int_arm.cc revision bebee4fd10e5db6cb07f59bc0f73297c900ea5f0
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Thumb2 ISA. */
18
19#include "arm_lir.h"
20#include "codegen_arm.h"
21#include "dex/quick/mir_to_lir-inl.h"
22#include "dex/reg_storage_eq.h"
23#include "entrypoints/quick/quick_entrypoints.h"
24#include "mirror/array.h"
25
26namespace art {
27
28LIR* ArmMir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
29  OpRegReg(kOpCmp, src1, src2);
30  return OpCondBranch(cond, target);
31}
32
33/*
34 * Generate a Thumb2 IT instruction, which can nullify up to
35 * four subsequent instructions based on a condition and its
36 * inverse.  The condition applies to the first instruction, which
37 * is executed if the condition is met.  The string "guide" consists
38 * of 0 to 3 chars, and applies to the 2nd through 4th instruction.
39 * A "T" means the instruction is executed if the condition is
40 * met, and an "E" means the instruction is executed if the condition
41 * is not met.
42 */
43LIR* ArmMir2Lir::OpIT(ConditionCode ccode, const char* guide) {
44  int mask;
45  int mask3 = 0;
46  int mask2 = 0;
47  int mask1 = 0;
48  ArmConditionCode code = ArmConditionEncoding(ccode);
49  int cond_bit = code & 1;
50  int alt_bit = cond_bit ^ 1;
51
52  // Note: case fallthroughs intentional
53  switch (strlen(guide)) {
54    case 3:
55      mask1 = (guide[2] == 'T') ? cond_bit : alt_bit;
56    case 2:
57      mask2 = (guide[1] == 'T') ? cond_bit : alt_bit;
58    case 1:
59      mask3 = (guide[0] == 'T') ? cond_bit : alt_bit;
60      break;
61    case 0:
62      break;
63    default:
64      LOG(FATAL) << "OAT: bad case in OpIT";
65  }
66  mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
67       (1 << (3 - strlen(guide)));
68  return NewLIR2(kThumb2It, code, mask);
69}
70
71void ArmMir2Lir::UpdateIT(LIR* it, const char* new_guide) {
72  int mask;
73  int mask3 = 0;
74  int mask2 = 0;
75  int mask1 = 0;
76  ArmConditionCode code = static_cast<ArmConditionCode>(it->operands[0]);
77  int cond_bit = code & 1;
78  int alt_bit = cond_bit ^ 1;
79
80  // Note: case fallthroughs intentional
81  switch (strlen(new_guide)) {
82    case 3:
83      mask1 = (new_guide[2] == 'T') ? cond_bit : alt_bit;
84    case 2:
85      mask2 = (new_guide[1] == 'T') ? cond_bit : alt_bit;
86    case 1:
87      mask3 = (new_guide[0] == 'T') ? cond_bit : alt_bit;
88      break;
89    case 0:
90      break;
91    default:
92      LOG(FATAL) << "OAT: bad case in UpdateIT";
93  }
94  mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
95      (1 << (3 - strlen(new_guide)));
96  it->operands[1] = mask;
97}
98
99void ArmMir2Lir::OpEndIT(LIR* it) {
100  // TODO: use the 'it' pointer to do some checks with the LIR, for example
101  //       we could check that the number of instructions matches the mask
102  //       in the IT instruction.
103  CHECK(it != nullptr);
104  GenBarrier();
105}
106
107/*
108 * 64-bit 3way compare function.
109 *     mov   rX, #-1
110 *     cmp   op1hi, op2hi
111 *     blt   done
112 *     bgt   flip
113 *     sub   rX, op1lo, op2lo (treat as unsigned)
114 *     beq   done
115 *     ite   hi
116 *     mov(hi)   rX, #-1
117 *     mov(!hi)  rX, #1
118 * flip:
119 *     neg   rX
120 * done:
121 */
122void ArmMir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
123  LIR* target1;
124  LIR* target2;
125  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
126  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
127  RegStorage t_reg = AllocTemp();
128  LoadConstant(t_reg, -1);
129  OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
130  LIR* branch1 = OpCondBranch(kCondLt, NULL);
131  LIR* branch2 = OpCondBranch(kCondGt, NULL);
132  OpRegRegReg(kOpSub, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
133  LIR* branch3 = OpCondBranch(kCondEq, NULL);
134
135  LIR* it = OpIT(kCondHi, "E");
136  NewLIR2(kThumb2MovI8M, t_reg.GetReg(), ModifiedImmediate(-1));
137  LoadConstant(t_reg, 1);
138  OpEndIT(it);
139
140  target2 = NewLIR0(kPseudoTargetLabel);
141  OpRegReg(kOpNeg, t_reg, t_reg);
142
143  target1 = NewLIR0(kPseudoTargetLabel);
144
145  RegLocation rl_temp = LocCReturn();  // Just using as template, will change
146  rl_temp.reg.SetReg(t_reg.GetReg());
147  StoreValue(rl_dest, rl_temp);
148  FreeTemp(t_reg);
149
150  branch1->target = target1;
151  branch2->target = target2;
152  branch3->target = branch1->target;
153}
154
155void ArmMir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
156                                          int64_t val, ConditionCode ccode) {
157  int32_t val_lo = Low32Bits(val);
158  int32_t val_hi = High32Bits(val);
159  DCHECK_GE(ModifiedImmediate(val_lo), 0);
160  DCHECK_GE(ModifiedImmediate(val_hi), 0);
161  LIR* taken = &block_label_list_[bb->taken];
162  LIR* not_taken = &block_label_list_[bb->fall_through];
163  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
164  RegStorage low_reg = rl_src1.reg.GetLow();
165  RegStorage high_reg = rl_src1.reg.GetHigh();
166
167  if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
168    RegStorage t_reg = AllocTemp();
169    NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), low_reg.GetReg(), high_reg.GetReg(), 0);
170    FreeTemp(t_reg);
171    OpCondBranch(ccode, taken);
172    return;
173  }
174
175  switch (ccode) {
176    case kCondEq:
177    case kCondNe:
178      OpCmpImmBranch(kCondNe, high_reg, val_hi, (ccode == kCondEq) ? not_taken : taken);
179      break;
180    case kCondLt:
181      OpCmpImmBranch(kCondLt, high_reg, val_hi, taken);
182      OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken);
183      ccode = kCondUlt;
184      break;
185    case kCondLe:
186      OpCmpImmBranch(kCondLt, high_reg, val_hi, taken);
187      OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken);
188      ccode = kCondLs;
189      break;
190    case kCondGt:
191      OpCmpImmBranch(kCondGt, high_reg, val_hi, taken);
192      OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken);
193      ccode = kCondHi;
194      break;
195    case kCondGe:
196      OpCmpImmBranch(kCondGt, high_reg, val_hi, taken);
197      OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken);
198      ccode = kCondUge;
199      break;
200    default:
201      LOG(FATAL) << "Unexpected ccode: " << ccode;
202  }
203  OpCmpImmBranch(ccode, low_reg, val_lo, taken);
204}
205
206void ArmMir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
207                                  int32_t true_val, int32_t false_val, RegStorage rs_dest,
208                                  int dest_reg_class) {
209  // TODO: Generalize the IT below to accept more than one-instruction loads.
210  DCHECK(InexpensiveConstantInt(true_val));
211  DCHECK(InexpensiveConstantInt(false_val));
212
213  if ((true_val == 0 && code == kCondEq) ||
214      (false_val == 0 && code == kCondNe)) {
215    OpRegRegReg(kOpSub, rs_dest, left_op, right_op);
216    DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
217    LIR* it = OpIT(kCondNe, "");
218    LoadConstant(rs_dest, code == kCondEq ? false_val : true_val);
219    OpEndIT(it);
220    return;
221  }
222
223  OpRegReg(kOpCmp, left_op, right_op);  // Same?
224  LIR* it = OpIT(code, "E");   // if-convert the test
225  LoadConstant(rs_dest, true_val);      // .eq case - load true
226  LoadConstant(rs_dest, false_val);     // .eq case - load true
227  OpEndIT(it);
228}
229
230void ArmMir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
231  RegLocation rl_result;
232  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
233  RegLocation rl_dest = mir_graph_->GetDest(mir);
234  // Avoid using float regs here.
235  RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg;
236  RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
237  rl_src = LoadValue(rl_src, src_reg_class);
238  ConditionCode ccode = mir->meta.ccode;
239  if (mir->ssa_rep->num_uses == 1) {
240    // CONST case
241    int true_val = mir->dalvikInsn.vB;
242    int false_val = mir->dalvikInsn.vC;
243    rl_result = EvalLoc(rl_dest, result_reg_class, true);
244    // Change kCondNe to kCondEq for the special cases below.
245    if (ccode == kCondNe) {
246      ccode = kCondEq;
247      std::swap(true_val, false_val);
248    }
249    bool cheap_false_val = InexpensiveConstantInt(false_val);
250    if (cheap_false_val && ccode == kCondEq && (true_val == 0 || true_val == -1)) {
251      OpRegRegImm(kOpSub, rl_result.reg, rl_src.reg, -true_val);
252      DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
253      LIR* it = OpIT(true_val == 0 ? kCondNe : kCondUge, "");
254      LoadConstant(rl_result.reg, false_val);
255      OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
256    } else if (cheap_false_val && ccode == kCondEq && true_val == 1) {
257      OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, 1);
258      DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
259      LIR* it = OpIT(kCondLs, "");
260      LoadConstant(rl_result.reg, false_val);
261      OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
262    } else if (cheap_false_val && InexpensiveConstantInt(true_val)) {
263      OpRegImm(kOpCmp, rl_src.reg, 0);
264      LIR* it = OpIT(ccode, "E");
265      LoadConstant(rl_result.reg, true_val);
266      LoadConstant(rl_result.reg, false_val);
267      OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
268    } else {
269      // Unlikely case - could be tuned.
270      RegStorage t_reg1 = AllocTypedTemp(false, result_reg_class);
271      RegStorage t_reg2 = AllocTypedTemp(false, result_reg_class);
272      LoadConstant(t_reg1, true_val);
273      LoadConstant(t_reg2, false_val);
274      OpRegImm(kOpCmp, rl_src.reg, 0);
275      LIR* it = OpIT(ccode, "E");
276      OpRegCopy(rl_result.reg, t_reg1);
277      OpRegCopy(rl_result.reg, t_reg2);
278      OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
279    }
280  } else {
281    // MOVE case
282    RegLocation rl_true = mir_graph_->reg_location_[mir->ssa_rep->uses[1]];
283    RegLocation rl_false = mir_graph_->reg_location_[mir->ssa_rep->uses[2]];
284    rl_true = LoadValue(rl_true, result_reg_class);
285    rl_false = LoadValue(rl_false, result_reg_class);
286    rl_result = EvalLoc(rl_dest, result_reg_class, true);
287    OpRegImm(kOpCmp, rl_src.reg, 0);
288    LIR* it = nullptr;
289    if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {  // Is the "true" case already in place?
290      it = OpIT(NegateComparison(ccode), "");
291      OpRegCopy(rl_result.reg, rl_false.reg);
292    } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {  // False case in place?
293      it = OpIT(ccode, "");
294      OpRegCopy(rl_result.reg, rl_true.reg);
295    } else {  // Normal - select between the two.
296      it = OpIT(ccode, "E");
297      OpRegCopy(rl_result.reg, rl_true.reg);
298      OpRegCopy(rl_result.reg, rl_false.reg);
299    }
300    OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
301  }
302  StoreValue(rl_dest, rl_result);
303}
304
305void ArmMir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
306  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
307  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
308  // Normalize such that if either operand is constant, src2 will be constant.
309  ConditionCode ccode = mir->meta.ccode;
310  if (rl_src1.is_const) {
311    std::swap(rl_src1, rl_src2);
312    ccode = FlipComparisonOrder(ccode);
313  }
314  if (rl_src2.is_const) {
315    rl_src2 = UpdateLocWide(rl_src2);
316    // Do special compare/branch against simple const operand if not already in registers.
317    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
318    if ((rl_src2.location != kLocPhysReg) &&
319        ((ModifiedImmediate(Low32Bits(val)) >= 0) && (ModifiedImmediate(High32Bits(val)) >= 0))) {
320      GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
321      return;
322    }
323  }
324  LIR* taken = &block_label_list_[bb->taken];
325  LIR* not_taken = &block_label_list_[bb->fall_through];
326  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
327  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
328  OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
329  switch (ccode) {
330    case kCondEq:
331      OpCondBranch(kCondNe, not_taken);
332      break;
333    case kCondNe:
334      OpCondBranch(kCondNe, taken);
335      break;
336    case kCondLt:
337      OpCondBranch(kCondLt, taken);
338      OpCondBranch(kCondGt, not_taken);
339      ccode = kCondUlt;
340      break;
341    case kCondLe:
342      OpCondBranch(kCondLt, taken);
343      OpCondBranch(kCondGt, not_taken);
344      ccode = kCondLs;
345      break;
346    case kCondGt:
347      OpCondBranch(kCondGt, taken);
348      OpCondBranch(kCondLt, not_taken);
349      ccode = kCondHi;
350      break;
351    case kCondGe:
352      OpCondBranch(kCondGt, taken);
353      OpCondBranch(kCondLt, not_taken);
354      ccode = kCondUge;
355      break;
356    default:
357      LOG(FATAL) << "Unexpected ccode: " << ccode;
358  }
359  OpRegReg(kOpCmp, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
360  OpCondBranch(ccode, taken);
361}
362
363/*
364 * Generate a register comparison to an immediate and branch.  Caller
365 * is responsible for setting branch target field.
366 */
367LIR* ArmMir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) {
368  LIR* branch;
369  ArmConditionCode arm_cond = ArmConditionEncoding(cond);
370  /*
371   * A common use of OpCmpImmBranch is for null checks, and using the Thumb 16-bit
372   * compare-and-branch if zero is ideal if it will reach.  However, because null checks
373   * branch forward to a slow path, they will frequently not reach - and thus have to
374   * be converted to a long form during assembly (which will trigger another assembly
375   * pass).  Here we estimate the branch distance for checks, and if large directly
376   * generate the long form in an attempt to avoid an extra assembly pass.
377   * TODO: consider interspersing slowpaths in code following unconditional branches.
378   */
379  bool skip = ((target != NULL) && (target->opcode == kPseudoThrowTarget));
380  skip &= ((cu_->code_item->insns_size_in_code_units_ - current_dalvik_offset_) > 64);
381  if (!skip && reg.Low8() && (check_value == 0) &&
382     ((arm_cond == kArmCondEq) || (arm_cond == kArmCondNe))) {
383    branch = NewLIR2((arm_cond == kArmCondEq) ? kThumb2Cbz : kThumb2Cbnz,
384                     reg.GetReg(), 0);
385  } else {
386    OpRegImm(kOpCmp, reg, check_value);
387    branch = NewLIR2(kThumbBCond, 0, arm_cond);
388  }
389  branch->target = target;
390  return branch;
391}
392
393LIR* ArmMir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
394  LIR* res;
395  int opcode;
396  // If src or dest is a pair, we'll be using low reg.
397  if (r_dest.IsPair()) {
398    r_dest = r_dest.GetLow();
399  }
400  if (r_src.IsPair()) {
401    r_src = r_src.GetLow();
402  }
403  if (r_dest.IsFloat() || r_src.IsFloat())
404    return OpFpRegCopy(r_dest, r_src);
405  if (r_dest.Low8() && r_src.Low8())
406    opcode = kThumbMovRR;
407  else if (!r_dest.Low8() && !r_src.Low8())
408     opcode = kThumbMovRR_H2H;
409  else if (r_dest.Low8())
410     opcode = kThumbMovRR_H2L;
411  else
412     opcode = kThumbMovRR_L2H;
413  res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
414  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
415    res->flags.is_nop = true;
416  }
417  return res;
418}
419
420void ArmMir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
421  if (r_dest != r_src) {
422    LIR* res = OpRegCopyNoInsert(r_dest, r_src);
423    AppendLIR(res);
424  }
425}
426
427void ArmMir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
428  if (r_dest != r_src) {
429    bool dest_fp = r_dest.IsFloat();
430    bool src_fp = r_src.IsFloat();
431    DCHECK(r_dest.Is64Bit());
432    DCHECK(r_src.Is64Bit());
433    if (dest_fp) {
434      if (src_fp) {
435        OpRegCopy(r_dest, r_src);
436      } else {
437        NewLIR3(kThumb2Fmdrr, r_dest.GetReg(), r_src.GetLowReg(), r_src.GetHighReg());
438      }
439    } else {
440      if (src_fp) {
441        NewLIR3(kThumb2Fmrrd, r_dest.GetLowReg(), r_dest.GetHighReg(), r_src.GetReg());
442      } else {
443        // Handle overlap
444        if (r_src.GetHighReg() == r_dest.GetLowReg()) {
445          DCHECK_NE(r_src.GetLowReg(), r_dest.GetHighReg());
446          OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
447          OpRegCopy(r_dest.GetLow(), r_src.GetLow());
448        } else {
449          OpRegCopy(r_dest.GetLow(), r_src.GetLow());
450          OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
451        }
452      }
453    }
454  }
455}
456
457// Table of magic divisors
458struct MagicTable {
459  uint32_t magic;
460  uint32_t shift;
461  DividePattern pattern;
462};
463
464static const MagicTable magic_table[] = {
465  {0, 0, DivideNone},        // 0
466  {0, 0, DivideNone},        // 1
467  {0, 0, DivideNone},        // 2
468  {0x55555556, 0, Divide3},  // 3
469  {0, 0, DivideNone},        // 4
470  {0x66666667, 1, Divide5},  // 5
471  {0x2AAAAAAB, 0, Divide3},  // 6
472  {0x92492493, 2, Divide7},  // 7
473  {0, 0, DivideNone},        // 8
474  {0x38E38E39, 1, Divide5},  // 9
475  {0x66666667, 2, Divide5},  // 10
476  {0x2E8BA2E9, 1, Divide5},  // 11
477  {0x2AAAAAAB, 1, Divide5},  // 12
478  {0x4EC4EC4F, 2, Divide5},  // 13
479  {0x92492493, 3, Divide7},  // 14
480  {0x88888889, 3, Divide7},  // 15
481};
482
483// Integer division by constant via reciprocal multiply (Hacker's Delight, 10-4)
484bool ArmMir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
485                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
486  if ((lit < 0) || (lit >= static_cast<int>(sizeof(magic_table)/sizeof(magic_table[0])))) {
487    return false;
488  }
489  DividePattern pattern = magic_table[lit].pattern;
490  if (pattern == DivideNone) {
491    return false;
492  }
493
494  RegStorage r_magic = AllocTemp();
495  LoadConstant(r_magic, magic_table[lit].magic);
496  rl_src = LoadValue(rl_src, kCoreReg);
497  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
498  RegStorage r_hi = AllocTemp();
499  RegStorage r_lo = AllocTemp();
500
501  // rl_dest and rl_src might overlap.
502  // Reuse r_hi to save the div result for reminder case.
503  RegStorage r_div_result = is_div ? rl_result.reg : r_hi;
504
505  NewLIR4(kThumb2Smull, r_lo.GetReg(), r_hi.GetReg(), r_magic.GetReg(), rl_src.reg.GetReg());
506  switch (pattern) {
507    case Divide3:
508      OpRegRegRegShift(kOpSub, r_div_result, r_hi, rl_src.reg, EncodeShift(kArmAsr, 31));
509      break;
510    case Divide5:
511      OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31);
512      OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi,
513                       EncodeShift(kArmAsr, magic_table[lit].shift));
514      break;
515    case Divide7:
516      OpRegReg(kOpAdd, r_hi, rl_src.reg);
517      OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31);
518      OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi,
519                       EncodeShift(kArmAsr, magic_table[lit].shift));
520      break;
521    default:
522      LOG(FATAL) << "Unexpected pattern: " << pattern;
523  }
524
525  if (!is_div) {
526    // div_result = src / lit
527    // tmp1 = div_result * lit
528    // dest = src - tmp1
529    RegStorage tmp1 = r_lo;
530    EasyMultiplyOp ops[2];
531
532    bool canEasyMultiply = GetEasyMultiplyTwoOps(lit, ops);
533    DCHECK_NE(canEasyMultiply, false);
534
535    GenEasyMultiplyTwoOps(tmp1, r_div_result, ops);
536    OpRegRegReg(kOpSub, rl_result.reg, rl_src.reg, tmp1);
537  }
538
539  StoreValue(rl_dest, rl_result);
540  return true;
541}
542
543// Try to convert *lit to 1 RegRegRegShift/RegRegShift form.
544bool ArmMir2Lir::GetEasyMultiplyOp(int lit, ArmMir2Lir::EasyMultiplyOp* op) {
545  if (IsPowerOfTwo(lit)) {
546    op->op = kOpLsl;
547    op->shift = LowestSetBit(lit);
548    return true;
549  }
550
551  if (IsPowerOfTwo(lit - 1)) {
552    op->op = kOpAdd;
553    op->shift = LowestSetBit(lit - 1);
554    return true;
555  }
556
557  if (IsPowerOfTwo(lit + 1)) {
558    op->op = kOpRsub;
559    op->shift = LowestSetBit(lit + 1);
560    return true;
561  }
562
563  op->op = kOpInvalid;
564  op->shift = 0;
565  return false;
566}
567
568// Try to convert *lit to 1~2 RegRegRegShift/RegRegShift forms.
569bool ArmMir2Lir::GetEasyMultiplyTwoOps(int lit, EasyMultiplyOp* ops) {
570  GetEasyMultiplyOp(lit, &ops[0]);
571  if (GetEasyMultiplyOp(lit, &ops[0])) {
572    ops[1].op = kOpInvalid;
573    ops[1].shift = 0;
574    return true;
575  }
576
577  int lit1 = lit;
578  uint32_t shift = LowestSetBit(lit1);
579  if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
580    ops[1].op = kOpLsl;
581    ops[1].shift = shift;
582    return true;
583  }
584
585  lit1 = lit - 1;
586  shift = LowestSetBit(lit1);
587  if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
588    ops[1].op = kOpAdd;
589    ops[1].shift = shift;
590    return true;
591  }
592
593  lit1 = lit + 1;
594  shift = LowestSetBit(lit1);
595  if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
596    ops[1].op = kOpRsub;
597    ops[1].shift = shift;
598    return true;
599  }
600
601  return false;
602}
603
604// Generate instructions to do multiply.
605// Additional temporary register is required,
606// if it need to generate 2 instructions and src/dest overlap.
607void ArmMir2Lir::GenEasyMultiplyTwoOps(RegStorage r_dest, RegStorage r_src, EasyMultiplyOp* ops) {
608  // tmp1 = ( src << shift1) + [ src | -src | 0 ]
609  // dest = (tmp1 << shift2) + [ src | -src | 0 ]
610
611  RegStorage r_tmp1;
612  if (ops[1].op == kOpInvalid) {
613    r_tmp1 = r_dest;
614  } else if (r_dest.GetReg() != r_src.GetReg()) {
615    r_tmp1 = r_dest;
616  } else {
617    r_tmp1 = AllocTemp();
618  }
619
620  switch (ops[0].op) {
621    case kOpLsl:
622      OpRegRegImm(kOpLsl, r_tmp1, r_src, ops[0].shift);
623      break;
624    case kOpAdd:
625      OpRegRegRegShift(kOpAdd, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift));
626      break;
627    case kOpRsub:
628      OpRegRegRegShift(kOpRsub, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift));
629      break;
630    default:
631      DCHECK_EQ(ops[0].op, kOpInvalid);
632      break;
633  }
634
635  switch (ops[1].op) {
636    case kOpInvalid:
637      return;
638    case kOpLsl:
639      OpRegRegImm(kOpLsl, r_dest, r_tmp1, ops[1].shift);
640      break;
641    case kOpAdd:
642      OpRegRegRegShift(kOpAdd, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift));
643      break;
644    case kOpRsub:
645      OpRegRegRegShift(kOpRsub, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift));
646      break;
647    default:
648      LOG(FATAL) << "Unexpected opcode passed to GenEasyMultiplyTwoOps";
649      break;
650  }
651}
652
653bool ArmMir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
654  EasyMultiplyOp ops[2];
655
656  if (!GetEasyMultiplyTwoOps(lit, ops)) {
657    return false;
658  }
659
660  rl_src = LoadValue(rl_src, kCoreReg);
661  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
662
663  GenEasyMultiplyTwoOps(rl_result.reg, rl_src.reg, ops);
664  StoreValue(rl_dest, rl_result);
665  return true;
666}
667
668RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
669                      RegLocation rl_src2, bool is_div, bool check_zero) {
670  LOG(FATAL) << "Unexpected use of GenDivRem for Arm";
671  return rl_dest;
672}
673
674RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit, bool is_div) {
675  LOG(FATAL) << "Unexpected use of GenDivRemLit for Arm";
676  return rl_dest;
677}
678
679RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg1, int lit, bool is_div) {
680  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
681
682  // Put the literal in a temp.
683  RegStorage lit_temp = AllocTemp();
684  LoadConstant(lit_temp, lit);
685  // Use the generic case for div/rem with arg2 in a register.
686  // TODO: The literal temp can be freed earlier during a modulus to reduce reg pressure.
687  rl_result = GenDivRem(rl_result, reg1, lit_temp, is_div);
688  FreeTemp(lit_temp);
689
690  return rl_result;
691}
692
693RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg1, RegStorage reg2,
694                                  bool is_div) {
695  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
696  if (is_div) {
697    // Simple case, use sdiv instruction.
698    OpRegRegReg(kOpDiv, rl_result.reg, reg1, reg2);
699  } else {
700    // Remainder case, use the following code:
701    // temp = reg1 / reg2      - integer division
702    // temp = temp * reg2
703    // dest = reg1 - temp
704
705    RegStorage temp = AllocTemp();
706    OpRegRegReg(kOpDiv, temp, reg1, reg2);
707    OpRegReg(kOpMul, temp, reg2);
708    OpRegRegReg(kOpSub, rl_result.reg, reg1, temp);
709    FreeTemp(temp);
710  }
711
712  return rl_result;
713}
714
715bool ArmMir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) {
716  DCHECK_EQ(cu_->instruction_set, kThumb2);
717  if (is_long) {
718    return false;
719  }
720  RegLocation rl_src1 = info->args[0];
721  RegLocation rl_src2 = info->args[1];
722  rl_src1 = LoadValue(rl_src1, kCoreReg);
723  rl_src2 = LoadValue(rl_src2, kCoreReg);
724  RegLocation rl_dest = InlineTarget(info);
725  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
726  OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
727  LIR* it = OpIT((is_min) ? kCondGt : kCondLt, "E");
728  OpRegReg(kOpMov, rl_result.reg, rl_src2.reg);
729  OpRegReg(kOpMov, rl_result.reg, rl_src1.reg);
730  OpEndIT(it);
731  StoreValue(rl_dest, rl_result);
732  return true;
733}
734
735bool ArmMir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
736  RegLocation rl_src_address = info->args[0];  // long address
737  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
738  RegLocation rl_dest = InlineTarget(info);
739  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
740  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
741  if (size == k64) {
742    // Fake unaligned LDRD by two unaligned LDR instructions on ARMv7 with SCTLR.A set to 0.
743    if (rl_address.reg.GetReg() != rl_result.reg.GetLowReg()) {
744      Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow());
745      Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh());
746    } else {
747      Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh());
748      Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow());
749    }
750    StoreValueWide(rl_dest, rl_result);
751  } else {
752    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
753    // Unaligned load with LDR and LDRSH is allowed on ARMv7 with SCTLR.A set to 0.
754    LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile);
755    StoreValue(rl_dest, rl_result);
756  }
757  return true;
758}
759
760bool ArmMir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
761  RegLocation rl_src_address = info->args[0];  // long address
762  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
763  RegLocation rl_src_value = info->args[2];  // [size] value
764  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
765  if (size == k64) {
766    // Fake unaligned STRD by two unaligned STR instructions on ARMv7 with SCTLR.A set to 0.
767    RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
768    StoreBaseDisp(rl_address.reg, 0, rl_value.reg.GetLow(), k32, kNotVolatile);
769    StoreBaseDisp(rl_address.reg, 4, rl_value.reg.GetHigh(), k32, kNotVolatile);
770  } else {
771    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
772    // Unaligned store with STR and STRSH is allowed on ARMv7 with SCTLR.A set to 0.
773    RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
774    StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile);
775  }
776  return true;
777}
778
779void ArmMir2Lir::OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset) {
780  LOG(FATAL) << "Unexpected use of OpLea for Arm";
781}
782
783void ArmMir2Lir::OpTlsCmp(ThreadOffset<4> offset, int val) {
784  LOG(FATAL) << "Unexpected use of OpTlsCmp for Arm";
785}
786
787void ArmMir2Lir::OpTlsCmp(ThreadOffset<8> offset, int val) {
788  UNIMPLEMENTED(FATAL) << "Should not be called.";
789}
790
791// Generate a CAS with memory_order_seq_cst semantics.
792bool ArmMir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
793  DCHECK_EQ(cu_->instruction_set, kThumb2);
794  // Unused - RegLocation rl_src_unsafe = info->args[0];
795  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
796  RegLocation rl_src_offset = info->args[2];  // long low
797  rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
798  RegLocation rl_src_expected = info->args[4];  // int, long or Object
799  // If is_long, high half is in info->args[5]
800  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
801  // If is_long, high half is in info->args[7]
802  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
803
804  // We have only 5 temporary registers available and actually only 4 if the InlineTarget
805  // above locked one of the temps. For a straightforward CAS64 we need 7 registers:
806  // r_ptr (1), new_value (2), expected(2) and ldrexd result (2). If neither expected nor
807  // new_value is in a non-temp core register we shall reload them in the ldrex/strex loop
808  // into the same temps, reducing the number of required temps down to 5. We shall work
809  // around the potentially locked temp by using LR for r_ptr, unconditionally.
810  // TODO: Pass information about the need for more temps to the stack frame generation
811  // code so that we can rely on being able to allocate enough temps.
812  DCHECK(!GetRegInfo(rs_rARM_LR)->IsTemp());
813  MarkTemp(rs_rARM_LR);
814  FreeTemp(rs_rARM_LR);
815  LockTemp(rs_rARM_LR);
816  bool load_early = true;
817  if (is_long) {
818    RegStorage expected_reg = rl_src_expected.reg.IsPair() ? rl_src_expected.reg.GetLow() :
819        rl_src_expected.reg;
820    RegStorage new_val_reg = rl_src_new_value.reg.IsPair() ? rl_src_new_value.reg.GetLow() :
821        rl_src_new_value.reg;
822    bool expected_is_core_reg = rl_src_expected.location == kLocPhysReg && !expected_reg.IsFloat();
823    bool new_value_is_core_reg = rl_src_new_value.location == kLocPhysReg && !new_val_reg.IsFloat();
824    bool expected_is_good_reg = expected_is_core_reg && !IsTemp(expected_reg);
825    bool new_value_is_good_reg = new_value_is_core_reg && !IsTemp(new_val_reg);
826
827    if (!expected_is_good_reg && !new_value_is_good_reg) {
828      // None of expected/new_value is non-temp reg, need to load both late
829      load_early = false;
830      // Make sure they are not in the temp regs and the load will not be skipped.
831      if (expected_is_core_reg) {
832        FlushRegWide(rl_src_expected.reg);
833        ClobberSReg(rl_src_expected.s_reg_low);
834        ClobberSReg(GetSRegHi(rl_src_expected.s_reg_low));
835        rl_src_expected.location = kLocDalvikFrame;
836      }
837      if (new_value_is_core_reg) {
838        FlushRegWide(rl_src_new_value.reg);
839        ClobberSReg(rl_src_new_value.s_reg_low);
840        ClobberSReg(GetSRegHi(rl_src_new_value.s_reg_low));
841        rl_src_new_value.location = kLocDalvikFrame;
842      }
843    }
844  }
845
846  // Prevent reordering with prior memory operations.
847  GenMemBarrier(kAnyStore);
848
849  RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
850  RegLocation rl_new_value;
851  if (!is_long) {
852    rl_new_value = LoadValue(rl_src_new_value);
853  } else if (load_early) {
854    rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg);
855  }
856
857  if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
858    // Mark card for object assuming new value is stored.
859    MarkGCCard(rl_new_value.reg, rl_object.reg);
860  }
861
862  RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
863
864  RegStorage r_ptr = rs_rARM_LR;
865  OpRegRegReg(kOpAdd, r_ptr, rl_object.reg, rl_offset.reg);
866
867  // Free now unneeded rl_object and rl_offset to give more temps.
868  ClobberSReg(rl_object.s_reg_low);
869  FreeTemp(rl_object.reg);
870  ClobberSReg(rl_offset.s_reg_low);
871  FreeTemp(rl_offset.reg);
872
873  RegLocation rl_expected;
874  if (!is_long) {
875    rl_expected = LoadValue(rl_src_expected);
876  } else if (load_early) {
877    rl_expected = LoadValueWide(rl_src_expected, kCoreReg);
878  } else {
879    // NOTE: partially defined rl_expected & rl_new_value - but we just want the regs.
880    RegStorage low_reg = AllocTemp();
881    RegStorage high_reg = AllocTemp();
882    rl_new_value.reg = RegStorage::MakeRegPair(low_reg, high_reg);
883    rl_expected = rl_new_value;
884  }
885
886  // do {
887  //   tmp = [r_ptr] - expected;
888  // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
889  // result = tmp != 0;
890
891  RegStorage r_tmp = AllocTemp();
892  LIR* target = NewLIR0(kPseudoTargetLabel);
893
894  LIR* it = nullptr;
895  if (is_long) {
896    RegStorage r_tmp_high = AllocTemp();
897    if (!load_early) {
898      LoadValueDirectWide(rl_src_expected, rl_expected.reg);
899    }
900    NewLIR3(kThumb2Ldrexd, r_tmp.GetReg(), r_tmp_high.GetReg(), r_ptr.GetReg());
901    OpRegReg(kOpSub, r_tmp, rl_expected.reg.GetLow());
902    OpRegReg(kOpSub, r_tmp_high, rl_expected.reg.GetHigh());
903    if (!load_early) {
904      LoadValueDirectWide(rl_src_new_value, rl_new_value.reg);
905    }
906    // Make sure we use ORR that sets the ccode
907    if (r_tmp.Low8() && r_tmp_high.Low8()) {
908      NewLIR2(kThumbOrr, r_tmp.GetReg(), r_tmp_high.GetReg());
909    } else {
910      NewLIR4(kThumb2OrrRRRs, r_tmp.GetReg(), r_tmp.GetReg(), r_tmp_high.GetReg(), 0);
911    }
912    FreeTemp(r_tmp_high);  // Now unneeded
913
914    DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
915    it = OpIT(kCondEq, "T");
916    NewLIR4(kThumb2Strexd /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetLowReg(), rl_new_value.reg.GetHighReg(), r_ptr.GetReg());
917
918  } else {
919    NewLIR3(kThumb2Ldrex, r_tmp.GetReg(), r_ptr.GetReg(), 0);
920    OpRegReg(kOpSub, r_tmp, rl_expected.reg);
921    DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
922    it = OpIT(kCondEq, "T");
923    NewLIR4(kThumb2Strex /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetReg(), r_ptr.GetReg(), 0);
924  }
925
926  // Still one conditional left from OpIT(kCondEq, "T") from either branch
927  OpRegImm(kOpCmp /* eq */, r_tmp, 1);
928  OpEndIT(it);
929
930  OpCondBranch(kCondEq, target);
931
932  if (!load_early) {
933    FreeTemp(rl_expected.reg);  // Now unneeded.
934  }
935
936  // Prevent reordering with subsequent memory operations.
937  GenMemBarrier(kLoadAny);
938
939  // result := (tmp1 != 0) ? 0 : 1;
940  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
941  OpRegRegImm(kOpRsub, rl_result.reg, r_tmp, 1);
942  DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
943  it = OpIT(kCondUlt, "");
944  LoadConstant(rl_result.reg, 0); /* cc */
945  FreeTemp(r_tmp);  // Now unneeded.
946  OpEndIT(it);     // Barrier to terminate OpIT.
947
948  StoreValue(rl_dest, rl_result);
949
950  // Now, restore lr to its non-temp status.
951  Clobber(rs_rARM_LR);
952  UnmarkTemp(rs_rARM_LR);
953  return true;
954}
955
956LIR* ArmMir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
957  return RawLIR(current_dalvik_offset_, kThumb2LdrPcRel12, reg.GetReg(), 0, 0, 0, 0, target);
958}
959
960LIR* ArmMir2Lir::OpVldm(RegStorage r_base, int count) {
961  return NewLIR3(kThumb2Vldms, r_base.GetReg(), rs_fr0.GetReg(), count);
962}
963
964LIR* ArmMir2Lir::OpVstm(RegStorage r_base, int count) {
965  return NewLIR3(kThumb2Vstms, r_base.GetReg(), rs_fr0.GetReg(), count);
966}
967
968void ArmMir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
969                                               RegLocation rl_result, int lit,
970                                               int first_bit, int second_bit) {
971  OpRegRegRegShift(kOpAdd, rl_result.reg, rl_src.reg, rl_src.reg,
972                   EncodeShift(kArmLsl, second_bit - first_bit));
973  if (first_bit != 0) {
974    OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
975  }
976}
977
978void ArmMir2Lir::GenDivZeroCheckWide(RegStorage reg) {
979  DCHECK(reg.IsPair());   // TODO: support k64BitSolo.
980  RegStorage t_reg = AllocTemp();
981  NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), reg.GetLowReg(), reg.GetHighReg(), 0);
982  FreeTemp(t_reg);
983  GenDivZeroCheck(kCondEq);
984}
985
986// Test suspend flag, return target of taken suspend branch
987LIR* ArmMir2Lir::OpTestSuspend(LIR* target) {
988#ifdef ARM_R4_SUSPEND_FLAG
989  NewLIR2(kThumbSubRI8, rs_rARM_SUSPEND.GetReg(), 1);
990  return OpCondBranch((target == NULL) ? kCondEq : kCondNe, target);
991#else
992  RegStorage t_reg = AllocTemp();
993  LoadBaseDisp(rs_rARM_SELF, Thread::ThreadFlagsOffset<4>().Int32Value(),
994    t_reg, kUnsignedHalf);
995  LIR* cmp_branch = OpCmpImmBranch((target == NULL) ? kCondNe : kCondEq, t_reg,
996    0, target);
997  FreeTemp(t_reg);
998  return cmp_branch;
999#endif
1000}
1001
1002// Decrement register and branch on condition
1003LIR* ArmMir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
1004  // Combine sub & test using sub setflags encoding here
1005  OpRegRegImm(kOpSub, reg, reg, 1);  // For value == 1, this should set flags.
1006  DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
1007  return OpCondBranch(c_code, target);
1008}
1009
1010bool ArmMir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
1011#if ANDROID_SMP != 0
1012  // Start off with using the last LIR as the barrier. If it is not enough, then we will generate one.
1013  LIR* barrier = last_lir_insn_;
1014
1015  int dmb_flavor;
1016  // TODO: revisit Arm barrier kinds
1017  switch (barrier_kind) {
1018    case kAnyStore: dmb_flavor = kISH; break;
1019    case kLoadAny: dmb_flavor = kISH; break;
1020    case kStoreStore: dmb_flavor = kISHST; break;
1021    case kAnyAny: dmb_flavor = kISH; break;
1022    default:
1023      LOG(FATAL) << "Unexpected MemBarrierKind: " << barrier_kind;
1024      dmb_flavor = kSY;  // quiet gcc.
1025      break;
1026  }
1027
1028  bool ret = false;
1029
1030  // If the same barrier already exists, don't generate another.
1031  if (barrier == nullptr
1032      || (barrier != nullptr && (barrier->opcode != kThumb2Dmb || barrier->operands[0] != dmb_flavor))) {
1033    barrier = NewLIR1(kThumb2Dmb, dmb_flavor);
1034    ret = true;
1035  }
1036
1037  // At this point we must have a memory barrier. Mark it as a scheduling barrier as well.
1038  DCHECK(!barrier->flags.use_def_invalid);
1039  barrier->u.m.def_mask = &kEncodeAll;
1040  return ret;
1041#else
1042  return false;
1043#endif
1044}
1045
1046void ArmMir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) {
1047  LOG(FATAL) << "Unexpected use GenNotLong()";
1048}
1049
1050void ArmMir2Lir::GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1051                           RegLocation rl_src2, bool is_div) {
1052  LOG(FATAL) << "Unexpected use GenDivRemLong()";
1053}
1054
1055void ArmMir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1056  rl_src = LoadValueWide(rl_src, kCoreReg);
1057  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1058  RegStorage z_reg = AllocTemp();
1059  LoadConstantNoClobber(z_reg, 0);
1060  // Check for destructive overlap
1061  if (rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
1062    RegStorage t_reg = AllocTemp();
1063    OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow());
1064    OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, t_reg);
1065    FreeTemp(t_reg);
1066  } else {
1067    OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow());
1068    OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, rl_src.reg.GetHigh());
1069  }
1070  FreeTemp(z_reg);
1071  StoreValueWide(rl_dest, rl_result);
1072}
1073
1074void ArmMir2Lir::GenMulLong(Instruction::Code opcode, RegLocation rl_dest,
1075                            RegLocation rl_src1, RegLocation rl_src2) {
1076    /*
1077     * tmp1     = src1.hi * src2.lo;  // src1.hi is no longer needed
1078     * dest     = src1.lo * src2.lo;
1079     * tmp1    += src1.lo * src2.hi;
1080     * dest.hi += tmp1;
1081     *
1082     * To pull off inline multiply, we have a worst-case requirement of 7 temporary
1083     * registers.  Normally for Arm, we get 5.  We can get to 6 by including
1084     * lr in the temp set.  The only problematic case is all operands and result are
1085     * distinct, and none have been promoted.  In that case, we can succeed by aggressively
1086     * freeing operand temp registers after they are no longer needed.  All other cases
1087     * can proceed normally.  We'll just punt on the case of the result having a misaligned
1088     * overlap with either operand and send that case to a runtime handler.
1089     */
1090    RegLocation rl_result;
1091    if (BadOverlap(rl_src1, rl_dest) || (BadOverlap(rl_src2, rl_dest))) {
1092      ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pLmul);
1093      FlushAllRegs();
1094      CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false);
1095      rl_result = GetReturnWide(kCoreReg);
1096      StoreValueWide(rl_dest, rl_result);
1097      return;
1098    }
1099
1100    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1101    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1102
1103    int reg_status = 0;
1104    RegStorage res_lo;
1105    RegStorage res_hi;
1106    bool dest_promoted = rl_dest.location == kLocPhysReg && rl_dest.reg.Valid() &&
1107        !IsTemp(rl_dest.reg.GetLow()) && !IsTemp(rl_dest.reg.GetHigh());
1108    bool src1_promoted = !IsTemp(rl_src1.reg.GetLow()) && !IsTemp(rl_src1.reg.GetHigh());
1109    bool src2_promoted = !IsTemp(rl_src2.reg.GetLow()) && !IsTemp(rl_src2.reg.GetHigh());
1110    // Check if rl_dest is *not* either operand and we have enough temp registers.
1111    if ((rl_dest.s_reg_low != rl_src1.s_reg_low && rl_dest.s_reg_low != rl_src2.s_reg_low) &&
1112        (dest_promoted || src1_promoted || src2_promoted)) {
1113      // In this case, we do not need to manually allocate temp registers for result.
1114      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1115      res_lo = rl_result.reg.GetLow();
1116      res_hi = rl_result.reg.GetHigh();
1117    } else {
1118      res_lo = AllocTemp();
1119      if ((rl_src1.s_reg_low == rl_src2.s_reg_low) || src1_promoted || src2_promoted) {
1120        // In this case, we have enough temp registers to be allocated for result.
1121        res_hi = AllocTemp();
1122        reg_status = 1;
1123      } else {
1124        // In this case, all temps are now allocated.
1125        // res_hi will be allocated after we can free src1_hi.
1126        reg_status = 2;
1127      }
1128    }
1129
1130    // Temporarily add LR to the temp pool, and assign it to tmp1
1131    MarkTemp(rs_rARM_LR);
1132    FreeTemp(rs_rARM_LR);
1133    RegStorage tmp1 = rs_rARM_LR;
1134    LockTemp(rs_rARM_LR);
1135
1136    if (rl_src1.reg == rl_src2.reg) {
1137      DCHECK(res_hi.Valid());
1138      DCHECK(res_lo.Valid());
1139      NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src1.reg.GetHighReg());
1140      NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src1.reg.GetLowReg(),
1141              rl_src1.reg.GetLowReg());
1142      OpRegRegRegShift(kOpAdd, res_hi, res_hi, tmp1, EncodeShift(kArmLsl, 1));
1143    } else {
1144      NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src2.reg.GetLowReg(), rl_src1.reg.GetHighReg());
1145      if (reg_status == 2) {
1146        DCHECK(!res_hi.Valid());
1147        DCHECK_NE(rl_src1.reg.GetLowReg(), rl_src2.reg.GetLowReg());
1148        DCHECK_NE(rl_src1.reg.GetHighReg(), rl_src2.reg.GetHighReg());
1149        // Will force free src1_hi, so must clobber.
1150        Clobber(rl_src1.reg);
1151        FreeTemp(rl_src1.reg.GetHigh());
1152        res_hi = AllocTemp();
1153      }
1154      DCHECK(res_hi.Valid());
1155      DCHECK(res_lo.Valid());
1156      NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src2.reg.GetLowReg(),
1157              rl_src1.reg.GetLowReg());
1158      NewLIR4(kThumb2Mla, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src2.reg.GetHighReg(),
1159              tmp1.GetReg());
1160      NewLIR4(kThumb2AddRRR, res_hi.GetReg(), tmp1.GetReg(), res_hi.GetReg(), 0);
1161      if (reg_status == 2) {
1162        FreeTemp(rl_src1.reg.GetLow());
1163      }
1164    }
1165
1166    // Now, restore lr to its non-temp status.
1167    FreeTemp(tmp1);
1168    Clobber(rs_rARM_LR);
1169    UnmarkTemp(rs_rARM_LR);
1170
1171    if (reg_status != 0) {
1172      // We had manually allocated registers for rl_result.
1173      // Now construct a RegLocation.
1174      rl_result = GetReturnWide(kCoreReg);  // Just using as a template.
1175      rl_result.reg = RegStorage::MakeRegPair(res_lo, res_hi);
1176    }
1177
1178    StoreValueWide(rl_dest, rl_result);
1179}
1180
1181void ArmMir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
1182                            RegLocation rl_src2) {
1183  LOG(FATAL) << "Unexpected use of GenAddLong for Arm";
1184}
1185
1186void ArmMir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
1187                            RegLocation rl_src2) {
1188  LOG(FATAL) << "Unexpected use of GenSubLong for Arm";
1189}
1190
1191void ArmMir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
1192                            RegLocation rl_src2) {
1193  LOG(FATAL) << "Unexpected use of GenAndLong for Arm";
1194}
1195
1196void ArmMir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
1197                           RegLocation rl_src2) {
1198  LOG(FATAL) << "Unexpected use of GenOrLong for Arm";
1199}
1200
1201void ArmMir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
1202                            RegLocation rl_src2) {
1203  LOG(FATAL) << "Unexpected use of genXoLong for Arm";
1204}
1205
1206/*
1207 * Generate array load
1208 */
1209void ArmMir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1210                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1211  RegisterClass reg_class = RegClassBySize(size);
1212  int len_offset = mirror::Array::LengthOffset().Int32Value();
1213  int data_offset;
1214  RegLocation rl_result;
1215  bool constant_index = rl_index.is_const;
1216  rl_array = LoadValue(rl_array, kRefReg);
1217  if (!constant_index) {
1218    rl_index = LoadValue(rl_index, kCoreReg);
1219  }
1220
1221  if (rl_dest.wide) {
1222    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1223  } else {
1224    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1225  }
1226
1227  // If index is constant, just fold it into the data offset
1228  if (constant_index) {
1229    data_offset += mir_graph_->ConstantValue(rl_index) << scale;
1230  }
1231
1232  /* null object? */
1233  GenNullCheck(rl_array.reg, opt_flags);
1234
1235  bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
1236  RegStorage reg_len;
1237  if (needs_range_check) {
1238    reg_len = AllocTemp();
1239    /* Get len */
1240    Load32Disp(rl_array.reg, len_offset, reg_len);
1241    MarkPossibleNullPointerException(opt_flags);
1242  } else {
1243    ForceImplicitNullCheck(rl_array.reg, opt_flags);
1244  }
1245  if (rl_dest.wide || rl_dest.fp || constant_index) {
1246    RegStorage reg_ptr;
1247    if (constant_index) {
1248      reg_ptr = rl_array.reg;  // NOTE: must not alter reg_ptr in constant case.
1249    } else {
1250      // No special indexed operation, lea + load w/ displacement
1251      reg_ptr = AllocTempRef();
1252      OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale));
1253      FreeTemp(rl_index.reg);
1254    }
1255    rl_result = EvalLoc(rl_dest, reg_class, true);
1256
1257    if (needs_range_check) {
1258      if (constant_index) {
1259        GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len);
1260      } else {
1261        GenArrayBoundsCheck(rl_index.reg, reg_len);
1262      }
1263      FreeTemp(reg_len);
1264    }
1265    LoadBaseDisp(reg_ptr, data_offset, rl_result.reg, size, kNotVolatile);
1266    MarkPossibleNullPointerException(opt_flags);
1267    if (!constant_index) {
1268      FreeTemp(reg_ptr);
1269    }
1270    if (rl_dest.wide) {
1271      StoreValueWide(rl_dest, rl_result);
1272    } else {
1273      StoreValue(rl_dest, rl_result);
1274    }
1275  } else {
1276    // Offset base, then use indexed load
1277    RegStorage reg_ptr = AllocTempRef();
1278    OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset);
1279    FreeTemp(rl_array.reg);
1280    rl_result = EvalLoc(rl_dest, reg_class, true);
1281
1282    if (needs_range_check) {
1283      GenArrayBoundsCheck(rl_index.reg, reg_len);
1284      FreeTemp(reg_len);
1285    }
1286    LoadBaseIndexed(reg_ptr, rl_index.reg, rl_result.reg, scale, size);
1287    MarkPossibleNullPointerException(opt_flags);
1288    FreeTemp(reg_ptr);
1289    StoreValue(rl_dest, rl_result);
1290  }
1291}
1292
1293/*
1294 * Generate array store
1295 *
1296 */
1297void ArmMir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1298                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1299  RegisterClass reg_class = RegClassBySize(size);
1300  int len_offset = mirror::Array::LengthOffset().Int32Value();
1301  bool constant_index = rl_index.is_const;
1302
1303  int data_offset;
1304  if (size == k64 || size == kDouble) {
1305    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1306  } else {
1307    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1308  }
1309
1310  // If index is constant, just fold it into the data offset.
1311  if (constant_index) {
1312    data_offset += mir_graph_->ConstantValue(rl_index) << scale;
1313  }
1314
1315  rl_array = LoadValue(rl_array, kRefReg);
1316  if (!constant_index) {
1317    rl_index = LoadValue(rl_index, kCoreReg);
1318  }
1319
1320  RegStorage reg_ptr;
1321  bool allocated_reg_ptr_temp = false;
1322  if (constant_index) {
1323    reg_ptr = rl_array.reg;
1324  } else if (IsTemp(rl_array.reg) && !card_mark) {
1325    Clobber(rl_array.reg);
1326    reg_ptr = rl_array.reg;
1327  } else {
1328    allocated_reg_ptr_temp = true;
1329    reg_ptr = AllocTempRef();
1330  }
1331
1332  /* null object? */
1333  GenNullCheck(rl_array.reg, opt_flags);
1334
1335  bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
1336  RegStorage reg_len;
1337  if (needs_range_check) {
1338    reg_len = AllocTemp();
1339    // NOTE: max live temps(4) here.
1340    /* Get len */
1341    Load32Disp(rl_array.reg, len_offset, reg_len);
1342    MarkPossibleNullPointerException(opt_flags);
1343  } else {
1344    ForceImplicitNullCheck(rl_array.reg, opt_flags);
1345  }
1346  /* at this point, reg_ptr points to array, 2 live temps */
1347  if (rl_src.wide || rl_src.fp || constant_index) {
1348    if (rl_src.wide) {
1349      rl_src = LoadValueWide(rl_src, reg_class);
1350    } else {
1351      rl_src = LoadValue(rl_src, reg_class);
1352    }
1353    if (!constant_index) {
1354      OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale));
1355    }
1356    if (needs_range_check) {
1357      if (constant_index) {
1358        GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len);
1359      } else {
1360        GenArrayBoundsCheck(rl_index.reg, reg_len);
1361      }
1362      FreeTemp(reg_len);
1363    }
1364
1365    StoreBaseDisp(reg_ptr, data_offset, rl_src.reg, size, kNotVolatile);
1366    MarkPossibleNullPointerException(opt_flags);
1367  } else {
1368    /* reg_ptr -> array data */
1369    OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset);
1370    rl_src = LoadValue(rl_src, reg_class);
1371    if (needs_range_check) {
1372      GenArrayBoundsCheck(rl_index.reg, reg_len);
1373      FreeTemp(reg_len);
1374    }
1375    StoreBaseIndexed(reg_ptr, rl_index.reg, rl_src.reg, scale, size);
1376    MarkPossibleNullPointerException(opt_flags);
1377  }
1378  if (allocated_reg_ptr_temp) {
1379    FreeTemp(reg_ptr);
1380  }
1381  if (card_mark) {
1382    MarkGCCard(rl_src.reg, rl_array.reg);
1383  }
1384}
1385
1386
1387void ArmMir2Lir::GenShiftImmOpLong(Instruction::Code opcode,
1388                                   RegLocation rl_dest, RegLocation rl_src, RegLocation rl_shift) {
1389  rl_src = LoadValueWide(rl_src, kCoreReg);
1390  // Per spec, we only care about low 6 bits of shift amount.
1391  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1392  if (shift_amount == 0) {
1393    StoreValueWide(rl_dest, rl_src);
1394    return;
1395  }
1396  if (BadOverlap(rl_src, rl_dest)) {
1397    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1398    return;
1399  }
1400  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1401  switch (opcode) {
1402    case Instruction::SHL_LONG:
1403    case Instruction::SHL_LONG_2ADDR:
1404      if (shift_amount == 1) {
1405        OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), rl_src.reg.GetLow());
1406        OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), rl_src.reg.GetHigh());
1407      } else if (shift_amount == 32) {
1408        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg);
1409        LoadConstant(rl_result.reg.GetLow(), 0);
1410      } else if (shift_amount > 31) {
1411        OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetLow(), shift_amount - 32);
1412        LoadConstant(rl_result.reg.GetLow(), 0);
1413      } else {
1414        OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
1415        OpRegRegRegShift(kOpOr, rl_result.reg.GetHigh(), rl_result.reg.GetHigh(), rl_src.reg.GetLow(),
1416                         EncodeShift(kArmLsr, 32 - shift_amount));
1417        OpRegRegImm(kOpLsl, rl_result.reg.GetLow(), rl_src.reg.GetLow(), shift_amount);
1418      }
1419      break;
1420    case Instruction::SHR_LONG:
1421    case Instruction::SHR_LONG_2ADDR:
1422      if (shift_amount == 32) {
1423        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1424        OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31);
1425      } else if (shift_amount > 31) {
1426        OpRegRegImm(kOpAsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32);
1427        OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31);
1428      } else {
1429        RegStorage t_reg = AllocTemp();
1430        OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount);
1431        OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(),
1432                         EncodeShift(kArmLsl, 32 - shift_amount));
1433        FreeTemp(t_reg);
1434        OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
1435      }
1436      break;
1437    case Instruction::USHR_LONG:
1438    case Instruction::USHR_LONG_2ADDR:
1439      if (shift_amount == 32) {
1440        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1441        LoadConstant(rl_result.reg.GetHigh(), 0);
1442      } else if (shift_amount > 31) {
1443        OpRegRegImm(kOpLsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32);
1444        LoadConstant(rl_result.reg.GetHigh(), 0);
1445      } else {
1446        RegStorage t_reg = AllocTemp();
1447        OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount);
1448        OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(),
1449                         EncodeShift(kArmLsl, 32 - shift_amount));
1450        FreeTemp(t_reg);
1451        OpRegRegImm(kOpLsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
1452      }
1453      break;
1454    default:
1455      LOG(FATAL) << "Unexpected case";
1456  }
1457  StoreValueWide(rl_dest, rl_result);
1458}
1459
1460void ArmMir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1461                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1462  if ((opcode == Instruction::SUB_LONG_2ADDR) || (opcode == Instruction::SUB_LONG)) {
1463    if (!rl_src2.is_const) {
1464      // Don't bother with special handling for subtract from immediate.
1465      GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1466      return;
1467    }
1468  } else {
1469    // Normalize
1470    if (!rl_src2.is_const) {
1471      DCHECK(rl_src1.is_const);
1472      std::swap(rl_src1, rl_src2);
1473    }
1474  }
1475  if (BadOverlap(rl_src1, rl_dest)) {
1476    GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1477    return;
1478  }
1479  DCHECK(rl_src2.is_const);
1480  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1481  uint32_t val_lo = Low32Bits(val);
1482  uint32_t val_hi = High32Bits(val);
1483  int32_t mod_imm_lo = ModifiedImmediate(val_lo);
1484  int32_t mod_imm_hi = ModifiedImmediate(val_hi);
1485
1486  // Only a subset of add/sub immediate instructions set carry - so bail if we don't fit
1487  switch (opcode) {
1488    case Instruction::ADD_LONG:
1489    case Instruction::ADD_LONG_2ADDR:
1490    case Instruction::SUB_LONG:
1491    case Instruction::SUB_LONG_2ADDR:
1492      if ((mod_imm_lo < 0) || (mod_imm_hi < 0)) {
1493        GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1494        return;
1495      }
1496      break;
1497    default:
1498      break;
1499  }
1500  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1501  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1502  // NOTE: once we've done the EvalLoc on dest, we can no longer bail.
1503  switch (opcode) {
1504    case Instruction::ADD_LONG:
1505    case Instruction::ADD_LONG_2ADDR:
1506      NewLIR3(kThumb2AddRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo);
1507      NewLIR3(kThumb2AdcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi);
1508      break;
1509    case Instruction::OR_LONG:
1510    case Instruction::OR_LONG_2ADDR:
1511      if ((val_lo != 0) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) {
1512        OpRegRegImm(kOpOr, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
1513      }
1514      if ((val_hi != 0) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) {
1515        OpRegRegImm(kOpOr, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
1516      }
1517      break;
1518    case Instruction::XOR_LONG:
1519    case Instruction::XOR_LONG_2ADDR:
1520      OpRegRegImm(kOpXor, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
1521      OpRegRegImm(kOpXor, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
1522      break;
1523    case Instruction::AND_LONG:
1524    case Instruction::AND_LONG_2ADDR:
1525      if ((val_lo != 0xffffffff) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) {
1526        OpRegRegImm(kOpAnd, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
1527      }
1528      if ((val_hi != 0xffffffff) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) {
1529        OpRegRegImm(kOpAnd, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
1530      }
1531      break;
1532    case Instruction::SUB_LONG_2ADDR:
1533    case Instruction::SUB_LONG:
1534      NewLIR3(kThumb2SubRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo);
1535      NewLIR3(kThumb2SbcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi);
1536      break;
1537    default:
1538      LOG(FATAL) << "Unexpected opcode " << opcode;
1539  }
1540  StoreValueWide(rl_dest, rl_result);
1541}
1542
1543}  // namespace art
1544