target_arm64.cc revision b551fdcda9eb128c80de37c4fb978968bec6d4b3
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_arm64.h"
18
19#include <inttypes.h>
20
21#include <string>
22
23#include "dex/compiler_internals.h"
24#include "dex/quick/mir_to_lir-inl.h"
25#include "dex/reg_storage_eq.h"
26
27namespace art {
28
29static constexpr RegStorage core_regs_arr[] =
30    {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
31     rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15,
32     rs_w16, rs_w17, rs_w18, rs_w19, rs_w20, rs_w21, rs_w22, rs_w23,
33     rs_w24, rs_w25, rs_w26, rs_w27, rs_w28, rs_w29, rs_w30, rs_w31,
34     rs_wzr};
35static constexpr RegStorage core64_regs_arr[] =
36    {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
37     rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15,
38     rs_x16, rs_x17, rs_x18, rs_x19, rs_x20, rs_x21, rs_x22, rs_x23,
39     rs_x24, rs_x25, rs_x26, rs_x27, rs_x28, rs_x29, rs_x30, rs_x31,
40     rs_xzr};
41static constexpr RegStorage sp_regs_arr[] =
42    {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
43     rs_f8, rs_f9, rs_f10, rs_f11, rs_f12, rs_f13, rs_f14, rs_f15,
44     rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
45     rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
46static constexpr RegStorage dp_regs_arr[] =
47    {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
48     rs_d8, rs_d9, rs_d10, rs_d11, rs_d12, rs_d13, rs_d14, rs_d15,
49     rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
50     rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
51// Note: we are not able to call to C function since rs_xSELF is a special register need to be
52// preserved but would be scratched by native functions follow aapcs64.
53static constexpr RegStorage reserved_regs_arr[] =
54    {rs_wSUSPEND, rs_wSELF, rs_wsp, rs_wLR, rs_wzr};
55static constexpr RegStorage reserved64_regs_arr[] =
56    {rs_xSUSPEND, rs_xSELF, rs_sp, rs_xLR, rs_xzr};
57static constexpr RegStorage core_temps_arr[] =
58    {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
59     rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15, rs_w16,
60     rs_w17};
61static constexpr RegStorage core64_temps_arr[] =
62    {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
63     rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15, rs_x16,
64     rs_x17};
65static constexpr RegStorage sp_temps_arr[] =
66    {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
67     rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
68     rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
69static constexpr RegStorage dp_temps_arr[] =
70    {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
71     rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
72     rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
73
74static constexpr ArrayRef<const RegStorage> core_regs(core_regs_arr);
75static constexpr ArrayRef<const RegStorage> core64_regs(core64_regs_arr);
76static constexpr ArrayRef<const RegStorage> sp_regs(sp_regs_arr);
77static constexpr ArrayRef<const RegStorage> dp_regs(dp_regs_arr);
78static constexpr ArrayRef<const RegStorage> reserved_regs(reserved_regs_arr);
79static constexpr ArrayRef<const RegStorage> reserved64_regs(reserved64_regs_arr);
80static constexpr ArrayRef<const RegStorage> core_temps(core_temps_arr);
81static constexpr ArrayRef<const RegStorage> core64_temps(core64_temps_arr);
82static constexpr ArrayRef<const RegStorage> sp_temps(sp_temps_arr);
83static constexpr ArrayRef<const RegStorage> dp_temps(dp_temps_arr);
84
85RegLocation Arm64Mir2Lir::LocCReturn() {
86  return arm_loc_c_return;
87}
88
89RegLocation Arm64Mir2Lir::LocCReturnRef() {
90  return arm_loc_c_return_ref;
91}
92
93RegLocation Arm64Mir2Lir::LocCReturnWide() {
94  return arm_loc_c_return_wide;
95}
96
97RegLocation Arm64Mir2Lir::LocCReturnFloat() {
98  return arm_loc_c_return_float;
99}
100
101RegLocation Arm64Mir2Lir::LocCReturnDouble() {
102  return arm_loc_c_return_double;
103}
104
105// Return a target-dependent special register.
106RegStorage Arm64Mir2Lir::TargetReg(SpecialTargetRegister reg) {
107  RegStorage res_reg = RegStorage::InvalidReg();
108  switch (reg) {
109    case kSelf: res_reg = rs_wSELF; break;
110    case kSuspend: res_reg = rs_wSUSPEND; break;
111    case kLr: res_reg =  rs_wLR; break;
112    case kPc: res_reg = RegStorage::InvalidReg(); break;
113    case kSp: res_reg =  rs_wsp; break;
114    case kArg0: res_reg = rs_w0; break;
115    case kArg1: res_reg = rs_w1; break;
116    case kArg2: res_reg = rs_w2; break;
117    case kArg3: res_reg = rs_w3; break;
118    case kArg4: res_reg = rs_w4; break;
119    case kArg5: res_reg = rs_w5; break;
120    case kArg6: res_reg = rs_w6; break;
121    case kArg7: res_reg = rs_w7; break;
122    case kFArg0: res_reg = rs_f0; break;
123    case kFArg1: res_reg = rs_f1; break;
124    case kFArg2: res_reg = rs_f2; break;
125    case kFArg3: res_reg = rs_f3; break;
126    case kFArg4: res_reg = rs_f4; break;
127    case kFArg5: res_reg = rs_f5; break;
128    case kFArg6: res_reg = rs_f6; break;
129    case kFArg7: res_reg = rs_f7; break;
130    case kRet0: res_reg = rs_w0; break;
131    case kRet1: res_reg = rs_w1; break;
132    case kInvokeTgt: res_reg = rs_wLR; break;
133    case kHiddenArg: res_reg = rs_wIP1; break;
134    case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
135    case kCount: res_reg = RegStorage::InvalidReg(); break;
136    default: res_reg = RegStorage::InvalidReg();
137  }
138  return res_reg;
139}
140
141/*
142 * Decode the register id. This routine makes assumptions on the encoding made by RegStorage.
143 */
144ResourceMask Arm64Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
145  // TODO(Arm64): this function depends too much on the internal RegStorage encoding. Refactor.
146
147  // Check if the shape mask is zero (i.e. invalid).
148  if (UNLIKELY(reg == rs_wzr || reg == rs_xzr)) {
149    // The zero register is not a true register. It is just an immediate zero.
150    return kEncodeNone;
151  }
152
153  return ResourceMask::Bit(
154      // FP register starts at bit position 32.
155      (reg.IsFloat() ? kArm64FPReg0 : 0) + reg.GetRegNum());
156}
157
158ResourceMask Arm64Mir2Lir::GetPCUseDefEncoding() const {
159  // Note: On arm64, we are not able to set pc except branch instructions, which is regarded as a
160  //       kind of barrier. All other instructions only use pc, which has no dependency between any
161  //       of them. So it is fine to just return kEncodeNone here.
162  return kEncodeNone;
163}
164
165// Arm64 specific setup.  TODO: inline?:
166void Arm64Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
167                                            ResourceMask* use_mask, ResourceMask* def_mask) {
168  DCHECK_EQ(cu_->instruction_set, kArm64);
169  DCHECK(!lir->flags.use_def_invalid);
170
171  // Note: REG_USE_PC is ignored, the reason is the same with what we do in GetPCUseDefEncoding().
172  // These flags are somewhat uncommon - bypass if we can.
173  if ((flags & (REG_DEF_SP | REG_USE_SP | REG_DEF_LR)) != 0) {
174    if (flags & REG_DEF_SP) {
175      def_mask->SetBit(kArm64RegSP);
176    }
177
178    if (flags & REG_USE_SP) {
179      use_mask->SetBit(kArm64RegSP);
180    }
181
182    if (flags & REG_DEF_LR) {
183      def_mask->SetBit(kArm64RegLR);
184    }
185  }
186}
187
188ArmConditionCode Arm64Mir2Lir::ArmConditionEncoding(ConditionCode ccode) {
189  ArmConditionCode res;
190  switch (ccode) {
191    case kCondEq: res = kArmCondEq; break;
192    case kCondNe: res = kArmCondNe; break;
193    case kCondCs: res = kArmCondCs; break;
194    case kCondCc: res = kArmCondCc; break;
195    case kCondUlt: res = kArmCondCc; break;
196    case kCondUge: res = kArmCondCs; break;
197    case kCondMi: res = kArmCondMi; break;
198    case kCondPl: res = kArmCondPl; break;
199    case kCondVs: res = kArmCondVs; break;
200    case kCondVc: res = kArmCondVc; break;
201    case kCondHi: res = kArmCondHi; break;
202    case kCondLs: res = kArmCondLs; break;
203    case kCondGe: res = kArmCondGe; break;
204    case kCondLt: res = kArmCondLt; break;
205    case kCondGt: res = kArmCondGt; break;
206    case kCondLe: res = kArmCondLe; break;
207    case kCondAl: res = kArmCondAl; break;
208    case kCondNv: res = kArmCondNv; break;
209    default:
210      LOG(FATAL) << "Bad condition code " << ccode;
211      res = static_cast<ArmConditionCode>(0);  // Quiet gcc
212  }
213  return res;
214}
215
216static const char *shift_names[4] = {
217  "lsl",
218  "lsr",
219  "asr",
220  "ror"
221};
222
223static const char* extend_names[8] = {
224  "uxtb",
225  "uxth",
226  "uxtw",
227  "uxtx",
228  "sxtb",
229  "sxth",
230  "sxtw",
231  "sxtx",
232};
233
234/* Decode and print a register extension (e.g. ", uxtb #1") */
235static void DecodeRegExtendOrShift(int operand, char *buf, size_t buf_size) {
236  if ((operand & (1 << 6)) == 0) {
237    const char *shift_name = shift_names[(operand >> 7) & 0x3];
238    int amount = operand & 0x3f;
239    snprintf(buf, buf_size, ", %s #%d", shift_name, amount);
240  } else {
241    const char *extend_name = extend_names[(operand >> 3) & 0x7];
242    int amount = operand & 0x7;
243    if (amount == 0) {
244      snprintf(buf, buf_size, ", %s", extend_name);
245    } else {
246      snprintf(buf, buf_size, ", %s #%d", extend_name, amount);
247    }
248  }
249}
250
251#define BIT_MASK(w) ((UINT64_C(1) << (w)) - UINT64_C(1))
252
253static uint64_t RotateRight(uint64_t value, unsigned rotate, unsigned width) {
254  DCHECK_LE(width, 64U);
255  rotate &= 63;
256  value = value & BIT_MASK(width);
257  return ((value & BIT_MASK(rotate)) << (width - rotate)) | (value >> rotate);
258}
259
260static uint64_t RepeatBitsAcrossReg(bool is_wide, uint64_t value, unsigned width) {
261  unsigned i;
262  unsigned reg_size = (is_wide) ? 64 : 32;
263  uint64_t result = value & BIT_MASK(width);
264  for (i = width; i < reg_size; i *= 2) {
265    result |= (result << i);
266  }
267  DCHECK_EQ(i, reg_size);
268  return result;
269}
270
271/**
272 * @brief Decode an immediate in the form required by logical instructions.
273 *
274 * @param is_wide Whether @p value encodes a 64-bit (as opposed to 32-bit) immediate.
275 * @param value The encoded logical immediates that is to be decoded.
276 * @return The decoded logical immediate.
277 * @note This is the inverse of Arm64Mir2Lir::EncodeLogicalImmediate().
278 */
279uint64_t Arm64Mir2Lir::DecodeLogicalImmediate(bool is_wide, int value) {
280  unsigned n     = (value >> 12) & 0x01;
281  unsigned imm_r = (value >>  6) & 0x3f;
282  unsigned imm_s = (value >>  0) & 0x3f;
283
284  // An integer is constructed from the n, imm_s and imm_r bits according to
285  // the following table:
286  //
287  // N   imms immr  size S             R
288  // 1 ssssss rrrrrr 64  UInt(ssssss) UInt(rrrrrr)
289  // 0 0sssss xrrrrr 32  UInt(sssss)  UInt(rrrrr)
290  // 0 10ssss xxrrrr 16  UInt(ssss)   UInt(rrrr)
291  // 0 110sss xxxrrr 8   UInt(sss)    UInt(rrr)
292  // 0 1110ss xxxxrr 4   UInt(ss)     UInt(rr)
293  // 0 11110s xxxxxr 2   UInt(s)      UInt(r)
294  // (s bits must not be all set)
295  //
296  // A pattern is constructed of size bits, where the least significant S+1
297  // bits are set. The pattern is rotated right by R, and repeated across a
298  // 32 or 64-bit value, depending on destination register width.
299
300  if (n == 1) {
301    DCHECK_NE(imm_s, 0x3fU);
302    uint64_t bits = BIT_MASK(imm_s + 1);
303    return RotateRight(bits, imm_r, 64);
304  } else {
305    DCHECK_NE((imm_s >> 1), 0x1fU);
306    for (unsigned width = 0x20; width >= 0x2; width >>= 1) {
307      if ((imm_s & width) == 0) {
308        unsigned mask = (unsigned)(width - 1);
309        DCHECK_NE((imm_s & mask), mask);
310        uint64_t bits = BIT_MASK((imm_s & mask) + 1);
311        return RepeatBitsAcrossReg(is_wide, RotateRight(bits, imm_r & mask, width), width);
312      }
313    }
314  }
315  return 0;
316}
317
318/**
319 * @brief Decode an 8-bit single point number encoded with EncodeImmSingle().
320 */
321static float DecodeImmSingle(uint8_t small_float) {
322  int mantissa = (small_float & 0x0f) + 0x10;
323  int sign = ((small_float & 0x80) == 0) ? 1 : -1;
324  float signed_mantissa = static_cast<float>(sign*mantissa);
325  int exponent = (((small_float >> 4) & 0x7) + 4) & 0x7;
326  return signed_mantissa*static_cast<float>(1 << exponent)*0.0078125f;
327}
328
329static const char* cc_names[] = {"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
330                                 "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"};
331/*
332 * Interpret a format string and build a string no longer than size
333 * See format key in assemble_arm64.cc.
334 */
335std::string Arm64Mir2Lir::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) {
336  std::string buf;
337  const char* fmt_end = &fmt[strlen(fmt)];
338  char tbuf[256];
339  const char* name;
340  char nc;
341  while (fmt < fmt_end) {
342    int operand;
343    if (*fmt == '!') {
344      fmt++;
345      DCHECK_LT(fmt, fmt_end);
346      nc = *fmt++;
347      if (nc == '!') {
348        strcpy(tbuf, "!");
349      } else {
350         DCHECK_LT(fmt, fmt_end);
351         DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
352         operand = lir->operands[nc-'0'];
353         switch (*fmt++) {
354           case 'e':  {
355               // Omit ", uxtw #0" in strings like "add w0, w1, w3, uxtw #0" and
356               // ", uxtx #0" in strings like "add x0, x1, x3, uxtx #0"
357               int omittable = ((IS_WIDE(lir->opcode)) ? EncodeExtend(kA64Uxtw, 0) :
358                                EncodeExtend(kA64Uxtw, 0));
359               if (LIKELY(operand == omittable)) {
360                 strcpy(tbuf, "");
361               } else {
362                 DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
363               }
364             }
365             break;
366           case 'o':
367             // Omit ", lsl #0"
368             if (LIKELY(operand == EncodeShift(kA64Lsl, 0))) {
369               strcpy(tbuf, "");
370             } else {
371               DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
372             }
373             break;
374           case 'B':
375             switch (operand) {
376               case kSY:
377                 name = "sy";
378                 break;
379               case kST:
380                 name = "st";
381                 break;
382               case kISH:
383                 name = "ish";
384                 break;
385               case kISHST:
386                 name = "ishst";
387                 break;
388               case kNSH:
389                 name = "nsh";
390                 break;
391               case kNSHST:
392                 name = "shst";
393                 break;
394               default:
395                 name = "DecodeError2";
396                 break;
397             }
398             strcpy(tbuf, name);
399             break;
400           case 's':
401             snprintf(tbuf, arraysize(tbuf), "s%d", operand & RegStorage::kRegNumMask);
402             break;
403           case 'S':
404             snprintf(tbuf, arraysize(tbuf), "d%d", operand & RegStorage::kRegNumMask);
405             break;
406           case 'f':
407             snprintf(tbuf, arraysize(tbuf), "%c%d", (IS_FWIDE(lir->opcode)) ? 'd' : 's',
408                      operand & RegStorage::kRegNumMask);
409             break;
410           case 'l': {
411               bool is_wide = IS_WIDE(lir->opcode);
412               uint64_t imm = DecodeLogicalImmediate(is_wide, operand);
413               snprintf(tbuf, arraysize(tbuf), "%" PRId64 " (%#" PRIx64 ")", imm, imm);
414             }
415             break;
416           case 'I':
417             snprintf(tbuf, arraysize(tbuf), "%f", DecodeImmSingle(operand));
418             break;
419           case 'M':
420             if (LIKELY(operand == 0))
421               strcpy(tbuf, "");
422             else
423               snprintf(tbuf, arraysize(tbuf), ", lsl #%d", 16*operand);
424             break;
425           case 'd':
426             snprintf(tbuf, arraysize(tbuf), "%d", operand);
427             break;
428           case 'w':
429             if (LIKELY(operand != rwzr))
430               snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
431             else
432               strcpy(tbuf, "wzr");
433             break;
434           case 'W':
435             if (LIKELY(operand != rwsp))
436               snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
437             else
438               strcpy(tbuf, "wsp");
439             break;
440           case 'x':
441             if (LIKELY(operand != rxzr))
442               snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
443             else
444               strcpy(tbuf, "xzr");
445             break;
446           case 'X':
447             if (LIKELY(operand != rsp))
448               snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
449             else
450               strcpy(tbuf, "sp");
451             break;
452           case 'D':
453             snprintf(tbuf, arraysize(tbuf), "%d", operand*((IS_WIDE(lir->opcode)) ? 8 : 4));
454             break;
455           case 'E':
456             snprintf(tbuf, arraysize(tbuf), "%d", operand*4);
457             break;
458           case 'F':
459             snprintf(tbuf, arraysize(tbuf), "%d", operand*2);
460             break;
461           case 'G':
462             if (LIKELY(operand == 0))
463               strcpy(tbuf, "");
464             else
465               strcpy(tbuf, (IS_WIDE(lir->opcode)) ? ", lsl #3" : ", lsl #2");
466             break;
467           case 'c':
468             strcpy(tbuf, cc_names[operand]);
469             break;
470           case 't':
471             snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)",
472                 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + (operand << 2),
473                 lir->target);
474             break;
475           case 'r': {
476               bool is_wide = IS_WIDE(lir->opcode);
477               if (LIKELY(operand != rwzr && operand != rxzr)) {
478                 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
479                          operand & RegStorage::kRegNumMask);
480               } else {
481                 strcpy(tbuf, (is_wide) ? "xzr" : "wzr");
482               }
483             }
484             break;
485           case 'R': {
486               bool is_wide = IS_WIDE(lir->opcode);
487               if (LIKELY(operand != rwsp && operand != rsp)) {
488                 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
489                          operand & RegStorage::kRegNumMask);
490               } else {
491                 strcpy(tbuf, (is_wide) ? "sp" : "wsp");
492               }
493             }
494             break;
495           case 'p':
496             snprintf(tbuf, arraysize(tbuf), ".+%d (addr %#" PRIxPTR ")", 4*operand,
497                      reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4*operand);
498             break;
499           case 'T':
500             if (LIKELY(operand == 0))
501               strcpy(tbuf, "");
502             else if (operand == 1)
503               strcpy(tbuf, ", lsl #12");
504             else
505               strcpy(tbuf, ", DecodeError3");
506             break;
507           default:
508             strcpy(tbuf, "DecodeError1");
509             break;
510        }
511        buf += tbuf;
512      }
513    } else {
514       buf += *fmt++;
515    }
516  }
517  return buf;
518}
519
520void Arm64Mir2Lir::DumpResourceMask(LIR* arm_lir, const ResourceMask& mask, const char* prefix) {
521  char buf[256];
522  buf[0] = 0;
523
524  if (mask.Equals(kEncodeAll)) {
525    strcpy(buf, "all");
526  } else {
527    char num[8];
528    int i;
529
530    for (i = 0; i < kArm64RegEnd; i++) {
531      if (mask.HasBit(i)) {
532        snprintf(num, arraysize(num), "%d ", i);
533        strcat(buf, num);
534      }
535    }
536
537    if (mask.HasBit(ResourceMask::kCCode)) {
538      strcat(buf, "cc ");
539    }
540    if (mask.HasBit(ResourceMask::kFPStatus)) {
541      strcat(buf, "fpcc ");
542    }
543
544    /* Memory bits */
545    if (arm_lir && (mask.HasBit(ResourceMask::kDalvikReg))) {
546      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
547               DECODE_ALIAS_INFO_REG(arm_lir->flags.alias_info),
548               DECODE_ALIAS_INFO_WIDE(arm_lir->flags.alias_info) ? "(+1)" : "");
549    }
550    if (mask.HasBit(ResourceMask::kLiteral)) {
551      strcat(buf, "lit ");
552    }
553
554    if (mask.HasBit(ResourceMask::kHeapRef)) {
555      strcat(buf, "heap ");
556    }
557    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
558      strcat(buf, "noalias ");
559    }
560  }
561  if (buf[0]) {
562    LOG(INFO) << prefix << ": " << buf;
563  }
564}
565
566bool Arm64Mir2Lir::IsUnconditionalBranch(LIR* lir) {
567  return (lir->opcode == kA64B1t);
568}
569
570RegisterClass Arm64Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
571  if (UNLIKELY(is_volatile)) {
572    // On arm64, fp register load/store is atomic only for single bytes.
573    if (size != kSignedByte && size != kUnsignedByte) {
574      return (size == kReference) ? kRefReg : kCoreReg;
575    }
576  }
577  return RegClassBySize(size);
578}
579
580Arm64Mir2Lir::Arm64Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
581    : Mir2Lir(cu, mir_graph, arena) {
582  // Sanity check - make sure encoding map lines up.
583  for (int i = 0; i < kA64Last; i++) {
584    if (UNWIDE(Arm64Mir2Lir::EncodingMap[i].opcode) != i) {
585      LOG(FATAL) << "Encoding order for " << Arm64Mir2Lir::EncodingMap[i].name
586                 << " is wrong: expecting " << i << ", seeing "
587                 << static_cast<int>(Arm64Mir2Lir::EncodingMap[i].opcode);
588    }
589  }
590}
591
592Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
593                            ArenaAllocator* const arena) {
594  return new Arm64Mir2Lir(cu, mir_graph, arena);
595}
596
597void Arm64Mir2Lir::CompilerInitializeRegAlloc() {
598  reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs, core64_regs, sp_regs, dp_regs,
599                                        reserved_regs, reserved64_regs, core_temps, core64_temps,
600                                        sp_temps, dp_temps);
601
602  // Target-specific adjustments.
603  // Alias single precision float registers to corresponding double registers.
604  GrowableArray<RegisterInfo*>::Iterator fp_it(&reg_pool_->sp_regs_);
605  for (RegisterInfo* info = fp_it.Next(); info != nullptr; info = fp_it.Next()) {
606    int fp_reg_num = info->GetReg().GetRegNum();
607    RegStorage dp_reg = RegStorage::FloatSolo64(fp_reg_num);
608    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
609    // Double precision register's master storage should refer to itself.
610    DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
611    // Redirect single precision's master storage to master.
612    info->SetMaster(dp_reg_info);
613    // Singles should show a single 32-bit mask bit, at first referring to the low half.
614    DCHECK_EQ(info->StorageMask(), 0x1U);
615  }
616
617  // Alias 32bit W registers to corresponding 64bit X registers.
618  GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
619  for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
620    int x_reg_num = info->GetReg().GetRegNum();
621    RegStorage x_reg = RegStorage::Solo64(x_reg_num);
622    RegisterInfo* x_reg_info = GetRegInfo(x_reg);
623    // 64bit X register's master storage should refer to itself.
624    DCHECK_EQ(x_reg_info, x_reg_info->Master());
625    // Redirect 32bit W master storage to 64bit X.
626    info->SetMaster(x_reg_info);
627    // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
628    DCHECK_EQ(info->StorageMask(), 0x1U);
629  }
630
631  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
632  // TODO: adjust when we roll to hard float calling convention.
633  reg_pool_->next_core_reg_ = 2;
634  reg_pool_->next_sp_reg_ = 0;
635  reg_pool_->next_dp_reg_ = 0;
636}
637
638/*
639 * TUNING: is true leaf?  Can't just use METHOD_IS_LEAF to determine as some
640 * instructions might call out to C/assembly helper functions.  Until
641 * machinery is in place, always spill lr.
642 */
643
644void Arm64Mir2Lir::AdjustSpillMask() {
645  core_spill_mask_ |= (1 << rs_xLR.GetRegNum());
646  num_core_spills_++;
647}
648
649/* Clobber all regs that might be used by an external C call */
650void Arm64Mir2Lir::ClobberCallerSave() {
651  Clobber(rs_x0);
652  Clobber(rs_x1);
653  Clobber(rs_x2);
654  Clobber(rs_x3);
655  Clobber(rs_x4);
656  Clobber(rs_x5);
657  Clobber(rs_x6);
658  Clobber(rs_x7);
659  Clobber(rs_x8);
660  Clobber(rs_x9);
661  Clobber(rs_x10);
662  Clobber(rs_x11);
663  Clobber(rs_x12);
664  Clobber(rs_x13);
665  Clobber(rs_x14);
666  Clobber(rs_x15);
667  Clobber(rs_x16);
668  Clobber(rs_x17);
669  Clobber(rs_x30);
670
671  Clobber(rs_f0);
672  Clobber(rs_f1);
673  Clobber(rs_f2);
674  Clobber(rs_f3);
675  Clobber(rs_f4);
676  Clobber(rs_f5);
677  Clobber(rs_f6);
678  Clobber(rs_f7);
679  Clobber(rs_f16);
680  Clobber(rs_f17);
681  Clobber(rs_f18);
682  Clobber(rs_f19);
683  Clobber(rs_f20);
684  Clobber(rs_f21);
685  Clobber(rs_f22);
686  Clobber(rs_f23);
687  Clobber(rs_f24);
688  Clobber(rs_f25);
689  Clobber(rs_f26);
690  Clobber(rs_f27);
691  Clobber(rs_f28);
692  Clobber(rs_f29);
693  Clobber(rs_f30);
694  Clobber(rs_f31);
695}
696
697RegLocation Arm64Mir2Lir::GetReturnWideAlt() {
698  RegLocation res = LocCReturnWide();
699  res.reg.SetReg(rx2);
700  res.reg.SetHighReg(rx3);
701  Clobber(rs_x2);
702  Clobber(rs_x3);
703  MarkInUse(rs_x2);
704  MarkInUse(rs_x3);
705  MarkWide(res.reg);
706  return res;
707}
708
709RegLocation Arm64Mir2Lir::GetReturnAlt() {
710  RegLocation res = LocCReturn();
711  res.reg.SetReg(rx1);
712  Clobber(rs_x1);
713  MarkInUse(rs_x1);
714  return res;
715}
716
717/* To be used when explicitly managing register use */
718void Arm64Mir2Lir::LockCallTemps() {
719  // TODO: needs cleanup.
720  LockTemp(rs_x0);
721  LockTemp(rs_x1);
722  LockTemp(rs_x2);
723  LockTemp(rs_x3);
724  LockTemp(rs_x4);
725  LockTemp(rs_x5);
726  LockTemp(rs_x6);
727  LockTemp(rs_x7);
728  LockTemp(rs_f0);
729  LockTemp(rs_f1);
730  LockTemp(rs_f2);
731  LockTemp(rs_f3);
732  LockTemp(rs_f4);
733  LockTemp(rs_f5);
734  LockTemp(rs_f6);
735  LockTemp(rs_f7);
736}
737
738/* To be used when explicitly managing register use */
739void Arm64Mir2Lir::FreeCallTemps() {
740  // TODO: needs cleanup.
741  FreeTemp(rs_x0);
742  FreeTemp(rs_x1);
743  FreeTemp(rs_x2);
744  FreeTemp(rs_x3);
745  FreeTemp(rs_x4);
746  FreeTemp(rs_x5);
747  FreeTemp(rs_x6);
748  FreeTemp(rs_x7);
749  FreeTemp(rs_f0);
750  FreeTemp(rs_f1);
751  FreeTemp(rs_f2);
752  FreeTemp(rs_f3);
753  FreeTemp(rs_f4);
754  FreeTemp(rs_f5);
755  FreeTemp(rs_f6);
756  FreeTemp(rs_f7);
757}
758
759RegStorage Arm64Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
760  // TODO(Arm64): use LoadWordDisp instead.
761  //   e.g. LoadWordDisp(rs_rA64_SELF, offset.Int32Value(), rs_rA64_LR);
762  LoadBaseDisp(rs_xSELF, GetThreadOffset<8>(trampoline).Int32Value(), rs_xLR, k64, kNotVolatile);
763  return rs_xLR;
764}
765
766LIR* Arm64Mir2Lir::CheckSuspendUsingLoad() {
767  RegStorage tmp = rs_x0;
768  LoadWordDisp(rs_xSELF, Thread::ThreadSuspendTriggerOffset<8>().Int32Value(), tmp);
769  LIR* load2 = LoadWordDisp(tmp, 0, tmp);
770  return load2;
771}
772
773uint64_t Arm64Mir2Lir::GetTargetInstFlags(int opcode) {
774  DCHECK(!IsPseudoLirOp(opcode));
775  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].flags;
776}
777
778const char* Arm64Mir2Lir::GetTargetInstName(int opcode) {
779  DCHECK(!IsPseudoLirOp(opcode));
780  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].name;
781}
782
783const char* Arm64Mir2Lir::GetTargetInstFmt(int opcode) {
784  DCHECK(!IsPseudoLirOp(opcode));
785  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].fmt;
786}
787
788RegStorage Arm64Mir2Lir::InToRegStorageArm64Mapper::GetNextReg(bool is_double_or_float,
789                                                               bool is_wide,
790                                                               bool is_ref) {
791  const RegStorage coreArgMappingToPhysicalReg[] =
792      {rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7};
793  const int coreArgMappingToPhysicalRegSize =
794      sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
795  const RegStorage fpArgMappingToPhysicalReg[] =
796      {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7};
797  const int fpArgMappingToPhysicalRegSize =
798      sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
799
800  RegStorage result = RegStorage::InvalidReg();
801  if (is_double_or_float) {
802    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
803      DCHECK(!is_ref);
804      result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
805      if (result.Valid()) {
806        // TODO: switching between widths remains a bit ugly.  Better way?
807        int res_reg = result.GetReg();
808        result = is_wide ? RegStorage::FloatSolo64(res_reg) : RegStorage::FloatSolo32(res_reg);
809      }
810    }
811  } else {
812    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
813      result = coreArgMappingToPhysicalReg[cur_core_reg_++];
814      if (result.Valid()) {
815        // TODO: switching between widths remains a bit ugly.  Better way?
816        int res_reg = result.GetReg();
817        DCHECK(!(is_wide && is_ref));
818        result = (is_wide || is_ref) ? RegStorage::Solo64(res_reg) : RegStorage::Solo32(res_reg);
819      }
820    }
821  }
822  return result;
823}
824
825RegStorage Arm64Mir2Lir::InToRegStorageMapping::Get(int in_position) {
826  DCHECK(IsInitialized());
827  auto res = mapping_.find(in_position);
828  return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
829}
830
831void Arm64Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count,
832                                                     InToRegStorageMapper* mapper) {
833  DCHECK(mapper != nullptr);
834  max_mapped_in_ = -1;
835  is_there_stack_mapped_ = false;
836  for (int in_position = 0; in_position < count; in_position++) {
837     RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp,
838                                         arg_locs[in_position].wide,
839                                         arg_locs[in_position].ref);
840     if (reg.Valid()) {
841       mapping_[in_position] = reg;
842       if (arg_locs[in_position].wide) {
843         // We covered 2 args, so skip the next one
844         in_position++;
845       }
846       max_mapped_in_ = std::max(max_mapped_in_, in_position);
847     } else {
848       is_there_stack_mapped_ = true;
849     }
850  }
851  initialized_ = true;
852}
853
854
855// Deprecate.  Use the new mechanism.
856// TODO(Arm64): reuse info in QuickArgumentVisitor?
857static RegStorage GetArgPhysicalReg(RegLocation* loc, int* num_gpr_used, int* num_fpr_used,
858                                    OpSize* op_size) {
859  if (loc->fp) {
860    int n = *num_fpr_used;
861    if (n < 8) {
862      *num_fpr_used = n + 1;
863      RegStorage::RegStorageKind reg_kind;
864      if (loc->wide) {
865        *op_size = kDouble;
866        reg_kind = RegStorage::k64BitSolo;
867      } else {
868        *op_size = kSingle;
869        reg_kind = RegStorage::k32BitSolo;
870      }
871      return RegStorage(RegStorage::kValid | reg_kind | RegStorage::kFloatingPoint | n);
872    }
873  } else {
874    int n = *num_gpr_used;
875    if (n < 8) {
876      *num_gpr_used = n + 1;
877      if (loc->wide || loc->ref) {
878        *op_size = k64;
879        return RegStorage::Solo64(n);
880      } else {
881        *op_size = k32;
882        return RegStorage::Solo32(n);
883      }
884    }
885  }
886  *op_size = kWord;
887  return RegStorage::InvalidReg();
888}
889
890RegStorage Arm64Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
891  if (!in_to_reg_storage_mapping_.IsInitialized()) {
892    int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
893    RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
894
895    InToRegStorageArm64Mapper mapper;
896    in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
897  }
898  return in_to_reg_storage_mapping_.Get(arg_num);
899}
900
901
902/*
903 * If there are any ins passed in registers that have not been promoted
904 * to a callee-save register, flush them to the frame.  Perform initial
905 * assignment of promoted arguments.
906 *
907 * ArgLocs is an array of location records describing the incoming arguments
908 * with one location record per word of argument.
909 */
910void Arm64Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
911  int num_gpr_used = 1;
912  int num_fpr_used = 0;
913
914  /*
915   * Dummy up a RegLocation for the incoming StackReference<mirror::ArtMethod>
916   * It will attempt to keep kArg0 live (or copy it to home location
917   * if promoted).
918   */
919  RegLocation rl_src = rl_method;
920  rl_src.location = kLocPhysReg;
921  rl_src.reg = TargetReg(kArg0, kRef);
922  rl_src.home = false;
923  MarkLive(rl_src);
924  StoreValue(rl_method, rl_src);
925  // If Method* has been promoted, explicitly flush
926  if (rl_method.location == kLocPhysReg) {
927    StoreRefDisp(TargetPtrReg(kSp), 0, rl_src.reg, kNotVolatile);
928  }
929
930  if (cu_->num_ins == 0) {
931    return;
932  }
933
934  // Handle dalvik registers.
935  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
936  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
937  for (int i = 0; i < cu_->num_ins; i++) {
938    RegLocation* t_loc = &ArgLocs[i];
939    OpSize op_size;
940    RegStorage reg = GetArgPhysicalReg(t_loc, &num_gpr_used, &num_fpr_used, &op_size);
941
942    if (reg.Valid()) {
943      // If arriving in register.
944
945      // We have already updated the arg location with promoted info
946      // so we can be based on it.
947      if (t_loc->location == kLocPhysReg) {
948        // Just copy it.
949        OpRegCopy(t_loc->reg, reg);
950      } else {
951        // Needs flush.
952        if (t_loc->ref) {
953          StoreRefDisp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), reg, kNotVolatile);
954        } else {
955          StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
956              kNotVolatile);
957        }
958      }
959    } else {
960      // If arriving in frame & promoted.
961      if (t_loc->location == kLocPhysReg) {
962        if (t_loc->ref) {
963          LoadRefDisp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
964        } else {
965          LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), t_loc->reg,
966                       t_loc->wide ? k64 : k32, kNotVolatile);
967        }
968      }
969    }
970    if (t_loc->wide) {
971      // Increment i to skip the next one.
972      i++;
973    }
974    //      if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
975    //        OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
976    //      } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
977    //        OpRegCopy(RegStorage::Solo32(v_map->fp_reg), reg);
978    //      } else {
979    //        StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, op_size, kNotVolatile);
980    //        if (reg.Is64Bit()) {
981    //          if (SRegOffset(start_vreg + i) + 4 != SRegOffset(start_vreg + i + 1)) {
982    //            LOG(FATAL) << "64 bit value stored in non-consecutive 4 bytes slots";
983    //          }
984    //          i += 1;
985    //        }
986    //      }
987    //    } else {
988    //      // If arriving in frame & promoted
989    //      if (v_map->core_location == kLocPhysReg) {
990    //        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
991    //                     RegStorage::Solo32(v_map->core_reg));
992    //      }
993    //      if (v_map->fp_location == kLocPhysReg) {
994    //        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->fp_reg));
995    //      }
996  }
997}
998
999/*
1000 * Load up to 5 arguments, the first three of which will be in
1001 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
1002 * and as part of the load sequence, it must be replaced with
1003 * the target method pointer.
1004 */
1005int Arm64Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1006                                       int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1007                                       const MethodReference& target_method,
1008                                       uint32_t vtable_idx, uintptr_t direct_code,
1009                                       uintptr_t direct_method, InvokeType type, bool skip_this) {
1010  return GenDalvikArgsRange(info,
1011                       call_state, pcrLabel, next_call_insn,
1012                       target_method,
1013                       vtable_idx, direct_code,
1014                       direct_method, type, skip_this);
1015}
1016
1017/*
1018 * May have 0+ arguments (also used for jumbo).  Note that
1019 * source virtual registers may be in physical registers, so may
1020 * need to be flushed to home location before copying.  This
1021 * applies to arg3 and above (see below).
1022 *
1023 * FIXME: update comments.
1024 *
1025 * Two general strategies:
1026 *    If < 20 arguments
1027 *       Pass args 3-18 using vldm/vstm block copy
1028 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1029 *    If 20+ arguments
1030 *       Pass args arg19+ using memcpy block copy
1031 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1032 *
1033 */
1034int Arm64Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1035                                     LIR** pcrLabel, NextCallInsn next_call_insn,
1036                                     const MethodReference& target_method,
1037                                     uint32_t vtable_idx, uintptr_t direct_code,
1038                                     uintptr_t direct_method, InvokeType type, bool skip_this) {
1039  /* If no arguments, just return */
1040  if (info->num_arg_words == 0)
1041    return call_state;
1042
1043  const int start_index = skip_this ? 1 : 0;
1044
1045  InToRegStorageArm64Mapper mapper;
1046  InToRegStorageMapping in_to_reg_storage_mapping;
1047  in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
1048  const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
1049  int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + 1);
1050
1051  // First of all, check whether it makes sense to use bulk copying.
1052  // Bulk copying is done only for the range case.
1053  // TODO: make a constant instead of 2
1054  if (info->is_range && regs_left_to_pass_via_stack >= 2) {
1055    // Scan the rest of the args - if in phys_reg flush to memory
1056    for (int next_arg = last_mapped_in + 1; next_arg < info->num_arg_words;) {
1057      RegLocation loc = info->args[next_arg];
1058      if (loc.wide) {
1059        loc = UpdateLocWide(loc);
1060        if (loc.location == kLocPhysReg) {
1061          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1062          StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
1063        }
1064        next_arg += 2;
1065      } else {
1066        loc = UpdateLoc(loc);
1067        if (loc.location == kLocPhysReg) {
1068          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1069          if (loc.ref) {
1070            StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
1071          } else {
1072            StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32,
1073                          kNotVolatile);
1074          }
1075        }
1076        next_arg++;
1077      }
1078    }
1079
1080    // Logic below assumes that Method pointer is at offset zero from SP.
1081    DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
1082
1083    // The rest can be copied together
1084    int start_offset = SRegOffset(info->args[last_mapped_in + 1].s_reg_low);
1085    int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + 1,
1086                                                   cu_->instruction_set);
1087
1088    int current_src_offset = start_offset;
1089    int current_dest_offset = outs_offset;
1090
1091    // Only davik regs are accessed in this loop; no next_call_insn() calls.
1092    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1093    while (regs_left_to_pass_via_stack > 0) {
1094      /*
1095       * TODO: Improve by adding block copy for large number of arguments.  This
1096       * should be done, if possible, as a target-depending helper.  For now, just
1097       * copy a Dalvik vreg at a time.
1098       */
1099      // Moving 32-bits via general purpose register.
1100      size_t bytes_to_move = sizeof(uint32_t);
1101
1102      // Instead of allocating a new temp, simply reuse one of the registers being used
1103      // for argument passing.
1104      RegStorage temp = TargetReg(kArg3, kNotWide);
1105
1106      // Now load the argument VR and store to the outs.
1107      Load32Disp(TargetPtrReg(kSp), current_src_offset, temp);
1108      Store32Disp(TargetPtrReg(kSp), current_dest_offset, temp);
1109
1110      current_src_offset += bytes_to_move;
1111      current_dest_offset += bytes_to_move;
1112      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
1113    }
1114    DCHECK_EQ(regs_left_to_pass_via_stack, 0);
1115  }
1116
1117  // Now handle rest not registers if they are
1118  if (in_to_reg_storage_mapping.IsThereStackMapped()) {
1119    RegStorage regWide = TargetReg(kArg3, kWide);
1120    for (int i = start_index; i <= last_mapped_in + regs_left_to_pass_via_stack; i++) {
1121      RegLocation rl_arg = info->args[i];
1122      rl_arg = UpdateRawLoc(rl_arg);
1123      RegStorage reg = in_to_reg_storage_mapping.Get(i);
1124      if (!reg.Valid()) {
1125        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
1126
1127        {
1128          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1129          if (rl_arg.wide) {
1130            if (rl_arg.location == kLocPhysReg) {
1131              StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
1132            } else {
1133              LoadValueDirectWideFixed(rl_arg, regWide);
1134              StoreBaseDisp(TargetPtrReg(kSp), out_offset, regWide, k64, kNotVolatile);
1135            }
1136          } else {
1137            if (rl_arg.location == kLocPhysReg) {
1138              if (rl_arg.ref) {
1139                StoreRefDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, kNotVolatile);
1140              } else {
1141                StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
1142              }
1143            } else {
1144              if (rl_arg.ref) {
1145                RegStorage regSingle = TargetReg(kArg2, kRef);
1146                LoadValueDirectFixed(rl_arg, regSingle);
1147                StoreRefDisp(TargetPtrReg(kSp), out_offset, regSingle, kNotVolatile);
1148              } else {
1149                RegStorage regSingle = TargetReg(kArg2, kNotWide);
1150                LoadValueDirectFixed(rl_arg, regSingle);
1151                StoreBaseDisp(TargetPtrReg(kSp), out_offset, regSingle, k32, kNotVolatile);
1152              }
1153            }
1154          }
1155        }
1156        call_state = next_call_insn(cu_, info, call_state, target_method,
1157                                    vtable_idx, direct_code, direct_method, type);
1158      }
1159      if (rl_arg.wide) {
1160        i++;
1161      }
1162    }
1163  }
1164
1165  // Finish with mapped registers
1166  for (int i = start_index; i <= last_mapped_in; i++) {
1167    RegLocation rl_arg = info->args[i];
1168    rl_arg = UpdateRawLoc(rl_arg);
1169    RegStorage reg = in_to_reg_storage_mapping.Get(i);
1170    if (reg.Valid()) {
1171      if (rl_arg.wide) {
1172        LoadValueDirectWideFixed(rl_arg, reg);
1173      } else {
1174        LoadValueDirectFixed(rl_arg, reg);
1175      }
1176      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
1177                                  direct_code, direct_method, type);
1178    }
1179    if (rl_arg.wide) {
1180      i++;
1181    }
1182  }
1183
1184  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
1185                           direct_code, direct_method, type);
1186  if (pcrLabel) {
1187    if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
1188      *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
1189    } else {
1190      *pcrLabel = nullptr;
1191      // In lieu of generating a check for kArg1 being null, we need to
1192      // perform a load when doing implicit checks.
1193      RegStorage tmp = AllocTemp();
1194      Load32Disp(TargetReg(kArg1, kRef), 0, tmp);
1195      MarkPossibleNullPointerException(info->opt_flags);
1196      FreeTemp(tmp);
1197    }
1198  }
1199  return call_state;
1200}
1201
1202}  // namespace art
1203