mir_graph.h revision 1fd4821f6b3ac57a44c2ce91025686da4641d197
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
18#define ART_COMPILER_DEX_MIR_GRAPH_H_
19
20#include <stdint.h>
21
22#include "dex_file.h"
23#include "dex_instruction.h"
24#include "compiler_ir.h"
25#include "invoke_type.h"
26#include "mir_field_info.h"
27#include "mir_method_info.h"
28#include "utils/arena_bit_vector.h"
29#include "utils/growable_array.h"
30#include "utils/scoped_arena_containers.h"
31#include "reg_location.h"
32#include "reg_storage.h"
33
34namespace art {
35
36class GlobalValueNumbering;
37
38enum InstructionAnalysisAttributePos {
39  kUninterestingOp = 0,
40  kArithmeticOp,
41  kFPOp,
42  kSingleOp,
43  kDoubleOp,
44  kIntOp,
45  kLongOp,
46  kBranchOp,
47  kInvokeOp,
48  kArrayOp,
49  kHeavyweightOp,
50  kSimpleConstOp,
51  kMoveOp,
52  kSwitch
53};
54
55#define AN_NONE (1 << kUninterestingOp)
56#define AN_MATH (1 << kArithmeticOp)
57#define AN_FP (1 << kFPOp)
58#define AN_LONG (1 << kLongOp)
59#define AN_INT (1 << kIntOp)
60#define AN_SINGLE (1 << kSingleOp)
61#define AN_DOUBLE (1 << kDoubleOp)
62#define AN_FLOATMATH (1 << kFPOp)
63#define AN_BRANCH (1 << kBranchOp)
64#define AN_INVOKE (1 << kInvokeOp)
65#define AN_ARRAYOP (1 << kArrayOp)
66#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
67#define AN_SIMPLECONST (1 << kSimpleConstOp)
68#define AN_MOVE (1 << kMoveOp)
69#define AN_SWITCH (1 << kSwitch)
70#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
71
72enum DataFlowAttributePos {
73  kUA = 0,
74  kUB,
75  kUC,
76  kAWide,
77  kBWide,
78  kCWide,
79  kDA,
80  kIsMove,
81  kSetsConst,
82  kFormat35c,
83  kFormat3rc,
84  kFormatExtended,       // Extended format for extended MIRs.
85  kNullCheckSrc0,        // Null check of uses[0].
86  kNullCheckSrc1,        // Null check of uses[1].
87  kNullCheckSrc2,        // Null check of uses[2].
88  kNullCheckOut0,        // Null check out outgoing arg0.
89  kDstNonNull,           // May assume dst is non-null.
90  kRetNonNull,           // May assume retval is non-null.
91  kNullTransferSrc0,     // Object copy src[0] -> dst.
92  kNullTransferSrcN,     // Phi null check state transfer.
93  kRangeCheckSrc1,       // Range check of uses[1].
94  kRangeCheckSrc2,       // Range check of uses[2].
95  kRangeCheckSrc3,       // Range check of uses[3].
96  kFPA,
97  kFPB,
98  kFPC,
99  kCoreA,
100  kCoreB,
101  kCoreC,
102  kRefA,
103  kRefB,
104  kRefC,
105  kUsesMethodStar,       // Implicit use of Method*.
106  kUsesIField,           // Accesses an instance field (IGET/IPUT).
107  kUsesSField,           // Accesses a static field (SGET/SPUT).
108  kDoLVN,                // Worth computing local value numbers.
109};
110
111#define DF_NOP                  UINT64_C(0)
112#define DF_UA                   (UINT64_C(1) << kUA)
113#define DF_UB                   (UINT64_C(1) << kUB)
114#define DF_UC                   (UINT64_C(1) << kUC)
115#define DF_A_WIDE               (UINT64_C(1) << kAWide)
116#define DF_B_WIDE               (UINT64_C(1) << kBWide)
117#define DF_C_WIDE               (UINT64_C(1) << kCWide)
118#define DF_DA                   (UINT64_C(1) << kDA)
119#define DF_IS_MOVE              (UINT64_C(1) << kIsMove)
120#define DF_SETS_CONST           (UINT64_C(1) << kSetsConst)
121#define DF_FORMAT_35C           (UINT64_C(1) << kFormat35c)
122#define DF_FORMAT_3RC           (UINT64_C(1) << kFormat3rc)
123#define DF_FORMAT_EXTENDED      (UINT64_C(1) << kFormatExtended)
124#define DF_NULL_CHK_0           (UINT64_C(1) << kNullCheckSrc0)
125#define DF_NULL_CHK_1           (UINT64_C(1) << kNullCheckSrc1)
126#define DF_NULL_CHK_2           (UINT64_C(1) << kNullCheckSrc2)
127#define DF_NULL_CHK_OUT0        (UINT64_C(1) << kNullCheckOut0)
128#define DF_NON_NULL_DST         (UINT64_C(1) << kDstNonNull)
129#define DF_NON_NULL_RET         (UINT64_C(1) << kRetNonNull)
130#define DF_NULL_TRANSFER_0      (UINT64_C(1) << kNullTransferSrc0)
131#define DF_NULL_TRANSFER_N      (UINT64_C(1) << kNullTransferSrcN)
132#define DF_RANGE_CHK_1          (UINT64_C(1) << kRangeCheckSrc1)
133#define DF_RANGE_CHK_2          (UINT64_C(1) << kRangeCheckSrc2)
134#define DF_RANGE_CHK_3          (UINT64_C(1) << kRangeCheckSrc3)
135#define DF_FP_A                 (UINT64_C(1) << kFPA)
136#define DF_FP_B                 (UINT64_C(1) << kFPB)
137#define DF_FP_C                 (UINT64_C(1) << kFPC)
138#define DF_CORE_A               (UINT64_C(1) << kCoreA)
139#define DF_CORE_B               (UINT64_C(1) << kCoreB)
140#define DF_CORE_C               (UINT64_C(1) << kCoreC)
141#define DF_REF_A                (UINT64_C(1) << kRefA)
142#define DF_REF_B                (UINT64_C(1) << kRefB)
143#define DF_REF_C                (UINT64_C(1) << kRefC)
144#define DF_UMS                  (UINT64_C(1) << kUsesMethodStar)
145#define DF_IFIELD               (UINT64_C(1) << kUsesIField)
146#define DF_SFIELD               (UINT64_C(1) << kUsesSField)
147#define DF_LVN                  (UINT64_C(1) << kDoLVN)
148
149#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
150
151#define DF_HAS_DEFS             (DF_DA)
152
153#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
154                                 DF_NULL_CHK_1 | \
155                                 DF_NULL_CHK_2 | \
156                                 DF_NULL_CHK_OUT0)
157
158#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
159                                 DF_RANGE_CHK_2 | \
160                                 DF_RANGE_CHK_3)
161
162#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
163                                 DF_HAS_RANGE_CHKS)
164
165#define DF_A_IS_REG             (DF_UA | DF_DA)
166#define DF_B_IS_REG             (DF_UB)
167#define DF_C_IS_REG             (DF_UC)
168#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
169#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
170#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
171enum OatMethodAttributes {
172  kIsLeaf,            // Method is leaf.
173  kHasLoop,           // Method contains simple loop.
174};
175
176#define METHOD_IS_LEAF          (1 << kIsLeaf)
177#define METHOD_HAS_LOOP         (1 << kHasLoop)
178
179// Minimum field size to contain Dalvik v_reg number.
180#define VREG_NUM_WIDTH 16
181
182#define INVALID_SREG (-1)
183#define INVALID_VREG (0xFFFFU)
184#define INVALID_OFFSET (0xDEADF00FU)
185
186#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
187#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
188#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
189#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
190#define MIR_IGNORE_CLINIT_CHECK         (1 << kMIRIgnoreClInitCheck)
191#define MIR_INLINED                     (1 << kMIRInlined)
192#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
193#define MIR_CALLEE                      (1 << kMIRCallee)
194#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
195#define MIR_DUP                         (1 << kMIRDup)
196
197#define BLOCK_NAME_LEN 80
198
199typedef uint16_t BasicBlockId;
200static const BasicBlockId NullBasicBlockId = 0;
201static constexpr bool kLeafOptimization = false;
202
203/*
204 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
205 * it is useful to have compiler-generated temporary registers and have them treated
206 * in the same manner as dx-generated virtual registers.  This struct records the SSA
207 * name of compiler-introduced temporaries.
208 */
209struct CompilerTemp {
210  int32_t v_reg;      // Virtual register number for temporary.
211  int32_t s_reg_low;  // SSA name for low Dalvik word.
212};
213
214enum CompilerTempType {
215  kCompilerTempVR,                // A virtual register temporary.
216  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
217};
218
219// When debug option enabled, records effectiveness of null and range check elimination.
220struct Checkstats {
221  int32_t null_checks;
222  int32_t null_checks_eliminated;
223  int32_t range_checks;
224  int32_t range_checks_eliminated;
225};
226
227// Dataflow attributes of a basic block.
228struct BasicBlockDataFlow {
229  ArenaBitVector* use_v;
230  ArenaBitVector* def_v;
231  ArenaBitVector* live_in_v;
232  ArenaBitVector* phi_v;
233  int32_t* vreg_to_ssa_map_exit;
234  ArenaBitVector* ending_check_v;  // For null check and class init check elimination.
235};
236
237/*
238 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
239 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
240 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
241 * Following SSA renaming, this is the primary struct used by code generators to locate
242 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
243 * we may want to revisit in the future.
244 *
245 * TODO:
246 *  1. Add accessors for uses/defs and make data private
247 *  2. Change fp_use/fp_def to a bit array (could help memory usage)
248 *  3. Combine array storage into internal array and handled via accessors from 1.
249 */
250struct SSARepresentation {
251  int32_t* uses;
252  bool* fp_use;
253  int32_t* defs;
254  bool* fp_def;
255  int16_t num_uses_allocated;
256  int16_t num_defs_allocated;
257  int16_t num_uses;
258  int16_t num_defs;
259
260  static uint32_t GetStartUseIndex(Instruction::Code opcode);
261};
262
263/*
264 * The Midlevel Intermediate Representation node, which may be largely considered a
265 * wrapper around a Dalvik byte code.
266 */
267struct MIR {
268  /*
269   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
270   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
271   * need to carry aux data pointer.
272   */
273  struct DecodedInstruction {
274    uint32_t vA;
275    uint32_t vB;
276    uint64_t vB_wide;        /* for k51l */
277    uint32_t vC;
278    uint32_t arg[5];         /* vC/D/E/F/G in invoke or filled-new-array */
279    Instruction::Code opcode;
280
281    explicit DecodedInstruction():vA(0), vB(0), vB_wide(0), vC(0), opcode(Instruction::NOP) {
282    }
283
284    /*
285     * Given a decoded instruction representing a const bytecode, it updates
286     * the out arguments with proper values as dictated by the constant bytecode.
287     */
288    bool GetConstant(int64_t* ptr_value, bool* wide) const;
289
290    static bool IsPseudoMirOp(Instruction::Code opcode) {
291      return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
292    }
293
294    static bool IsPseudoMirOp(int opcode) {
295      return opcode >= static_cast<int>(kMirOpFirst);
296    }
297
298    bool IsInvoke() const {
299      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kInvoke) == Instruction::kInvoke);
300    }
301
302    bool IsStore() const {
303      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kStore) == Instruction::kStore);
304    }
305
306    bool IsLoad() const {
307      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kLoad) == Instruction::kLoad);
308    }
309
310    bool IsConditionalBranch() const {
311      return !IsPseudoMirOp(opcode) && (Instruction::FlagsOf(opcode) == (Instruction::kContinue | Instruction::kBranch));
312    }
313
314    /**
315     * @brief Is the register C component of the decoded instruction a constant?
316     */
317    bool IsCFieldOrConstant() const {
318      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kRegCFieldOrConstant) == Instruction::kRegCFieldOrConstant);
319    }
320
321    /**
322     * @brief Is the register C component of the decoded instruction a constant?
323     */
324    bool IsBFieldOrConstant() const {
325      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kRegBFieldOrConstant) == Instruction::kRegBFieldOrConstant);
326    }
327
328    bool IsCast() const {
329      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kCast) == Instruction::kCast);
330    }
331
332    /**
333     * @brief Does the instruction clobber memory?
334     * @details Clobber means that the instruction changes the memory not in a punctual way.
335     *          Therefore any supposition on memory aliasing or memory contents should be disregarded
336     *            when crossing such an instruction.
337     */
338    bool Clobbers() const {
339      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kClobber) == Instruction::kClobber);
340    }
341
342    bool IsLinear() const {
343      return !IsPseudoMirOp(opcode) && (Instruction::FlagsOf(opcode) & (Instruction::kAdd | Instruction::kSubtract)) != 0;
344    }
345  } dalvikInsn;
346
347  NarrowDexOffset offset;         // Offset of the instruction in code units.
348  uint16_t optimization_flags;
349  int16_t m_unit_index;           // From which method was this MIR included
350  BasicBlockId bb;
351  MIR* next;
352  SSARepresentation* ssa_rep;
353  union {
354    // Incoming edges for phi node.
355    BasicBlockId* phi_incoming;
356    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
357    MIR* throw_insn;
358    // Branch condition for fused cmp or select.
359    ConditionCode ccode;
360    // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
361    // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
362    uint32_t ifield_lowering_info;
363    // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
364    // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
365    uint32_t sfield_lowering_info;
366    // INVOKE data index, points to MIRGraph::method_lowering_infos_.
367    uint32_t method_lowering_info;
368  } meta;
369
370  explicit MIR():offset(0), optimization_flags(0), m_unit_index(0), bb(NullBasicBlockId),
371                 next(nullptr), ssa_rep(nullptr) {
372    memset(&meta, 0, sizeof(meta));
373  }
374
375  uint32_t GetStartUseIndex() const {
376    return SSARepresentation::GetStartUseIndex(dalvikInsn.opcode);
377  }
378
379  MIR* Copy(CompilationUnit *c_unit);
380  MIR* Copy(MIRGraph* mir_Graph);
381
382  static void* operator new(size_t size, ArenaAllocator* arena) {
383    return arena->Alloc(sizeof(MIR), kArenaAllocMIR);
384  }
385  static void operator delete(void* p) {}  // Nop.
386};
387
388struct SuccessorBlockInfo;
389
390struct BasicBlock {
391  BasicBlockId id;
392  BasicBlockId dfs_id;
393  NarrowDexOffset start_offset;     // Offset in code units.
394  BasicBlockId fall_through;
395  BasicBlockId taken;
396  BasicBlockId i_dom;               // Immediate dominator.
397  uint16_t nesting_depth;
398  BBType block_type:4;
399  BlockListType successor_block_list_type:4;
400  bool visited:1;
401  bool hidden:1;
402  bool catch_entry:1;
403  bool explicit_throw:1;
404  bool conditional_branch:1;
405  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
406  bool dominates_return:1;      // Is a member of return extended basic block.
407  bool use_lvn:1;               // Run local value numbering on this block.
408  MIR* first_mir_insn;
409  MIR* last_mir_insn;
410  BasicBlockDataFlow* data_flow_info;
411  ArenaBitVector* dominators;
412  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
413  ArenaBitVector* dom_frontier;     // Dominance frontier.
414  GrowableArray<BasicBlockId>* predecessors;
415  GrowableArray<SuccessorBlockInfo*>* successor_blocks;
416
417  void AppendMIR(MIR* mir);
418  void AppendMIRList(MIR* first_list_mir, MIR* last_list_mir);
419  void AppendMIRList(const std::vector<MIR*>& insns);
420  void PrependMIR(MIR* mir);
421  void PrependMIRList(MIR* first_list_mir, MIR* last_list_mir);
422  void PrependMIRList(const std::vector<MIR*>& to_add);
423  void InsertMIRAfter(MIR* current_mir, MIR* new_mir);
424  void InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir);
425  MIR* FindPreviousMIR(MIR* mir);
426  void InsertMIRBefore(MIR* insert_before, MIR* list);
427  void InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir);
428  bool RemoveMIR(MIR* mir);
429  bool RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir);
430
431  BasicBlock* Copy(CompilationUnit* c_unit);
432  BasicBlock* Copy(MIRGraph* mir_graph);
433
434  /**
435   * @brief Reset the optimization_flags field of each MIR.
436   */
437  void ResetOptimizationFlags(uint16_t reset_flags);
438
439  /**
440   * @brief Hide the BasicBlock.
441   * @details Set it to kDalvikByteCode, set hidden to true, remove all MIRs,
442   *          remove itself from any predecessor edges, remove itself from any
443   *          child's predecessor growable array.
444   */
445  void Hide(CompilationUnit* c_unit);
446
447  /**
448   * @brief Is ssa_reg the last SSA definition of that VR in the block?
449   */
450  bool IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg);
451
452  /**
453   * @brief Replace the edge going to old_bb to now go towards new_bb.
454   */
455  bool ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb);
456
457  /**
458   * @brief Update the predecessor growable array from old_pred to new_pred.
459   */
460  void UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred);
461
462  /**
463   * @brief Used to obtain the next MIR that follows unconditionally.
464   * @details The implementation does not guarantee that a MIR does not
465   * follow even if this method returns nullptr.
466   * @param mir_graph the MIRGraph.
467   * @param current The MIR for which to find an unconditional follower.
468   * @return Returns the following MIR if one can be found.
469   */
470  MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
471  bool IsExceptionBlock() const;
472
473  static void* operator new(size_t size, ArenaAllocator* arena) {
474    return arena->Alloc(sizeof(BasicBlock), kArenaAllocBB);
475  }
476  static void operator delete(void* p) {}  // Nop.
477};
478
479/*
480 * The "blocks" field in "successor_block_list" points to an array of elements with the type
481 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For switch
482 * blocks, key is the case value.
483 */
484struct SuccessorBlockInfo {
485  BasicBlockId block;
486  int key;
487};
488
489/**
490 * @class ChildBlockIterator
491 * @brief Enable an easy iteration of the children.
492 */
493class ChildBlockIterator {
494 public:
495  /**
496   * @brief Constructs a child iterator.
497   * @param bb The basic whose children we need to iterate through.
498   * @param mir_graph The MIRGraph used to get the basic block during iteration.
499   */
500  ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph);
501  BasicBlock* Next();
502
503 private:
504  BasicBlock* basic_block_;
505  MIRGraph* mir_graph_;
506  bool visited_fallthrough_;
507  bool visited_taken_;
508  bool have_successors_;
509  GrowableArray<SuccessorBlockInfo*>::Iterator successor_iter_;
510};
511
512/*
513 * Collection of information describing an invoke, and the destination of
514 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
515 * more efficient invoke code generation.
516 */
517struct CallInfo {
518  int num_arg_words;    // Note: word count, not arg count.
519  RegLocation* args;    // One for each word of arguments.
520  RegLocation result;   // Eventual target of MOVE_RESULT.
521  int opt_flags;
522  InvokeType type;
523  uint32_t dex_idx;
524  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
525  uintptr_t direct_code;
526  uintptr_t direct_method;
527  RegLocation target;    // Target of following move_result.
528  bool skip_this;
529  bool is_range;
530  DexOffset offset;      // Offset in code units.
531  MIR* mir;
532};
533
534
535const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, RegStorage(), INVALID_SREG,
536                             INVALID_SREG};
537
538class MIRGraph {
539 public:
540  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
541  ~MIRGraph();
542
543  /*
544   * Examine the graph to determine whether it's worthwile to spend the time compiling
545   * this method.
546   */
547  bool SkipCompilation(std::string* skip_message);
548
549  /*
550   * Should we skip the compilation of this method based on its name?
551   */
552  bool SkipCompilationByName(const std::string& methodname);
553
554  /*
555   * Parse dex method and add MIR at current insert point.  Returns id (which is
556   * actually the index of the method in the m_units_ array).
557   */
558  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
559                    InvokeType invoke_type, uint16_t class_def_idx,
560                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
561
562  /* Find existing block */
563  BasicBlock* FindBlock(DexOffset code_offset) {
564    return FindBlock(code_offset, false, false, NULL);
565  }
566
567  const uint16_t* GetCurrentInsns() const {
568    return current_code_item_->insns_;
569  }
570
571  const uint16_t* GetInsns(int m_unit_index) const {
572    return m_units_[m_unit_index]->GetCodeItem()->insns_;
573  }
574
575  unsigned int GetNumBlocks() const {
576    return num_blocks_;
577  }
578
579  size_t GetNumDalvikInsns() const {
580    return cu_->code_item->insns_size_in_code_units_;
581  }
582
583  ArenaBitVector* GetTryBlockAddr() const {
584    return try_block_addr_;
585  }
586
587  BasicBlock* GetEntryBlock() const {
588    return entry_block_;
589  }
590
591  BasicBlock* GetExitBlock() const {
592    return exit_block_;
593  }
594
595  BasicBlock* GetBasicBlock(unsigned int block_id) const {
596    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
597  }
598
599  size_t GetBasicBlockListCount() const {
600    return block_list_.Size();
601  }
602
603  GrowableArray<BasicBlock*>* GetBlockList() {
604    return &block_list_;
605  }
606
607  GrowableArray<BasicBlockId>* GetDfsOrder() {
608    return dfs_order_;
609  }
610
611  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
612    return dfs_post_order_;
613  }
614
615  GrowableArray<BasicBlockId>* GetDomPostOrder() {
616    return dom_post_order_traversal_;
617  }
618
619  int GetDefCount() const {
620    return def_count_;
621  }
622
623  ArenaAllocator* GetArena() {
624    return arena_;
625  }
626
627  void EnableOpcodeCounting() {
628    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
629                                                    kArenaAllocMisc));
630  }
631
632  void ShowOpcodeStats();
633
634  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
635    return m_units_[current_method_];
636  }
637
638  /**
639   * @brief Dump a CFG into a dot file format.
640   * @param dir_prefix the directory the file will be created in.
641   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
642   * @param suffix does the filename require a suffix or not (default = nullptr).
643   */
644  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
645
646  bool HasFieldAccess() const {
647    return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
648  }
649
650  bool HasStaticFieldAccess() const {
651    return (merged_df_flags_ & DF_SFIELD) != 0u;
652  }
653
654  bool HasInvokes() const {
655    // NOTE: These formats include the rare filled-new-array/range.
656    return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
657  }
658
659  void DoCacheFieldLoweringInfo();
660
661  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
662    DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size());
663    return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info];
664  }
665
666  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
667    DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size());
668    return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info];
669  }
670
671  void DoCacheMethodLoweringInfo();
672
673  const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) {
674    DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size());
675    return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info];
676  }
677
678  void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);
679
680  void InitRegLocations();
681
682  void RemapRegLocations();
683
684  void DumpRegLocTable(RegLocation* table, int count);
685
686  void BasicBlockOptimization();
687
688  GrowableArray<BasicBlockId>* GetTopologicalSortOrder() {
689    DCHECK(topological_order_ != nullptr);
690    return topological_order_;
691  }
692
693  GrowableArray<BasicBlockId>* GetTopologicalSortOrderLoopEnds() {
694    DCHECK(topological_order_loop_ends_ != nullptr);
695    return topological_order_loop_ends_;
696  }
697
698  GrowableArray<BasicBlockId>* GetTopologicalSortOrderIndexes() {
699    DCHECK(topological_order_indexes_ != nullptr);
700    return topological_order_indexes_;
701  }
702
703  GrowableArray<std::pair<uint16_t, bool>>* GetTopologicalSortOrderLoopHeadStack() {
704    DCHECK(topological_order_loop_head_stack_ != nullptr);
705    return topological_order_loop_head_stack_;
706  }
707
708  bool IsConst(int32_t s_reg) const {
709    return is_constant_v_->IsBitSet(s_reg);
710  }
711
712  bool IsConst(RegLocation loc) const {
713    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
714  }
715
716  int32_t ConstantValue(RegLocation loc) const {
717    DCHECK(IsConst(loc));
718    return constant_values_[loc.orig_sreg];
719  }
720
721  int32_t ConstantValue(int32_t s_reg) const {
722    DCHECK(IsConst(s_reg));
723    return constant_values_[s_reg];
724  }
725
726  int64_t ConstantValueWide(RegLocation loc) const {
727    DCHECK(IsConst(loc));
728    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
729        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
730  }
731
732  bool IsConstantNullRef(RegLocation loc) const {
733    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
734  }
735
736  int GetNumSSARegs() const {
737    return num_ssa_regs_;
738  }
739
740  void SetNumSSARegs(int new_num) {
741     /*
742      * TODO: It's theoretically possible to exceed 32767, though any cases which did
743      * would be filtered out with current settings.  When orig_sreg field is removed
744      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
745      */
746    DCHECK_EQ(new_num, static_cast<int16_t>(new_num));
747    num_ssa_regs_ = new_num;
748  }
749
750  unsigned int GetNumReachableBlocks() const {
751    return num_reachable_blocks_;
752  }
753
754  int GetUseCount(int vreg) const {
755    return use_counts_.Get(vreg);
756  }
757
758  int GetRawUseCount(int vreg) const {
759    return raw_use_counts_.Get(vreg);
760  }
761
762  int GetSSASubscript(int ssa_reg) const {
763    return ssa_subscripts_->Get(ssa_reg);
764  }
765
766  RegLocation GetRawSrc(MIR* mir, int num) {
767    DCHECK(num < mir->ssa_rep->num_uses);
768    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
769    return res;
770  }
771
772  RegLocation GetRawDest(MIR* mir) {
773    DCHECK_GT(mir->ssa_rep->num_defs, 0);
774    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
775    return res;
776  }
777
778  RegLocation GetDest(MIR* mir) {
779    RegLocation res = GetRawDest(mir);
780    DCHECK(!res.wide);
781    return res;
782  }
783
784  RegLocation GetSrc(MIR* mir, int num) {
785    RegLocation res = GetRawSrc(mir, num);
786    DCHECK(!res.wide);
787    return res;
788  }
789
790  RegLocation GetDestWide(MIR* mir) {
791    RegLocation res = GetRawDest(mir);
792    DCHECK(res.wide);
793    return res;
794  }
795
796  RegLocation GetSrcWide(MIR* mir, int low) {
797    RegLocation res = GetRawSrc(mir, low);
798    DCHECK(res.wide);
799    return res;
800  }
801
802  RegLocation GetBadLoc() {
803    return bad_loc;
804  }
805
806  int GetMethodSReg() const {
807    return method_sreg_;
808  }
809
810  /**
811   * @brief Used to obtain the number of compiler temporaries being used.
812   * @return Returns the number of compiler temporaries.
813   */
814  size_t GetNumUsedCompilerTemps() const {
815    size_t total_num_temps = compiler_temps_.Size();
816    DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
817    return total_num_temps;
818  }
819
820  /**
821   * @brief Used to obtain the number of non-special compiler temporaries being used.
822   * @return Returns the number of non-special compiler temporaries.
823   */
824  size_t GetNumNonSpecialCompilerTemps() const {
825    return num_non_special_compiler_temps_;
826  }
827
828  /**
829   * @brief Used to set the total number of available non-special compiler temporaries.
830   * @details Can fail setting the new max if there are more temps being used than the new_max.
831   * @param new_max The new maximum number of non-special compiler temporaries.
832   * @return Returns true if the max was set and false if failed to set.
833   */
834  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
835    if (new_max < GetNumNonSpecialCompilerTemps()) {
836      return false;
837    } else {
838      max_available_non_special_compiler_temps_ = new_max;
839      return true;
840    }
841  }
842
843  /**
844   * @brief Provides the number of non-special compiler temps available.
845   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
846   * @return Returns the number of available temps.
847   */
848  size_t GetNumAvailableNonSpecialCompilerTemps();
849
850  /**
851   * @brief Used to obtain an existing compiler temporary.
852   * @param index The index of the temporary which must be strictly less than the
853   * number of temporaries.
854   * @return Returns the temporary that was asked for.
855   */
856  CompilerTemp* GetCompilerTemp(size_t index) const {
857    return compiler_temps_.Get(index);
858  }
859
860  /**
861   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
862   * @return Returns the maximum number of compiler temporaries, whether used or not.
863   */
864  size_t GetMaxPossibleCompilerTemps() const {
865    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
866  }
867
868  /**
869   * @brief Used to obtain a new unique compiler temporary.
870   * @param ct_type Type of compiler temporary requested.
871   * @param wide Whether we should allocate a wide temporary.
872   * @return Returns the newly created compiler temporary.
873   */
874  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);
875
876  bool MethodIsLeaf() {
877    return attributes_ & METHOD_IS_LEAF;
878  }
879
880  RegLocation GetRegLocation(int index) {
881    DCHECK((index >= 0) && (index < num_ssa_regs_));
882    return reg_location_[index];
883  }
884
885  RegLocation GetMethodLoc() {
886    return reg_location_[method_sreg_];
887  }
888
889  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
890    return ((target_bb_id != NullBasicBlockId) &&
891            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
892  }
893
894  bool IsBackwardsBranch(BasicBlock* branch_bb) {
895    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
896  }
897
898  void CountBranch(DexOffset target_offset) {
899    if (target_offset <= current_offset_) {
900      backward_branches_++;
901    } else {
902      forward_branches_++;
903    }
904  }
905
906  int GetBranchCount() {
907    return backward_branches_ + forward_branches_;
908  }
909
910  // Is this vreg in the in set?
911  bool IsInVReg(int vreg) {
912    return (vreg >= cu_->num_regs);
913  }
914
915  void DumpCheckStats();
916  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
917  int SRegToVReg(int ssa_reg) const;
918  void VerifyDataflow();
919  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
920  void EliminateNullChecksAndInferTypesStart();
921  bool EliminateNullChecksAndInferTypes(BasicBlock* bb);
922  void EliminateNullChecksAndInferTypesEnd();
923  bool EliminateClassInitChecksGate();
924  bool EliminateClassInitChecks(BasicBlock* bb);
925  void EliminateClassInitChecksEnd();
926  bool ApplyGlobalValueNumberingGate();
927  bool ApplyGlobalValueNumbering(BasicBlock* bb);
928  void ApplyGlobalValueNumberingEnd();
929  /*
930   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
931   * we have to do some work to figure out the sreg type.  For some operations it is
932   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
933   * may never know the "real" type.
934   *
935   * We perform the type inference operation by using an iterative  walk over
936   * the graph, propagating types "defined" by typed opcodes to uses and defs in
937   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
938   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
939   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
940   * tells whether our guess of the type is based on a previously typed definition.
941   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
942   * show multiple defined types because dx treats constants as untyped bit patterns.
943   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
944   * the current guess, and is used to know when to terminate the iterative walk.
945   */
946  bool SetFp(int index, bool is_fp);
947  bool SetFp(int index);
948  bool SetCore(int index, bool is_core);
949  bool SetCore(int index);
950  bool SetRef(int index, bool is_ref);
951  bool SetRef(int index);
952  bool SetWide(int index, bool is_wide);
953  bool SetWide(int index);
954  bool SetHigh(int index, bool is_high);
955  bool SetHigh(int index);
956
957  bool PuntToInterpreter() {
958    return punt_to_interpreter_;
959  }
960
961  void SetPuntToInterpreter(bool val) {
962    punt_to_interpreter_ = val;
963  }
964
965  char* GetDalvikDisassembly(const MIR* mir);
966  void ReplaceSpecialChars(std::string& str);
967  std::string GetSSAName(int ssa_reg);
968  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
969  void GetBlockName(BasicBlock* bb, char* name);
970  const char* GetShortyFromTargetIdx(int);
971  void DumpMIRGraph();
972  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
973  BasicBlock* NewMemBB(BBType block_type, int block_id);
974  MIR* NewMIR();
975  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
976  BasicBlock* NextDominatedBlock(BasicBlock* bb);
977  bool LayoutBlocks(BasicBlock* bb);
978  void ComputeTopologicalSortOrder();
979  BasicBlock* CreateNewBB(BBType block_type);
980
981  bool InlineSpecialMethodsGate();
982  void InlineSpecialMethodsStart();
983  void InlineSpecialMethods(BasicBlock* bb);
984  void InlineSpecialMethodsEnd();
985
986  /**
987   * @brief Perform the initial preparation for the Method Uses.
988   */
989  void InitializeMethodUses();
990
991  /**
992   * @brief Perform the initial preparation for the Constant Propagation.
993   */
994  void InitializeConstantPropagation();
995
996  /**
997   * @brief Perform the initial preparation for the SSA Transformation.
998   */
999  void SSATransformationStart();
1000
1001  /**
1002   * @brief Insert a the operands for the Phi nodes.
1003   * @param bb the considered BasicBlock.
1004   * @return true
1005   */
1006  bool InsertPhiNodeOperands(BasicBlock* bb);
1007
1008  /**
1009   * @brief Perform the cleanup after the SSA Transformation.
1010   */
1011  void SSATransformationEnd();
1012
1013  /**
1014   * @brief Perform constant propagation on a BasicBlock.
1015   * @param bb the considered BasicBlock.
1016   */
1017  void DoConstantPropagation(BasicBlock* bb);
1018
1019  /**
1020   * @brief Count the uses in the BasicBlock
1021   * @param bb the BasicBlock
1022   */
1023  void CountUses(struct BasicBlock* bb);
1024
1025  static uint64_t GetDataFlowAttributes(Instruction::Code opcode);
1026  static uint64_t GetDataFlowAttributes(MIR* mir);
1027
1028  /**
1029   * @brief Combine BasicBlocks
1030   * @param the BasicBlock we are considering
1031   */
1032  void CombineBlocks(BasicBlock* bb);
1033
1034  void ClearAllVisitedFlags();
1035
1036  void AllocateSSAUseData(MIR *mir, int num_uses);
1037  void AllocateSSADefData(MIR *mir, int num_defs);
1038  void CalculateBasicBlockInformation();
1039  void InitializeBasicBlockData();
1040  void ComputeDFSOrders();
1041  void ComputeDefBlockMatrix();
1042  void ComputeDominators();
1043  void CompilerInitializeSSAConversion();
1044  void InsertPhiNodes();
1045  void DoDFSPreOrderSSARename(BasicBlock* block);
1046
1047  /*
1048   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
1049   * we can verify that all catch entries have native PC entries.
1050   */
1051  std::set<uint32_t> catches_;
1052
1053  // TODO: make these private.
1054  RegLocation* reg_location_;                         // Map SSA names to location.
1055  SafeMap<unsigned int, unsigned int> block_id_map_;  // Block collapse lookup cache.
1056
1057  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
1058  static const uint32_t analysis_attributes_[kMirOpLast];
1059
1060  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
1061  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
1062
1063  // Used for removing redudant suspend tests
1064  void AppendGenSuspendTestList(BasicBlock* bb) {
1065    if (gen_suspend_test_list_.Size() == 0 ||
1066        gen_suspend_test_list_.Get(gen_suspend_test_list_.Size() - 1) != bb) {
1067      gen_suspend_test_list_.Insert(bb);
1068    }
1069  }
1070
1071  /* This is used to check if there is already a method call dominating the
1072   * source basic block of a backedge and being dominated by the target basic
1073   * block of the backedge.
1074   */
1075  bool HasSuspendTestBetween(BasicBlock* source, BasicBlockId target_id);
1076
1077 protected:
1078  int FindCommonParent(int block1, int block2);
1079  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
1080                         const ArenaBitVector* src2);
1081  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
1082                       ArenaBitVector* live_in_v, int dalvik_reg_id);
1083  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
1084  void HandleExtended(ArenaBitVector* use_v, ArenaBitVector* def_v,
1085                      ArenaBitVector* live_in_v,
1086                      const MIR::DecodedInstruction& d_insn);
1087  bool DoSSAConversion(BasicBlock* bb);
1088  bool InvokeUsesMethodStar(MIR* mir);
1089  int ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction);
1090  bool ContentIsInsn(const uint16_t* code_ptr);
1091  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
1092                         BasicBlock** immed_pred_block_p);
1093  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
1094                        BasicBlock** immed_pred_block_p);
1095  void ProcessTryCatchBlocks();
1096  bool IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset, NarrowDexOffset catch_offset);
1097  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1098                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
1099  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1100                               int flags);
1101  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1102                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
1103                              const uint16_t* code_end);
1104  int AddNewSReg(int v_reg);
1105  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
1106  void DataFlowSSAFormat35C(MIR* mir);
1107  void DataFlowSSAFormat3RC(MIR* mir);
1108  void DataFlowSSAFormatExtended(MIR* mir);
1109  bool FindLocalLiveIn(BasicBlock* bb);
1110  bool VerifyPredInfo(BasicBlock* bb);
1111  BasicBlock* NeedsVisit(BasicBlock* bb);
1112  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
1113  void MarkPreOrder(BasicBlock* bb);
1114  void RecordDFSOrders(BasicBlock* bb);
1115  void ComputeDomPostOrderTraversal(BasicBlock* bb);
1116  void SetConstant(int32_t ssa_reg, int value);
1117  void SetConstantWide(int ssa_reg, int64_t value);
1118  int GetSSAUseCount(int s_reg);
1119  bool BasicBlockOpt(BasicBlock* bb);
1120  bool BuildExtendedBBList(struct BasicBlock* bb);
1121  bool FillDefBlockMatrix(BasicBlock* bb);
1122  void InitializeDominationInfo(BasicBlock* bb);
1123  bool ComputeblockIDom(BasicBlock* bb);
1124  bool ComputeBlockDominators(BasicBlock* bb);
1125  bool SetDominators(BasicBlock* bb);
1126  bool ComputeBlockLiveIns(BasicBlock* bb);
1127  bool ComputeDominanceFrontier(BasicBlock* bb);
1128
1129  void CountChecks(BasicBlock* bb);
1130  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
1131  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default,
1132                              std::string* skip_message);
1133
1134  CompilationUnit* const cu_;
1135  GrowableArray<int>* ssa_base_vregs_;
1136  GrowableArray<int>* ssa_subscripts_;
1137  // Map original Dalvik virtual reg i to the current SSA name.
1138  int* vreg_to_ssa_map_;            // length == method->registers_size
1139  int* ssa_last_defs_;              // length == method->registers_size
1140  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
1141  int* constant_values_;            // length == num_ssa_reg
1142  // Use counts of ssa names.
1143  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
1144  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
1145  unsigned int num_reachable_blocks_;
1146  unsigned int max_num_reachable_blocks_;
1147  GrowableArray<BasicBlockId>* dfs_order_;
1148  GrowableArray<BasicBlockId>* dfs_post_order_;
1149  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
1150  GrowableArray<BasicBlockId>* topological_order_;
1151  // Indexes in topological_order_ need to be only as big as the BasicBlockId.
1152  COMPILE_ASSERT(sizeof(BasicBlockId) == sizeof(uint16_t), assuming_16_bit_BasicBlockId);
1153  // For each loop head, remember the past-the-end index of the end of the loop. 0 if not loop head.
1154  GrowableArray<uint16_t>* topological_order_loop_ends_;
1155  // Map BB ids to topological_order_ indexes. 0xffff if not included (hidden or null block).
1156  GrowableArray<uint16_t>* topological_order_indexes_;
1157  // Stack of the loop head indexes and recalculation flags for RepeatingTopologicalSortIterator.
1158  GrowableArray<std::pair<uint16_t, bool>>* topological_order_loop_head_stack_;
1159  int* i_dom_list_;
1160  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
1161  std::unique_ptr<ScopedArenaAllocator> temp_scoped_alloc_;
1162  uint16_t* temp_insn_data_;
1163  uint32_t temp_bit_vector_size_;
1164  ArenaBitVector* temp_bit_vector_;
1165  std::unique_ptr<GlobalValueNumbering> temp_gvn_;
1166  static const int kInvalidEntry = -1;
1167  GrowableArray<BasicBlock*> block_list_;
1168  ArenaBitVector* try_block_addr_;
1169  BasicBlock* entry_block_;
1170  BasicBlock* exit_block_;
1171  unsigned int num_blocks_;
1172  const DexFile::CodeItem* current_code_item_;
1173  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
1174  std::vector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
1175  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
1176  std::vector<MIRLocation> method_stack_;        // Include stack
1177  int current_method_;
1178  DexOffset current_offset_;                     // Offset in code units
1179  int def_count_;                                // Used to estimate size of ssa name storage.
1180  int* opcode_count_;                            // Dex opcode coverage stats.
1181  int num_ssa_regs_;                             // Number of names following SSA transformation.
1182  std::vector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
1183  int method_sreg_;
1184  unsigned int attributes_;
1185  Checkstats* checkstats_;
1186  ArenaAllocator* arena_;
1187  int backward_branches_;
1188  int forward_branches_;
1189  GrowableArray<CompilerTemp*> compiler_temps_;
1190  size_t num_non_special_compiler_temps_;
1191  size_t max_available_non_special_compiler_temps_;
1192  size_t max_available_special_compiler_temps_;
1193  bool punt_to_interpreter_;                    // Difficult or not worthwhile - just interpret.
1194  uint64_t merged_df_flags_;
1195  GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_;
1196  GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_;
1197  GrowableArray<MirMethodLoweringInfo> method_lowering_infos_;
1198  static const uint64_t oat_data_flow_attributes_[kMirOpLast];
1199  GrowableArray<BasicBlock*> gen_suspend_test_list_;  // List of blocks containing suspend tests
1200
1201  friend class ClassInitCheckEliminationTest;
1202  friend class GlobalValueNumberingTest;
1203  friend class LocalValueNumberingTest;
1204  friend class TopologicalSortOrderTest;
1205};
1206
1207}  // namespace art
1208
1209#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_
1210