mir_optimization.cc revision 1fd4821f6b3ac57a44c2ce91025686da4641d197
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "compiler_internals.h"
18#include "global_value_numbering.h"
19#include "local_value_numbering.h"
20#include "dataflow_iterator-inl.h"
21#include "dex/global_value_numbering.h"
22#include "dex/quick/dex_file_method_inliner.h"
23#include "dex/quick/dex_file_to_method_inliner_map.h"
24#include "utils/scoped_arena_containers.h"
25
26namespace art {
27
28static unsigned int Predecessors(BasicBlock* bb) {
29  return bb->predecessors->Size();
30}
31
32/* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
33void MIRGraph::SetConstant(int32_t ssa_reg, int value) {
34  is_constant_v_->SetBit(ssa_reg);
35  constant_values_[ssa_reg] = value;
36}
37
38void MIRGraph::SetConstantWide(int ssa_reg, int64_t value) {
39  is_constant_v_->SetBit(ssa_reg);
40  constant_values_[ssa_reg] = Low32Bits(value);
41  constant_values_[ssa_reg + 1] = High32Bits(value);
42}
43
44void MIRGraph::DoConstantPropagation(BasicBlock* bb) {
45  MIR* mir;
46
47  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
48    // Skip pass if BB has MIR without SSA representation.
49    if (mir->ssa_rep == nullptr) {
50       return;
51    }
52
53    uint64_t df_attributes = GetDataFlowAttributes(mir);
54
55    MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
56
57    if (!(df_attributes & DF_HAS_DEFS)) continue;
58
59    /* Handle instructions that set up constants directly */
60    if (df_attributes & DF_SETS_CONST) {
61      if (df_attributes & DF_DA) {
62        int32_t vB = static_cast<int32_t>(d_insn->vB);
63        switch (d_insn->opcode) {
64          case Instruction::CONST_4:
65          case Instruction::CONST_16:
66          case Instruction::CONST:
67            SetConstant(mir->ssa_rep->defs[0], vB);
68            break;
69          case Instruction::CONST_HIGH16:
70            SetConstant(mir->ssa_rep->defs[0], vB << 16);
71            break;
72          case Instruction::CONST_WIDE_16:
73          case Instruction::CONST_WIDE_32:
74            SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB));
75            break;
76          case Instruction::CONST_WIDE:
77            SetConstantWide(mir->ssa_rep->defs[0], d_insn->vB_wide);
78            break;
79          case Instruction::CONST_WIDE_HIGH16:
80            SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48);
81            break;
82          default:
83            break;
84        }
85      }
86      /* Handle instructions that set up constants directly */
87    } else if (df_attributes & DF_IS_MOVE) {
88      int i;
89
90      for (i = 0; i < mir->ssa_rep->num_uses; i++) {
91        if (!is_constant_v_->IsBitSet(mir->ssa_rep->uses[i])) break;
92      }
93      /* Move a register holding a constant to another register */
94      if (i == mir->ssa_rep->num_uses) {
95        SetConstant(mir->ssa_rep->defs[0], constant_values_[mir->ssa_rep->uses[0]]);
96        if (df_attributes & DF_A_WIDE) {
97          SetConstant(mir->ssa_rep->defs[1], constant_values_[mir->ssa_rep->uses[1]]);
98        }
99      }
100    }
101  }
102  /* TODO: implement code to handle arithmetic operations */
103}
104
105/* Advance to next strictly dominated MIR node in an extended basic block */
106MIR* MIRGraph::AdvanceMIR(BasicBlock** p_bb, MIR* mir) {
107  BasicBlock* bb = *p_bb;
108  if (mir != NULL) {
109    mir = mir->next;
110    if (mir == NULL) {
111      bb = GetBasicBlock(bb->fall_through);
112      if ((bb == NULL) || Predecessors(bb) != 1) {
113        mir = NULL;
114      } else {
115      *p_bb = bb;
116      mir = bb->first_mir_insn;
117      }
118    }
119  }
120  return mir;
121}
122
123/*
124 * To be used at an invoke mir.  If the logically next mir node represents
125 * a move-result, return it.  Else, return NULL.  If a move-result exists,
126 * it is required to immediately follow the invoke with no intervening
127 * opcodes or incoming arcs.  However, if the result of the invoke is not
128 * used, a move-result may not be present.
129 */
130MIR* MIRGraph::FindMoveResult(BasicBlock* bb, MIR* mir) {
131  BasicBlock* tbb = bb;
132  mir = AdvanceMIR(&tbb, mir);
133  while (mir != NULL) {
134    if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) ||
135        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) ||
136        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) {
137      break;
138    }
139    // Keep going if pseudo op, otherwise terminate
140    if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
141      mir = AdvanceMIR(&tbb, mir);
142    } else {
143      mir = NULL;
144    }
145  }
146  return mir;
147}
148
149BasicBlock* MIRGraph::NextDominatedBlock(BasicBlock* bb) {
150  if (bb->block_type == kDead) {
151    return NULL;
152  }
153  DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
154      || (bb->block_type == kExitBlock));
155  BasicBlock* bb_taken = GetBasicBlock(bb->taken);
156  BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through);
157  if (((bb_fall_through == NULL) && (bb_taken != NULL)) &&
158      ((bb_taken->block_type == kDalvikByteCode) || (bb_taken->block_type == kExitBlock))) {
159    // Follow simple unconditional branches.
160    bb = bb_taken;
161  } else {
162    // Follow simple fallthrough
163    bb = (bb_taken != NULL) ? NULL : bb_fall_through;
164  }
165  if (bb == NULL || (Predecessors(bb) != 1)) {
166    return NULL;
167  }
168  DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock));
169  return bb;
170}
171
172static MIR* FindPhi(BasicBlock* bb, int ssa_name) {
173  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
174    if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
175      for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
176        if (mir->ssa_rep->uses[i] == ssa_name) {
177          return mir;
178        }
179      }
180    }
181  }
182  return NULL;
183}
184
185static SelectInstructionKind SelectKind(MIR* mir) {
186  switch (mir->dalvikInsn.opcode) {
187    case Instruction::MOVE:
188    case Instruction::MOVE_OBJECT:
189    case Instruction::MOVE_16:
190    case Instruction::MOVE_OBJECT_16:
191    case Instruction::MOVE_FROM16:
192    case Instruction::MOVE_OBJECT_FROM16:
193      return kSelectMove;
194    case Instruction::CONST:
195    case Instruction::CONST_4:
196    case Instruction::CONST_16:
197      return kSelectConst;
198    case Instruction::GOTO:
199    case Instruction::GOTO_16:
200    case Instruction::GOTO_32:
201      return kSelectGoto;
202    default:
203      return kSelectNone;
204  }
205}
206
207static constexpr ConditionCode kIfCcZConditionCodes[] = {
208    kCondEq, kCondNe, kCondLt, kCondGe, kCondGt, kCondLe
209};
210
211COMPILE_ASSERT(arraysize(kIfCcZConditionCodes) == Instruction::IF_LEZ - Instruction::IF_EQZ + 1,
212               if_ccz_ccodes_size1);
213
214static constexpr bool IsInstructionIfCcZ(Instruction::Code opcode) {
215  return Instruction::IF_EQZ <= opcode && opcode <= Instruction::IF_LEZ;
216}
217
218static constexpr ConditionCode ConditionCodeForIfCcZ(Instruction::Code opcode) {
219  return kIfCcZConditionCodes[opcode - Instruction::IF_EQZ];
220}
221
222COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_EQZ) == kCondEq, check_if_eqz_ccode);
223COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_NEZ) == kCondNe, check_if_nez_ccode);
224COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LTZ) == kCondLt, check_if_ltz_ccode);
225COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GEZ) == kCondGe, check_if_gez_ccode);
226COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GTZ) == kCondGt, check_if_gtz_ccode);
227COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LEZ) == kCondLe, check_if_lez_ccode);
228
229int MIRGraph::GetSSAUseCount(int s_reg) {
230  return raw_use_counts_.Get(s_reg);
231}
232
233size_t MIRGraph::GetNumAvailableNonSpecialCompilerTemps() {
234  if (num_non_special_compiler_temps_ >= max_available_non_special_compiler_temps_) {
235    return 0;
236  } else {
237    return max_available_non_special_compiler_temps_ - num_non_special_compiler_temps_;
238  }
239}
240
241
242// FIXME - will probably need to revisit all uses of this, as type not defined.
243static const RegLocation temp_loc = {kLocCompilerTemp,
244                                     0, 1 /*defined*/, 0, 0, 0, 0, 0, 1 /*home*/,
245                                     RegStorage(), INVALID_SREG, INVALID_SREG};
246
247CompilerTemp* MIRGraph::GetNewCompilerTemp(CompilerTempType ct_type, bool wide) {
248  // There is a limit to the number of non-special temps so check to make sure it wasn't exceeded.
249  if (ct_type == kCompilerTempVR) {
250    size_t available_temps = GetNumAvailableNonSpecialCompilerTemps();
251    if (available_temps <= 0 || (available_temps <= 1 && wide)) {
252      return 0;
253    }
254  }
255
256  CompilerTemp *compiler_temp = static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp),
257                                                            kArenaAllocRegAlloc));
258
259  // Create the type of temp requested. Special temps need special handling because
260  // they have a specific virtual register assignment.
261  if (ct_type == kCompilerTempSpecialMethodPtr) {
262    DCHECK_EQ(wide, false);
263    compiler_temp->v_reg = static_cast<int>(kVRegMethodPtrBaseReg);
264    compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
265
266    // The MIR graph keeps track of the sreg for method pointer specially, so record that now.
267    method_sreg_ = compiler_temp->s_reg_low;
268  } else {
269    DCHECK_EQ(ct_type, kCompilerTempVR);
270
271    // The new non-special compiler temp must receive a unique v_reg with a negative value.
272    compiler_temp->v_reg = static_cast<int>(kVRegNonSpecialTempBaseReg) -
273        num_non_special_compiler_temps_;
274    compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
275    num_non_special_compiler_temps_++;
276
277    if (wide) {
278      // Create a new CompilerTemp for the high part.
279      CompilerTemp *compiler_temp_high =
280          static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp), kArenaAllocRegAlloc));
281      compiler_temp_high->v_reg = compiler_temp->v_reg;
282      compiler_temp_high->s_reg_low = compiler_temp->s_reg_low;
283      compiler_temps_.Insert(compiler_temp_high);
284
285      // Ensure that the two registers are consecutive. Since the virtual registers used for temps
286      // grow in a negative fashion, we need the smaller to refer to the low part. Thus, we
287      // redefine the v_reg and s_reg_low.
288      compiler_temp->v_reg--;
289      int ssa_reg_high = compiler_temp->s_reg_low;
290      compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
291      int ssa_reg_low = compiler_temp->s_reg_low;
292
293      // If needed initialize the register location for the high part.
294      // The low part is handled later in this method on a common path.
295      if (reg_location_ != nullptr) {
296        reg_location_[ssa_reg_high] = temp_loc;
297        reg_location_[ssa_reg_high].high_word = 1;
298        reg_location_[ssa_reg_high].s_reg_low = ssa_reg_low;
299        reg_location_[ssa_reg_high].wide = true;
300      }
301
302      num_non_special_compiler_temps_++;
303    }
304  }
305
306  // Have we already allocated the register locations?
307  if (reg_location_ != nullptr) {
308    int ssa_reg_low = compiler_temp->s_reg_low;
309    reg_location_[ssa_reg_low] = temp_loc;
310    reg_location_[ssa_reg_low].s_reg_low = ssa_reg_low;
311    reg_location_[ssa_reg_low].wide = wide;
312  }
313
314  compiler_temps_.Insert(compiler_temp);
315  return compiler_temp;
316}
317
318/* Do some MIR-level extended basic block optimizations */
319bool MIRGraph::BasicBlockOpt(BasicBlock* bb) {
320  if (bb->block_type == kDead) {
321    return true;
322  }
323  // Don't do a separate LVN if we did the GVN.
324  bool use_lvn = bb->use_lvn && (cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u;
325  std::unique_ptr<ScopedArenaAllocator> allocator;
326  std::unique_ptr<GlobalValueNumbering> global_valnum;
327  std::unique_ptr<LocalValueNumbering> local_valnum;
328  if (use_lvn) {
329    allocator.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
330    global_valnum.reset(new (allocator.get()) GlobalValueNumbering(cu_, allocator.get()));
331    local_valnum.reset(new (allocator.get()) LocalValueNumbering(global_valnum.get(), bb->id));
332  }
333  while (bb != NULL) {
334    for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
335      // TUNING: use the returned value number for CSE.
336      if (use_lvn) {
337        local_valnum->GetValueNumber(mir);
338      }
339      // Look for interesting opcodes, skip otherwise
340      Instruction::Code opcode = mir->dalvikInsn.opcode;
341      switch (opcode) {
342        case Instruction::CMPL_FLOAT:
343        case Instruction::CMPL_DOUBLE:
344        case Instruction::CMPG_FLOAT:
345        case Instruction::CMPG_DOUBLE:
346        case Instruction::CMP_LONG:
347          if ((cu_->disable_opt & (1 << kBranchFusing)) != 0) {
348            // Bitcode doesn't allow this optimization.
349            break;
350          }
351          if (mir->next != NULL) {
352            MIR* mir_next = mir->next;
353            // Make sure result of cmp is used by next insn and nowhere else
354            if (IsInstructionIfCcZ(mir_next->dalvikInsn.opcode) &&
355                (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) &&
356                (GetSSAUseCount(mir->ssa_rep->defs[0]) == 1)) {
357              mir_next->meta.ccode = ConditionCodeForIfCcZ(mir_next->dalvikInsn.opcode);
358              switch (opcode) {
359                case Instruction::CMPL_FLOAT:
360                  mir_next->dalvikInsn.opcode =
361                      static_cast<Instruction::Code>(kMirOpFusedCmplFloat);
362                  break;
363                case Instruction::CMPL_DOUBLE:
364                  mir_next->dalvikInsn.opcode =
365                      static_cast<Instruction::Code>(kMirOpFusedCmplDouble);
366                  break;
367                case Instruction::CMPG_FLOAT:
368                  mir_next->dalvikInsn.opcode =
369                      static_cast<Instruction::Code>(kMirOpFusedCmpgFloat);
370                  break;
371                case Instruction::CMPG_DOUBLE:
372                  mir_next->dalvikInsn.opcode =
373                      static_cast<Instruction::Code>(kMirOpFusedCmpgDouble);
374                  break;
375                case Instruction::CMP_LONG:
376                  mir_next->dalvikInsn.opcode =
377                      static_cast<Instruction::Code>(kMirOpFusedCmpLong);
378                  break;
379                default: LOG(ERROR) << "Unexpected opcode: " << opcode;
380              }
381              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
382              // Copy the SSA information that is relevant.
383              mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses;
384              mir_next->ssa_rep->uses = mir->ssa_rep->uses;
385              mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use;
386              mir_next->ssa_rep->num_defs = 0;
387              mir->ssa_rep->num_uses = 0;
388              mir->ssa_rep->num_defs = 0;
389              // Copy in the decoded instruction information for potential SSA re-creation.
390              mir_next->dalvikInsn.vA = mir->dalvikInsn.vB;
391              mir_next->dalvikInsn.vB = mir->dalvikInsn.vC;
392            }
393          }
394          break;
395        case Instruction::GOTO:
396        case Instruction::GOTO_16:
397        case Instruction::GOTO_32:
398        case Instruction::IF_EQ:
399        case Instruction::IF_NE:
400        case Instruction::IF_LT:
401        case Instruction::IF_GE:
402        case Instruction::IF_GT:
403        case Instruction::IF_LE:
404        case Instruction::IF_EQZ:
405        case Instruction::IF_NEZ:
406        case Instruction::IF_LTZ:
407        case Instruction::IF_GEZ:
408        case Instruction::IF_GTZ:
409        case Instruction::IF_LEZ:
410          // If we've got a backwards branch to return, no need to suspend check.
411          if ((IsBackedge(bb, bb->taken) && GetBasicBlock(bb->taken)->dominates_return) ||
412              (IsBackedge(bb, bb->fall_through) &&
413                          GetBasicBlock(bb->fall_through)->dominates_return)) {
414            mir->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK;
415            if (cu_->verbose) {
416              LOG(INFO) << "Suppressed suspend check on branch to return at 0x" << std::hex
417                        << mir->offset;
418            }
419          }
420          break;
421        default:
422          break;
423      }
424      // Is this the select pattern?
425      // TODO: flesh out support for Mips.  NOTE: llvm's select op doesn't quite work here.
426      // TUNING: expand to support IF_xx compare & branches
427      if (!cu_->compiler->IsPortable() &&
428          (cu_->instruction_set == kArm64 || cu_->instruction_set == kThumb2 ||
429           cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) &&
430          IsInstructionIfCcZ(mir->dalvikInsn.opcode)) {
431        BasicBlock* ft = GetBasicBlock(bb->fall_through);
432        DCHECK(ft != NULL);
433        BasicBlock* ft_ft = GetBasicBlock(ft->fall_through);
434        BasicBlock* ft_tk = GetBasicBlock(ft->taken);
435
436        BasicBlock* tk = GetBasicBlock(bb->taken);
437        DCHECK(tk != NULL);
438        BasicBlock* tk_ft = GetBasicBlock(tk->fall_through);
439        BasicBlock* tk_tk = GetBasicBlock(tk->taken);
440
441        /*
442         * In the select pattern, the taken edge goes to a block that unconditionally
443         * transfers to the rejoin block and the fall_though edge goes to a block that
444         * unconditionally falls through to the rejoin block.
445         */
446        if ((tk_ft == NULL) && (ft_tk == NULL) && (tk_tk == ft_ft) &&
447            (Predecessors(tk) == 1) && (Predecessors(ft) == 1)) {
448          /*
449           * Okay - we have the basic diamond shape.  At the very least, we can eliminate the
450           * suspend check on the taken-taken branch back to the join point.
451           */
452          if (SelectKind(tk->last_mir_insn) == kSelectGoto) {
453              tk->last_mir_insn->optimization_flags |= (MIR_IGNORE_SUSPEND_CHECK);
454          }
455
456          // TODO: Add logic for LONG.
457          // Are the block bodies something we can handle?
458          if ((ft->first_mir_insn == ft->last_mir_insn) &&
459              (tk->first_mir_insn != tk->last_mir_insn) &&
460              (tk->first_mir_insn->next == tk->last_mir_insn) &&
461              ((SelectKind(ft->first_mir_insn) == kSelectMove) ||
462              (SelectKind(ft->first_mir_insn) == kSelectConst)) &&
463              (SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) &&
464              (SelectKind(tk->last_mir_insn) == kSelectGoto)) {
465            // Almost there.  Are the instructions targeting the same vreg?
466            MIR* if_true = tk->first_mir_insn;
467            MIR* if_false = ft->first_mir_insn;
468            // It's possible that the target of the select isn't used - skip those (rare) cases.
469            MIR* phi = FindPhi(tk_tk, if_true->ssa_rep->defs[0]);
470            if ((phi != NULL) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) {
471              /*
472               * We'll convert the IF_EQZ/IF_NEZ to a SELECT.  We need to find the
473               * Phi node in the merge block and delete it (while using the SSA name
474               * of the merge as the target of the SELECT.  Delete both taken and
475               * fallthrough blocks, and set fallthrough to merge block.
476               * NOTE: not updating other dataflow info (no longer used at this point).
477               * If this changes, need to update i_dom, etc. here (and in CombineBlocks).
478               */
479              mir->meta.ccode = ConditionCodeForIfCcZ(mir->dalvikInsn.opcode);
480              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect);
481              bool const_form = (SelectKind(if_true) == kSelectConst);
482              if ((SelectKind(if_true) == kSelectMove)) {
483                if (IsConst(if_true->ssa_rep->uses[0]) &&
484                    IsConst(if_false->ssa_rep->uses[0])) {
485                    const_form = true;
486                    if_true->dalvikInsn.vB = ConstantValue(if_true->ssa_rep->uses[0]);
487                    if_false->dalvikInsn.vB = ConstantValue(if_false->ssa_rep->uses[0]);
488                }
489              }
490              if (const_form) {
491                /*
492                 * TODO: If both constants are the same value, then instead of generating
493                 * a select, we should simply generate a const bytecode. This should be
494                 * considered after inlining which can lead to CFG of this form.
495                 */
496                // "true" set val in vB
497                mir->dalvikInsn.vB = if_true->dalvikInsn.vB;
498                // "false" set val in vC
499                mir->dalvikInsn.vC = if_false->dalvikInsn.vB;
500              } else {
501                DCHECK_EQ(SelectKind(if_true), kSelectMove);
502                DCHECK_EQ(SelectKind(if_false), kSelectMove);
503                int* src_ssa =
504                    static_cast<int*>(arena_->Alloc(sizeof(int) * 3, kArenaAllocDFInfo));
505                src_ssa[0] = mir->ssa_rep->uses[0];
506                src_ssa[1] = if_true->ssa_rep->uses[0];
507                src_ssa[2] = if_false->ssa_rep->uses[0];
508                mir->ssa_rep->uses = src_ssa;
509                mir->ssa_rep->num_uses = 3;
510              }
511              mir->ssa_rep->num_defs = 1;
512              mir->ssa_rep->defs =
513                  static_cast<int*>(arena_->Alloc(sizeof(int) * 1, kArenaAllocDFInfo));
514              mir->ssa_rep->fp_def =
515                  static_cast<bool*>(arena_->Alloc(sizeof(bool) * 1, kArenaAllocDFInfo));
516              mir->ssa_rep->fp_def[0] = if_true->ssa_rep->fp_def[0];
517              // Match type of uses to def.
518              mir->ssa_rep->fp_use =
519                  static_cast<bool*>(arena_->Alloc(sizeof(bool) * mir->ssa_rep->num_uses,
520                                                   kArenaAllocDFInfo));
521              for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
522                mir->ssa_rep->fp_use[i] = mir->ssa_rep->fp_def[0];
523              }
524              /*
525               * There is usually a Phi node in the join block for our two cases.  If the
526               * Phi node only contains our two cases as input, we will use the result
527               * SSA name of the Phi node as our select result and delete the Phi.  If
528               * the Phi node has more than two operands, we will arbitrarily use the SSA
529               * name of the "true" path, delete the SSA name of the "false" path from the
530               * Phi node (and fix up the incoming arc list).
531               */
532              if (phi->ssa_rep->num_uses == 2) {
533                mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0];
534                phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
535              } else {
536                int dead_def = if_false->ssa_rep->defs[0];
537                int live_def = if_true->ssa_rep->defs[0];
538                mir->ssa_rep->defs[0] = live_def;
539                BasicBlockId* incoming = phi->meta.phi_incoming;
540                for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
541                  if (phi->ssa_rep->uses[i] == live_def) {
542                    incoming[i] = bb->id;
543                  }
544                }
545                for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
546                  if (phi->ssa_rep->uses[i] == dead_def) {
547                    int last_slot = phi->ssa_rep->num_uses - 1;
548                    phi->ssa_rep->uses[i] = phi->ssa_rep->uses[last_slot];
549                    incoming[i] = incoming[last_slot];
550                  }
551                }
552              }
553              phi->ssa_rep->num_uses--;
554              bb->taken = NullBasicBlockId;
555              tk->block_type = kDead;
556              for (MIR* tmir = ft->first_mir_insn; tmir != NULL; tmir = tmir->next) {
557                tmir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
558              }
559            }
560          }
561        }
562      }
563    }
564    bb = ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) ? NextDominatedBlock(bb) : NULL;
565  }
566  if (use_lvn && UNLIKELY(!global_valnum->Good())) {
567    LOG(WARNING) << "LVN overflow in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
568  }
569
570  return true;
571}
572
573/* Collect stats on number of checks removed */
574void MIRGraph::CountChecks(struct BasicBlock* bb) {
575  if (bb->data_flow_info != NULL) {
576    for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
577      if (mir->ssa_rep == NULL) {
578        continue;
579      }
580      uint64_t df_attributes = GetDataFlowAttributes(mir);
581      if (df_attributes & DF_HAS_NULL_CHKS) {
582        checkstats_->null_checks++;
583        if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) {
584          checkstats_->null_checks_eliminated++;
585        }
586      }
587      if (df_attributes & DF_HAS_RANGE_CHKS) {
588        checkstats_->range_checks++;
589        if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) {
590          checkstats_->range_checks_eliminated++;
591        }
592      }
593    }
594  }
595}
596
597/* Try to make common case the fallthrough path */
598bool MIRGraph::LayoutBlocks(BasicBlock* bb) {
599  // TODO: For now, just looking for direct throws.  Consider generalizing for profile feedback
600  if (!bb->explicit_throw) {
601    return false;
602  }
603  BasicBlock* walker = bb;
604  while (true) {
605    // Check termination conditions
606    if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) {
607      break;
608    }
609    BasicBlock* prev = GetBasicBlock(walker->predecessors->Get(0));
610    if (prev->conditional_branch) {
611      if (GetBasicBlock(prev->fall_through) == walker) {
612        // Already done - return
613        break;
614      }
615      DCHECK_EQ(walker, GetBasicBlock(prev->taken));
616      // Got one.  Flip it and exit
617      Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode;
618      switch (opcode) {
619        case Instruction::IF_EQ: opcode = Instruction::IF_NE; break;
620        case Instruction::IF_NE: opcode = Instruction::IF_EQ; break;
621        case Instruction::IF_LT: opcode = Instruction::IF_GE; break;
622        case Instruction::IF_GE: opcode = Instruction::IF_LT; break;
623        case Instruction::IF_GT: opcode = Instruction::IF_LE; break;
624        case Instruction::IF_LE: opcode = Instruction::IF_GT; break;
625        case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break;
626        case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break;
627        case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break;
628        case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break;
629        case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break;
630        case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break;
631        default: LOG(FATAL) << "Unexpected opcode " << opcode;
632      }
633      prev->last_mir_insn->dalvikInsn.opcode = opcode;
634      BasicBlockId t_bb = prev->taken;
635      prev->taken = prev->fall_through;
636      prev->fall_through = t_bb;
637      break;
638    }
639    walker = prev;
640  }
641  return false;
642}
643
644/* Combine any basic blocks terminated by instructions that we now know can't throw */
645void MIRGraph::CombineBlocks(struct BasicBlock* bb) {
646  // Loop here to allow combining a sequence of blocks
647  while (true) {
648    // Check termination conditions
649    if ((bb->first_mir_insn == NULL)
650        || (bb->data_flow_info == NULL)
651        || (bb->block_type == kExceptionHandling)
652        || (bb->block_type == kExitBlock)
653        || (bb->block_type == kDead)
654        || (bb->taken == NullBasicBlockId)
655        || (GetBasicBlock(bb->taken)->block_type != kExceptionHandling)
656        || (bb->successor_block_list_type != kNotUsed)
657        || (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) != kMirOpCheck)) {
658      break;
659    }
660
661    // Test the kMirOpCheck instruction
662    MIR* mir = bb->last_mir_insn;
663    // Grab the attributes from the paired opcode
664    MIR* throw_insn = mir->meta.throw_insn;
665    uint64_t df_attributes = GetDataFlowAttributes(throw_insn);
666    bool can_combine = true;
667    if (df_attributes & DF_HAS_NULL_CHKS) {
668      can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0);
669    }
670    if (df_attributes & DF_HAS_RANGE_CHKS) {
671      can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0);
672    }
673    if (!can_combine) {
674      break;
675    }
676    // OK - got one.  Combine
677    BasicBlock* bb_next = GetBasicBlock(bb->fall_through);
678    DCHECK(!bb_next->catch_entry);
679    DCHECK_EQ(Predecessors(bb_next), 1U);
680    // Overwrite the kOpCheck insn with the paired opcode
681    DCHECK_EQ(bb_next->first_mir_insn, throw_insn);
682    *bb->last_mir_insn = *throw_insn;
683    // Use the successor info from the next block
684    bb->successor_block_list_type = bb_next->successor_block_list_type;
685    bb->successor_blocks = bb_next->successor_blocks;
686    // Use the ending block linkage from the next block
687    bb->fall_through = bb_next->fall_through;
688    GetBasicBlock(bb->taken)->block_type = kDead;  // Kill the unused exception block
689    bb->taken = bb_next->taken;
690    // Include the rest of the instructions
691    bb->last_mir_insn = bb_next->last_mir_insn;
692    /*
693     * If lower-half of pair of blocks to combine contained a return, move the flag
694     * to the newly combined block.
695     */
696    bb->terminated_by_return = bb_next->terminated_by_return;
697
698    /*
699     * NOTE: we aren't updating all dataflow info here.  Should either make sure this pass
700     * happens after uses of i_dominated, dom_frontier or update the dataflow info here.
701     */
702
703    // Kill bb_next and remap now-dead id to parent
704    bb_next->block_type = kDead;
705    block_id_map_.Overwrite(bb_next->id, bb->id);
706
707    // Now, loop back and see if we can keep going
708  }
709}
710
711void MIRGraph::EliminateNullChecksAndInferTypesStart() {
712  if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
713    if (kIsDebugBuild) {
714      AllNodesIterator iter(this);
715      for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
716        CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
717      }
718    }
719
720    DCHECK(temp_scoped_alloc_.get() == nullptr);
721    temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
722    temp_bit_vector_size_ = GetNumSSARegs();
723    temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
724        temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapTempSSARegisterV);
725  }
726}
727
728/*
729 * Eliminate unnecessary null checks for a basic block.   Also, while we're doing
730 * an iterative walk go ahead and perform type and size inference.
731 */
732bool MIRGraph::EliminateNullChecksAndInferTypes(BasicBlock* bb) {
733  if (bb->data_flow_info == NULL) return false;
734  bool infer_changed = false;
735  bool do_nce = ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0);
736
737  ArenaBitVector* ssa_regs_to_check = temp_bit_vector_;
738  if (do_nce) {
739    /*
740     * Set initial state.  Be conservative with catch
741     * blocks and start with no assumptions about null check
742     * status (except for "this").
743     */
744    if ((bb->block_type == kEntryBlock) | bb->catch_entry) {
745      ssa_regs_to_check->ClearAllBits();
746      // Assume all ins are objects.
747      for (uint16_t in_reg = cu_->num_dalvik_registers - cu_->num_ins;
748           in_reg < cu_->num_dalvik_registers; in_reg++) {
749        ssa_regs_to_check->SetBit(in_reg);
750      }
751      if ((cu_->access_flags & kAccStatic) == 0) {
752        // If non-static method, mark "this" as non-null
753        int this_reg = cu_->num_dalvik_registers - cu_->num_ins;
754        ssa_regs_to_check->ClearBit(this_reg);
755      }
756    } else if (bb->predecessors->Size() == 1) {
757      BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
758      // pred_bb must have already been processed at least once.
759      DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
760      ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
761      if (pred_bb->block_type == kDalvikByteCode) {
762        // Check to see if predecessor had an explicit null-check.
763        MIR* last_insn = pred_bb->last_mir_insn;
764        if (last_insn != nullptr) {
765          Instruction::Code last_opcode = last_insn->dalvikInsn.opcode;
766          if (last_opcode == Instruction::IF_EQZ) {
767            if (pred_bb->fall_through == bb->id) {
768              // The fall-through of a block following a IF_EQZ, set the vA of the IF_EQZ to show that
769              // it can't be null.
770              ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
771            }
772          } else if (last_opcode == Instruction::IF_NEZ) {
773            if (pred_bb->taken == bb->id) {
774              // The taken block following a IF_NEZ, set the vA of the IF_NEZ to show that it can't be
775              // null.
776              ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
777            }
778          }
779        }
780      }
781    } else {
782      // Starting state is union of all incoming arcs
783      GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
784      BasicBlock* pred_bb = GetBasicBlock(iter.Next());
785      CHECK(pred_bb != NULL);
786      while (pred_bb->data_flow_info->ending_check_v == nullptr) {
787        pred_bb = GetBasicBlock(iter.Next());
788        // At least one predecessor must have been processed before this bb.
789        DCHECK(pred_bb != nullptr);
790        DCHECK(pred_bb->data_flow_info != nullptr);
791      }
792      ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
793      while (true) {
794        pred_bb = GetBasicBlock(iter.Next());
795        if (!pred_bb) break;
796        DCHECK(pred_bb->data_flow_info != nullptr);
797        if (pred_bb->data_flow_info->ending_check_v == nullptr) {
798          continue;
799        }
800        ssa_regs_to_check->Union(pred_bb->data_flow_info->ending_check_v);
801      }
802    }
803    // At this point, ssa_regs_to_check shows which sregs have an object definition with
804    // no intervening uses.
805  }
806
807  // Walk through the instruction in the block, updating as necessary
808  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
809    if (mir->ssa_rep == NULL) {
810        continue;
811    }
812
813    // Propagate type info.
814    infer_changed = InferTypeAndSize(bb, mir, infer_changed);
815    if (!do_nce) {
816      continue;
817    }
818
819    uint64_t df_attributes = GetDataFlowAttributes(mir);
820
821    // Might need a null check?
822    if (df_attributes & DF_HAS_NULL_CHKS) {
823      int src_idx;
824      if (df_attributes & DF_NULL_CHK_1) {
825        src_idx = 1;
826      } else if (df_attributes & DF_NULL_CHK_2) {
827        src_idx = 2;
828      } else {
829        src_idx = 0;
830      }
831      int src_sreg = mir->ssa_rep->uses[src_idx];
832      if (!ssa_regs_to_check->IsBitSet(src_sreg)) {
833        // Eliminate the null check.
834        mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
835      } else {
836        // Do the null check.
837        mir->optimization_flags &= ~MIR_IGNORE_NULL_CHECK;
838        // Mark s_reg as null-checked
839        ssa_regs_to_check->ClearBit(src_sreg);
840      }
841    }
842
843    if ((df_attributes & DF_A_WIDE) ||
844        (df_attributes & (DF_REF_A | DF_SETS_CONST | DF_NULL_TRANSFER)) == 0) {
845      continue;
846    }
847
848    /*
849     * First, mark all object definitions as requiring null check.
850     * Note: we can't tell if a CONST definition might be used as an object, so treat
851     * them all as object definitions.
852     */
853    if (((df_attributes & (DF_DA | DF_REF_A)) == (DF_DA | DF_REF_A)) ||
854        (df_attributes & DF_SETS_CONST))  {
855      ssa_regs_to_check->SetBit(mir->ssa_rep->defs[0]);
856    }
857
858    // Now, remove mark from all object definitions we know are non-null.
859    if (df_attributes & DF_NON_NULL_DST) {
860      // Mark target of NEW* as non-null
861      ssa_regs_to_check->ClearBit(mir->ssa_rep->defs[0]);
862    }
863
864    // Mark non-null returns from invoke-style NEW*
865    if (df_attributes & DF_NON_NULL_RET) {
866      MIR* next_mir = mir->next;
867      // Next should be an MOVE_RESULT_OBJECT
868      if (next_mir &&
869          next_mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
870        // Mark as null checked
871        ssa_regs_to_check->ClearBit(next_mir->ssa_rep->defs[0]);
872      } else {
873        if (next_mir) {
874          LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode;
875        } else if (bb->fall_through != NullBasicBlockId) {
876          // Look in next basic block
877          struct BasicBlock* next_bb = GetBasicBlock(bb->fall_through);
878          for (MIR* tmir = next_bb->first_mir_insn; tmir != NULL;
879            tmir =tmir->next) {
880            if (MIR::DecodedInstruction::IsPseudoMirOp(tmir->dalvikInsn.opcode)) {
881              continue;
882            }
883            // First non-pseudo should be MOVE_RESULT_OBJECT
884            if (tmir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
885              // Mark as null checked
886              ssa_regs_to_check->ClearBit(tmir->ssa_rep->defs[0]);
887            } else {
888              LOG(WARNING) << "Unexpected op after new: " << tmir->dalvikInsn.opcode;
889            }
890            break;
891          }
892        }
893      }
894    }
895
896    /*
897     * Propagate nullcheck state on register copies (including
898     * Phi pseudo copies.  For the latter, nullcheck state is
899     * the "or" of all the Phi's operands.
900     */
901    if (df_attributes & (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)) {
902      int tgt_sreg = mir->ssa_rep->defs[0];
903      int operands = (df_attributes & DF_NULL_TRANSFER_0) ? 1 :
904          mir->ssa_rep->num_uses;
905      bool needs_null_check = false;
906      for (int i = 0; i < operands; i++) {
907        needs_null_check |= ssa_regs_to_check->IsBitSet(mir->ssa_rep->uses[i]);
908      }
909      if (needs_null_check) {
910        ssa_regs_to_check->SetBit(tgt_sreg);
911      } else {
912        ssa_regs_to_check->ClearBit(tgt_sreg);
913      }
914    }
915  }
916
917  // Did anything change?
918  bool nce_changed = false;
919  if (do_nce) {
920    if (bb->data_flow_info->ending_check_v == nullptr) {
921      DCHECK(temp_scoped_alloc_.get() != nullptr);
922      bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
923          temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapNullCheck);
924      nce_changed = ssa_regs_to_check->GetHighestBitSet() != -1;
925      bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
926    } else if (!ssa_regs_to_check->SameBitsSet(bb->data_flow_info->ending_check_v)) {
927      nce_changed = true;
928      bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
929    }
930  }
931  return infer_changed | nce_changed;
932}
933
934void MIRGraph::EliminateNullChecksAndInferTypesEnd() {
935  if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
936    // Clean up temporaries.
937    temp_bit_vector_size_ = 0u;
938    temp_bit_vector_ = nullptr;
939    AllNodesIterator iter(this);
940    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
941      if (bb->data_flow_info != nullptr) {
942        bb->data_flow_info->ending_check_v = nullptr;
943      }
944    }
945    DCHECK(temp_scoped_alloc_.get() != nullptr);
946    temp_scoped_alloc_.reset();
947  }
948}
949
950bool MIRGraph::EliminateClassInitChecksGate() {
951  if ((cu_->disable_opt & (1 << kClassInitCheckElimination)) != 0 ||
952      !cu_->mir_graph->HasStaticFieldAccess()) {
953    return false;
954  }
955
956  if (kIsDebugBuild) {
957    AllNodesIterator iter(this);
958    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
959      CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
960    }
961  }
962
963  DCHECK(temp_scoped_alloc_.get() == nullptr);
964  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
965
966  // Each insn we use here has at least 2 code units, offset/2 will be a unique index.
967  const size_t end = (cu_->code_item->insns_size_in_code_units_ + 1u) / 2u;
968  temp_insn_data_ = static_cast<uint16_t*>(
969      temp_scoped_alloc_->Alloc(end * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
970
971  uint32_t unique_class_count = 0u;
972  {
973    // Get unique_class_count and store indexes in temp_insn_data_ using a map on a nested
974    // ScopedArenaAllocator.
975
976    // Embed the map value in the entry to save space.
977    struct MapEntry {
978      // Map key: the class identified by the declaring dex file and type index.
979      const DexFile* declaring_dex_file;
980      uint16_t declaring_class_idx;
981      // Map value: index into bit vectors of classes requiring initialization checks.
982      uint16_t index;
983    };
984    struct MapEntryComparator {
985      bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
986        if (lhs.declaring_class_idx != rhs.declaring_class_idx) {
987          return lhs.declaring_class_idx < rhs.declaring_class_idx;
988        }
989        return lhs.declaring_dex_file < rhs.declaring_dex_file;
990      }
991    };
992
993    ScopedArenaAllocator allocator(&cu_->arena_stack);
994    ScopedArenaSet<MapEntry, MapEntryComparator> class_to_index_map(MapEntryComparator(),
995                                                                    allocator.Adapter());
996
997    // First, find all SGET/SPUTs that may need class initialization checks, record INVOKE_STATICs.
998    AllNodesIterator iter(this);
999    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1000      for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1001        DCHECK(bb->data_flow_info != nullptr);
1002        if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1003            mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1004          const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir);
1005          uint16_t index = 0xffffu;
1006          if (!field_info.IsInitialized()) {
1007            DCHECK_LT(class_to_index_map.size(), 0xffffu);
1008            MapEntry entry = {
1009                // Treat unresolved fields as if each had its own class.
1010                field_info.IsResolved() ? field_info.DeclaringDexFile()
1011                                        : nullptr,
1012                field_info.IsResolved() ? field_info.DeclaringClassIndex()
1013                                        : field_info.FieldIndex(),
1014                static_cast<uint16_t>(class_to_index_map.size())
1015            };
1016            index = class_to_index_map.insert(entry).first->index;
1017          }
1018          // Using offset/2 for index into temp_insn_data_.
1019          temp_insn_data_[mir->offset / 2u] = index;
1020        }
1021      }
1022    }
1023    unique_class_count = static_cast<uint32_t>(class_to_index_map.size());
1024  }
1025
1026  if (unique_class_count == 0u) {
1027    // All SGET/SPUTs refer to initialized classes. Nothing to do.
1028    temp_insn_data_ = nullptr;
1029    temp_scoped_alloc_.reset();
1030    return false;
1031  }
1032
1033  temp_bit_vector_size_ = unique_class_count;
1034  temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1035      temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1036  DCHECK_GT(temp_bit_vector_size_, 0u);
1037  return true;
1038}
1039
1040/*
1041 * Eliminate unnecessary class initialization checks for a basic block.
1042 */
1043bool MIRGraph::EliminateClassInitChecks(BasicBlock* bb) {
1044  DCHECK_EQ((cu_->disable_opt & (1 << kClassInitCheckElimination)), 0u);
1045  if (bb->data_flow_info == NULL) {
1046    return false;
1047  }
1048
1049  /*
1050   * Set initial state.  Be conservative with catch
1051   * blocks and start with no assumptions about class init check status.
1052   */
1053  ArenaBitVector* classes_to_check = temp_bit_vector_;
1054  DCHECK(classes_to_check != nullptr);
1055  if ((bb->block_type == kEntryBlock) | bb->catch_entry) {
1056    classes_to_check->SetInitialBits(temp_bit_vector_size_);
1057  } else if (bb->predecessors->Size() == 1) {
1058    BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
1059    // pred_bb must have already been processed at least once.
1060    DCHECK(pred_bb != nullptr);
1061    DCHECK(pred_bb->data_flow_info != nullptr);
1062    DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
1063    classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1064  } else {
1065    // Starting state is union of all incoming arcs
1066    GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
1067    BasicBlock* pred_bb = GetBasicBlock(iter.Next());
1068    DCHECK(pred_bb != NULL);
1069    DCHECK(pred_bb->data_flow_info != NULL);
1070    while (pred_bb->data_flow_info->ending_check_v == nullptr) {
1071      pred_bb = GetBasicBlock(iter.Next());
1072      // At least one predecessor must have been processed before this bb.
1073      DCHECK(pred_bb != nullptr);
1074      DCHECK(pred_bb->data_flow_info != nullptr);
1075    }
1076    classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1077    while (true) {
1078      pred_bb = GetBasicBlock(iter.Next());
1079      if (!pred_bb) break;
1080      DCHECK(pred_bb->data_flow_info != nullptr);
1081      if (pred_bb->data_flow_info->ending_check_v == nullptr) {
1082        continue;
1083      }
1084      classes_to_check->Union(pred_bb->data_flow_info->ending_check_v);
1085    }
1086  }
1087  // At this point, classes_to_check shows which classes need clinit checks.
1088
1089  // Walk through the instruction in the block, updating as necessary
1090  for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1091    if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1092        mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1093      uint16_t index = temp_insn_data_[mir->offset / 2u];
1094      if (index != 0xffffu) {
1095        if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1096            mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1097          if (!classes_to_check->IsBitSet(index)) {
1098            // Eliminate the class init check.
1099            mir->optimization_flags |= MIR_IGNORE_CLINIT_CHECK;
1100          } else {
1101            // Do the class init check.
1102            mir->optimization_flags &= ~MIR_IGNORE_CLINIT_CHECK;
1103          }
1104        }
1105        // Mark the class as initialized.
1106        classes_to_check->ClearBit(index);
1107      }
1108    }
1109  }
1110
1111  // Did anything change?
1112  bool changed = false;
1113  if (bb->data_flow_info->ending_check_v == nullptr) {
1114    DCHECK(temp_scoped_alloc_.get() != nullptr);
1115    DCHECK(bb->data_flow_info != nullptr);
1116    bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
1117        temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1118    changed = classes_to_check->GetHighestBitSet() != -1;
1119    bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1120  } else if (!classes_to_check->Equal(bb->data_flow_info->ending_check_v)) {
1121    changed = true;
1122    bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1123  }
1124  return changed;
1125}
1126
1127void MIRGraph::EliminateClassInitChecksEnd() {
1128  // Clean up temporaries.
1129  temp_bit_vector_size_ = 0u;
1130  temp_bit_vector_ = nullptr;
1131  AllNodesIterator iter(this);
1132  for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1133    if (bb->data_flow_info != nullptr) {
1134      bb->data_flow_info->ending_check_v = nullptr;
1135    }
1136  }
1137
1138  DCHECK(temp_insn_data_ != nullptr);
1139  temp_insn_data_ = nullptr;
1140  DCHECK(temp_scoped_alloc_.get() != nullptr);
1141  temp_scoped_alloc_.reset();
1142}
1143
1144bool MIRGraph::ApplyGlobalValueNumberingGate() {
1145  if ((cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u) {
1146    return false;
1147  }
1148
1149  DCHECK(temp_scoped_alloc_ == nullptr);
1150  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1151  DCHECK(temp_gvn_ == nullptr);
1152  temp_gvn_.reset(
1153      new (temp_scoped_alloc_.get()) GlobalValueNumbering(cu_, temp_scoped_alloc_.get()));
1154  return true;
1155}
1156
1157bool MIRGraph::ApplyGlobalValueNumbering(BasicBlock* bb) {
1158  DCHECK(temp_gvn_ != nullptr);
1159  LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb);
1160  if (lvn != nullptr) {
1161    for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1162      lvn->GetValueNumber(mir);
1163    }
1164  }
1165  bool change = (lvn != nullptr) && temp_gvn_->FinishBasicBlock(bb);
1166  return change;
1167}
1168
1169void MIRGraph::ApplyGlobalValueNumberingEnd() {
1170  // Perform modifications.
1171  if (temp_gvn_->Good()) {
1172    temp_gvn_->AllowModifications();
1173    PreOrderDfsIterator iter(this);
1174    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1175      LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb);
1176      if (lvn != nullptr) {
1177        for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1178          lvn->GetValueNumber(mir);
1179        }
1180        bool change = temp_gvn_->FinishBasicBlock(bb);
1181        DCHECK(!change) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1182      }
1183    }
1184  } else {
1185    LOG(WARNING) << "GVN failed for " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1186  }
1187
1188  DCHECK(temp_gvn_ != nullptr);
1189  temp_gvn_.reset();
1190  DCHECK(temp_scoped_alloc_ != nullptr);
1191  temp_scoped_alloc_.reset();
1192}
1193
1194void MIRGraph::ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput) {
1195  uint32_t method_index = invoke->meta.method_lowering_info;
1196  if (temp_bit_vector_->IsBitSet(method_index)) {
1197    iget_or_iput->meta.ifield_lowering_info = temp_insn_data_[method_index];
1198    DCHECK_EQ(field_idx, GetIFieldLoweringInfo(iget_or_iput).FieldIndex());
1199    return;
1200  }
1201
1202  const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(invoke);
1203  MethodReference target = method_info.GetTargetMethod();
1204  DexCompilationUnit inlined_unit(
1205      cu_, cu_->class_loader, cu_->class_linker, *target.dex_file,
1206      nullptr /* code_item not used */, 0u /* class_def_idx not used */, target.dex_method_index,
1207      0u /* access_flags not used */, nullptr /* verified_method not used */);
1208  MirIFieldLoweringInfo inlined_field_info(field_idx);
1209  MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, &inlined_unit, &inlined_field_info, 1u);
1210  DCHECK(inlined_field_info.IsResolved());
1211
1212  uint32_t field_info_index = ifield_lowering_infos_.Size();
1213  ifield_lowering_infos_.Insert(inlined_field_info);
1214  temp_bit_vector_->SetBit(method_index);
1215  temp_insn_data_[method_index] = field_info_index;
1216  iget_or_iput->meta.ifield_lowering_info = field_info_index;
1217}
1218
1219bool MIRGraph::InlineSpecialMethodsGate() {
1220  if ((cu_->disable_opt & (1 << kSuppressMethodInlining)) != 0 ||
1221      method_lowering_infos_.Size() == 0u) {
1222    return false;
1223  }
1224  if (cu_->compiler_driver->GetMethodInlinerMap() == nullptr) {
1225    // This isn't the Quick compiler.
1226    return false;
1227  }
1228  return true;
1229}
1230
1231void MIRGraph::InlineSpecialMethodsStart() {
1232  // Prepare for inlining getters/setters. Since we're inlining at most 1 IGET/IPUT from
1233  // each INVOKE, we can index the data by the MIR::meta::method_lowering_info index.
1234
1235  DCHECK(temp_scoped_alloc_.get() == nullptr);
1236  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1237  temp_bit_vector_size_ = method_lowering_infos_.Size();
1238  temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1239      temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapMisc);
1240  temp_bit_vector_->ClearAllBits();
1241  temp_insn_data_ = static_cast<uint16_t*>(temp_scoped_alloc_->Alloc(
1242      temp_bit_vector_size_ * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
1243}
1244
1245void MIRGraph::InlineSpecialMethods(BasicBlock* bb) {
1246  if (bb->block_type != kDalvikByteCode) {
1247    return;
1248  }
1249  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
1250    if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
1251      continue;
1252    }
1253    if (!(Instruction::FlagsOf(mir->dalvikInsn.opcode) & Instruction::kInvoke)) {
1254      continue;
1255    }
1256    const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir);
1257    if (!method_info.FastPath()) {
1258      continue;
1259    }
1260    InvokeType sharp_type = method_info.GetSharpType();
1261    if ((sharp_type != kDirect) &&
1262        (sharp_type != kStatic || method_info.NeedsClassInitialization())) {
1263      continue;
1264    }
1265    DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1266    MethodReference target = method_info.GetTargetMethod();
1267    if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(target.dex_file)
1268            ->GenInline(this, bb, mir, target.dex_method_index)) {
1269      if (cu_->verbose || cu_->print_pass) {
1270        LOG(INFO) << "SpecialMethodInliner: Inlined " << method_info.GetInvokeType() << " ("
1271            << sharp_type << ") call to \"" << PrettyMethod(target.dex_method_index, *target.dex_file)
1272            << "\" from \"" << PrettyMethod(cu_->method_idx, *cu_->dex_file)
1273            << "\" @0x" << std::hex << mir->offset;
1274      }
1275    }
1276  }
1277}
1278
1279void MIRGraph::InlineSpecialMethodsEnd() {
1280  DCHECK(temp_insn_data_ != nullptr);
1281  temp_insn_data_ = nullptr;
1282  DCHECK(temp_bit_vector_ != nullptr);
1283  temp_bit_vector_ = nullptr;
1284  DCHECK(temp_scoped_alloc_.get() != nullptr);
1285  temp_scoped_alloc_.reset();
1286}
1287
1288void MIRGraph::DumpCheckStats() {
1289  Checkstats* stats =
1290      static_cast<Checkstats*>(arena_->Alloc(sizeof(Checkstats), kArenaAllocDFInfo));
1291  checkstats_ = stats;
1292  AllNodesIterator iter(this);
1293  for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1294    CountChecks(bb);
1295  }
1296  if (stats->null_checks > 0) {
1297    float eliminated = static_cast<float>(stats->null_checks_eliminated);
1298    float checks = static_cast<float>(stats->null_checks);
1299    LOG(INFO) << "Null Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1300              << stats->null_checks_eliminated << " of " << stats->null_checks << " -> "
1301              << (eliminated/checks) * 100.0 << "%";
1302    }
1303  if (stats->range_checks > 0) {
1304    float eliminated = static_cast<float>(stats->range_checks_eliminated);
1305    float checks = static_cast<float>(stats->range_checks);
1306    LOG(INFO) << "Range Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1307              << stats->range_checks_eliminated << " of " << stats->range_checks << " -> "
1308              << (eliminated/checks) * 100.0 << "%";
1309  }
1310}
1311
1312bool MIRGraph::BuildExtendedBBList(struct BasicBlock* bb) {
1313  if (bb->visited) return false;
1314  if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
1315      || (bb->block_type == kExitBlock))) {
1316    // Ignore special blocks
1317    bb->visited = true;
1318    return false;
1319  }
1320  // Must be head of extended basic block.
1321  BasicBlock* start_bb = bb;
1322  extended_basic_blocks_.push_back(bb->id);
1323  bool terminated_by_return = false;
1324  bool do_local_value_numbering = false;
1325  // Visit blocks strictly dominated by this head.
1326  while (bb != NULL) {
1327    bb->visited = true;
1328    terminated_by_return |= bb->terminated_by_return;
1329    do_local_value_numbering |= bb->use_lvn;
1330    bb = NextDominatedBlock(bb);
1331  }
1332  if (terminated_by_return || do_local_value_numbering) {
1333    // Do lvn for all blocks in this extended set.
1334    bb = start_bb;
1335    while (bb != NULL) {
1336      bb->use_lvn = do_local_value_numbering;
1337      bb->dominates_return = terminated_by_return;
1338      bb = NextDominatedBlock(bb);
1339    }
1340  }
1341  return false;  // Not iterative - return value will be ignored
1342}
1343
1344void MIRGraph::BasicBlockOptimization() {
1345  if ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) {
1346    ClearAllVisitedFlags();
1347    PreOrderDfsIterator iter2(this);
1348    for (BasicBlock* bb = iter2.Next(); bb != NULL; bb = iter2.Next()) {
1349      BuildExtendedBBList(bb);
1350    }
1351    // Perform extended basic block optimizations.
1352    for (unsigned int i = 0; i < extended_basic_blocks_.size(); i++) {
1353      BasicBlockOpt(GetBasicBlock(extended_basic_blocks_[i]));
1354    }
1355  } else {
1356    PreOrderDfsIterator iter(this);
1357    for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1358      BasicBlockOpt(bb);
1359    }
1360  }
1361}
1362
1363}  // namespace art
1364