mir_graph.h revision 8081d2b8d7a743729557051d0294e040e61c747a
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
18#define ART_COMPILER_DEX_MIR_GRAPH_H_
19
20#include <stdint.h>
21
22#include "dex_file.h"
23#include "dex_instruction.h"
24#include "compiler_ir.h"
25#include "invoke_type.h"
26#include "mir_field_info.h"
27#include "mir_method_info.h"
28#include "utils/arena_bit_vector.h"
29#include "utils/growable_array.h"
30#include "utils/arena_containers.h"
31#include "utils/scoped_arena_containers.h"
32#include "reg_location.h"
33#include "reg_storage.h"
34
35namespace art {
36
37class GlobalValueNumbering;
38
39enum InstructionAnalysisAttributePos {
40  kUninterestingOp = 0,
41  kArithmeticOp,
42  kFPOp,
43  kSingleOp,
44  kDoubleOp,
45  kIntOp,
46  kLongOp,
47  kBranchOp,
48  kInvokeOp,
49  kArrayOp,
50  kHeavyweightOp,
51  kSimpleConstOp,
52  kMoveOp,
53  kSwitch
54};
55
56#define AN_NONE (1 << kUninterestingOp)
57#define AN_MATH (1 << kArithmeticOp)
58#define AN_FP (1 << kFPOp)
59#define AN_LONG (1 << kLongOp)
60#define AN_INT (1 << kIntOp)
61#define AN_SINGLE (1 << kSingleOp)
62#define AN_DOUBLE (1 << kDoubleOp)
63#define AN_FLOATMATH (1 << kFPOp)
64#define AN_BRANCH (1 << kBranchOp)
65#define AN_INVOKE (1 << kInvokeOp)
66#define AN_ARRAYOP (1 << kArrayOp)
67#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
68#define AN_SIMPLECONST (1 << kSimpleConstOp)
69#define AN_MOVE (1 << kMoveOp)
70#define AN_SWITCH (1 << kSwitch)
71#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
72
73enum DataFlowAttributePos {
74  kUA = 0,
75  kUB,
76  kUC,
77  kAWide,
78  kBWide,
79  kCWide,
80  kDA,
81  kIsMove,
82  kSetsConst,
83  kFormat35c,
84  kFormat3rc,
85  kFormatExtended,       // Extended format for extended MIRs.
86  kNullCheckSrc0,        // Null check of uses[0].
87  kNullCheckSrc1,        // Null check of uses[1].
88  kNullCheckSrc2,        // Null check of uses[2].
89  kNullCheckOut0,        // Null check out outgoing arg0.
90  kDstNonNull,           // May assume dst is non-null.
91  kRetNonNull,           // May assume retval is non-null.
92  kNullTransferSrc0,     // Object copy src[0] -> dst.
93  kNullTransferSrcN,     // Phi null check state transfer.
94  kRangeCheckSrc1,       // Range check of uses[1].
95  kRangeCheckSrc2,       // Range check of uses[2].
96  kRangeCheckSrc3,       // Range check of uses[3].
97  kFPA,
98  kFPB,
99  kFPC,
100  kCoreA,
101  kCoreB,
102  kCoreC,
103  kRefA,
104  kRefB,
105  kRefC,
106  kUsesMethodStar,       // Implicit use of Method*.
107  kUsesIField,           // Accesses an instance field (IGET/IPUT).
108  kUsesSField,           // Accesses a static field (SGET/SPUT).
109  kDoLVN,                // Worth computing local value numbers.
110};
111
112#define DF_NOP                  UINT64_C(0)
113#define DF_UA                   (UINT64_C(1) << kUA)
114#define DF_UB                   (UINT64_C(1) << kUB)
115#define DF_UC                   (UINT64_C(1) << kUC)
116#define DF_A_WIDE               (UINT64_C(1) << kAWide)
117#define DF_B_WIDE               (UINT64_C(1) << kBWide)
118#define DF_C_WIDE               (UINT64_C(1) << kCWide)
119#define DF_DA                   (UINT64_C(1) << kDA)
120#define DF_IS_MOVE              (UINT64_C(1) << kIsMove)
121#define DF_SETS_CONST           (UINT64_C(1) << kSetsConst)
122#define DF_FORMAT_35C           (UINT64_C(1) << kFormat35c)
123#define DF_FORMAT_3RC           (UINT64_C(1) << kFormat3rc)
124#define DF_FORMAT_EXTENDED      (UINT64_C(1) << kFormatExtended)
125#define DF_NULL_CHK_0           (UINT64_C(1) << kNullCheckSrc0)
126#define DF_NULL_CHK_1           (UINT64_C(1) << kNullCheckSrc1)
127#define DF_NULL_CHK_2           (UINT64_C(1) << kNullCheckSrc2)
128#define DF_NULL_CHK_OUT0        (UINT64_C(1) << kNullCheckOut0)
129#define DF_NON_NULL_DST         (UINT64_C(1) << kDstNonNull)
130#define DF_NON_NULL_RET         (UINT64_C(1) << kRetNonNull)
131#define DF_NULL_TRANSFER_0      (UINT64_C(1) << kNullTransferSrc0)
132#define DF_NULL_TRANSFER_N      (UINT64_C(1) << kNullTransferSrcN)
133#define DF_RANGE_CHK_1          (UINT64_C(1) << kRangeCheckSrc1)
134#define DF_RANGE_CHK_2          (UINT64_C(1) << kRangeCheckSrc2)
135#define DF_RANGE_CHK_3          (UINT64_C(1) << kRangeCheckSrc3)
136#define DF_FP_A                 (UINT64_C(1) << kFPA)
137#define DF_FP_B                 (UINT64_C(1) << kFPB)
138#define DF_FP_C                 (UINT64_C(1) << kFPC)
139#define DF_CORE_A               (UINT64_C(1) << kCoreA)
140#define DF_CORE_B               (UINT64_C(1) << kCoreB)
141#define DF_CORE_C               (UINT64_C(1) << kCoreC)
142#define DF_REF_A                (UINT64_C(1) << kRefA)
143#define DF_REF_B                (UINT64_C(1) << kRefB)
144#define DF_REF_C                (UINT64_C(1) << kRefC)
145#define DF_UMS                  (UINT64_C(1) << kUsesMethodStar)
146#define DF_IFIELD               (UINT64_C(1) << kUsesIField)
147#define DF_SFIELD               (UINT64_C(1) << kUsesSField)
148#define DF_LVN                  (UINT64_C(1) << kDoLVN)
149
150#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
151
152#define DF_HAS_DEFS             (DF_DA)
153
154#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
155                                 DF_NULL_CHK_1 | \
156                                 DF_NULL_CHK_2 | \
157                                 DF_NULL_CHK_OUT0)
158
159#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
160                                 DF_RANGE_CHK_2 | \
161                                 DF_RANGE_CHK_3)
162
163#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
164                                 DF_HAS_RANGE_CHKS)
165
166#define DF_A_IS_REG             (DF_UA | DF_DA)
167#define DF_B_IS_REG             (DF_UB)
168#define DF_C_IS_REG             (DF_UC)
169#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
170#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
171#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
172enum OatMethodAttributes {
173  kIsLeaf,            // Method is leaf.
174  kHasLoop,           // Method contains simple loop.
175};
176
177#define METHOD_IS_LEAF          (1 << kIsLeaf)
178#define METHOD_HAS_LOOP         (1 << kHasLoop)
179
180// Minimum field size to contain Dalvik v_reg number.
181#define VREG_NUM_WIDTH 16
182
183#define INVALID_SREG (-1)
184#define INVALID_VREG (0xFFFFU)
185#define INVALID_OFFSET (0xDEADF00FU)
186
187#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
188#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
189#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
190#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
191#define MIR_IGNORE_CLINIT_CHECK         (1 << kMIRIgnoreClInitCheck)
192#define MIR_INLINED                     (1 << kMIRInlined)
193#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
194#define MIR_CALLEE                      (1 << kMIRCallee)
195#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
196#define MIR_DUP                         (1 << kMIRDup)
197
198#define BLOCK_NAME_LEN 80
199
200typedef uint16_t BasicBlockId;
201static const BasicBlockId NullBasicBlockId = 0;
202static constexpr bool kLeafOptimization = false;
203
204/*
205 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
206 * it is useful to have compiler-generated temporary registers and have them treated
207 * in the same manner as dx-generated virtual registers.  This struct records the SSA
208 * name of compiler-introduced temporaries.
209 */
210struct CompilerTemp {
211  int32_t v_reg;      // Virtual register number for temporary.
212  int32_t s_reg_low;  // SSA name for low Dalvik word.
213};
214
215enum CompilerTempType {
216  kCompilerTempVR,                // A virtual register temporary.
217  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
218};
219
220// When debug option enabled, records effectiveness of null and range check elimination.
221struct Checkstats {
222  int32_t null_checks;
223  int32_t null_checks_eliminated;
224  int32_t range_checks;
225  int32_t range_checks_eliminated;
226};
227
228// Dataflow attributes of a basic block.
229struct BasicBlockDataFlow {
230  ArenaBitVector* use_v;
231  ArenaBitVector* def_v;
232  ArenaBitVector* live_in_v;
233  ArenaBitVector* phi_v;
234  int32_t* vreg_to_ssa_map_exit;
235  ArenaBitVector* ending_check_v;  // For null check and class init check elimination.
236};
237
238/*
239 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
240 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
241 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
242 * Following SSA renaming, this is the primary struct used by code generators to locate
243 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
244 * we may want to revisit in the future.
245 *
246 * TODO:
247 *  1. Add accessors for uses/defs and make data private
248 *  2. Change fp_use/fp_def to a bit array (could help memory usage)
249 *  3. Combine array storage into internal array and handled via accessors from 1.
250 */
251struct SSARepresentation {
252  int32_t* uses;
253  bool* fp_use;
254  int32_t* defs;
255  bool* fp_def;
256  int16_t num_uses_allocated;
257  int16_t num_defs_allocated;
258  int16_t num_uses;
259  int16_t num_defs;
260
261  static uint32_t GetStartUseIndex(Instruction::Code opcode);
262};
263
264/*
265 * The Midlevel Intermediate Representation node, which may be largely considered a
266 * wrapper around a Dalvik byte code.
267 */
268struct MIR {
269  /*
270   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
271   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
272   * need to carry aux data pointer.
273   */
274  struct DecodedInstruction {
275    uint32_t vA;
276    uint32_t vB;
277    uint64_t vB_wide;        /* for k51l */
278    uint32_t vC;
279    uint32_t arg[5];         /* vC/D/E/F/G in invoke or filled-new-array */
280    Instruction::Code opcode;
281
282    explicit DecodedInstruction():vA(0), vB(0), vB_wide(0), vC(0), opcode(Instruction::NOP) {
283    }
284
285    /*
286     * Given a decoded instruction representing a const bytecode, it updates
287     * the out arguments with proper values as dictated by the constant bytecode.
288     */
289    bool GetConstant(int64_t* ptr_value, bool* wide) const;
290
291    static bool IsPseudoMirOp(Instruction::Code opcode) {
292      return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
293    }
294
295    static bool IsPseudoMirOp(int opcode) {
296      return opcode >= static_cast<int>(kMirOpFirst);
297    }
298
299    bool IsInvoke() const {
300      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kInvoke) == Instruction::kInvoke);
301    }
302
303    bool IsStore() const {
304      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kStore) == Instruction::kStore);
305    }
306
307    bool IsLoad() const {
308      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kLoad) == Instruction::kLoad);
309    }
310
311    bool IsConditionalBranch() const {
312      return !IsPseudoMirOp(opcode) && (Instruction::FlagsOf(opcode) == (Instruction::kContinue | Instruction::kBranch));
313    }
314
315    /**
316     * @brief Is the register C component of the decoded instruction a constant?
317     */
318    bool IsCFieldOrConstant() const {
319      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kRegCFieldOrConstant) == Instruction::kRegCFieldOrConstant);
320    }
321
322    /**
323     * @brief Is the register C component of the decoded instruction a constant?
324     */
325    bool IsBFieldOrConstant() const {
326      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kRegBFieldOrConstant) == Instruction::kRegBFieldOrConstant);
327    }
328
329    bool IsCast() const {
330      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kCast) == Instruction::kCast);
331    }
332
333    /**
334     * @brief Does the instruction clobber memory?
335     * @details Clobber means that the instruction changes the memory not in a punctual way.
336     *          Therefore any supposition on memory aliasing or memory contents should be disregarded
337     *            when crossing such an instruction.
338     */
339    bool Clobbers() const {
340      return !IsPseudoMirOp(opcode) && ((Instruction::FlagsOf(opcode) & Instruction::kClobber) == Instruction::kClobber);
341    }
342
343    bool IsLinear() const {
344      return !IsPseudoMirOp(opcode) && (Instruction::FlagsOf(opcode) & (Instruction::kAdd | Instruction::kSubtract)) != 0;
345    }
346  } dalvikInsn;
347
348  NarrowDexOffset offset;         // Offset of the instruction in code units.
349  uint16_t optimization_flags;
350  int16_t m_unit_index;           // From which method was this MIR included
351  BasicBlockId bb;
352  MIR* next;
353  SSARepresentation* ssa_rep;
354  union {
355    // Incoming edges for phi node.
356    BasicBlockId* phi_incoming;
357    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
358    MIR* throw_insn;
359    // Branch condition for fused cmp or select.
360    ConditionCode ccode;
361    // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
362    // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
363    uint32_t ifield_lowering_info;
364    // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
365    // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
366    uint32_t sfield_lowering_info;
367    // INVOKE data index, points to MIRGraph::method_lowering_infos_.
368    uint32_t method_lowering_info;
369  } meta;
370
371  explicit MIR():offset(0), optimization_flags(0), m_unit_index(0), bb(NullBasicBlockId),
372                 next(nullptr), ssa_rep(nullptr) {
373    memset(&meta, 0, sizeof(meta));
374  }
375
376  uint32_t GetStartUseIndex() const {
377    return SSARepresentation::GetStartUseIndex(dalvikInsn.opcode);
378  }
379
380  MIR* Copy(CompilationUnit *c_unit);
381  MIR* Copy(MIRGraph* mir_Graph);
382
383  static void* operator new(size_t size, ArenaAllocator* arena) {
384    return arena->Alloc(sizeof(MIR), kArenaAllocMIR);
385  }
386  static void operator delete(void* p) {}  // Nop.
387};
388
389struct SuccessorBlockInfo;
390
391struct BasicBlock {
392  BasicBlockId id;
393  BasicBlockId dfs_id;
394  NarrowDexOffset start_offset;     // Offset in code units.
395  BasicBlockId fall_through;
396  BasicBlockId taken;
397  BasicBlockId i_dom;               // Immediate dominator.
398  uint16_t nesting_depth;
399  BBType block_type:4;
400  BlockListType successor_block_list_type:4;
401  bool visited:1;
402  bool hidden:1;
403  bool catch_entry:1;
404  bool explicit_throw:1;
405  bool conditional_branch:1;
406  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
407  bool dominates_return:1;      // Is a member of return extended basic block.
408  bool use_lvn:1;               // Run local value numbering on this block.
409  MIR* first_mir_insn;
410  MIR* last_mir_insn;
411  BasicBlockDataFlow* data_flow_info;
412  ArenaBitVector* dominators;
413  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
414  ArenaBitVector* dom_frontier;     // Dominance frontier.
415  GrowableArray<BasicBlockId>* predecessors;
416  GrowableArray<SuccessorBlockInfo*>* successor_blocks;
417
418  void AppendMIR(MIR* mir);
419  void AppendMIRList(MIR* first_list_mir, MIR* last_list_mir);
420  void AppendMIRList(const std::vector<MIR*>& insns);
421  void PrependMIR(MIR* mir);
422  void PrependMIRList(MIR* first_list_mir, MIR* last_list_mir);
423  void PrependMIRList(const std::vector<MIR*>& to_add);
424  void InsertMIRAfter(MIR* current_mir, MIR* new_mir);
425  void InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir);
426  MIR* FindPreviousMIR(MIR* mir);
427  void InsertMIRBefore(MIR* insert_before, MIR* list);
428  void InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir);
429  bool RemoveMIR(MIR* mir);
430  bool RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir);
431
432  BasicBlock* Copy(CompilationUnit* c_unit);
433  BasicBlock* Copy(MIRGraph* mir_graph);
434
435  /**
436   * @brief Reset the optimization_flags field of each MIR.
437   */
438  void ResetOptimizationFlags(uint16_t reset_flags);
439
440  /**
441   * @brief Hide the BasicBlock.
442   * @details Set it to kDalvikByteCode, set hidden to true, remove all MIRs,
443   *          remove itself from any predecessor edges, remove itself from any
444   *          child's predecessor growable array.
445   */
446  void Hide(CompilationUnit* c_unit);
447
448  /**
449   * @brief Is ssa_reg the last SSA definition of that VR in the block?
450   */
451  bool IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg);
452
453  /**
454   * @brief Replace the edge going to old_bb to now go towards new_bb.
455   */
456  bool ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb);
457
458  /**
459   * @brief Update the predecessor growable array from old_pred to new_pred.
460   */
461  void UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred);
462
463  /**
464   * @brief Used to obtain the next MIR that follows unconditionally.
465   * @details The implementation does not guarantee that a MIR does not
466   * follow even if this method returns nullptr.
467   * @param mir_graph the MIRGraph.
468   * @param current The MIR for which to find an unconditional follower.
469   * @return Returns the following MIR if one can be found.
470   */
471  MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
472  bool IsExceptionBlock() const;
473
474  static void* operator new(size_t size, ArenaAllocator* arena) {
475    return arena->Alloc(sizeof(BasicBlock), kArenaAllocBB);
476  }
477  static void operator delete(void* p) {}  // Nop.
478};
479
480/*
481 * The "blocks" field in "successor_block_list" points to an array of elements with the type
482 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For switch
483 * blocks, key is the case value.
484 */
485struct SuccessorBlockInfo {
486  BasicBlockId block;
487  int key;
488};
489
490/**
491 * @class ChildBlockIterator
492 * @brief Enable an easy iteration of the children.
493 */
494class ChildBlockIterator {
495 public:
496  /**
497   * @brief Constructs a child iterator.
498   * @param bb The basic whose children we need to iterate through.
499   * @param mir_graph The MIRGraph used to get the basic block during iteration.
500   */
501  ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph);
502  BasicBlock* Next();
503
504 private:
505  BasicBlock* basic_block_;
506  MIRGraph* mir_graph_;
507  bool visited_fallthrough_;
508  bool visited_taken_;
509  bool have_successors_;
510  GrowableArray<SuccessorBlockInfo*>::Iterator successor_iter_;
511};
512
513/*
514 * Collection of information describing an invoke, and the destination of
515 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
516 * more efficient invoke code generation.
517 */
518struct CallInfo {
519  int num_arg_words;    // Note: word count, not arg count.
520  RegLocation* args;    // One for each word of arguments.
521  RegLocation result;   // Eventual target of MOVE_RESULT.
522  int opt_flags;
523  InvokeType type;
524  uint32_t dex_idx;
525  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
526  uintptr_t direct_code;
527  uintptr_t direct_method;
528  RegLocation target;    // Target of following move_result.
529  bool skip_this;
530  bool is_range;
531  DexOffset offset;      // Offset in code units.
532  MIR* mir;
533};
534
535
536const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, RegStorage(), INVALID_SREG,
537                             INVALID_SREG};
538
539class MIRGraph {
540 public:
541  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
542  ~MIRGraph();
543
544  /*
545   * Examine the graph to determine whether it's worthwile to spend the time compiling
546   * this method.
547   */
548  bool SkipCompilation(std::string* skip_message);
549
550  /*
551   * Should we skip the compilation of this method based on its name?
552   */
553  bool SkipCompilationByName(const std::string& methodname);
554
555  /*
556   * Parse dex method and add MIR at current insert point.  Returns id (which is
557   * actually the index of the method in the m_units_ array).
558   */
559  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
560                    InvokeType invoke_type, uint16_t class_def_idx,
561                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
562
563  /* Find existing block */
564  BasicBlock* FindBlock(DexOffset code_offset) {
565    return FindBlock(code_offset, false, false, NULL);
566  }
567
568  const uint16_t* GetCurrentInsns() const {
569    return current_code_item_->insns_;
570  }
571
572  const uint16_t* GetInsns(int m_unit_index) const {
573    return m_units_[m_unit_index]->GetCodeItem()->insns_;
574  }
575
576  unsigned int GetNumBlocks() const {
577    return num_blocks_;
578  }
579
580  size_t GetNumDalvikInsns() const {
581    return cu_->code_item->insns_size_in_code_units_;
582  }
583
584  ArenaBitVector* GetTryBlockAddr() const {
585    return try_block_addr_;
586  }
587
588  BasicBlock* GetEntryBlock() const {
589    return entry_block_;
590  }
591
592  BasicBlock* GetExitBlock() const {
593    return exit_block_;
594  }
595
596  BasicBlock* GetBasicBlock(unsigned int block_id) const {
597    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
598  }
599
600  size_t GetBasicBlockListCount() const {
601    return block_list_.Size();
602  }
603
604  GrowableArray<BasicBlock*>* GetBlockList() {
605    return &block_list_;
606  }
607
608  GrowableArray<BasicBlockId>* GetDfsOrder() {
609    return dfs_order_;
610  }
611
612  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
613    return dfs_post_order_;
614  }
615
616  GrowableArray<BasicBlockId>* GetDomPostOrder() {
617    return dom_post_order_traversal_;
618  }
619
620  int GetDefCount() const {
621    return def_count_;
622  }
623
624  ArenaAllocator* GetArena() {
625    return arena_;
626  }
627
628  void EnableOpcodeCounting() {
629    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
630                                                    kArenaAllocMisc));
631  }
632
633  void ShowOpcodeStats();
634
635  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
636    return m_units_[current_method_];
637  }
638
639  /**
640   * @brief Dump a CFG into a dot file format.
641   * @param dir_prefix the directory the file will be created in.
642   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
643   * @param suffix does the filename require a suffix or not (default = nullptr).
644   */
645  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
646
647  bool HasFieldAccess() const {
648    return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
649  }
650
651  bool HasStaticFieldAccess() const {
652    return (merged_df_flags_ & DF_SFIELD) != 0u;
653  }
654
655  bool HasInvokes() const {
656    // NOTE: These formats include the rare filled-new-array/range.
657    return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
658  }
659
660  void DoCacheFieldLoweringInfo();
661
662  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
663    DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size());
664    return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info];
665  }
666
667  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
668    DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size());
669    return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info];
670  }
671
672  void DoCacheMethodLoweringInfo();
673
674  const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) {
675    DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size());
676    return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info];
677  }
678
679  void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);
680
681  void InitRegLocations();
682
683  void RemapRegLocations();
684
685  void DumpRegLocTable(RegLocation* table, int count);
686
687  void BasicBlockOptimization();
688
689  GrowableArray<BasicBlockId>* GetTopologicalSortOrder() {
690    DCHECK(topological_order_ != nullptr);
691    return topological_order_;
692  }
693
694  GrowableArray<BasicBlockId>* GetTopologicalSortOrderLoopEnds() {
695    DCHECK(topological_order_loop_ends_ != nullptr);
696    return topological_order_loop_ends_;
697  }
698
699  GrowableArray<BasicBlockId>* GetTopologicalSortOrderIndexes() {
700    DCHECK(topological_order_indexes_ != nullptr);
701    return topological_order_indexes_;
702  }
703
704  GrowableArray<std::pair<uint16_t, bool>>* GetTopologicalSortOrderLoopHeadStack() {
705    DCHECK(topological_order_loop_head_stack_ != nullptr);
706    return topological_order_loop_head_stack_;
707  }
708
709  bool IsConst(int32_t s_reg) const {
710    return is_constant_v_->IsBitSet(s_reg);
711  }
712
713  bool IsConst(RegLocation loc) const {
714    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
715  }
716
717  int32_t ConstantValue(RegLocation loc) const {
718    DCHECK(IsConst(loc));
719    return constant_values_[loc.orig_sreg];
720  }
721
722  int32_t ConstantValue(int32_t s_reg) const {
723    DCHECK(IsConst(s_reg));
724    return constant_values_[s_reg];
725  }
726
727  int64_t ConstantValueWide(RegLocation loc) const {
728    DCHECK(IsConst(loc));
729    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
730        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
731  }
732
733  bool IsConstantNullRef(RegLocation loc) const {
734    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
735  }
736
737  int GetNumSSARegs() const {
738    return num_ssa_regs_;
739  }
740
741  void SetNumSSARegs(int new_num) {
742     /*
743      * TODO: It's theoretically possible to exceed 32767, though any cases which did
744      * would be filtered out with current settings.  When orig_sreg field is removed
745      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
746      */
747    CHECK_EQ(new_num, static_cast<int16_t>(new_num));
748    num_ssa_regs_ = new_num;
749  }
750
751  unsigned int GetNumReachableBlocks() const {
752    return num_reachable_blocks_;
753  }
754
755  int GetUseCount(int vreg) const {
756    return use_counts_.Get(vreg);
757  }
758
759  int GetRawUseCount(int vreg) const {
760    return raw_use_counts_.Get(vreg);
761  }
762
763  int GetSSASubscript(int ssa_reg) const {
764    return ssa_subscripts_->Get(ssa_reg);
765  }
766
767  RegLocation GetRawSrc(MIR* mir, int num) {
768    DCHECK(num < mir->ssa_rep->num_uses);
769    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
770    return res;
771  }
772
773  RegLocation GetRawDest(MIR* mir) {
774    DCHECK_GT(mir->ssa_rep->num_defs, 0);
775    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
776    return res;
777  }
778
779  RegLocation GetDest(MIR* mir) {
780    RegLocation res = GetRawDest(mir);
781    DCHECK(!res.wide);
782    return res;
783  }
784
785  RegLocation GetSrc(MIR* mir, int num) {
786    RegLocation res = GetRawSrc(mir, num);
787    DCHECK(!res.wide);
788    return res;
789  }
790
791  RegLocation GetDestWide(MIR* mir) {
792    RegLocation res = GetRawDest(mir);
793    DCHECK(res.wide);
794    return res;
795  }
796
797  RegLocation GetSrcWide(MIR* mir, int low) {
798    RegLocation res = GetRawSrc(mir, low);
799    DCHECK(res.wide);
800    return res;
801  }
802
803  RegLocation GetBadLoc() {
804    return bad_loc;
805  }
806
807  int GetMethodSReg() const {
808    return method_sreg_;
809  }
810
811  /**
812   * @brief Used to obtain the number of compiler temporaries being used.
813   * @return Returns the number of compiler temporaries.
814   */
815  size_t GetNumUsedCompilerTemps() const {
816    size_t total_num_temps = compiler_temps_.Size();
817    DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
818    return total_num_temps;
819  }
820
821  /**
822   * @brief Used to obtain the number of non-special compiler temporaries being used.
823   * @return Returns the number of non-special compiler temporaries.
824   */
825  size_t GetNumNonSpecialCompilerTemps() const {
826    return num_non_special_compiler_temps_;
827  }
828
829  /**
830   * @brief Used to set the total number of available non-special compiler temporaries.
831   * @details Can fail setting the new max if there are more temps being used than the new_max.
832   * @param new_max The new maximum number of non-special compiler temporaries.
833   * @return Returns true if the max was set and false if failed to set.
834   */
835  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
836    if (new_max < GetNumNonSpecialCompilerTemps()) {
837      return false;
838    } else {
839      max_available_non_special_compiler_temps_ = new_max;
840      return true;
841    }
842  }
843
844  /**
845   * @brief Provides the number of non-special compiler temps available.
846   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
847   * @return Returns the number of available temps.
848   */
849  size_t GetNumAvailableNonSpecialCompilerTemps();
850
851  /**
852   * @brief Used to obtain an existing compiler temporary.
853   * @param index The index of the temporary which must be strictly less than the
854   * number of temporaries.
855   * @return Returns the temporary that was asked for.
856   */
857  CompilerTemp* GetCompilerTemp(size_t index) const {
858    return compiler_temps_.Get(index);
859  }
860
861  /**
862   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
863   * @return Returns the maximum number of compiler temporaries, whether used or not.
864   */
865  size_t GetMaxPossibleCompilerTemps() const {
866    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
867  }
868
869  /**
870   * @brief Used to obtain a new unique compiler temporary.
871   * @param ct_type Type of compiler temporary requested.
872   * @param wide Whether we should allocate a wide temporary.
873   * @return Returns the newly created compiler temporary.
874   */
875  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);
876
877  bool MethodIsLeaf() {
878    return attributes_ & METHOD_IS_LEAF;
879  }
880
881  RegLocation GetRegLocation(int index) {
882    DCHECK((index >= 0) && (index < num_ssa_regs_));
883    return reg_location_[index];
884  }
885
886  RegLocation GetMethodLoc() {
887    return reg_location_[method_sreg_];
888  }
889
890  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
891    return ((target_bb_id != NullBasicBlockId) &&
892            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
893  }
894
895  bool IsBackwardsBranch(BasicBlock* branch_bb) {
896    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
897  }
898
899  void CountBranch(DexOffset target_offset) {
900    if (target_offset <= current_offset_) {
901      backward_branches_++;
902    } else {
903      forward_branches_++;
904    }
905  }
906
907  int GetBranchCount() {
908    return backward_branches_ + forward_branches_;
909  }
910
911  // Is this vreg in the in set?
912  bool IsInVReg(int vreg) {
913    return (vreg >= cu_->num_regs);
914  }
915
916  void DumpCheckStats();
917  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
918  int SRegToVReg(int ssa_reg) const;
919  void VerifyDataflow();
920  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
921  void EliminateNullChecksAndInferTypesStart();
922  bool EliminateNullChecksAndInferTypes(BasicBlock* bb);
923  void EliminateNullChecksAndInferTypesEnd();
924  bool EliminateClassInitChecksGate();
925  bool EliminateClassInitChecks(BasicBlock* bb);
926  void EliminateClassInitChecksEnd();
927  bool ApplyGlobalValueNumberingGate();
928  bool ApplyGlobalValueNumbering(BasicBlock* bb);
929  void ApplyGlobalValueNumberingEnd();
930  /*
931   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
932   * we have to do some work to figure out the sreg type.  For some operations it is
933   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
934   * may never know the "real" type.
935   *
936   * We perform the type inference operation by using an iterative  walk over
937   * the graph, propagating types "defined" by typed opcodes to uses and defs in
938   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
939   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
940   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
941   * tells whether our guess of the type is based on a previously typed definition.
942   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
943   * show multiple defined types because dx treats constants as untyped bit patterns.
944   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
945   * the current guess, and is used to know when to terminate the iterative walk.
946   */
947  bool SetFp(int index, bool is_fp);
948  bool SetFp(int index);
949  bool SetCore(int index, bool is_core);
950  bool SetCore(int index);
951  bool SetRef(int index, bool is_ref);
952  bool SetRef(int index);
953  bool SetWide(int index, bool is_wide);
954  bool SetWide(int index);
955  bool SetHigh(int index, bool is_high);
956  bool SetHigh(int index);
957
958  bool PuntToInterpreter() {
959    return punt_to_interpreter_;
960  }
961
962  void SetPuntToInterpreter(bool val) {
963    punt_to_interpreter_ = val;
964  }
965
966  char* GetDalvikDisassembly(const MIR* mir);
967  void ReplaceSpecialChars(std::string& str);
968  std::string GetSSAName(int ssa_reg);
969  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
970  void GetBlockName(BasicBlock* bb, char* name);
971  const char* GetShortyFromTargetIdx(int);
972  void DumpMIRGraph();
973  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
974  BasicBlock* NewMemBB(BBType block_type, int block_id);
975  MIR* NewMIR();
976  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
977  BasicBlock* NextDominatedBlock(BasicBlock* bb);
978  bool LayoutBlocks(BasicBlock* bb);
979  void ComputeTopologicalSortOrder();
980  BasicBlock* CreateNewBB(BBType block_type);
981
982  bool InlineSpecialMethodsGate();
983  void InlineSpecialMethodsStart();
984  void InlineSpecialMethods(BasicBlock* bb);
985  void InlineSpecialMethodsEnd();
986
987  /**
988   * @brief Perform the initial preparation for the Method Uses.
989   */
990  void InitializeMethodUses();
991
992  /**
993   * @brief Perform the initial preparation for the Constant Propagation.
994   */
995  void InitializeConstantPropagation();
996
997  /**
998   * @brief Perform the initial preparation for the SSA Transformation.
999   */
1000  void SSATransformationStart();
1001
1002  /**
1003   * @brief Insert a the operands for the Phi nodes.
1004   * @param bb the considered BasicBlock.
1005   * @return true
1006   */
1007  bool InsertPhiNodeOperands(BasicBlock* bb);
1008
1009  /**
1010   * @brief Perform the cleanup after the SSA Transformation.
1011   */
1012  void SSATransformationEnd();
1013
1014  /**
1015   * @brief Perform constant propagation on a BasicBlock.
1016   * @param bb the considered BasicBlock.
1017   */
1018  void DoConstantPropagation(BasicBlock* bb);
1019
1020  /**
1021   * @brief Count the uses in the BasicBlock
1022   * @param bb the BasicBlock
1023   */
1024  void CountUses(struct BasicBlock* bb);
1025
1026  static uint64_t GetDataFlowAttributes(Instruction::Code opcode);
1027  static uint64_t GetDataFlowAttributes(MIR* mir);
1028
1029  /**
1030   * @brief Combine BasicBlocks
1031   * @param the BasicBlock we are considering
1032   */
1033  void CombineBlocks(BasicBlock* bb);
1034
1035  void ClearAllVisitedFlags();
1036
1037  void AllocateSSAUseData(MIR *mir, int num_uses);
1038  void AllocateSSADefData(MIR *mir, int num_defs);
1039  void CalculateBasicBlockInformation();
1040  void InitializeBasicBlockData();
1041  void ComputeDFSOrders();
1042  void ComputeDefBlockMatrix();
1043  void ComputeDominators();
1044  void CompilerInitializeSSAConversion();
1045  void InsertPhiNodes();
1046  void DoDFSPreOrderSSARename(BasicBlock* block);
1047
1048  /*
1049   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
1050   * we can verify that all catch entries have native PC entries.
1051   */
1052  std::set<uint32_t> catches_;
1053
1054  // TODO: make these private.
1055  RegLocation* reg_location_;                               // Map SSA names to location.
1056  ArenaSafeMap<unsigned int, unsigned int> block_id_map_;   // Block collapse lookup cache.
1057
1058  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
1059  static const uint32_t analysis_attributes_[kMirOpLast];
1060
1061  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
1062  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
1063
1064  // Used for removing redudant suspend tests
1065  void AppendGenSuspendTestList(BasicBlock* bb) {
1066    if (gen_suspend_test_list_.Size() == 0 ||
1067        gen_suspend_test_list_.Get(gen_suspend_test_list_.Size() - 1) != bb) {
1068      gen_suspend_test_list_.Insert(bb);
1069    }
1070  }
1071
1072  /* This is used to check if there is already a method call dominating the
1073   * source basic block of a backedge and being dominated by the target basic
1074   * block of the backedge.
1075   */
1076  bool HasSuspendTestBetween(BasicBlock* source, BasicBlockId target_id);
1077
1078 protected:
1079  int FindCommonParent(int block1, int block2);
1080  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
1081                         const ArenaBitVector* src2);
1082  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
1083                       ArenaBitVector* live_in_v, int dalvik_reg_id);
1084  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
1085  void HandleExtended(ArenaBitVector* use_v, ArenaBitVector* def_v,
1086                      ArenaBitVector* live_in_v,
1087                      const MIR::DecodedInstruction& d_insn);
1088  bool DoSSAConversion(BasicBlock* bb);
1089  bool InvokeUsesMethodStar(MIR* mir);
1090  int ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction);
1091  bool ContentIsInsn(const uint16_t* code_ptr);
1092  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
1093                         BasicBlock** immed_pred_block_p);
1094  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
1095                        BasicBlock** immed_pred_block_p);
1096  void ProcessTryCatchBlocks();
1097  bool IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset, NarrowDexOffset catch_offset);
1098  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1099                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
1100  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1101                               int flags);
1102  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1103                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
1104                              const uint16_t* code_end);
1105  int AddNewSReg(int v_reg);
1106  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
1107  void DataFlowSSAFormat35C(MIR* mir);
1108  void DataFlowSSAFormat3RC(MIR* mir);
1109  void DataFlowSSAFormatExtended(MIR* mir);
1110  bool FindLocalLiveIn(BasicBlock* bb);
1111  bool VerifyPredInfo(BasicBlock* bb);
1112  BasicBlock* NeedsVisit(BasicBlock* bb);
1113  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
1114  void MarkPreOrder(BasicBlock* bb);
1115  void RecordDFSOrders(BasicBlock* bb);
1116  void ComputeDomPostOrderTraversal(BasicBlock* bb);
1117  void SetConstant(int32_t ssa_reg, int value);
1118  void SetConstantWide(int ssa_reg, int64_t value);
1119  int GetSSAUseCount(int s_reg);
1120  bool BasicBlockOpt(BasicBlock* bb);
1121  bool BuildExtendedBBList(struct BasicBlock* bb);
1122  bool FillDefBlockMatrix(BasicBlock* bb);
1123  void InitializeDominationInfo(BasicBlock* bb);
1124  bool ComputeblockIDom(BasicBlock* bb);
1125  bool ComputeBlockDominators(BasicBlock* bb);
1126  bool SetDominators(BasicBlock* bb);
1127  bool ComputeBlockLiveIns(BasicBlock* bb);
1128  bool ComputeDominanceFrontier(BasicBlock* bb);
1129
1130  void CountChecks(BasicBlock* bb);
1131  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
1132  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default,
1133                              std::string* skip_message);
1134
1135  CompilationUnit* const cu_;
1136  GrowableArray<int>* ssa_base_vregs_;
1137  GrowableArray<int>* ssa_subscripts_;
1138  // Map original Dalvik virtual reg i to the current SSA name.
1139  int* vreg_to_ssa_map_;            // length == method->registers_size
1140  int* ssa_last_defs_;              // length == method->registers_size
1141  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
1142  int* constant_values_;            // length == num_ssa_reg
1143  // Use counts of ssa names.
1144  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
1145  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
1146  unsigned int num_reachable_blocks_;
1147  unsigned int max_num_reachable_blocks_;
1148  GrowableArray<BasicBlockId>* dfs_order_;
1149  GrowableArray<BasicBlockId>* dfs_post_order_;
1150  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
1151  GrowableArray<BasicBlockId>* topological_order_;
1152  // Indexes in topological_order_ need to be only as big as the BasicBlockId.
1153  COMPILE_ASSERT(sizeof(BasicBlockId) == sizeof(uint16_t), assuming_16_bit_BasicBlockId);
1154  // For each loop head, remember the past-the-end index of the end of the loop. 0 if not loop head.
1155  GrowableArray<uint16_t>* topological_order_loop_ends_;
1156  // Map BB ids to topological_order_ indexes. 0xffff if not included (hidden or null block).
1157  GrowableArray<uint16_t>* topological_order_indexes_;
1158  // Stack of the loop head indexes and recalculation flags for RepeatingTopologicalSortIterator.
1159  GrowableArray<std::pair<uint16_t, bool>>* topological_order_loop_head_stack_;
1160  int* i_dom_list_;
1161  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
1162  std::unique_ptr<ScopedArenaAllocator> temp_scoped_alloc_;
1163  uint16_t* temp_insn_data_;
1164  uint32_t temp_bit_vector_size_;
1165  ArenaBitVector* temp_bit_vector_;
1166  std::unique_ptr<GlobalValueNumbering> temp_gvn_;
1167  static const int kInvalidEntry = -1;
1168  GrowableArray<BasicBlock*> block_list_;
1169  ArenaBitVector* try_block_addr_;
1170  BasicBlock* entry_block_;
1171  BasicBlock* exit_block_;
1172  unsigned int num_blocks_;
1173  const DexFile::CodeItem* current_code_item_;
1174  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
1175  ArenaVector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
1176  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
1177  ArenaVector<MIRLocation> method_stack_;        // Include stack
1178  int current_method_;
1179  DexOffset current_offset_;                     // Offset in code units
1180  int def_count_;                                // Used to estimate size of ssa name storage.
1181  int* opcode_count_;                            // Dex opcode coverage stats.
1182  int num_ssa_regs_;                             // Number of names following SSA transformation.
1183  ArenaVector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
1184  int method_sreg_;
1185  unsigned int attributes_;
1186  Checkstats* checkstats_;
1187  ArenaAllocator* arena_;
1188  int backward_branches_;
1189  int forward_branches_;
1190  GrowableArray<CompilerTemp*> compiler_temps_;
1191  size_t num_non_special_compiler_temps_;
1192  size_t max_available_non_special_compiler_temps_;
1193  size_t max_available_special_compiler_temps_;
1194  bool punt_to_interpreter_;                    // Difficult or not worthwhile - just interpret.
1195  uint64_t merged_df_flags_;
1196  GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_;
1197  GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_;
1198  GrowableArray<MirMethodLoweringInfo> method_lowering_infos_;
1199  static const uint64_t oat_data_flow_attributes_[kMirOpLast];
1200  GrowableArray<BasicBlock*> gen_suspend_test_list_;  // List of blocks containing suspend tests
1201
1202  friend class ClassInitCheckEliminationTest;
1203  friend class GlobalValueNumberingTest;
1204  friend class LocalValueNumberingTest;
1205  friend class TopologicalSortOrderTest;
1206};
1207
1208}  // namespace art
1209
1210#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_
1211