mir_optimization.cc revision 55fff044d3a4f7196098e25bab1dad106d9b54a2
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "compiler_internals.h"
18#include "global_value_numbering.h"
19#include "local_value_numbering.h"
20#include "dataflow_iterator-inl.h"
21#include "dex/global_value_numbering.h"
22#include "dex/quick/dex_file_method_inliner.h"
23#include "dex/quick/dex_file_to_method_inliner_map.h"
24#include "utils/scoped_arena_containers.h"
25
26namespace art {
27
28static unsigned int Predecessors(BasicBlock* bb) {
29  return bb->predecessors->Size();
30}
31
32/* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
33void MIRGraph::SetConstant(int32_t ssa_reg, int value) {
34  is_constant_v_->SetBit(ssa_reg);
35  constant_values_[ssa_reg] = value;
36}
37
38void MIRGraph::SetConstantWide(int ssa_reg, int64_t value) {
39  is_constant_v_->SetBit(ssa_reg);
40  constant_values_[ssa_reg] = Low32Bits(value);
41  constant_values_[ssa_reg + 1] = High32Bits(value);
42}
43
44void MIRGraph::DoConstantPropagation(BasicBlock* bb) {
45  MIR* mir;
46
47  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
48    // Skip pass if BB has MIR without SSA representation.
49    if (mir->ssa_rep == nullptr) {
50       return;
51    }
52
53    uint64_t df_attributes = GetDataFlowAttributes(mir);
54
55    MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
56
57    if (!(df_attributes & DF_HAS_DEFS)) continue;
58
59    /* Handle instructions that set up constants directly */
60    if (df_attributes & DF_SETS_CONST) {
61      if (df_attributes & DF_DA) {
62        int32_t vB = static_cast<int32_t>(d_insn->vB);
63        switch (d_insn->opcode) {
64          case Instruction::CONST_4:
65          case Instruction::CONST_16:
66          case Instruction::CONST:
67            SetConstant(mir->ssa_rep->defs[0], vB);
68            break;
69          case Instruction::CONST_HIGH16:
70            SetConstant(mir->ssa_rep->defs[0], vB << 16);
71            break;
72          case Instruction::CONST_WIDE_16:
73          case Instruction::CONST_WIDE_32:
74            SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB));
75            break;
76          case Instruction::CONST_WIDE:
77            SetConstantWide(mir->ssa_rep->defs[0], d_insn->vB_wide);
78            break;
79          case Instruction::CONST_WIDE_HIGH16:
80            SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48);
81            break;
82          default:
83            break;
84        }
85      }
86      /* Handle instructions that set up constants directly */
87    } else if (df_attributes & DF_IS_MOVE) {
88      int i;
89
90      for (i = 0; i < mir->ssa_rep->num_uses; i++) {
91        if (!is_constant_v_->IsBitSet(mir->ssa_rep->uses[i])) break;
92      }
93      /* Move a register holding a constant to another register */
94      if (i == mir->ssa_rep->num_uses) {
95        SetConstant(mir->ssa_rep->defs[0], constant_values_[mir->ssa_rep->uses[0]]);
96        if (df_attributes & DF_A_WIDE) {
97          SetConstant(mir->ssa_rep->defs[1], constant_values_[mir->ssa_rep->uses[1]]);
98        }
99      }
100    }
101  }
102  /* TODO: implement code to handle arithmetic operations */
103}
104
105/* Advance to next strictly dominated MIR node in an extended basic block */
106MIR* MIRGraph::AdvanceMIR(BasicBlock** p_bb, MIR* mir) {
107  BasicBlock* bb = *p_bb;
108  if (mir != NULL) {
109    mir = mir->next;
110    if (mir == NULL) {
111      bb = GetBasicBlock(bb->fall_through);
112      if ((bb == NULL) || Predecessors(bb) != 1) {
113        mir = NULL;
114      } else {
115      *p_bb = bb;
116      mir = bb->first_mir_insn;
117      }
118    }
119  }
120  return mir;
121}
122
123/*
124 * To be used at an invoke mir.  If the logically next mir node represents
125 * a move-result, return it.  Else, return NULL.  If a move-result exists,
126 * it is required to immediately follow the invoke with no intervening
127 * opcodes or incoming arcs.  However, if the result of the invoke is not
128 * used, a move-result may not be present.
129 */
130MIR* MIRGraph::FindMoveResult(BasicBlock* bb, MIR* mir) {
131  BasicBlock* tbb = bb;
132  mir = AdvanceMIR(&tbb, mir);
133  while (mir != NULL) {
134    if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) ||
135        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) ||
136        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) {
137      break;
138    }
139    // Keep going if pseudo op, otherwise terminate
140    if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
141      mir = AdvanceMIR(&tbb, mir);
142    } else {
143      mir = NULL;
144    }
145  }
146  return mir;
147}
148
149BasicBlock* MIRGraph::NextDominatedBlock(BasicBlock* bb) {
150  if (bb->block_type == kDead) {
151    return NULL;
152  }
153  DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
154      || (bb->block_type == kExitBlock));
155  BasicBlock* bb_taken = GetBasicBlock(bb->taken);
156  BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through);
157  if (((bb_fall_through == NULL) && (bb_taken != NULL)) &&
158      ((bb_taken->block_type == kDalvikByteCode) || (bb_taken->block_type == kExitBlock))) {
159    // Follow simple unconditional branches.
160    bb = bb_taken;
161  } else {
162    // Follow simple fallthrough
163    bb = (bb_taken != NULL) ? NULL : bb_fall_through;
164  }
165  if (bb == NULL || (Predecessors(bb) != 1)) {
166    return NULL;
167  }
168  DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock));
169  return bb;
170}
171
172static MIR* FindPhi(BasicBlock* bb, int ssa_name) {
173  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
174    if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
175      for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
176        if (mir->ssa_rep->uses[i] == ssa_name) {
177          return mir;
178        }
179      }
180    }
181  }
182  return NULL;
183}
184
185static SelectInstructionKind SelectKind(MIR* mir) {
186  switch (mir->dalvikInsn.opcode) {
187    case Instruction::MOVE:
188    case Instruction::MOVE_OBJECT:
189    case Instruction::MOVE_16:
190    case Instruction::MOVE_OBJECT_16:
191    case Instruction::MOVE_FROM16:
192    case Instruction::MOVE_OBJECT_FROM16:
193      return kSelectMove;
194    case Instruction::CONST:
195    case Instruction::CONST_4:
196    case Instruction::CONST_16:
197      return kSelectConst;
198    case Instruction::GOTO:
199    case Instruction::GOTO_16:
200    case Instruction::GOTO_32:
201      return kSelectGoto;
202    default:
203      return kSelectNone;
204  }
205}
206
207static constexpr ConditionCode kIfCcZConditionCodes[] = {
208    kCondEq, kCondNe, kCondLt, kCondGe, kCondGt, kCondLe
209};
210
211COMPILE_ASSERT(arraysize(kIfCcZConditionCodes) == Instruction::IF_LEZ - Instruction::IF_EQZ + 1,
212               if_ccz_ccodes_size1);
213
214static constexpr bool IsInstructionIfCcZ(Instruction::Code opcode) {
215  return Instruction::IF_EQZ <= opcode && opcode <= Instruction::IF_LEZ;
216}
217
218static constexpr ConditionCode ConditionCodeForIfCcZ(Instruction::Code opcode) {
219  return kIfCcZConditionCodes[opcode - Instruction::IF_EQZ];
220}
221
222COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_EQZ) == kCondEq, check_if_eqz_ccode);
223COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_NEZ) == kCondNe, check_if_nez_ccode);
224COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LTZ) == kCondLt, check_if_ltz_ccode);
225COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GEZ) == kCondGe, check_if_gez_ccode);
226COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GTZ) == kCondGt, check_if_gtz_ccode);
227COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LEZ) == kCondLe, check_if_lez_ccode);
228
229int MIRGraph::GetSSAUseCount(int s_reg) {
230  return raw_use_counts_.Get(s_reg);
231}
232
233size_t MIRGraph::GetNumAvailableNonSpecialCompilerTemps() {
234  if (num_non_special_compiler_temps_ >= max_available_non_special_compiler_temps_) {
235    return 0;
236  } else {
237    return max_available_non_special_compiler_temps_ - num_non_special_compiler_temps_;
238  }
239}
240
241
242// FIXME - will probably need to revisit all uses of this, as type not defined.
243static const RegLocation temp_loc = {kLocCompilerTemp,
244                                     0, 1 /*defined*/, 0, 0, 0, 0, 0, 1 /*home*/,
245                                     RegStorage(), INVALID_SREG, INVALID_SREG};
246
247CompilerTemp* MIRGraph::GetNewCompilerTemp(CompilerTempType ct_type, bool wide) {
248  // There is a limit to the number of non-special temps so check to make sure it wasn't exceeded.
249  if (ct_type == kCompilerTempVR) {
250    size_t available_temps = GetNumAvailableNonSpecialCompilerTemps();
251    if (available_temps <= 0 || (available_temps <= 1 && wide)) {
252      return 0;
253    }
254  }
255
256  CompilerTemp *compiler_temp = static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp),
257                                                            kArenaAllocRegAlloc));
258
259  // Create the type of temp requested. Special temps need special handling because
260  // they have a specific virtual register assignment.
261  if (ct_type == kCompilerTempSpecialMethodPtr) {
262    DCHECK_EQ(wide, false);
263    compiler_temp->v_reg = static_cast<int>(kVRegMethodPtrBaseReg);
264    compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
265
266    // The MIR graph keeps track of the sreg for method pointer specially, so record that now.
267    method_sreg_ = compiler_temp->s_reg_low;
268  } else {
269    DCHECK_EQ(ct_type, kCompilerTempVR);
270
271    // The new non-special compiler temp must receive a unique v_reg with a negative value.
272    compiler_temp->v_reg = static_cast<int>(kVRegNonSpecialTempBaseReg) -
273        num_non_special_compiler_temps_;
274    compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
275    num_non_special_compiler_temps_++;
276
277    if (wide) {
278      // Create a new CompilerTemp for the high part.
279      CompilerTemp *compiler_temp_high =
280          static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp), kArenaAllocRegAlloc));
281      compiler_temp_high->v_reg = compiler_temp->v_reg;
282      compiler_temp_high->s_reg_low = compiler_temp->s_reg_low;
283      compiler_temps_.Insert(compiler_temp_high);
284
285      // Ensure that the two registers are consecutive. Since the virtual registers used for temps
286      // grow in a negative fashion, we need the smaller to refer to the low part. Thus, we
287      // redefine the v_reg and s_reg_low.
288      compiler_temp->v_reg--;
289      int ssa_reg_high = compiler_temp->s_reg_low;
290      compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
291      int ssa_reg_low = compiler_temp->s_reg_low;
292
293      // If needed initialize the register location for the high part.
294      // The low part is handled later in this method on a common path.
295      if (reg_location_ != nullptr) {
296        reg_location_[ssa_reg_high] = temp_loc;
297        reg_location_[ssa_reg_high].high_word = 1;
298        reg_location_[ssa_reg_high].s_reg_low = ssa_reg_low;
299        reg_location_[ssa_reg_high].wide = true;
300      }
301
302      num_non_special_compiler_temps_++;
303    }
304  }
305
306  // Have we already allocated the register locations?
307  if (reg_location_ != nullptr) {
308    int ssa_reg_low = compiler_temp->s_reg_low;
309    reg_location_[ssa_reg_low] = temp_loc;
310    reg_location_[ssa_reg_low].s_reg_low = ssa_reg_low;
311    reg_location_[ssa_reg_low].wide = wide;
312  }
313
314  compiler_temps_.Insert(compiler_temp);
315  return compiler_temp;
316}
317
318/* Do some MIR-level extended basic block optimizations */
319bool MIRGraph::BasicBlockOpt(BasicBlock* bb) {
320  if (bb->block_type == kDead) {
321    return true;
322  }
323  // Don't do a separate LVN if we did the GVN.
324  bool use_lvn = bb->use_lvn && (cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u;
325  std::unique_ptr<ScopedArenaAllocator> allocator;
326  std::unique_ptr<GlobalValueNumbering> global_valnum;
327  std::unique_ptr<LocalValueNumbering> local_valnum;
328  if (use_lvn) {
329    allocator.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
330    global_valnum.reset(new (allocator.get()) GlobalValueNumbering(cu_, allocator.get()));
331    local_valnum.reset(new (allocator.get()) LocalValueNumbering(global_valnum.get(), bb->id));
332  }
333  while (bb != NULL) {
334    for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
335      // TUNING: use the returned value number for CSE.
336      if (use_lvn) {
337        local_valnum->GetValueNumber(mir);
338      }
339      // Look for interesting opcodes, skip otherwise
340      Instruction::Code opcode = mir->dalvikInsn.opcode;
341      switch (opcode) {
342        case Instruction::CMPL_FLOAT:
343        case Instruction::CMPL_DOUBLE:
344        case Instruction::CMPG_FLOAT:
345        case Instruction::CMPG_DOUBLE:
346        case Instruction::CMP_LONG:
347          if ((cu_->disable_opt & (1 << kBranchFusing)) != 0) {
348            // Bitcode doesn't allow this optimization.
349            break;
350          }
351          if (mir->next != NULL) {
352            MIR* mir_next = mir->next;
353            // Make sure result of cmp is used by next insn and nowhere else
354            if (IsInstructionIfCcZ(mir_next->dalvikInsn.opcode) &&
355                (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) &&
356                (GetSSAUseCount(mir->ssa_rep->defs[0]) == 1)) {
357              mir_next->meta.ccode = ConditionCodeForIfCcZ(mir_next->dalvikInsn.opcode);
358              switch (opcode) {
359                case Instruction::CMPL_FLOAT:
360                  mir_next->dalvikInsn.opcode =
361                      static_cast<Instruction::Code>(kMirOpFusedCmplFloat);
362                  break;
363                case Instruction::CMPL_DOUBLE:
364                  mir_next->dalvikInsn.opcode =
365                      static_cast<Instruction::Code>(kMirOpFusedCmplDouble);
366                  break;
367                case Instruction::CMPG_FLOAT:
368                  mir_next->dalvikInsn.opcode =
369                      static_cast<Instruction::Code>(kMirOpFusedCmpgFloat);
370                  break;
371                case Instruction::CMPG_DOUBLE:
372                  mir_next->dalvikInsn.opcode =
373                      static_cast<Instruction::Code>(kMirOpFusedCmpgDouble);
374                  break;
375                case Instruction::CMP_LONG:
376                  mir_next->dalvikInsn.opcode =
377                      static_cast<Instruction::Code>(kMirOpFusedCmpLong);
378                  break;
379                default: LOG(ERROR) << "Unexpected opcode: " << opcode;
380              }
381              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
382              // Copy the SSA information that is relevant.
383              mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses;
384              mir_next->ssa_rep->uses = mir->ssa_rep->uses;
385              mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use;
386              mir_next->ssa_rep->num_defs = 0;
387              mir->ssa_rep->num_uses = 0;
388              mir->ssa_rep->num_defs = 0;
389              // Copy in the decoded instruction information for potential SSA re-creation.
390              mir_next->dalvikInsn.vA = mir->dalvikInsn.vB;
391              mir_next->dalvikInsn.vB = mir->dalvikInsn.vC;
392            }
393          }
394          break;
395        case Instruction::GOTO:
396        case Instruction::GOTO_16:
397        case Instruction::GOTO_32:
398        case Instruction::IF_EQ:
399        case Instruction::IF_NE:
400        case Instruction::IF_LT:
401        case Instruction::IF_GE:
402        case Instruction::IF_GT:
403        case Instruction::IF_LE:
404        case Instruction::IF_EQZ:
405        case Instruction::IF_NEZ:
406        case Instruction::IF_LTZ:
407        case Instruction::IF_GEZ:
408        case Instruction::IF_GTZ:
409        case Instruction::IF_LEZ:
410          // If we've got a backwards branch to return, no need to suspend check.
411          if ((IsBackedge(bb, bb->taken) && GetBasicBlock(bb->taken)->dominates_return) ||
412              (IsBackedge(bb, bb->fall_through) &&
413                          GetBasicBlock(bb->fall_through)->dominates_return)) {
414            mir->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK;
415            if (cu_->verbose) {
416              LOG(INFO) << "Suppressed suspend check on branch to return at 0x" << std::hex
417                        << mir->offset;
418            }
419          }
420          break;
421        default:
422          break;
423      }
424      // Is this the select pattern?
425      // TODO: flesh out support for Mips.  NOTE: llvm's select op doesn't quite work here.
426      // TUNING: expand to support IF_xx compare & branches
427      if (!cu_->compiler->IsPortable() &&
428          (cu_->instruction_set == kArm64 || cu_->instruction_set == kThumb2 ||
429           cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) &&
430          IsInstructionIfCcZ(mir->dalvikInsn.opcode)) {
431        BasicBlock* ft = GetBasicBlock(bb->fall_through);
432        DCHECK(ft != NULL);
433        BasicBlock* ft_ft = GetBasicBlock(ft->fall_through);
434        BasicBlock* ft_tk = GetBasicBlock(ft->taken);
435
436        BasicBlock* tk = GetBasicBlock(bb->taken);
437        DCHECK(tk != NULL);
438        BasicBlock* tk_ft = GetBasicBlock(tk->fall_through);
439        BasicBlock* tk_tk = GetBasicBlock(tk->taken);
440
441        /*
442         * In the select pattern, the taken edge goes to a block that unconditionally
443         * transfers to the rejoin block and the fall_though edge goes to a block that
444         * unconditionally falls through to the rejoin block.
445         */
446        if ((tk_ft == NULL) && (ft_tk == NULL) && (tk_tk == ft_ft) &&
447            (Predecessors(tk) == 1) && (Predecessors(ft) == 1)) {
448          /*
449           * Okay - we have the basic diamond shape.  At the very least, we can eliminate the
450           * suspend check on the taken-taken branch back to the join point.
451           */
452          if (SelectKind(tk->last_mir_insn) == kSelectGoto) {
453              tk->last_mir_insn->optimization_flags |= (MIR_IGNORE_SUSPEND_CHECK);
454          }
455
456          // TODO: Add logic for LONG.
457          // Are the block bodies something we can handle?
458          if ((ft->first_mir_insn == ft->last_mir_insn) &&
459              (tk->first_mir_insn != tk->last_mir_insn) &&
460              (tk->first_mir_insn->next == tk->last_mir_insn) &&
461              ((SelectKind(ft->first_mir_insn) == kSelectMove) ||
462              (SelectKind(ft->first_mir_insn) == kSelectConst)) &&
463              (SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) &&
464              (SelectKind(tk->last_mir_insn) == kSelectGoto)) {
465            // Almost there.  Are the instructions targeting the same vreg?
466            MIR* if_true = tk->first_mir_insn;
467            MIR* if_false = ft->first_mir_insn;
468            // It's possible that the target of the select isn't used - skip those (rare) cases.
469            MIR* phi = FindPhi(tk_tk, if_true->ssa_rep->defs[0]);
470            if ((phi != NULL) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) {
471              /*
472               * We'll convert the IF_EQZ/IF_NEZ to a SELECT.  We need to find the
473               * Phi node in the merge block and delete it (while using the SSA name
474               * of the merge as the target of the SELECT.  Delete both taken and
475               * fallthrough blocks, and set fallthrough to merge block.
476               * NOTE: not updating other dataflow info (no longer used at this point).
477               * If this changes, need to update i_dom, etc. here (and in CombineBlocks).
478               */
479              mir->meta.ccode = ConditionCodeForIfCcZ(mir->dalvikInsn.opcode);
480              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect);
481              bool const_form = (SelectKind(if_true) == kSelectConst);
482              if ((SelectKind(if_true) == kSelectMove)) {
483                if (IsConst(if_true->ssa_rep->uses[0]) &&
484                    IsConst(if_false->ssa_rep->uses[0])) {
485                    const_form = true;
486                    if_true->dalvikInsn.vB = ConstantValue(if_true->ssa_rep->uses[0]);
487                    if_false->dalvikInsn.vB = ConstantValue(if_false->ssa_rep->uses[0]);
488                }
489              }
490              if (const_form) {
491                /*
492                 * TODO: If both constants are the same value, then instead of generating
493                 * a select, we should simply generate a const bytecode. This should be
494                 * considered after inlining which can lead to CFG of this form.
495                 */
496                // "true" set val in vB
497                mir->dalvikInsn.vB = if_true->dalvikInsn.vB;
498                // "false" set val in vC
499                mir->dalvikInsn.vC = if_false->dalvikInsn.vB;
500              } else {
501                DCHECK_EQ(SelectKind(if_true), kSelectMove);
502                DCHECK_EQ(SelectKind(if_false), kSelectMove);
503                int* src_ssa =
504                    static_cast<int*>(arena_->Alloc(sizeof(int) * 3, kArenaAllocDFInfo));
505                src_ssa[0] = mir->ssa_rep->uses[0];
506                src_ssa[1] = if_true->ssa_rep->uses[0];
507                src_ssa[2] = if_false->ssa_rep->uses[0];
508                mir->ssa_rep->uses = src_ssa;
509                mir->ssa_rep->num_uses = 3;
510              }
511              mir->ssa_rep->num_defs = 1;
512              mir->ssa_rep->defs =
513                  static_cast<int*>(arena_->Alloc(sizeof(int) * 1, kArenaAllocDFInfo));
514              mir->ssa_rep->fp_def =
515                  static_cast<bool*>(arena_->Alloc(sizeof(bool) * 1, kArenaAllocDFInfo));
516              mir->ssa_rep->fp_def[0] = if_true->ssa_rep->fp_def[0];
517              // Match type of uses to def.
518              mir->ssa_rep->fp_use =
519                  static_cast<bool*>(arena_->Alloc(sizeof(bool) * mir->ssa_rep->num_uses,
520                                                   kArenaAllocDFInfo));
521              for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
522                mir->ssa_rep->fp_use[i] = mir->ssa_rep->fp_def[0];
523              }
524              /*
525               * There is usually a Phi node in the join block for our two cases.  If the
526               * Phi node only contains our two cases as input, we will use the result
527               * SSA name of the Phi node as our select result and delete the Phi.  If
528               * the Phi node has more than two operands, we will arbitrarily use the SSA
529               * name of the "true" path, delete the SSA name of the "false" path from the
530               * Phi node (and fix up the incoming arc list).
531               */
532              if (phi->ssa_rep->num_uses == 2) {
533                mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0];
534                phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
535              } else {
536                int dead_def = if_false->ssa_rep->defs[0];
537                int live_def = if_true->ssa_rep->defs[0];
538                mir->ssa_rep->defs[0] = live_def;
539                BasicBlockId* incoming = phi->meta.phi_incoming;
540                for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
541                  if (phi->ssa_rep->uses[i] == live_def) {
542                    incoming[i] = bb->id;
543                  }
544                }
545                for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
546                  if (phi->ssa_rep->uses[i] == dead_def) {
547                    int last_slot = phi->ssa_rep->num_uses - 1;
548                    phi->ssa_rep->uses[i] = phi->ssa_rep->uses[last_slot];
549                    incoming[i] = incoming[last_slot];
550                  }
551                }
552              }
553              phi->ssa_rep->num_uses--;
554              bb->taken = NullBasicBlockId;
555              tk->block_type = kDead;
556              for (MIR* tmir = ft->first_mir_insn; tmir != NULL; tmir = tmir->next) {
557                tmir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
558              }
559            }
560          }
561        }
562      }
563    }
564    bb = ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) ? NextDominatedBlock(bb) : NULL;
565  }
566  if (use_lvn && UNLIKELY(!global_valnum->Good())) {
567    LOG(WARNING) << "LVN overflow in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
568  }
569
570  return true;
571}
572
573/* Collect stats on number of checks removed */
574void MIRGraph::CountChecks(struct BasicBlock* bb) {
575  if (bb->data_flow_info != NULL) {
576    for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
577      if (mir->ssa_rep == NULL) {
578        continue;
579      }
580      uint64_t df_attributes = GetDataFlowAttributes(mir);
581      if (df_attributes & DF_HAS_NULL_CHKS) {
582        checkstats_->null_checks++;
583        if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) {
584          checkstats_->null_checks_eliminated++;
585        }
586      }
587      if (df_attributes & DF_HAS_RANGE_CHKS) {
588        checkstats_->range_checks++;
589        if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) {
590          checkstats_->range_checks_eliminated++;
591        }
592      }
593    }
594  }
595}
596
597/* Try to make common case the fallthrough path */
598bool MIRGraph::LayoutBlocks(BasicBlock* bb) {
599  // TODO: For now, just looking for direct throws.  Consider generalizing for profile feedback
600  if (!bb->explicit_throw) {
601    return false;
602  }
603  BasicBlock* walker = bb;
604  while (true) {
605    // Check termination conditions
606    if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) {
607      break;
608    }
609    BasicBlock* prev = GetBasicBlock(walker->predecessors->Get(0));
610    if (prev->conditional_branch) {
611      if (GetBasicBlock(prev->fall_through) == walker) {
612        // Already done - return
613        break;
614      }
615      DCHECK_EQ(walker, GetBasicBlock(prev->taken));
616      // Got one.  Flip it and exit
617      Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode;
618      switch (opcode) {
619        case Instruction::IF_EQ: opcode = Instruction::IF_NE; break;
620        case Instruction::IF_NE: opcode = Instruction::IF_EQ; break;
621        case Instruction::IF_LT: opcode = Instruction::IF_GE; break;
622        case Instruction::IF_GE: opcode = Instruction::IF_LT; break;
623        case Instruction::IF_GT: opcode = Instruction::IF_LE; break;
624        case Instruction::IF_LE: opcode = Instruction::IF_GT; break;
625        case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break;
626        case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break;
627        case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break;
628        case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break;
629        case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break;
630        case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break;
631        default: LOG(FATAL) << "Unexpected opcode " << opcode;
632      }
633      prev->last_mir_insn->dalvikInsn.opcode = opcode;
634      BasicBlockId t_bb = prev->taken;
635      prev->taken = prev->fall_through;
636      prev->fall_through = t_bb;
637      break;
638    }
639    walker = prev;
640  }
641  return false;
642}
643
644/* Combine any basic blocks terminated by instructions that we now know can't throw */
645void MIRGraph::CombineBlocks(struct BasicBlock* bb) {
646  // Loop here to allow combining a sequence of blocks
647  while (true) {
648    // Check termination conditions
649    if ((bb->first_mir_insn == NULL)
650        || (bb->data_flow_info == NULL)
651        || (bb->block_type == kExceptionHandling)
652        || (bb->block_type == kExitBlock)
653        || (bb->block_type == kDead)
654        || (bb->taken == NullBasicBlockId)
655        || (GetBasicBlock(bb->taken)->block_type != kExceptionHandling)
656        || (bb->successor_block_list_type != kNotUsed)
657        || (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) != kMirOpCheck)) {
658      break;
659    }
660
661    // Test the kMirOpCheck instruction
662    MIR* mir = bb->last_mir_insn;
663    // Grab the attributes from the paired opcode
664    MIR* throw_insn = mir->meta.throw_insn;
665    uint64_t df_attributes = GetDataFlowAttributes(throw_insn);
666    bool can_combine = true;
667    if (df_attributes & DF_HAS_NULL_CHKS) {
668      can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0);
669    }
670    if (df_attributes & DF_HAS_RANGE_CHKS) {
671      can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0);
672    }
673    if (!can_combine) {
674      break;
675    }
676    // OK - got one.  Combine
677    BasicBlock* bb_next = GetBasicBlock(bb->fall_through);
678    DCHECK(!bb_next->catch_entry);
679    DCHECK_EQ(Predecessors(bb_next), 1U);
680    // Overwrite the kOpCheck insn with the paired opcode
681    DCHECK_EQ(bb_next->first_mir_insn, throw_insn);
682    *bb->last_mir_insn = *throw_insn;
683    // Use the successor info from the next block
684    bb->successor_block_list_type = bb_next->successor_block_list_type;
685    bb->successor_blocks = bb_next->successor_blocks;
686    // Use the ending block linkage from the next block
687    bb->fall_through = bb_next->fall_through;
688    GetBasicBlock(bb->taken)->block_type = kDead;  // Kill the unused exception block
689    bb->taken = bb_next->taken;
690    // Include the rest of the instructions
691    bb->last_mir_insn = bb_next->last_mir_insn;
692    /*
693     * If lower-half of pair of blocks to combine contained a return, move the flag
694     * to the newly combined block.
695     */
696    bb->terminated_by_return = bb_next->terminated_by_return;
697
698    /*
699     * NOTE: we aren't updating all dataflow info here.  Should either make sure this pass
700     * happens after uses of i_dominated, dom_frontier or update the dataflow info here.
701     */
702
703    // Kill bb_next and remap now-dead id to parent
704    bb_next->block_type = kDead;
705    block_id_map_.Overwrite(bb_next->id, bb->id);
706
707    // Now, loop back and see if we can keep going
708  }
709}
710
711void MIRGraph::EliminateNullChecksAndInferTypesStart() {
712  if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
713    if (kIsDebugBuild) {
714      AllNodesIterator iter(this);
715      for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
716        CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
717      }
718    }
719
720    DCHECK(temp_scoped_alloc_.get() == nullptr);
721    temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
722    temp_bit_vector_size_ = GetNumSSARegs();
723    temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
724        temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapTempSSARegisterV);
725  }
726}
727
728/*
729 * Eliminate unnecessary null checks for a basic block.   Also, while we're doing
730 * an iterative walk go ahead and perform type and size inference.
731 */
732bool MIRGraph::EliminateNullChecksAndInferTypes(BasicBlock* bb) {
733  if (bb->data_flow_info == NULL) return false;
734  bool infer_changed = false;
735  bool do_nce = ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0);
736
737  ArenaBitVector* ssa_regs_to_check = temp_bit_vector_;
738  if (do_nce) {
739    /*
740     * Set initial state. Catch blocks don't need any special treatment.
741     */
742    if (bb->block_type == kEntryBlock) {
743      ssa_regs_to_check->ClearAllBits();
744      // Assume all ins are objects.
745      for (uint16_t in_reg = cu_->num_dalvik_registers - cu_->num_ins;
746           in_reg < cu_->num_dalvik_registers; in_reg++) {
747        ssa_regs_to_check->SetBit(in_reg);
748      }
749      if ((cu_->access_flags & kAccStatic) == 0) {
750        // If non-static method, mark "this" as non-null
751        int this_reg = cu_->num_dalvik_registers - cu_->num_ins;
752        ssa_regs_to_check->ClearBit(this_reg);
753      }
754    } else if (bb->predecessors->Size() == 1) {
755      BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
756      // pred_bb must have already been processed at least once.
757      DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
758      ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
759      if (pred_bb->block_type == kDalvikByteCode) {
760        // Check to see if predecessor had an explicit null-check.
761        MIR* last_insn = pred_bb->last_mir_insn;
762        if (last_insn != nullptr) {
763          Instruction::Code last_opcode = last_insn->dalvikInsn.opcode;
764          if (last_opcode == Instruction::IF_EQZ) {
765            if (pred_bb->fall_through == bb->id) {
766              // The fall-through of a block following a IF_EQZ, set the vA of the IF_EQZ to show that
767              // it can't be null.
768              ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
769            }
770          } else if (last_opcode == Instruction::IF_NEZ) {
771            if (pred_bb->taken == bb->id) {
772              // The taken block following a IF_NEZ, set the vA of the IF_NEZ to show that it can't be
773              // null.
774              ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
775            }
776          }
777        }
778      }
779    } else {
780      // Starting state is union of all incoming arcs
781      GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
782      BasicBlock* pred_bb = GetBasicBlock(iter.Next());
783      CHECK(pred_bb != NULL);
784      while (pred_bb->data_flow_info->ending_check_v == nullptr) {
785        pred_bb = GetBasicBlock(iter.Next());
786        // At least one predecessor must have been processed before this bb.
787        DCHECK(pred_bb != nullptr);
788        DCHECK(pred_bb->data_flow_info != nullptr);
789      }
790      ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
791      while (true) {
792        pred_bb = GetBasicBlock(iter.Next());
793        if (!pred_bb) break;
794        DCHECK(pred_bb->data_flow_info != nullptr);
795        if (pred_bb->data_flow_info->ending_check_v == nullptr) {
796          continue;
797        }
798        ssa_regs_to_check->Union(pred_bb->data_flow_info->ending_check_v);
799      }
800    }
801    // At this point, ssa_regs_to_check shows which sregs have an object definition with
802    // no intervening uses.
803  }
804
805  // Walk through the instruction in the block, updating as necessary
806  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
807    if (mir->ssa_rep == NULL) {
808        continue;
809    }
810
811    // Propagate type info.
812    infer_changed = InferTypeAndSize(bb, mir, infer_changed);
813    if (!do_nce) {
814      continue;
815    }
816
817    uint64_t df_attributes = GetDataFlowAttributes(mir);
818
819    // Might need a null check?
820    if (df_attributes & DF_HAS_NULL_CHKS) {
821      int src_idx;
822      if (df_attributes & DF_NULL_CHK_1) {
823        src_idx = 1;
824      } else if (df_attributes & DF_NULL_CHK_2) {
825        src_idx = 2;
826      } else {
827        src_idx = 0;
828      }
829      int src_sreg = mir->ssa_rep->uses[src_idx];
830      if (!ssa_regs_to_check->IsBitSet(src_sreg)) {
831        // Eliminate the null check.
832        mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
833      } else {
834        // Do the null check.
835        mir->optimization_flags &= ~MIR_IGNORE_NULL_CHECK;
836        // Mark s_reg as null-checked
837        ssa_regs_to_check->ClearBit(src_sreg);
838      }
839    }
840
841    if ((df_attributes & DF_A_WIDE) ||
842        (df_attributes & (DF_REF_A | DF_SETS_CONST | DF_NULL_TRANSFER)) == 0) {
843      continue;
844    }
845
846    /*
847     * First, mark all object definitions as requiring null check.
848     * Note: we can't tell if a CONST definition might be used as an object, so treat
849     * them all as object definitions.
850     */
851    if (((df_attributes & (DF_DA | DF_REF_A)) == (DF_DA | DF_REF_A)) ||
852        (df_attributes & DF_SETS_CONST))  {
853      ssa_regs_to_check->SetBit(mir->ssa_rep->defs[0]);
854    }
855
856    // Now, remove mark from all object definitions we know are non-null.
857    if (df_attributes & DF_NON_NULL_DST) {
858      // Mark target of NEW* as non-null
859      ssa_regs_to_check->ClearBit(mir->ssa_rep->defs[0]);
860    }
861
862    // Mark non-null returns from invoke-style NEW*
863    if (df_attributes & DF_NON_NULL_RET) {
864      MIR* next_mir = mir->next;
865      // Next should be an MOVE_RESULT_OBJECT
866      if (next_mir &&
867          next_mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
868        // Mark as null checked
869        ssa_regs_to_check->ClearBit(next_mir->ssa_rep->defs[0]);
870      } else {
871        if (next_mir) {
872          LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode;
873        } else if (bb->fall_through != NullBasicBlockId) {
874          // Look in next basic block
875          struct BasicBlock* next_bb = GetBasicBlock(bb->fall_through);
876          for (MIR* tmir = next_bb->first_mir_insn; tmir != NULL;
877            tmir =tmir->next) {
878            if (MIR::DecodedInstruction::IsPseudoMirOp(tmir->dalvikInsn.opcode)) {
879              continue;
880            }
881            // First non-pseudo should be MOVE_RESULT_OBJECT
882            if (tmir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
883              // Mark as null checked
884              ssa_regs_to_check->ClearBit(tmir->ssa_rep->defs[0]);
885            } else {
886              LOG(WARNING) << "Unexpected op after new: " << tmir->dalvikInsn.opcode;
887            }
888            break;
889          }
890        }
891      }
892    }
893
894    /*
895     * Propagate nullcheck state on register copies (including
896     * Phi pseudo copies.  For the latter, nullcheck state is
897     * the "or" of all the Phi's operands.
898     */
899    if (df_attributes & (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)) {
900      int tgt_sreg = mir->ssa_rep->defs[0];
901      int operands = (df_attributes & DF_NULL_TRANSFER_0) ? 1 :
902          mir->ssa_rep->num_uses;
903      bool needs_null_check = false;
904      for (int i = 0; i < operands; i++) {
905        needs_null_check |= ssa_regs_to_check->IsBitSet(mir->ssa_rep->uses[i]);
906      }
907      if (needs_null_check) {
908        ssa_regs_to_check->SetBit(tgt_sreg);
909      } else {
910        ssa_regs_to_check->ClearBit(tgt_sreg);
911      }
912    }
913  }
914
915  // Did anything change?
916  bool nce_changed = false;
917  if (do_nce) {
918    if (bb->data_flow_info->ending_check_v == nullptr) {
919      DCHECK(temp_scoped_alloc_.get() != nullptr);
920      bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
921          temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapNullCheck);
922      nce_changed = ssa_regs_to_check->GetHighestBitSet() != -1;
923      bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
924    } else if (!ssa_regs_to_check->SameBitsSet(bb->data_flow_info->ending_check_v)) {
925      nce_changed = true;
926      bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
927    }
928  }
929  return infer_changed | nce_changed;
930}
931
932void MIRGraph::EliminateNullChecksAndInferTypesEnd() {
933  if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
934    // Clean up temporaries.
935    temp_bit_vector_size_ = 0u;
936    temp_bit_vector_ = nullptr;
937    AllNodesIterator iter(this);
938    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
939      if (bb->data_flow_info != nullptr) {
940        bb->data_flow_info->ending_check_v = nullptr;
941      }
942    }
943    DCHECK(temp_scoped_alloc_.get() != nullptr);
944    temp_scoped_alloc_.reset();
945  }
946}
947
948bool MIRGraph::EliminateClassInitChecksGate() {
949  if ((cu_->disable_opt & (1 << kClassInitCheckElimination)) != 0 ||
950      !cu_->mir_graph->HasStaticFieldAccess()) {
951    return false;
952  }
953
954  if (kIsDebugBuild) {
955    AllNodesIterator iter(this);
956    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
957      CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
958    }
959  }
960
961  DCHECK(temp_scoped_alloc_.get() == nullptr);
962  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
963
964  // Each insn we use here has at least 2 code units, offset/2 will be a unique index.
965  const size_t end = (cu_->code_item->insns_size_in_code_units_ + 1u) / 2u;
966  temp_insn_data_ = static_cast<uint16_t*>(
967      temp_scoped_alloc_->Alloc(end * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
968
969  uint32_t unique_class_count = 0u;
970  {
971    // Get unique_class_count and store indexes in temp_insn_data_ using a map on a nested
972    // ScopedArenaAllocator.
973
974    // Embed the map value in the entry to save space.
975    struct MapEntry {
976      // Map key: the class identified by the declaring dex file and type index.
977      const DexFile* declaring_dex_file;
978      uint16_t declaring_class_idx;
979      // Map value: index into bit vectors of classes requiring initialization checks.
980      uint16_t index;
981    };
982    struct MapEntryComparator {
983      bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
984        if (lhs.declaring_class_idx != rhs.declaring_class_idx) {
985          return lhs.declaring_class_idx < rhs.declaring_class_idx;
986        }
987        return lhs.declaring_dex_file < rhs.declaring_dex_file;
988      }
989    };
990
991    ScopedArenaAllocator allocator(&cu_->arena_stack);
992    ScopedArenaSet<MapEntry, MapEntryComparator> class_to_index_map(MapEntryComparator(),
993                                                                    allocator.Adapter());
994
995    // First, find all SGET/SPUTs that may need class initialization checks, record INVOKE_STATICs.
996    AllNodesIterator iter(this);
997    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
998      for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
999        DCHECK(bb->data_flow_info != nullptr);
1000        if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1001            mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1002          const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir);
1003          uint16_t index = 0xffffu;
1004          if (!field_info.IsInitialized()) {
1005            DCHECK_LT(class_to_index_map.size(), 0xffffu);
1006            MapEntry entry = {
1007                // Treat unresolved fields as if each had its own class.
1008                field_info.IsResolved() ? field_info.DeclaringDexFile()
1009                                        : nullptr,
1010                field_info.IsResolved() ? field_info.DeclaringClassIndex()
1011                                        : field_info.FieldIndex(),
1012                static_cast<uint16_t>(class_to_index_map.size())
1013            };
1014            index = class_to_index_map.insert(entry).first->index;
1015          }
1016          // Using offset/2 for index into temp_insn_data_.
1017          temp_insn_data_[mir->offset / 2u] = index;
1018        }
1019      }
1020    }
1021    unique_class_count = static_cast<uint32_t>(class_to_index_map.size());
1022  }
1023
1024  if (unique_class_count == 0u) {
1025    // All SGET/SPUTs refer to initialized classes. Nothing to do.
1026    temp_insn_data_ = nullptr;
1027    temp_scoped_alloc_.reset();
1028    return false;
1029  }
1030
1031  temp_bit_vector_size_ = unique_class_count;
1032  temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1033      temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1034  DCHECK_GT(temp_bit_vector_size_, 0u);
1035  return true;
1036}
1037
1038/*
1039 * Eliminate unnecessary class initialization checks for a basic block.
1040 */
1041bool MIRGraph::EliminateClassInitChecks(BasicBlock* bb) {
1042  DCHECK_EQ((cu_->disable_opt & (1 << kClassInitCheckElimination)), 0u);
1043  if (bb->data_flow_info == NULL) {
1044    return false;
1045  }
1046
1047  /*
1048   * Set initial state.  Catch blocks don't need any special treatment.
1049   */
1050  ArenaBitVector* classes_to_check = temp_bit_vector_;
1051  DCHECK(classes_to_check != nullptr);
1052  if (bb->block_type == kEntryBlock) {
1053    classes_to_check->SetInitialBits(temp_bit_vector_size_);
1054  } else if (bb->predecessors->Size() == 1) {
1055    BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
1056    // pred_bb must have already been processed at least once.
1057    DCHECK(pred_bb != nullptr);
1058    DCHECK(pred_bb->data_flow_info != nullptr);
1059    DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
1060    classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1061  } else {
1062    // Starting state is union of all incoming arcs
1063    GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
1064    BasicBlock* pred_bb = GetBasicBlock(iter.Next());
1065    DCHECK(pred_bb != NULL);
1066    DCHECK(pred_bb->data_flow_info != NULL);
1067    while (pred_bb->data_flow_info->ending_check_v == nullptr) {
1068      pred_bb = GetBasicBlock(iter.Next());
1069      // At least one predecessor must have been processed before this bb.
1070      DCHECK(pred_bb != nullptr);
1071      DCHECK(pred_bb->data_flow_info != nullptr);
1072    }
1073    classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1074    while (true) {
1075      pred_bb = GetBasicBlock(iter.Next());
1076      if (!pred_bb) break;
1077      DCHECK(pred_bb->data_flow_info != nullptr);
1078      if (pred_bb->data_flow_info->ending_check_v == nullptr) {
1079        continue;
1080      }
1081      classes_to_check->Union(pred_bb->data_flow_info->ending_check_v);
1082    }
1083  }
1084  // At this point, classes_to_check shows which classes need clinit checks.
1085
1086  // Walk through the instruction in the block, updating as necessary
1087  for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1088    if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1089        mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1090      uint16_t index = temp_insn_data_[mir->offset / 2u];
1091      if (index != 0xffffu) {
1092        if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1093            mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1094          if (!classes_to_check->IsBitSet(index)) {
1095            // Eliminate the class init check.
1096            mir->optimization_flags |= MIR_IGNORE_CLINIT_CHECK;
1097          } else {
1098            // Do the class init check.
1099            mir->optimization_flags &= ~MIR_IGNORE_CLINIT_CHECK;
1100          }
1101        }
1102        // Mark the class as initialized.
1103        classes_to_check->ClearBit(index);
1104      }
1105    }
1106  }
1107
1108  // Did anything change?
1109  bool changed = false;
1110  if (bb->data_flow_info->ending_check_v == nullptr) {
1111    DCHECK(temp_scoped_alloc_.get() != nullptr);
1112    DCHECK(bb->data_flow_info != nullptr);
1113    bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
1114        temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1115    changed = classes_to_check->GetHighestBitSet() != -1;
1116    bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1117  } else if (!classes_to_check->Equal(bb->data_flow_info->ending_check_v)) {
1118    changed = true;
1119    bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1120  }
1121  return changed;
1122}
1123
1124void MIRGraph::EliminateClassInitChecksEnd() {
1125  // Clean up temporaries.
1126  temp_bit_vector_size_ = 0u;
1127  temp_bit_vector_ = nullptr;
1128  AllNodesIterator iter(this);
1129  for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1130    if (bb->data_flow_info != nullptr) {
1131      bb->data_flow_info->ending_check_v = nullptr;
1132    }
1133  }
1134
1135  DCHECK(temp_insn_data_ != nullptr);
1136  temp_insn_data_ = nullptr;
1137  DCHECK(temp_scoped_alloc_.get() != nullptr);
1138  temp_scoped_alloc_.reset();
1139}
1140
1141bool MIRGraph::ApplyGlobalValueNumberingGate() {
1142  if ((cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u) {
1143    return false;
1144  }
1145
1146  DCHECK(temp_scoped_alloc_ == nullptr);
1147  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1148  DCHECK(temp_gvn_ == nullptr);
1149  temp_gvn_.reset(
1150      new (temp_scoped_alloc_.get()) GlobalValueNumbering(cu_, temp_scoped_alloc_.get()));
1151  return true;
1152}
1153
1154bool MIRGraph::ApplyGlobalValueNumbering(BasicBlock* bb) {
1155  DCHECK(temp_gvn_ != nullptr);
1156  LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb);
1157  if (lvn != nullptr) {
1158    for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1159      lvn->GetValueNumber(mir);
1160    }
1161  }
1162  bool change = (lvn != nullptr) && temp_gvn_->FinishBasicBlock(bb);
1163  return change;
1164}
1165
1166void MIRGraph::ApplyGlobalValueNumberingEnd() {
1167  // Perform modifications.
1168  if (temp_gvn_->Good()) {
1169    temp_gvn_->AllowModifications();
1170    PreOrderDfsIterator iter(this);
1171    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1172      LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb);
1173      if (lvn != nullptr) {
1174        for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1175          lvn->GetValueNumber(mir);
1176        }
1177        bool change = temp_gvn_->FinishBasicBlock(bb);
1178        DCHECK(!change) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1179      }
1180    }
1181  } else {
1182    LOG(WARNING) << "GVN failed for " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1183  }
1184
1185  DCHECK(temp_gvn_ != nullptr);
1186  temp_gvn_.reset();
1187  DCHECK(temp_scoped_alloc_ != nullptr);
1188  temp_scoped_alloc_.reset();
1189}
1190
1191void MIRGraph::ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput) {
1192  uint32_t method_index = invoke->meta.method_lowering_info;
1193  if (temp_bit_vector_->IsBitSet(method_index)) {
1194    iget_or_iput->meta.ifield_lowering_info = temp_insn_data_[method_index];
1195    DCHECK_EQ(field_idx, GetIFieldLoweringInfo(iget_or_iput).FieldIndex());
1196    return;
1197  }
1198
1199  const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(invoke);
1200  MethodReference target = method_info.GetTargetMethod();
1201  DexCompilationUnit inlined_unit(
1202      cu_, cu_->class_loader, cu_->class_linker, *target.dex_file,
1203      nullptr /* code_item not used */, 0u /* class_def_idx not used */, target.dex_method_index,
1204      0u /* access_flags not used */, nullptr /* verified_method not used */);
1205  MirIFieldLoweringInfo inlined_field_info(field_idx);
1206  MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, &inlined_unit, &inlined_field_info, 1u);
1207  DCHECK(inlined_field_info.IsResolved());
1208
1209  uint32_t field_info_index = ifield_lowering_infos_.Size();
1210  ifield_lowering_infos_.Insert(inlined_field_info);
1211  temp_bit_vector_->SetBit(method_index);
1212  temp_insn_data_[method_index] = field_info_index;
1213  iget_or_iput->meta.ifield_lowering_info = field_info_index;
1214}
1215
1216bool MIRGraph::InlineSpecialMethodsGate() {
1217  if ((cu_->disable_opt & (1 << kSuppressMethodInlining)) != 0 ||
1218      method_lowering_infos_.Size() == 0u) {
1219    return false;
1220  }
1221  if (cu_->compiler_driver->GetMethodInlinerMap() == nullptr) {
1222    // This isn't the Quick compiler.
1223    return false;
1224  }
1225  return true;
1226}
1227
1228void MIRGraph::InlineSpecialMethodsStart() {
1229  // Prepare for inlining getters/setters. Since we're inlining at most 1 IGET/IPUT from
1230  // each INVOKE, we can index the data by the MIR::meta::method_lowering_info index.
1231
1232  DCHECK(temp_scoped_alloc_.get() == nullptr);
1233  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1234  temp_bit_vector_size_ = method_lowering_infos_.Size();
1235  temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1236      temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapMisc);
1237  temp_bit_vector_->ClearAllBits();
1238  temp_insn_data_ = static_cast<uint16_t*>(temp_scoped_alloc_->Alloc(
1239      temp_bit_vector_size_ * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
1240}
1241
1242void MIRGraph::InlineSpecialMethods(BasicBlock* bb) {
1243  if (bb->block_type != kDalvikByteCode) {
1244    return;
1245  }
1246  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
1247    if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
1248      continue;
1249    }
1250    if (!(Instruction::FlagsOf(mir->dalvikInsn.opcode) & Instruction::kInvoke)) {
1251      continue;
1252    }
1253    const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir);
1254    if (!method_info.FastPath()) {
1255      continue;
1256    }
1257    InvokeType sharp_type = method_info.GetSharpType();
1258    if ((sharp_type != kDirect) &&
1259        (sharp_type != kStatic || method_info.NeedsClassInitialization())) {
1260      continue;
1261    }
1262    DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1263    MethodReference target = method_info.GetTargetMethod();
1264    if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(target.dex_file)
1265            ->GenInline(this, bb, mir, target.dex_method_index)) {
1266      if (cu_->verbose || cu_->print_pass) {
1267        LOG(INFO) << "SpecialMethodInliner: Inlined " << method_info.GetInvokeType() << " ("
1268            << sharp_type << ") call to \"" << PrettyMethod(target.dex_method_index, *target.dex_file)
1269            << "\" from \"" << PrettyMethod(cu_->method_idx, *cu_->dex_file)
1270            << "\" @0x" << std::hex << mir->offset;
1271      }
1272    }
1273  }
1274}
1275
1276void MIRGraph::InlineSpecialMethodsEnd() {
1277  DCHECK(temp_insn_data_ != nullptr);
1278  temp_insn_data_ = nullptr;
1279  DCHECK(temp_bit_vector_ != nullptr);
1280  temp_bit_vector_ = nullptr;
1281  DCHECK(temp_scoped_alloc_.get() != nullptr);
1282  temp_scoped_alloc_.reset();
1283}
1284
1285void MIRGraph::DumpCheckStats() {
1286  Checkstats* stats =
1287      static_cast<Checkstats*>(arena_->Alloc(sizeof(Checkstats), kArenaAllocDFInfo));
1288  checkstats_ = stats;
1289  AllNodesIterator iter(this);
1290  for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1291    CountChecks(bb);
1292  }
1293  if (stats->null_checks > 0) {
1294    float eliminated = static_cast<float>(stats->null_checks_eliminated);
1295    float checks = static_cast<float>(stats->null_checks);
1296    LOG(INFO) << "Null Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1297              << stats->null_checks_eliminated << " of " << stats->null_checks << " -> "
1298              << (eliminated/checks) * 100.0 << "%";
1299    }
1300  if (stats->range_checks > 0) {
1301    float eliminated = static_cast<float>(stats->range_checks_eliminated);
1302    float checks = static_cast<float>(stats->range_checks);
1303    LOG(INFO) << "Range Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1304              << stats->range_checks_eliminated << " of " << stats->range_checks << " -> "
1305              << (eliminated/checks) * 100.0 << "%";
1306  }
1307}
1308
1309bool MIRGraph::BuildExtendedBBList(struct BasicBlock* bb) {
1310  if (bb->visited) return false;
1311  if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
1312      || (bb->block_type == kExitBlock))) {
1313    // Ignore special blocks
1314    bb->visited = true;
1315    return false;
1316  }
1317  // Must be head of extended basic block.
1318  BasicBlock* start_bb = bb;
1319  extended_basic_blocks_.push_back(bb->id);
1320  bool terminated_by_return = false;
1321  bool do_local_value_numbering = false;
1322  // Visit blocks strictly dominated by this head.
1323  while (bb != NULL) {
1324    bb->visited = true;
1325    terminated_by_return |= bb->terminated_by_return;
1326    do_local_value_numbering |= bb->use_lvn;
1327    bb = NextDominatedBlock(bb);
1328  }
1329  if (terminated_by_return || do_local_value_numbering) {
1330    // Do lvn for all blocks in this extended set.
1331    bb = start_bb;
1332    while (bb != NULL) {
1333      bb->use_lvn = do_local_value_numbering;
1334      bb->dominates_return = terminated_by_return;
1335      bb = NextDominatedBlock(bb);
1336    }
1337  }
1338  return false;  // Not iterative - return value will be ignored
1339}
1340
1341void MIRGraph::BasicBlockOptimization() {
1342  if ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) {
1343    ClearAllVisitedFlags();
1344    PreOrderDfsIterator iter2(this);
1345    for (BasicBlock* bb = iter2.Next(); bb != NULL; bb = iter2.Next()) {
1346      BuildExtendedBBList(bb);
1347    }
1348    // Perform extended basic block optimizations.
1349    for (unsigned int i = 0; i < extended_basic_blocks_.size(); i++) {
1350      BasicBlockOpt(GetBasicBlock(extended_basic_blocks_[i]));
1351    }
1352  } else {
1353    PreOrderDfsIterator iter(this);
1354    for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1355      BasicBlockOpt(bb);
1356    }
1357  }
1358}
1359
1360}  // namespace art
1361