call_arm64.cc revision 83b1940e6482b9d8feba5c492507735686650ea5
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Thumb2 ISA. */
18
19#include "arm64_lir.h"
20#include "codegen_arm64.h"
21#include "dex/quick/mir_to_lir-inl.h"
22#include "gc/accounting/card_table.h"
23#include "entrypoints/quick/quick_entrypoints.h"
24
25namespace art {
26
27/*
28 * The sparse table in the literal pool is an array of <key,displacement>
29 * pairs.  For each set, we'll load them as a pair using ldp.
30 * The test loop will look something like:
31 *
32 *   adr   r_base, <table>
33 *   ldr   r_val, [rA64_SP, v_reg_off]
34 *   mov   r_idx, #table_size
35 * loop:
36 *   cbz   r_idx, quit
37 *   ldp   r_key, r_disp, [r_base], #8
38 *   sub   r_idx, #1
39 *   cmp   r_val, r_key
40 *   b.ne  loop
41 *   adr   r_base, #0        ; This is the instruction from which we compute displacements
42 *   add   r_base, r_disp
43 *   br    r_base
44 * quit:
45 */
46void Arm64Mir2Lir::GenLargeSparseSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) {
47  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
48  if (cu_->verbose) {
49    DumpSparseSwitchTable(table);
50  }
51  // Add the table to the list - we'll process it later
52  SwitchTable *tab_rec =
53      static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
54  tab_rec->table = table;
55  tab_rec->vaddr = current_dalvik_offset_;
56  uint32_t size = table[1];
57  tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), kArenaAllocLIR));
58  switch_tables_.Insert(tab_rec);
59
60  // Get the switch value
61  rl_src = LoadValue(rl_src, kCoreReg);
62  RegStorage r_base = AllocTempWide();
63  // Allocate key and disp temps.
64  RegStorage r_key = AllocTemp();
65  RegStorage r_disp = AllocTemp();
66  // Materialize a pointer to the switch table
67  NewLIR3(kA64Adr2xd, r_base.GetReg(), 0, WrapPointer(tab_rec));
68  // Set up r_idx
69  RegStorage r_idx = AllocTemp();
70  LoadConstant(r_idx, size);
71
72  // Entry of loop.
73  LIR* loop_entry = NewLIR0(kPseudoTargetLabel);
74  LIR* branch_out = NewLIR2(kA64Cbz2rt, r_idx.GetReg(), 0);
75
76  // Load next key/disp.
77  NewLIR4(kA64LdpPost4rrXD, r_key.GetReg(), r_disp.GetReg(), r_base.GetReg(), 2);
78  OpRegRegImm(kOpSub, r_idx, r_idx, 1);
79
80  // Go to next case, if key does not match.
81  OpRegReg(kOpCmp, r_key, rl_src.reg);
82  OpCondBranch(kCondNe, loop_entry);
83
84  // Key does match: branch to case label.
85  LIR* switch_label = NewLIR3(kA64Adr2xd, r_base.GetReg(), 0, -1);
86  tab_rec->anchor = switch_label;
87
88  // Add displacement to base branch address and go!
89  OpRegRegRegExtend(kOpAdd, r_base, r_base, As64BitReg(r_disp), kA64Sxtw, 0U);
90  NewLIR1(kA64Br1x, r_base.GetReg());
91
92  // Loop exit label.
93  LIR* loop_exit = NewLIR0(kPseudoTargetLabel);
94  branch_out->target = loop_exit;
95}
96
97
98void Arm64Mir2Lir::GenLargePackedSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) {
99  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
100  if (cu_->verbose) {
101    DumpPackedSwitchTable(table);
102  }
103  // Add the table to the list - we'll process it later
104  SwitchTable *tab_rec =
105      static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable),  kArenaAllocData));
106  tab_rec->table = table;
107  tab_rec->vaddr = current_dalvik_offset_;
108  uint32_t size = table[1];
109  tab_rec->targets =
110      static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), kArenaAllocLIR));
111  switch_tables_.Insert(tab_rec);
112
113  // Get the switch value
114  rl_src = LoadValue(rl_src, kCoreReg);
115  RegStorage table_base = AllocTempWide();
116  // Materialize a pointer to the switch table
117  NewLIR3(kA64Adr2xd, table_base.GetReg(), 0, WrapPointer(tab_rec));
118  int low_key = s4FromSwitchData(&table[2]);
119  RegStorage key_reg;
120  // Remove the bias, if necessary
121  if (low_key == 0) {
122    key_reg = rl_src.reg;
123  } else {
124    key_reg = AllocTemp();
125    OpRegRegImm(kOpSub, key_reg, rl_src.reg, low_key);
126  }
127  // Bounds check - if < 0 or >= size continue following switch
128  OpRegImm(kOpCmp, key_reg, size - 1);
129  LIR* branch_over = OpCondBranch(kCondHi, NULL);
130
131  // Load the displacement from the switch table
132  RegStorage disp_reg = AllocTemp();
133  LoadBaseIndexed(table_base, As64BitReg(key_reg), disp_reg, 2, k32);
134
135  // Get base branch address.
136  RegStorage branch_reg = AllocTempWide();
137  LIR* switch_label = NewLIR3(kA64Adr2xd, branch_reg.GetReg(), 0, -1);
138  tab_rec->anchor = switch_label;
139
140  // Add displacement to base branch address and go!
141  OpRegRegRegExtend(kOpAdd, branch_reg, branch_reg, As64BitReg(disp_reg), kA64Sxtw, 0U);
142  NewLIR1(kA64Br1x, branch_reg.GetReg());
143
144  // branch_over target here
145  LIR* target = NewLIR0(kPseudoTargetLabel);
146  branch_over->target = target;
147}
148
149/*
150 * Array data table format:
151 *  ushort ident = 0x0300   magic value
152 *  ushort width            width of each element in the table
153 *  uint   size             number of elements in the table
154 *  ubyte  data[size*width] table of data values (may contain a single-byte
155 *                          padding at the end)
156 *
157 * Total size is 4+(width * size + 1)/2 16-bit code units.
158 */
159void Arm64Mir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src) {
160  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
161  // Add the table to the list - we'll process it later
162  FillArrayData *tab_rec =
163      static_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData), kArenaAllocData));
164  tab_rec->table = table;
165  tab_rec->vaddr = current_dalvik_offset_;
166  uint16_t width = tab_rec->table[1];
167  uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
168  tab_rec->size = (size * width) + 8;
169
170  fill_array_data_.Insert(tab_rec);
171
172  // Making a call - use explicit registers
173  FlushAllRegs();   /* Everything to home location */
174  LoadValueDirectFixed(rl_src, rs_x0);
175  LoadWordDisp(rs_xSELF, QUICK_ENTRYPOINT_OFFSET(8, pHandleFillArrayData).Int32Value(),
176               rs_xLR);
177  // Materialize a pointer to the fill data image
178  NewLIR3(kA64Adr2xd, rx1, 0, WrapPointer(tab_rec));
179  ClobberCallerSave();
180  LIR* call_inst = OpReg(kOpBlx, rs_xLR);
181  MarkSafepointPC(call_inst);
182}
183
184/*
185 * Handle unlocked -> thin locked transition inline or else call out to quick entrypoint. For more
186 * details see monitor.cc.
187 */
188void Arm64Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
189  // x0/w0 = object
190  // w1    = thin lock thread id
191  // x2    = address of lock word
192  // w3    = lock word / store failure
193  // TUNING: How much performance we get when we inline this?
194  // Since we've already flush all register.
195  FlushAllRegs();
196  LoadValueDirectFixed(rl_src, rs_x0);  // = TargetReg(kArg0, kRef)
197  LockCallTemps();  // Prepare for explicit register usage
198  LIR* null_check_branch = nullptr;
199  if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) {
200    null_check_branch = nullptr;  // No null check.
201  } else {
202    // If the null-check fails its handled by the slow-path to reduce exception related meta-data.
203    if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
204      null_check_branch = OpCmpImmBranch(kCondEq, rs_x0, 0, NULL);
205    }
206  }
207  Load32Disp(rs_xSELF, Thread::ThinLockIdOffset<8>().Int32Value(), rs_w1);
208  OpRegRegImm(kOpAdd, rs_x2, rs_x0, mirror::Object::MonitorOffset().Int32Value());
209  NewLIR2(kA64Ldxr2rX, rw3, rx2);
210  MarkPossibleNullPointerException(opt_flags);
211  LIR* not_unlocked_branch = OpCmpImmBranch(kCondNe, rs_x1, 0, NULL);
212  NewLIR3(kA64Stxr3wrX, rw3, rw1, rx2);
213  LIR* lock_success_branch = OpCmpImmBranch(kCondEq, rs_x1, 0, NULL);
214
215  LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
216  not_unlocked_branch->target = slow_path_target;
217  if (null_check_branch != nullptr) {
218    null_check_branch->target = slow_path_target;
219  }
220  // TODO: move to a slow path.
221  // Go expensive route - artLockObjectFromCode(obj);
222  LoadWordDisp(rs_xSELF, QUICK_ENTRYPOINT_OFFSET(8, pLockObject).Int32Value(), rs_xLR);
223  ClobberCallerSave();
224  LIR* call_inst = OpReg(kOpBlx, rs_xLR);
225  MarkSafepointPC(call_inst);
226
227  LIR* success_target = NewLIR0(kPseudoTargetLabel);
228  lock_success_branch->target = success_target;
229  GenMemBarrier(kLoadAny);
230}
231
232/*
233 * Handle thin locked -> unlocked transition inline or else call out to quick entrypoint. For more
234 * details see monitor.cc. Note the code below doesn't use ldxr/stxr as the code holds the lock
235 * and can only give away ownership if its suspended.
236 */
237void Arm64Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
238  // x0/w0 = object
239  // w1    = thin lock thread id
240  // w2    = lock word
241  // TUNING: How much performance we get when we inline this?
242  // Since we've already flush all register.
243  FlushAllRegs();
244  LoadValueDirectFixed(rl_src, rs_x0);  // Get obj
245  LockCallTemps();  // Prepare for explicit register usage
246  LIR* null_check_branch = nullptr;
247  if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) {
248    null_check_branch = nullptr;  // No null check.
249  } else {
250    // If the null-check fails its handled by the slow-path to reduce exception related meta-data.
251    if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
252      null_check_branch = OpCmpImmBranch(kCondEq, rs_x0, 0, NULL);
253    }
254  }
255  Load32Disp(rs_xSELF, Thread::ThinLockIdOffset<8>().Int32Value(), rs_w1);
256  Load32Disp(rs_x0, mirror::Object::MonitorOffset().Int32Value(), rs_w2);
257  MarkPossibleNullPointerException(opt_flags);
258  LIR* slow_unlock_branch = OpCmpBranch(kCondNe, rs_w1, rs_w2, NULL);
259  GenMemBarrier(kAnyStore);
260  Store32Disp(rs_x0, mirror::Object::MonitorOffset().Int32Value(), rs_wzr);
261  LIR* unlock_success_branch = OpUnconditionalBranch(NULL);
262
263  LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
264  slow_unlock_branch->target = slow_path_target;
265  if (null_check_branch != nullptr) {
266    null_check_branch->target = slow_path_target;
267  }
268  // TODO: move to a slow path.
269  // Go expensive route - artUnlockObjectFromCode(obj);
270  LoadWordDisp(rs_xSELF, QUICK_ENTRYPOINT_OFFSET(8, pUnlockObject).Int32Value(), rs_xLR);
271  ClobberCallerSave();
272  LIR* call_inst = OpReg(kOpBlx, rs_xLR);
273  MarkSafepointPC(call_inst);
274
275  LIR* success_target = NewLIR0(kPseudoTargetLabel);
276  unlock_success_branch->target = success_target;
277}
278
279void Arm64Mir2Lir::GenMoveException(RegLocation rl_dest) {
280  int ex_offset = Thread::ExceptionOffset<8>().Int32Value();
281  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
282  LoadRefDisp(rs_xSELF, ex_offset, rl_result.reg, kNotVolatile);
283  StoreRefDisp(rs_xSELF, ex_offset, rs_xzr, kNotVolatile);
284  StoreValue(rl_dest, rl_result);
285}
286
287/*
288 * Mark garbage collection card. Skip if the value we're storing is null.
289 */
290void Arm64Mir2Lir::MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) {
291  RegStorage reg_card_base = AllocTempWide();
292  RegStorage reg_card_no = AllocTempWide();  // Needs to be wide as addr is ref=64b
293  LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
294  LoadWordDisp(rs_xSELF, Thread::CardTableOffset<8>().Int32Value(), reg_card_base);
295  OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
296  // TODO(Arm64): generate "strb wB, [xB, wC, uxtw]" rather than "strb wB, [xB, xC]"?
297  StoreBaseIndexed(reg_card_base, reg_card_no, As32BitReg(reg_card_base),
298                   0, kUnsignedByte);
299  LIR* target = NewLIR0(kPseudoTargetLabel);
300  branch_over->target = target;
301  FreeTemp(reg_card_base);
302  FreeTemp(reg_card_no);
303}
304
305void Arm64Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
306  /*
307   * On entry, x0 to x7 are live.  Let the register allocation
308   * mechanism know so it doesn't try to use any of them when
309   * expanding the frame or flushing.
310   * Reserve x8 & x9 for temporaries.
311   */
312  LockTemp(rs_x0);
313  LockTemp(rs_x1);
314  LockTemp(rs_x2);
315  LockTemp(rs_x3);
316  LockTemp(rs_x4);
317  LockTemp(rs_x5);
318  LockTemp(rs_x6);
319  LockTemp(rs_x7);
320  LockTemp(rs_xIP0);
321  LockTemp(rs_xIP1);
322
323  /* TUNING:
324   * Use AllocTemp() and reuse LR if possible to give us the freedom on adjusting the number
325   * of temp registers.
326   */
327
328  /*
329   * We can safely skip the stack overflow check if we're
330   * a leaf *and* our frame size < fudge factor.
331   */
332  bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !IsLargeFrame(frame_size_, kArm64);
333
334  NewLIR0(kPseudoMethodEntry);
335
336  const int spill_count = num_core_spills_ + num_fp_spills_;
337  const int spill_size = (spill_count * kArm64PointerSize + 15) & ~0xf;  // SP 16 byte alignment.
338  const int frame_size_without_spills = frame_size_ - spill_size;
339
340  if (!skip_overflow_check) {
341    if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
342      // Load stack limit
343      LoadWordDisp(rs_xSELF, Thread::StackEndOffset<8>().Int32Value(), rs_xIP1);
344    } else {
345      // Implicit stack overflow check.
346      // Generate a load from [sp, #-framesize].  If this is in the stack
347      // redzone we will get a segmentation fault.
348
349      // TODO: If the frame size is small enough, is it possible to make this a pre-indexed load,
350      //       so that we can avoid the following "sub sp" when spilling?
351      OpRegRegImm(kOpSub, rs_x8, rs_sp, GetStackOverflowReservedBytes(kArm64));
352      LoadWordDisp(rs_x8, 0, rs_x8);
353      MarkPossibleStackOverflowException();
354    }
355  }
356
357  int spilled_already = 0;
358  if (spill_size > 0) {
359    spilled_already = SpillRegs(rs_sp, core_spill_mask_, fp_spill_mask_, frame_size_);
360    DCHECK(spill_size == spilled_already || frame_size_ == spilled_already);
361  }
362
363  if (spilled_already != frame_size_) {
364    OpRegImm(kOpSub, rs_sp, frame_size_without_spills);
365  }
366
367  if (!skip_overflow_check) {
368    if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
369      class StackOverflowSlowPath: public LIRSlowPath {
370      public:
371        StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace) :
372              LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, nullptr),
373              sp_displace_(sp_displace) {
374        }
375        void Compile() OVERRIDE {
376          m2l_->ResetRegPool();
377          m2l_->ResetDefTracking();
378          GenerateTargetLabel(kPseudoThrowTarget);
379          // Unwinds stack.
380          m2l_->OpRegImm(kOpAdd, rs_sp, sp_displace_);
381          m2l_->ClobberCallerSave();
382          ThreadOffset<8> func_offset = QUICK_ENTRYPOINT_OFFSET(8, pThrowStackOverflow);
383          m2l_->LockTemp(rs_xIP0);
384          m2l_->LoadWordDisp(rs_xSELF, func_offset.Int32Value(), rs_xIP0);
385          m2l_->NewLIR1(kA64Br1x, rs_xIP0.GetReg());
386          m2l_->FreeTemp(rs_xIP0);
387        }
388
389      private:
390        const size_t sp_displace_;
391      };
392
393      LIR* branch = OpCmpBranch(kCondUlt, rs_sp, rs_xIP1, nullptr);
394      AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, frame_size_));
395    }
396  }
397
398  FlushIns(ArgLocs, rl_method);
399
400  FreeTemp(rs_x0);
401  FreeTemp(rs_x1);
402  FreeTemp(rs_x2);
403  FreeTemp(rs_x3);
404  FreeTemp(rs_x4);
405  FreeTemp(rs_x5);
406  FreeTemp(rs_x6);
407  FreeTemp(rs_x7);
408  FreeTemp(rs_xIP0);
409  FreeTemp(rs_xIP1);
410}
411
412void Arm64Mir2Lir::GenExitSequence() {
413  /*
414   * In the exit path, r0/r1 are live - make sure they aren't
415   * allocated by the register utilities as temps.
416   */
417  LockTemp(rs_x0);
418  LockTemp(rs_x1);
419
420  NewLIR0(kPseudoMethodExit);
421
422  UnspillRegs(rs_sp, core_spill_mask_, fp_spill_mask_, frame_size_);
423
424  // Finally return.
425  NewLIR0(kA64Ret);
426}
427
428void Arm64Mir2Lir::GenSpecialExitSequence() {
429  NewLIR0(kA64Ret);
430}
431
432}  // namespace art
433