393  BasicBlockId fall_through;
394  BasicBlockId taken;
395  BasicBlockId i_dom;               // Immediate dominator.
396  uint16_t nesting_depth;
397  BBType block_type:4;
398  BlockListType successor_block_list_type:4;
399  bool visited:1;
400  bool hidden:1;
401  bool catch_entry:1;
402  bool explicit_throw:1;
403  bool conditional_branch:1;
404  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
405  bool dominates_return:1;      // Is a member of return extended basic block.
406  bool use_lvn:1;               // Run local value numbering on this block.
407  MIR* first_mir_insn;
408  MIR* last_mir_insn;
409  BasicBlockDataFlow* data_flow_info;
410  ArenaBitVector* dominators;
411  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
412  ArenaBitVector* dom_frontier;     // Dominance frontier.
413  GrowableArray<BasicBlockId>* predecessors;
414  GrowableArray<SuccessorBlockInfo*>* successor_blocks;
415
416  void AppendMIR(MIR* mir);
417  void AppendMIRList(MIR* first_list_mir, MIR* last_list_mir);
418  void AppendMIRList(const std::vector<MIR*>& insns);
419  void PrependMIR(MIR* mir);
420  void PrependMIRList(MIR* first_list_mir, MIR* last_list_mir);
421  void PrependMIRList(const std::vector<MIR*>& to_add);
422  void InsertMIRAfter(MIR* current_mir, MIR* new_mir);
423  void InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir);
424  MIR* FindPreviousMIR(MIR* mir);
425  void InsertMIRBefore(MIR* insert_before, MIR* list);
426  void InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir);
427  bool RemoveMIR(MIR* mir);
428  bool RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir);
429
430  BasicBlock* Copy(CompilationUnit* c_unit);
431  BasicBlock* Copy(MIRGraph* mir_graph);
432
433  /**
434   * @brief Reset the optimization_flags field of each MIR.
435   */
436  void ResetOptimizationFlags(uint16_t reset_flags);
437
438  /**
439   * @brief Hide the BasicBlock.
440   * @details Set it to kDalvikByteCode, set hidden to true, remove all MIRs,
441   *          remove itself from any predecessor edges, remove itself from any
442   *          child's predecessor growable array.
443   */
444  void Hide(CompilationUnit* c_unit);
445
446  /**
447   * @brief Is ssa_reg the last SSA definition of that VR in the block?
448   */
449  bool IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg);
450
451  /**
452   * @brief Replace the edge going to old_bb to now go towards new_bb.
453   */
454  bool ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb);
455
456  /**
457   * @brief Update the predecessor growable array from old_pred to new_pred.
458   */
459  void UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred);
460
461  /**
462   * @brief Used to obtain the next MIR that follows unconditionally.
463   * @details The implementation does not guarantee that a MIR does not
464   * follow even if this method returns nullptr.
465   * @param mir_graph the MIRGraph.
466   * @param current The MIR for which to find an unconditional follower.
467   * @return Returns the following MIR if one can be found.
468   */
469  MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
470  bool IsExceptionBlock() const;
471
472  static void* operator new(size_t size, ArenaAllocator* arena) {
473    return arena->Alloc(sizeof(BasicBlock), kArenaAllocBB);
474  }
475  static void operator delete(void* p) {}  // Nop.
476};
477
478/*
479 * The "blocks" field in "successor_block_list" points to an array of elements with the type
480 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For switch
481 * blocks, key is the case value.
482 */
483struct SuccessorBlockInfo {
484  BasicBlockId block;
485  int key;
486};
487
488/**
489 * @class ChildBlockIterator
490 * @brief Enable an easy iteration of the children.
491 */
492class ChildBlockIterator {
493 public:
494  /**
495   * @brief Constructs a child iterator.
496   * @param bb The basic whose children we need to iterate through.
497   * @param mir_graph The MIRGraph used to get the basic block during iteration.
498   */
499  ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph);
500  BasicBlock* Next();
501
502 private:
503  BasicBlock* basic_block_;
504  MIRGraph* mir_graph_;
505  bool visited_fallthrough_;
506  bool visited_taken_;
507  bool have_successors_;
508  GrowableArray<SuccessorBlockInfo*>::Iterator successor_iter_;
509};
510
511/*
512 * Collection of information describing an invoke, and the destination of
513 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
514 * more efficient invoke code generation.
515 */
516struct CallInfo {
517  int num_arg_words;    // Note: word count, not arg count.
518  RegLocation* args;    // One for each word of arguments.
519  RegLocation result;   // Eventual target of MOVE_RESULT.
520  int opt_flags;
521  InvokeType type;
522  uint32_t dex_idx;
523  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
524  uintptr_t direct_code;
525  uintptr_t direct_method;
526  RegLocation target;    // Target of following move_result.
527  bool skip_this;
528  bool is_range;
529  DexOffset offset;      // Offset in code units.
530  MIR* mir;
531};
532
533
534const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, RegStorage(), INVALID_SREG,
535                             INVALID_SREG};
536
537class MIRGraph {
538 public:
539  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
540  ~MIRGraph();
541
542  /*
543   * Examine the graph to determine whether it's worthwile to spend the time compiling
544   * this method.
545   */
546  bool SkipCompilation(std::string* skip_message);
547
548  /*
549   * Should we skip the compilation of this method based on its name?
550   */
551  bool SkipCompilationByName(const std::string& methodname);
552
553  /*
554   * Parse dex method and add MIR at current insert point.  Returns id (which is
555   * actually the index of the method in the m_units_ array).
556   */
557  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
558                    InvokeType invoke_type, uint16_t class_def_idx,
559                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
560
561  /* Find existing block */
562  BasicBlock* FindBlock(DexOffset code_offset) {
563    return FindBlock(code_offset, false, false, NULL);
564  }
565
566  const uint16_t* GetCurrentInsns() const {
567    return current_code_item_->insns_;
568  }
569
570  const uint16_t* GetInsns(int m_unit_index) const {
571    return m_units_[m_unit_index]->GetCodeItem()->insns_;
572  }
573
574  unsigned int GetNumBlocks() const {
575    return num_blocks_;
576  }
577
578  size_t GetNumDalvikInsns() const {
579    return cu_->code_item->insns_size_in_code_units_;
580  }
581
582  ArenaBitVector* GetTryBlockAddr() const {
583    return try_block_addr_;
584  }
585
586  BasicBlock* GetEntryBlock() const {
587    return entry_block_;
588  }
589
590  BasicBlock* GetExitBlock() const {
591    return exit_block_;
592  }
593
594  BasicBlock* GetBasicBlock(unsigned int block_id) const {
595    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
596  }
597
598  size_t GetBasicBlockListCount() const {
599    return block_list_.Size();
600  }
601
602  GrowableArray<BasicBlock*>* GetBlockList() {
603    return &block_list_;
604  }
605
606  GrowableArray<BasicBlockId>* GetDfsOrder() {
607    return dfs_order_;
608  }
609
610  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
611    return dfs_post_order_;
612  }
613
614  GrowableArray<BasicBlockId>* GetDomPostOrder() {
615    return dom_post_order_traversal_;
616  }
617
618  int GetDefCount() const {
619    return def_count_;
620  }
621
622  ArenaAllocator* GetArena() {
623    return arena_;
624  }
625
626  void EnableOpcodeCounting() {
627    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
628                                                    kArenaAllocMisc));
629  }
630
631  void ShowOpcodeStats();
632
633  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
634    return m_units_[current_method_];
635  }
636
637  /**
638   * @brief Dump a CFG into a dot file format.
639   * @param dir_prefix the directory the file will be created in.
640   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
641   * @param suffix does the filename require a suffix or not (default = nullptr).
642   */
643  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
644
645  bool HasFieldAccess() const {
646    return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
647  }
648
649  bool HasStaticFieldAccess() const {
650    return (merged_df_flags_ & DF_SFIELD) != 0u;
651  }
652
653  bool HasInvokes() const {
654    // NOTE: These formats include the rare filled-new-array/range.
655    return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
656  }
657
658  void DoCacheFieldLoweringInfo();
659
660  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
661    DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size());
662    return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info];
663  }
664
665  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
666    DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size());
667    return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info];
668  }
669
670  void DoCacheMethodLoweringInfo();
671
672  const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) {
673    DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size());
674    return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info];
675  }
676
677  void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);
678
679  void InitRegLocations();
680
681  void RemapRegLocations();
682
683  void DumpRegLocTable(RegLocation* table, int count);
684
685  void BasicBlockOptimization();
686
687  GrowableArray<BasicBlockId>* GetTopologicalSortOrder() {
688    DCHECK(topological_order_ != nullptr);
689    return topological_order_;
690  }
691
692  bool IsConst(int32_t s_reg) const {
693    return is_constant_v_->IsBitSet(s_reg);
694  }
695
696  bool IsConst(RegLocation loc) const {
697    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
698  }
699
700  int32_t ConstantValue(RegLocation loc) const {
701    DCHECK(IsConst(loc));
702    return constant_values_[loc.orig_sreg];
703  }
704
705  int32_t ConstantValue(int32_t s_reg) const {
706    DCHECK(IsConst(s_reg));
707    return constant_values_[s_reg];
708  }
709
710  int64_t ConstantValueWide(RegLocation loc) const {
711    DCHECK(IsConst(loc));
712    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
713        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
714  }
715
716  bool IsConstantNullRef(RegLocation loc) const {
717    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
718  }
719
720  int GetNumSSARegs() const {
721    return num_ssa_regs_;
722  }
723
724  void SetNumSSARegs(int new_num) {
725     /*
726      * TODO: It's theoretically possible to exceed 32767, though any cases which did
727      * would be filtered out with current settings.  When orig_sreg field is removed
728      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
729      */
730    CHECK_EQ(new_num, static_cast<int16_t>(new_num));
731    num_ssa_regs_ = new_num;
732  }
733
734  unsigned int GetNumReachableBlocks() const {
735    return num_reachable_blocks_;
736  }
737
738  int GetUseCount(int vreg) const {
739    return use_counts_.Get(vreg);
740  }
741
742  int GetRawUseCount(int vreg) const {
743    return raw_use_counts_.Get(vreg);
744  }
745
746  int GetSSASubscript(int ssa_reg) const {
747    return ssa_subscripts_->Get(ssa_reg);
748  }
749
750  RegLocation GetRawSrc(MIR* mir, int num) {
751    DCHECK(num < mir->ssa_rep->num_uses);
752    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
753    return res;
754  }
755
756  RegLocation GetRawDest(MIR* mir) {
757    DCHECK_GT(mir->ssa_rep->num_defs, 0);
758    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
759    return res;
760  }
761
762  RegLocation GetDest(MIR* mir) {
763    RegLocation res = GetRawDest(mir);
764    DCHECK(!res.wide);
765    return res;
766  }
767
768  RegLocation GetSrc(MIR* mir, int num) {
769    RegLocation res = GetRawSrc(mir, num);
770    DCHECK(!res.wide);
771    return res;
772  }
773
774  RegLocation GetDestWide(MIR* mir) {
775    RegLocation res = GetRawDest(mir);
776    DCHECK(res.wide);
777    return res;
778  }
779
780  RegLocation GetSrcWide(MIR* mir, int low) {
781    RegLocation res = GetRawSrc(mir, low);
782    DCHECK(res.wide);
783    return res;
784  }
785
786  RegLocation GetBadLoc() {
787    return bad_loc;
788  }
789
790  int GetMethodSReg() const {
791    return method_sreg_;
792  }
793
794  /**
795   * @brief Used to obtain the number of compiler temporaries being used.
796   * @return Returns the number of compiler temporaries.
797   */
798  size_t GetNumUsedCompilerTemps() const {
799    size_t total_num_temps = compiler_temps_.Size();
800    DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
801    return total_num_temps;
802  }
803
804  /**
805   * @brief Used to obtain the number of non-special compiler temporaries being used.
806   * @return Returns the number of non-special compiler temporaries.
807   */
808  size_t GetNumNonSpecialCompilerTemps() const {
809    return num_non_special_compiler_temps_;
810  }
811
812  /**
813   * @brief Used to set the total number of available non-special compiler temporaries.
814   * @details Can fail setting the new max if there are more temps being used than the new_max.
815   * @param new_max The new maximum number of non-special compiler temporaries.
816   * @return Returns true if the max was set and false if failed to set.
817   */
818  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
819    if (new_max < GetNumNonSpecialCompilerTemps()) {
820      return false;
821    } else {
822      max_available_non_special_compiler_temps_ = new_max;
823      return true;
824    }
825  }
826
827  /**
828   * @brief Provides the number of non-special compiler temps available.
829   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
830   * @return Returns the number of available temps.
831   */
832  size_t GetNumAvailableNonSpecialCompilerTemps();
833
834  /**
835   * @brief Used to obtain an existing compiler temporary.
836   * @param index The index of the temporary which must be strictly less than the
837   * number of temporaries.
838   * @return Returns the temporary that was asked for.
839   */
840  CompilerTemp* GetCompilerTemp(size_t index) const {
841    return compiler_temps_.Get(index);
842  }
843
844  /**
845   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
846   * @return Returns the maximum number of compiler temporaries, whether used or not.
847   */
848  size_t GetMaxPossibleCompilerTemps() const {
849    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
850  }
851
852  /**
853   * @brief Used to obtain a new unique compiler temporary.
854   * @param ct_type Type of compiler temporary requested.
855   * @param wide Whether we should allocate a wide temporary.
856   * @return Returns the newly created compiler temporary.
857   */
858  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);
859
860  bool MethodIsLeaf() {
861    return attributes_ & METHOD_IS_LEAF;
862  }
863
864  RegLocation GetRegLocation(int index) {
865    DCHECK((index >= 0) && (index < num_ssa_regs_));
866    return reg_location_[index];
867  }
868
869  RegLocation GetMethodLoc() {
870    return reg_location_[method_sreg_];
871  }
872
873  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
874    return ((target_bb_id != NullBasicBlockId) &&
875            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
876  }
877
878  bool IsBackwardsBranch(BasicBlock* branch_bb) {
879    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
880  }
881
882  void CountBranch(DexOffset target_offset) {
883    if (target_offset <= current_offset_) {
884      backward_branches_++;
885    } else {
886      forward_branches_++;
887    }
888  }
889
890  int GetBranchCount() {
891    return backward_branches_ + forward_branches_;
892  }
893
894  // Is this vreg in the in set?
895  bool IsInVReg(int vreg) {
896    return (vreg >= cu_->num_regs);
897  }
898
899  void DumpCheckStats();
900  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
901  int SRegToVReg(int ssa_reg) const;
902  void VerifyDataflow();
903  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
904  void EliminateNullChecksAndInferTypesStart();
905  bool EliminateNullChecksAndInferTypes(BasicBlock* bb);
906  void EliminateNullChecksAndInferTypesEnd();
907  bool EliminateClassInitChecksGate();
908  bool EliminateClassInitChecks(BasicBlock* bb);
909  void EliminateClassInitChecksEnd();
910  bool ApplyGlobalValueNumberingGate();
911  bool ApplyGlobalValueNumbering(BasicBlock* bb);
912  void ApplyGlobalValueNumberingEnd();
913  /*
914   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
915   * we have to do some work to figure out the sreg type.  For some operations it is
916   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
917   * may never know the "real" type.
918   *
919   * We perform the type inference operation by using an iterative  walk over
920   * the graph, propagating types "defined" by typed opcodes to uses and defs in
921   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
922   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
923   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
924   * tells whether our guess of the type is based on a previously typed definition.
925   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
926   * show multiple defined types because dx treats constants as untyped bit patterns.
927   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
928   * the current guess, and is used to know when to terminate the iterative walk.
929   */
930  bool SetFp(int index, bool is_fp);
931  bool SetFp(int index);
932  bool SetCore(int index, bool is_core);
933  bool SetCore(int index);
934  bool SetRef(int index, bool is_ref);
935  bool SetRef(int index);
936  bool SetWide(int index, bool is_wide);
937  bool SetWide(int index);
938  bool SetHigh(int index, bool is_high);
939  bool SetHigh(int index);
940
941  bool PuntToInterpreter() {
942    return punt_to_interpreter_;
943  }
944
945  void SetPuntToInterpreter(bool val) {
946    punt_to_interpreter_ = val;
947  }
948
949  char* GetDalvikDisassembly(const MIR* mir);
950  void ReplaceSpecialChars(std::string& str);
951  std::string GetSSAName(int ssa_reg);
952  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
953  void GetBlockName(BasicBlock* bb, char* name);
954  const char* GetShortyFromTargetIdx(int);
955  void DumpMIRGraph();
956  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
957  BasicBlock* NewMemBB(BBType block_type, int block_id);
958  MIR* NewMIR();
959  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
960  BasicBlock* NextDominatedBlock(BasicBlock* bb);
961  bool LayoutBlocks(BasicBlock* bb);
962  void ComputeTopologicalSortOrder();
963  BasicBlock* CreateNewBB(BBType block_type);
964
965  bool InlineSpecialMethodsGate();
966  void InlineSpecialMethodsStart();
967  void InlineSpecialMethods(BasicBlock* bb);
968  void InlineSpecialMethodsEnd();
969
970  /**
971   * @brief Perform the initial preparation for the Method Uses.
972   */
973  void InitializeMethodUses();
974
975  /**
976   * @brief Perform the initial preparation for the Constant Propagation.
977   */
978  void InitializeConstantPropagation();
979
980  /**
981   * @brief Perform the initial preparation for the SSA Transformation.
982   */
983  void SSATransformationStart();
984
985  /**
986   * @brief Insert a the operands for the Phi nodes.
987   * @param bb the considered BasicBlock.
988   * @return true
989   */
990  bool InsertPhiNodeOperands(BasicBlock* bb);
991
992  /**
993   * @brief Perform the cleanup after the SSA Transformation.
994   */
995  void SSATransformationEnd();
996
997  /**
998   * @brief Perform constant propagation on a BasicBlock.
999   * @param bb the considered BasicBlock.
1000   */
1001  void DoConstantPropagation(BasicBlock* bb);
1002
1003  /**
1004   * @brief Count the uses in the BasicBlock
1005   * @param bb the BasicBlock
1006   */
1007  void CountUses(struct BasicBlock* bb);
1008
1009  static uint64_t GetDataFlowAttributes(Instruction::Code opcode);
1010  static uint64_t GetDataFlowAttributes(MIR* mir);
1011
1012  /**
1013   * @brief Combine BasicBlocks
1014   * @param the BasicBlock we are considering
1015   */
1016  void CombineBlocks(BasicBlock* bb);
1017
1018  void ClearAllVisitedFlags();
1019
1020  void AllocateSSAUseData(MIR *mir, int num_uses);
1021  void AllocateSSADefData(MIR *mir, int num_defs);
1022  void CalculateBasicBlockInformation();
1023  void InitializeBasicBlockData();
1024  void ComputeDFSOrders();
1025  void ComputeDefBlockMatrix();
1026  void ComputeDominators();
1027  void CompilerInitializeSSAConversion();
1028  void InsertPhiNodes();
1029  void DoDFSPreOrderSSARename(BasicBlock* block);
1030
1031  /*
1032   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
1033   * we can verify that all catch entries have native PC entries.
1034   */
1035  std::set<uint32_t> catches_;
1036
1037  // TODO: make these private.
1038  RegLocation* reg_location_;                         // Map SSA names to location.
1039  SafeMap<unsigned int, unsigned int> block_id_map_;  // Block collapse lookup cache.
1040
1041  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
1042  static const uint32_t analysis_attributes_[kMirOpLast];
1043
1044  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
1045  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
1046
1047  // Used for removing redudant suspend tests
1048  void AppendGenSuspendTestList(BasicBlock* bb) {
1049    if (gen_suspend_test_list_.Size() == 0 ||
1050        gen_suspend_test_list_.Get(gen_suspend_test_list_.Size() - 1) != bb) {
1051      gen_suspend_test_list_.Insert(bb);
1052    }
1053  }
1054
1055  /* This is used to check if there is already a method call dominating the
1056   * source basic block of a backedge and being dominated by the target basic
1057   * block of the backedge.
1058   */
1059  bool HasSuspendTestBetween(BasicBlock* source, BasicBlockId target_id);
1060
1061 protected:
1062  int FindCommonParent(int block1, int block2);
1063  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
1064                         const ArenaBitVector* src2);
1065  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
1066                       ArenaBitVector* live_in_v, int dalvik_reg_id);
1067  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
1068  void HandleExtended(ArenaBitVector* use_v, ArenaBitVector* def_v,
1069                      ArenaBitVector* live_in_v,
1070                      const MIR::DecodedInstruction& d_insn);
1071  bool DoSSAConversion(BasicBlock* bb);
1072  bool InvokeUsesMethodStar(MIR* mir);
1073  int ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction);
1074  bool ContentIsInsn(const uint16_t* code_ptr);
1075  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
1076                         BasicBlock** immed_pred_block_p);
1077  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
1078                        BasicBlock** immed_pred_block_p);
1079  void ProcessTryCatchBlocks();
1080  bool IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset, NarrowDexOffset catch_offset);
1081  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1082                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
1083  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1084                               int flags);
1085  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1086                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
1087                              const uint16_t* code_end);
1088  int AddNewSReg(int v_reg);
1089  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
1090  void DataFlowSSAFormat35C(MIR* mir);
1091  void DataFlowSSAFormat3RC(MIR* mir);
1092  void DataFlowSSAFormatExtended(MIR* mir);
1093  bool FindLocalLiveIn(BasicBlock* bb);
1094  bool VerifyPredInfo(BasicBlock* bb);
1095  BasicBlock* NeedsVisit(BasicBlock* bb);
1096  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
1097  void MarkPreOrder(BasicBlock* bb);
1098  void RecordDFSOrders(BasicBlock* bb);
1099  void ComputeDomPostOrderTraversal(BasicBlock* bb);
1100  void SetConstant(int32_t ssa_reg, int value);
1101  void SetConstantWide(int ssa_reg, int64_t value);
1102  int GetSSAUseCount(int s_reg);
1103  bool BasicBlockOpt(BasicBlock* bb);
1104  bool BuildExtendedBBList(struct BasicBlock* bb);
1105  bool FillDefBlockMatrix(BasicBlock* bb);
1106  void InitializeDominationInfo(BasicBlock* bb);
1107  bool ComputeblockIDom(BasicBlock* bb);
1108  bool ComputeBlockDominators(BasicBlock* bb);
1109  bool SetDominators(BasicBlock* bb);
1110  bool ComputeBlockLiveIns(BasicBlock* bb);
1111  bool ComputeDominanceFrontier(BasicBlock* bb);
1112
1113  void CountChecks(BasicBlock* bb);
1114  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
1115  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default,
1116                              std::string* skip_message);
1117
1118  CompilationUnit* const cu_;
1119  GrowableArray<int>* ssa_base_vregs_;
1120  GrowableArray<int>* ssa_subscripts_;
1121  // Map original Dalvik virtual reg i to the current SSA name.
1122  int* vreg_to_ssa_map_;            // length == method->registers_size
1123  int* ssa_last_defs_;              // length == method->registers_size
1124  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
1125  int* constant_values_;            // length == num_ssa_reg
1126  // Use counts of ssa names.
1127  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
1128  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
1129  unsigned int num_reachable_blocks_;
1130  unsigned int max_num_reachable_blocks_;
1131  GrowableArray<BasicBlockId>* dfs_order_;
1132  GrowableArray<BasicBlockId>* dfs_post_order_;
1133  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
1134  GrowableArray<BasicBlockId>* topological_order_;
1135  int* i_dom_list_;
1136  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
1137  std::unique_ptr<ScopedArenaAllocator> temp_scoped_alloc_;
1138  uint16_t* temp_insn_data_;
1139  uint32_t temp_bit_vector_size_;
1140  ArenaBitVector* temp_bit_vector_;
1141  std::unique_ptr<GlobalValueNumbering> temp_gvn_;
1142  static const int kInvalidEntry = -1;
1143  GrowableArray<BasicBlock*> block_list_;
1144  ArenaBitVector* try_block_addr_;
1145  BasicBlock* entry_block_;
1146  BasicBlock* exit_block_;
1147  unsigned int num_blocks_;
1148  const DexFile::CodeItem* current_code_item_;
1149  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
1150  std::vector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
1151  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
1152  std::vector<MIRLocation> method_stack_;        // Include stack
1153  int current_method_;
1154  DexOffset current_offset_;                     // Offset in code units
1155  int def_count_;                                // Used to estimate size of ssa name storage.
1156  int* opcode_count_;                            // Dex opcode coverage stats.
1157  int num_ssa_regs_;                             // Number of names following SSA transformation.
1158  std::vector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
1159  int method_sreg_;
1160  unsigned int attributes_;
1161  Checkstats* checkstats_;
1162  ArenaAllocator* arena_;
1163  int backward_branches_;
1164  int forward_branches_;
1165  GrowableArray<CompilerTemp*> compiler_temps_;
1166  size_t num_non_special_compiler_temps_;
1167  size_t max_available_non_special_compiler_temps_;
1168  size_t max_available_special_compiler_temps_;
1169  bool punt_to_interpreter_;                    // Difficult or not worthwhile - just interpret.
1170  uint64_t merged_df_flags_;
1171  GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_;
1172  GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_;
1173  GrowableArray<MirMethodLoweringInfo> method_lowering_infos_;
1174  static const uint64_t oat_data_flow_attributes_[kMirOpLast];
1175  GrowableArray<BasicBlock*> gen_suspend_test_list_;  // List of blocks containing suspend tests
1176
1177  friend class ClassInitCheckEliminationTest;
1178  friend class GlobalValueNumberingTest;
1179  friend class LocalValueNumberingTest;
1180};
1181
1182}  // namespace art
1183
1184#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_
1185