gen_common.cc revision 0025a86411145eb7cd4971f9234fc21c7b4aced1
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include "dex/compiler_ir.h"
17#include "dex/compiler_internals.h"
18#include "dex/quick/arm/arm_lir.h"
19#include "dex/quick/mir_to_lir-inl.h"
20#include "entrypoints/quick/quick_entrypoints.h"
21#include "mirror/array.h"
22#include "mirror/object_array-inl.h"
23#include "mirror/object-inl.h"
24#include "verifier/method_verifier.h"
25#include <functional>
26
27namespace art {
28
29// Shortcuts to repeatedly used long types.
30typedef mirror::ObjectArray<mirror::Object> ObjArray;
31typedef mirror::ObjectArray<mirror::Class> ClassArray;
32
33/*
34 * This source files contains "gen" codegen routines that should
35 * be applicable to most targets.  Only mid-level support utilities
36 * and "op" calls may be used here.
37 */
38
39/*
40 * Generate a kPseudoBarrier marker to indicate the boundary of special
41 * blocks.
42 */
43void Mir2Lir::GenBarrier() {
44  LIR* barrier = NewLIR0(kPseudoBarrier);
45  /* Mark all resources as being clobbered */
46  DCHECK(!barrier->flags.use_def_invalid);
47  barrier->u.m.def_mask = &kEncodeAll;
48}
49
50void Mir2Lir::GenDivZeroException() {
51  LIR* branch = OpUnconditionalBranch(nullptr);
52  AddDivZeroCheckSlowPath(branch);
53}
54
55void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
56  LIR* branch = OpCondBranch(c_code, nullptr);
57  AddDivZeroCheckSlowPath(branch);
58}
59
60void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
61  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
62  AddDivZeroCheckSlowPath(branch);
63}
64
65void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
66  class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
67   public:
68    DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
69        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
70    }
71
72    void Compile() OVERRIDE {
73      m2l_->ResetRegPool();
74      m2l_->ResetDefTracking();
75      GenerateTargetLabel(kPseudoThrowTarget);
76      if (m2l_->cu_->target64) {
77        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowDivZero), true);
78      } else {
79        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowDivZero), true);
80      }
81    }
82  };
83
84  AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
85}
86
87void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
88  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
89   public:
90    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
91        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
92          index_(index), length_(length) {
93    }
94
95    void Compile() OVERRIDE {
96      m2l_->ResetRegPool();
97      m2l_->ResetDefTracking();
98      GenerateTargetLabel(kPseudoThrowTarget);
99      if (m2l_->cu_->target64) {
100        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
101                                      index_, length_, true);
102      } else {
103        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
104                                      index_, length_, true);
105      }
106    }
107
108   private:
109    const RegStorage index_;
110    const RegStorage length_;
111  };
112
113  LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
114  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
115}
116
117void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
118  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
119   public:
120    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
121        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
122          index_(index), length_(length) {
123    }
124
125    void Compile() OVERRIDE {
126      m2l_->ResetRegPool();
127      m2l_->ResetDefTracking();
128      GenerateTargetLabel(kPseudoThrowTarget);
129
130      RegStorage arg1_32 = m2l_->TargetReg(kArg1, false);
131      RegStorage arg0_32 = m2l_->TargetReg(kArg0, false);
132
133      m2l_->OpRegCopy(arg1_32, length_);
134      m2l_->LoadConstant(arg0_32, index_);
135      if (m2l_->cu_->target64) {
136        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
137                                      arg0_32, arg1_32, true);
138      } else {
139        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
140                                      arg0_32, arg1_32, true);
141      }
142    }
143
144   private:
145    const int32_t index_;
146    const RegStorage length_;
147  };
148
149  LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
150  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
151}
152
153LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
154  class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
155   public:
156    NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
157        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
158    }
159
160    void Compile() OVERRIDE {
161      m2l_->ResetRegPool();
162      m2l_->ResetDefTracking();
163      GenerateTargetLabel(kPseudoThrowTarget);
164      if (m2l_->cu_->target64) {
165        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowNullPointer), true);
166      } else {
167        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowNullPointer), true);
168      }
169    }
170  };
171
172  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
173  AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
174  return branch;
175}
176
177/* Perform null-check on a register.  */
178LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
179  if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
180    return GenExplicitNullCheck(m_reg, opt_flags);
181  }
182  return nullptr;
183}
184
185/* Perform an explicit null-check on a register.  */
186LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
187  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
188    return NULL;
189  }
190  return GenNullCheck(m_reg);
191}
192
193void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
194  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
195    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
196      return;
197    }
198    MarkSafepointPC(last_lir_insn_);
199  }
200}
201
202void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
203  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
204    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
205      return;
206    }
207    MarkSafepointPCAfter(after);
208  }
209}
210
211void Mir2Lir::MarkPossibleStackOverflowException() {
212  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitStackOverflowChecks()) {
213    MarkSafepointPC(last_lir_insn_);
214  }
215}
216
217void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
218  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
219    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
220      return;
221    }
222    // Force an implicit null check by performing a memory operation (load) from the given
223    // register with offset 0.  This will cause a signal if the register contains 0 (null).
224    RegStorage tmp = AllocTemp();
225    // TODO: for Mips, would be best to use rZERO as the bogus register target.
226    LIR* load = Load32Disp(reg, 0, tmp);
227    FreeTemp(tmp);
228    MarkSafepointPC(load);
229  }
230}
231
232void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
233                                  RegLocation rl_src2, LIR* taken,
234                                  LIR* fall_through) {
235  DCHECK(!rl_src1.fp);
236  DCHECK(!rl_src2.fp);
237  ConditionCode cond;
238  switch (opcode) {
239    case Instruction::IF_EQ:
240      cond = kCondEq;
241      break;
242    case Instruction::IF_NE:
243      cond = kCondNe;
244      break;
245    case Instruction::IF_LT:
246      cond = kCondLt;
247      break;
248    case Instruction::IF_GE:
249      cond = kCondGe;
250      break;
251    case Instruction::IF_GT:
252      cond = kCondGt;
253      break;
254    case Instruction::IF_LE:
255      cond = kCondLe;
256      break;
257    default:
258      cond = static_cast<ConditionCode>(0);
259      LOG(FATAL) << "Unexpected opcode " << opcode;
260  }
261
262  // Normalize such that if either operand is constant, src2 will be constant
263  if (rl_src1.is_const) {
264    RegLocation rl_temp = rl_src1;
265    rl_src1 = rl_src2;
266    rl_src2 = rl_temp;
267    cond = FlipComparisonOrder(cond);
268  }
269
270  rl_src1 = LoadValue(rl_src1);
271  // Is this really an immediate comparison?
272  if (rl_src2.is_const) {
273    // If it's already live in a register or not easily materialized, just keep going
274    RegLocation rl_temp = UpdateLoc(rl_src2);
275    if ((rl_temp.location == kLocDalvikFrame) &&
276        InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) {
277      // OK - convert this to a compare immediate and branch
278      OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
279      return;
280    }
281  }
282  rl_src2 = LoadValue(rl_src2);
283  OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
284}
285
286void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
287                                      LIR* fall_through) {
288  ConditionCode cond;
289  DCHECK(!rl_src.fp);
290  rl_src = LoadValue(rl_src);
291  switch (opcode) {
292    case Instruction::IF_EQZ:
293      cond = kCondEq;
294      break;
295    case Instruction::IF_NEZ:
296      cond = kCondNe;
297      break;
298    case Instruction::IF_LTZ:
299      cond = kCondLt;
300      break;
301    case Instruction::IF_GEZ:
302      cond = kCondGe;
303      break;
304    case Instruction::IF_GTZ:
305      cond = kCondGt;
306      break;
307    case Instruction::IF_LEZ:
308      cond = kCondLe;
309      break;
310    default:
311      cond = static_cast<ConditionCode>(0);
312      LOG(FATAL) << "Unexpected opcode " << opcode;
313  }
314  OpCmpImmBranch(cond, rl_src.reg, 0, taken);
315}
316
317void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
318  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
319  if (rl_src.location == kLocPhysReg) {
320    OpRegCopy(rl_result.reg, rl_src.reg);
321  } else {
322    LoadValueDirect(rl_src, rl_result.reg.GetLow());
323  }
324  OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
325  StoreValueWide(rl_dest, rl_result);
326}
327
328void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
329                              RegLocation rl_src) {
330  rl_src = LoadValue(rl_src, kCoreReg);
331  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
332  OpKind op = kOpInvalid;
333  switch (opcode) {
334    case Instruction::INT_TO_BYTE:
335      op = kOp2Byte;
336      break;
337    case Instruction::INT_TO_SHORT:
338       op = kOp2Short;
339       break;
340    case Instruction::INT_TO_CHAR:
341       op = kOp2Char;
342       break;
343    default:
344      LOG(ERROR) << "Bad int conversion type";
345  }
346  OpRegReg(op, rl_result.reg, rl_src.reg);
347  StoreValue(rl_dest, rl_result);
348}
349
350template <size_t pointer_size>
351static void GenNewArrayImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu,
352                            uint32_t type_idx, RegLocation rl_dest,
353                            RegLocation rl_src) {
354  mir_to_lir->FlushAllRegs();  /* Everything to home location */
355  ThreadOffset<pointer_size> func_offset(-1);
356  const DexFile* dex_file = cu->dex_file;
357  CompilerDriver* driver = cu->compiler_driver;
358  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *dex_file,
359                                                      type_idx)) {
360    bool is_type_initialized;  // Ignored as an array does not have an initializer.
361    bool use_direct_type_ptr;
362    uintptr_t direct_type_ptr;
363    bool is_finalizable;
364    if (kEmbedClassInCode &&
365        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
366                                   &direct_type_ptr, &is_finalizable)) {
367      // The fast path.
368      if (!use_direct_type_ptr) {
369        mir_to_lir->LoadClassType(type_idx, kArg0);
370        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
371        mir_to_lir->CallRuntimeHelperRegMethodRegLocation(func_offset, mir_to_lir->TargetReg(kArg0, false),
372                                                          rl_src, true);
373      } else {
374        // Use the direct pointer.
375        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
376        mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, direct_type_ptr, rl_src,
377                                                          true);
378      }
379    } else {
380      // The slow path.
381      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArray);
382      mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
383    }
384    DCHECK_NE(func_offset.Int32Value(), -1);
385  } else {
386    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayWithAccessCheck);
387    mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
388  }
389  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
390  mir_to_lir->StoreValue(rl_dest, rl_result);
391}
392
393/*
394 * Let helper function take care of everything.  Will call
395 * Array::AllocFromCode(type_idx, method, count);
396 * Note: AllocFromCode will handle checks for errNegativeArraySize.
397 */
398void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
399                          RegLocation rl_src) {
400  if (cu_->target64) {
401    GenNewArrayImpl<8>(this, cu_, type_idx, rl_dest, rl_src);
402  } else {
403    GenNewArrayImpl<4>(this, cu_, type_idx, rl_dest, rl_src);
404  }
405}
406
407template <size_t pointer_size>
408static void GenFilledNewArrayCall(Mir2Lir* mir_to_lir, CompilationUnit* cu, int elems, int type_idx) {
409  ThreadOffset<pointer_size> func_offset(-1);
410  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *cu->dex_file,
411                                                      type_idx)) {
412    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArray);
413  } else {
414    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArrayWithAccessCheck);
415  }
416  mir_to_lir->CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true);
417}
418
419/*
420 * Similar to GenNewArray, but with post-allocation initialization.
421 * Verifier guarantees we're dealing with an array class.  Current
422 * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
423 * Current code also throws internal unimp if not 'L', '[' or 'I'.
424 */
425void Mir2Lir::GenFilledNewArray(CallInfo* info) {
426  int elems = info->num_arg_words;
427  int type_idx = info->index;
428  FlushAllRegs();  /* Everything to home location */
429  if (cu_->target64) {
430    GenFilledNewArrayCall<8>(this, cu_, elems, type_idx);
431  } else {
432    GenFilledNewArrayCall<4>(this, cu_, elems, type_idx);
433  }
434  FreeTemp(TargetReg(kArg2, false));
435  FreeTemp(TargetReg(kArg1, false));
436  /*
437   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
438   * return region.  Because AllocFromCode placed the new array
439   * in kRet0, we'll just lock it into place.  When debugger support is
440   * added, it may be necessary to additionally copy all return
441   * values to a home location in thread-local storage
442   */
443  RegStorage ref_reg = TargetRefReg(kRet0);
444  LockTemp(ref_reg);
445
446  // TODO: use the correct component size, currently all supported types
447  // share array alignment with ints (see comment at head of function)
448  size_t component_size = sizeof(int32_t);
449
450  // Having a range of 0 is legal
451  if (info->is_range && (elems > 0)) {
452    /*
453     * Bit of ugliness here.  We're going generate a mem copy loop
454     * on the register range, but it is possible that some regs
455     * in the range have been promoted.  This is unlikely, but
456     * before generating the copy, we'll just force a flush
457     * of any regs in the source range that have been promoted to
458     * home location.
459     */
460    for (int i = 0; i < elems; i++) {
461      RegLocation loc = UpdateLoc(info->args[i]);
462      if (loc.location == kLocPhysReg) {
463        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
464        Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
465      }
466    }
467    /*
468     * TUNING note: generated code here could be much improved, but
469     * this is an uncommon operation and isn't especially performance
470     * critical.
471     */
472    // This is addressing the stack, which may be out of the 4G area.
473    RegStorage r_src = AllocTempRef();
474    RegStorage r_dst = AllocTempRef();
475    RegStorage r_idx = AllocTempRef();  // Not really a reference, but match src/dst.
476    RegStorage r_val;
477    switch (cu_->instruction_set) {
478      case kThumb2:
479      case kArm64:
480        r_val = TargetReg(kLr, false);
481        break;
482      case kX86:
483      case kX86_64:
484        FreeTemp(ref_reg);
485        r_val = AllocTemp();
486        break;
487      case kMips:
488        r_val = AllocTemp();
489        break;
490      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
491    }
492    // Set up source pointer
493    RegLocation rl_first = info->args[0];
494    OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
495    // Set up the target pointer
496    OpRegRegImm(kOpAdd, r_dst, ref_reg,
497                mirror::Array::DataOffset(component_size).Int32Value());
498    // Set up the loop counter (known to be > 0)
499    LoadConstant(r_idx, elems - 1);
500    // Generate the copy loop.  Going backwards for convenience
501    LIR* target = NewLIR0(kPseudoTargetLabel);
502    // Copy next element
503    {
504      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
505      LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
506      // NOTE: No dalvik register annotation, local optimizations will be stopped
507      // by the loop boundaries.
508    }
509    StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
510    FreeTemp(r_val);
511    OpDecAndBranch(kCondGe, r_idx, target);
512    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
513      // Restore the target pointer
514      OpRegRegImm(kOpAdd, ref_reg, r_dst,
515                  -mirror::Array::DataOffset(component_size).Int32Value());
516    }
517  } else if (!info->is_range) {
518    // TUNING: interleave
519    for (int i = 0; i < elems; i++) {
520      RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
521      Store32Disp(ref_reg,
522                  mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
523      // If the LoadValue caused a temp to be allocated, free it
524      if (IsTemp(rl_arg.reg)) {
525        FreeTemp(rl_arg.reg);
526      }
527    }
528  }
529  if (info->result.location != kLocInvalid) {
530    StoreValue(info->result, GetReturn(kRefReg));
531  }
532}
533
534//
535// Slow path to ensure a class is initialized for sget/sput.
536//
537class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
538 public:
539  StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
540                      RegStorage r_base) :
541    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
542               storage_index_(storage_index), r_base_(r_base) {
543  }
544
545  void Compile() {
546    LIR* unresolved_target = GenerateTargetLabel();
547    uninit_->target = unresolved_target;
548    if (cu_->target64) {
549      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeStaticStorage),
550                                 storage_index_, true);
551    } else {
552      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeStaticStorage),
553                                 storage_index_, true);
554    }
555    // Copy helper's result into r_base, a no-op on all but MIPS.
556    m2l_->OpRegCopy(r_base_,  m2l_->TargetRefReg(kRet0));
557
558    m2l_->OpUnconditionalBranch(cont_);
559  }
560
561 private:
562  LIR* const uninit_;
563  const int storage_index_;
564  const RegStorage r_base_;
565};
566
567template <size_t pointer_size>
568static void GenSputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
569                        const MirSFieldLoweringInfo* field_info, RegLocation rl_src) {
570  ThreadOffset<pointer_size> setter_offset =
571      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Static)
572          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjStatic)
573              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Static));
574  mir_to_lir->CallRuntimeHelperImmRegLocation(setter_offset, field_info->FieldIndex(), rl_src,
575                                              true);
576}
577
578void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
579                      bool is_object) {
580  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
581  cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
582  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
583  if (!SLOW_FIELD_PATH && field_info.FastPut() &&
584      (!field_info.IsVolatile() || SupportsVolatileLoadStore(store_size))) {
585    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
586    RegStorage r_base;
587    if (field_info.IsReferrersClass()) {
588      // Fast path, static storage base is this method's class
589      RegLocation rl_method = LoadCurrMethod();
590      r_base = AllocTempRef();
591      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
592                  kNotVolatile);
593      if (IsTemp(rl_method.reg)) {
594        FreeTemp(rl_method.reg);
595      }
596    } else {
597      // Medium path, static storage base in a different class which requires checks that the other
598      // class is initialized.
599      // TODO: remove initialized check now that we are initializing classes in the compiler driver.
600      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
601      // May do runtime call so everything to home locations.
602      FlushAllRegs();
603      // Using fixed register to sync with possible call to runtime support.
604      RegStorage r_method = TargetRefReg(kArg1);
605      LockTemp(r_method);
606      LoadCurrMethodDirect(r_method);
607      r_base = TargetRefReg(kArg0);
608      LockTemp(r_base);
609      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
610                  kNotVolatile);
611      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
612      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
613      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
614      if (!field_info.IsInitialized() &&
615          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
616        // Check if r_base is NULL or a not yet initialized class.
617
618        // The slow path is invoked if the r_base is NULL or the class pointed
619        // to by it is not initialized.
620        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
621        RegStorage r_tmp = TargetReg(kArg2, false);
622        LockTemp(r_tmp);
623        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
624                                          mirror::Class::StatusOffset().Int32Value(),
625                                          mirror::Class::kStatusInitialized, NULL);
626        LIR* cont = NewLIR0(kPseudoTargetLabel);
627
628        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
629                                                     field_info.StorageIndex(), r_base));
630
631        FreeTemp(r_tmp);
632        // Ensure load of status and load of value don't re-order.
633        GenMemBarrier(kLoadLoad);
634      }
635      FreeTemp(r_method);
636    }
637    // rBase now holds static storage base
638    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
639    if (is_long_or_double) {
640      rl_src = LoadValueWide(rl_src, reg_class);
641    } else {
642      rl_src = LoadValue(rl_src, reg_class);
643    }
644    if (is_object) {
645      StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
646                   field_info.IsVolatile() ? kVolatile : kNotVolatile);
647    } else {
648      StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size,
649                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
650    }
651    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
652      MarkGCCard(rl_src.reg, r_base);
653    }
654    FreeTemp(r_base);
655  } else {
656    FlushAllRegs();  // Everything to home locations
657    if (cu_->target64) {
658      GenSputCall<8>(this, is_long_or_double, is_object, &field_info, rl_src);
659    } else {
660      GenSputCall<4>(this, is_long_or_double, is_object, &field_info, rl_src);
661    }
662  }
663}
664
665template <size_t pointer_size>
666static void GenSgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
667                        const MirSFieldLoweringInfo* field_info) {
668  ThreadOffset<pointer_size> getter_offset =
669      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Static)
670          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjStatic)
671              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Static));
672  mir_to_lir->CallRuntimeHelperImm(getter_offset, field_info->FieldIndex(), true);
673}
674
675void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
676                      bool is_long_or_double, bool is_object) {
677  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
678  cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
679  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
680  if (!SLOW_FIELD_PATH && field_info.FastGet() &&
681      (!field_info.IsVolatile() || SupportsVolatileLoadStore(load_size))) {
682    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
683    RegStorage r_base;
684    if (field_info.IsReferrersClass()) {
685      // Fast path, static storage base is this method's class
686      RegLocation rl_method  = LoadCurrMethod();
687      r_base = AllocTempRef();
688      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
689                  kNotVolatile);
690    } else {
691      // Medium path, static storage base in a different class which requires checks that the other
692      // class is initialized
693      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
694      // May do runtime call so everything to home locations.
695      FlushAllRegs();
696      // Using fixed register to sync with possible call to runtime support.
697      RegStorage r_method = TargetRefReg(kArg1);
698      LockTemp(r_method);
699      LoadCurrMethodDirect(r_method);
700      r_base = TargetRefReg(kArg0);
701      LockTemp(r_base);
702      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
703                  kNotVolatile);
704      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
705      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
706      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
707      if (!field_info.IsInitialized() &&
708          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
709        // Check if r_base is NULL or a not yet initialized class.
710
711        // The slow path is invoked if the r_base is NULL or the class pointed
712        // to by it is not initialized.
713        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
714        RegStorage r_tmp = TargetReg(kArg2, false);
715        LockTemp(r_tmp);
716        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
717                                          mirror::Class::StatusOffset().Int32Value(),
718                                          mirror::Class::kStatusInitialized, NULL);
719        LIR* cont = NewLIR0(kPseudoTargetLabel);
720
721        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
722                                                     field_info.StorageIndex(), r_base));
723
724        FreeTemp(r_tmp);
725        // Ensure load of status and load of value don't re-order.
726        GenMemBarrier(kLoadLoad);
727      }
728      FreeTemp(r_method);
729    }
730    // r_base now holds static storage base
731    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
732    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
733
734    int field_offset = field_info.FieldOffset().Int32Value();
735    if (is_object) {
736      LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
737          kNotVolatile);
738    } else {
739      LoadBaseDisp(r_base, field_offset, rl_result.reg, load_size, field_info.IsVolatile() ?
740          kVolatile : kNotVolatile);
741    }
742    FreeTemp(r_base);
743
744    if (is_long_or_double) {
745      StoreValueWide(rl_dest, rl_result);
746    } else {
747      StoreValue(rl_dest, rl_result);
748    }
749  } else {
750    FlushAllRegs();  // Everything to home locations
751    if (cu_->target64) {
752      GenSgetCall<8>(this, is_long_or_double, is_object, &field_info);
753    } else {
754      GenSgetCall<4>(this, is_long_or_double, is_object, &field_info);
755    }
756    // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
757    if (is_long_or_double) {
758      RegLocation rl_result = GetReturnWide(kCoreReg);
759      StoreValueWide(rl_dest, rl_result);
760    } else {
761      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
762      StoreValue(rl_dest, rl_result);
763    }
764  }
765}
766
767// Generate code for all slow paths.
768void Mir2Lir::HandleSlowPaths() {
769  // We should check slow_paths_.Size() every time, because a new slow path
770  // may be created during slowpath->Compile().
771  for (size_t i = 0; i < slow_paths_.Size(); ++i) {
772    LIRSlowPath* slowpath = slow_paths_.Get(i);
773    slowpath->Compile();
774  }
775  slow_paths_.Reset();
776}
777
778template <size_t pointer_size>
779static void GenIgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
780                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj) {
781  ThreadOffset<pointer_size> getter_offset =
782      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Instance)
783          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjInstance)
784              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Instance));
785  mir_to_lir->CallRuntimeHelperImmRegLocation(getter_offset, field_info->FieldIndex(), rl_obj,
786                                              true);
787}
788
789void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
790                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
791                      bool is_object) {
792  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
793  cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
794  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
795  if (!SLOW_FIELD_PATH && field_info.FastGet() &&
796      (!field_info.IsVolatile() || SupportsVolatileLoadStore(load_size))) {
797    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
798    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
799    rl_obj = LoadValue(rl_obj, kRefReg);
800    GenNullCheck(rl_obj.reg, opt_flags);
801    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
802    int field_offset = field_info.FieldOffset().Int32Value();
803    LIR* load_lir;
804    if (is_object) {
805      load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
806          kVolatile : kNotVolatile);
807    } else {
808      load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, load_size,
809                              field_info.IsVolatile() ? kVolatile : kNotVolatile);
810    }
811    MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
812    if (is_long_or_double) {
813      StoreValueWide(rl_dest, rl_result);
814    } else {
815      StoreValue(rl_dest, rl_result);
816    }
817  } else {
818    if (cu_->target64) {
819      GenIgetCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj);
820    } else {
821      GenIgetCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj);
822    }
823    // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
824    if (is_long_or_double) {
825      RegLocation rl_result = GetReturnWide(kCoreReg);
826      StoreValueWide(rl_dest, rl_result);
827    } else {
828      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
829      StoreValue(rl_dest, rl_result);
830    }
831  }
832}
833
834template <size_t pointer_size>
835static void GenIputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
836                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj,
837                        RegLocation rl_src) {
838  ThreadOffset<pointer_size> setter_offset =
839      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Instance)
840          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjInstance)
841              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Instance));
842  mir_to_lir->CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_info->FieldIndex(),
843                                                         rl_obj, rl_src, true);
844}
845
846void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
847                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
848                      bool is_object) {
849  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
850  cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
851  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
852  if (!SLOW_FIELD_PATH && field_info.FastPut() &&
853      (!field_info.IsVolatile() || SupportsVolatileLoadStore(store_size))) {
854    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
855    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
856    rl_obj = LoadValue(rl_obj, kRefReg);
857    if (is_long_or_double) {
858      rl_src = LoadValueWide(rl_src, reg_class);
859    } else {
860      rl_src = LoadValue(rl_src, reg_class);
861    }
862    GenNullCheck(rl_obj.reg, opt_flags);
863    int field_offset = field_info.FieldOffset().Int32Value();
864    LIR* store;
865    if (is_object) {
866      store = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
867          kVolatile : kNotVolatile);
868    } else {
869      store = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, store_size,
870                            field_info.IsVolatile() ? kVolatile : kNotVolatile);
871    }
872    MarkPossibleNullPointerExceptionAfter(opt_flags, store);
873    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
874      MarkGCCard(rl_src.reg, rl_obj.reg);
875    }
876  } else {
877    if (cu_->target64) {
878      GenIputCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
879    } else {
880      GenIputCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
881    }
882  }
883}
884
885template <size_t pointer_size>
886static void GenArrayObjPutCall(Mir2Lir* mir_to_lir, bool needs_range_check, bool needs_null_check,
887                               RegLocation rl_array, RegLocation rl_index, RegLocation rl_src) {
888  ThreadOffset<pointer_size> helper = needs_range_check
889        ? (needs_null_check ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithNullAndBoundCheck)
890                            : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithBoundCheck))
891        : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObject);
892  mir_to_lir->CallRuntimeHelperRegLocationRegLocationRegLocation(helper, rl_array, rl_index, rl_src,
893                                                                 true);
894}
895
896void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
897                             RegLocation rl_src) {
898  bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
899  bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
900      (opt_flags & MIR_IGNORE_NULL_CHECK));
901  if (cu_->target64) {
902    GenArrayObjPutCall<8>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
903  } else {
904    GenArrayObjPutCall<4>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
905  }
906}
907
908void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
909  RegLocation rl_method = LoadCurrMethod();
910  CheckRegLocation(rl_method);
911  RegStorage res_reg = AllocTempRef();
912  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
913  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
914                                                        *cu_->dex_file,
915                                                        type_idx)) {
916    // Call out to helper which resolves type and verifies access.
917    // Resolved type returned in kRet0.
918    if (cu_->target64) {
919      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
920                              type_idx, rl_method.reg, true);
921    } else {
922      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
923                              type_idx, rl_method.reg, true);
924    }
925    RegLocation rl_result = GetReturn(kRefReg);
926    StoreValue(rl_dest, rl_result);
927  } else {
928    // We're don't need access checks, load type from dex cache
929    int32_t dex_cache_offset =
930        mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
931    LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg, kNotVolatile);
932    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
933    LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
934    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
935        type_idx) || SLOW_TYPE_PATH) {
936      // Slow path, at runtime test if type is null and if so initialize
937      FlushAllRegs();
938      LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
939      LIR* cont = NewLIR0(kPseudoTargetLabel);
940
941      // Object to generate the slow path for class resolution.
942      class SlowPath : public LIRSlowPath {
943       public:
944        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
945                 const RegLocation& rl_method, const RegLocation& rl_result) :
946                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
947                   rl_method_(rl_method), rl_result_(rl_result) {
948        }
949
950        void Compile() {
951          GenerateTargetLabel();
952
953          if (cu_->target64) {
954            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
955                                          rl_method_.reg, true);
956          } else {
957            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
958                                                      rl_method_.reg, true);
959          }
960          m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetRefReg(kRet0));
961
962          m2l_->OpUnconditionalBranch(cont_);
963        }
964
965       private:
966        const int type_idx_;
967        const RegLocation rl_method_;
968        const RegLocation rl_result_;
969      };
970
971      // Add to list for future.
972      AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
973
974      StoreValue(rl_dest, rl_result);
975     } else {
976      // Fast path, we're done - just store result
977      StoreValue(rl_dest, rl_result);
978    }
979  }
980}
981
982void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
983  /* NOTE: Most strings should be available at compile time */
984  int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
985                                                                                      Int32Value();
986  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
987      *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
988    // slow path, resolve string if not in dex cache
989    FlushAllRegs();
990    LockCallTemps();  // Using explicit registers
991
992    // If the Method* is already in a register, we can save a copy.
993    RegLocation rl_method = mir_graph_->GetMethodLoc();
994    RegStorage r_method;
995    if (rl_method.location == kLocPhysReg) {
996      // A temp would conflict with register use below.
997      DCHECK(!IsTemp(rl_method.reg));
998      r_method = rl_method.reg;
999    } else {
1000      r_method = TargetRefReg(kArg2);
1001      LoadCurrMethodDirect(r_method);
1002    }
1003    LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(),
1004                TargetRefReg(kArg0), kNotVolatile);
1005
1006    // Might call out to helper, which will return resolved string in kRet0
1007    LoadRefDisp(TargetRefReg(kArg0), offset_of_string, TargetRefReg(kRet0), kNotVolatile);
1008    LIR* fromfast = OpCmpImmBranch(kCondEq, TargetRefReg(kRet0), 0, NULL);
1009    LIR* cont = NewLIR0(kPseudoTargetLabel);
1010
1011    {
1012      // Object to generate the slow path for string resolution.
1013      class SlowPath : public LIRSlowPath {
1014       public:
1015        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
1016          LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
1017          r_method_(r_method), string_idx_(string_idx) {
1018        }
1019
1020        void Compile() {
1021          GenerateTargetLabel();
1022          if (cu_->target64) {
1023            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pResolveString),
1024                                          r_method_, string_idx_, true);
1025          } else {
1026            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pResolveString),
1027                                          r_method_, string_idx_, true);
1028          }
1029          m2l_->OpUnconditionalBranch(cont_);
1030        }
1031
1032       private:
1033         const RegStorage r_method_;
1034         const int32_t string_idx_;
1035      };
1036
1037      AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
1038    }
1039
1040    GenBarrier();
1041    StoreValue(rl_dest, GetReturn(kRefReg));
1042  } else {
1043    RegLocation rl_method = LoadCurrMethod();
1044    RegStorage res_reg = AllocTempRef();
1045    RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1046    LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg,
1047                kNotVolatile);
1048    LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
1049    StoreValue(rl_dest, rl_result);
1050  }
1051}
1052
1053template <size_t pointer_size>
1054static void GenNewInstanceImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, uint32_t type_idx,
1055                               RegLocation rl_dest) {
1056  mir_to_lir->FlushAllRegs();  /* Everything to home location */
1057  // alloc will always check for resolution, do we also need to verify
1058  // access because the verifier was unable to?
1059  ThreadOffset<pointer_size> func_offset(-1);
1060  const DexFile* dex_file = cu->dex_file;
1061  CompilerDriver* driver = cu->compiler_driver;
1062  if (driver->CanAccessInstantiableTypeWithoutChecks(
1063      cu->method_idx, *dex_file, type_idx)) {
1064    bool is_type_initialized;
1065    bool use_direct_type_ptr;
1066    uintptr_t direct_type_ptr;
1067    bool is_finalizable;
1068    if (kEmbedClassInCode &&
1069        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
1070                                   &direct_type_ptr, &is_finalizable) &&
1071                                   !is_finalizable) {
1072      // The fast path.
1073      if (!use_direct_type_ptr) {
1074        mir_to_lir->LoadClassType(type_idx, kArg0);
1075        if (!is_type_initialized) {
1076          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1077          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetRefReg(kArg0), true);
1078        } else {
1079          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1080          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetRefReg(kArg0), true);
1081        }
1082      } else {
1083        // Use the direct pointer.
1084        if (!is_type_initialized) {
1085          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1086          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1087        } else {
1088          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1089          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1090        }
1091      }
1092    } else {
1093      // The slow path.
1094      DCHECK_EQ(func_offset.Int32Value(), -1);
1095      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObject);
1096      mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1097    }
1098    DCHECK_NE(func_offset.Int32Value(), -1);
1099  } else {
1100    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectWithAccessCheck);
1101    mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1102  }
1103  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
1104  mir_to_lir->StoreValue(rl_dest, rl_result);
1105}
1106
1107/*
1108 * Let helper function take care of everything.  Will
1109 * call Class::NewInstanceFromCode(type_idx, method);
1110 */
1111void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
1112  if (cu_->target64) {
1113    GenNewInstanceImpl<8>(this, cu_, type_idx, rl_dest);
1114  } else {
1115    GenNewInstanceImpl<4>(this, cu_, type_idx, rl_dest);
1116  }
1117}
1118
1119void Mir2Lir::GenThrow(RegLocation rl_src) {
1120  FlushAllRegs();
1121  if (cu_->target64) {
1122    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pDeliverException), rl_src, true);
1123  } else {
1124    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pDeliverException), rl_src, true);
1125  }
1126}
1127
1128// For final classes there are no sub-classes to check and so we can answer the instance-of
1129// question with simple comparisons.
1130void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
1131                                 RegLocation rl_src) {
1132  // X86 has its own implementation.
1133  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1134
1135  RegLocation object = LoadValue(rl_src, kRefReg);
1136  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1137  RegStorage result_reg = rl_result.reg;
1138  if (IsSameReg(result_reg, object.reg)) {
1139    result_reg = AllocTypedTemp(false, kCoreReg);
1140    DCHECK(!IsSameReg(result_reg, object.reg));
1141  }
1142  LoadConstant(result_reg, 0);     // assume false
1143  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1144
1145  RegStorage check_class = AllocTypedTemp(false, kRefReg);
1146  RegStorage object_class = AllocTypedTemp(false, kRefReg);
1147
1148  LoadCurrMethodDirect(check_class);
1149  if (use_declaring_class) {
1150    LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
1151                kNotVolatile);
1152    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1153                kNotVolatile);
1154  } else {
1155    LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1156                check_class, kNotVolatile);
1157    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1158                kNotVolatile);
1159    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1160    LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
1161  }
1162
1163  LIR* ne_branchover = NULL;
1164  // FIXME: what should we be comparing here? compressed or decompressed references?
1165  if (cu_->instruction_set == kThumb2) {
1166    OpRegReg(kOpCmp, check_class, object_class);  // Same?
1167    LIR* it = OpIT(kCondEq, "");   // if-convert the test
1168    LoadConstant(result_reg, 1);     // .eq case - load true
1169    OpEndIT(it);
1170  } else {
1171    ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL);
1172    LoadConstant(result_reg, 1);     // eq case - load true
1173  }
1174  LIR* target = NewLIR0(kPseudoTargetLabel);
1175  null_branchover->target = target;
1176  if (ne_branchover != NULL) {
1177    ne_branchover->target = target;
1178  }
1179  FreeTemp(object_class);
1180  FreeTemp(check_class);
1181  if (IsTemp(result_reg)) {
1182    OpRegCopy(rl_result.reg, result_reg);
1183    FreeTemp(result_reg);
1184  }
1185  StoreValue(rl_dest, rl_result);
1186}
1187
1188void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1189                                         bool type_known_abstract, bool use_declaring_class,
1190                                         bool can_assume_type_is_in_dex_cache,
1191                                         uint32_t type_idx, RegLocation rl_dest,
1192                                         RegLocation rl_src) {
1193  // X86 has its own implementation.
1194  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1195
1196  FlushAllRegs();
1197  // May generate a call - use explicit registers
1198  LockCallTemps();
1199  RegStorage method_reg = TargetRefReg(kArg1);
1200  LoadCurrMethodDirect(method_reg);   // kArg1 <= current Method*
1201  RegStorage class_reg = TargetRefReg(kArg2);  // kArg2 will hold the Class*
1202  if (needs_access_check) {
1203    // Check we have access to type_idx and if not throw IllegalAccessError,
1204    // returns Class* in kArg0
1205    if (cu_->target64) {
1206      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1207                           type_idx, true);
1208    } else {
1209      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1210                           type_idx, true);
1211    }
1212    OpRegCopy(class_reg, TargetRefReg(kRet0));  // Align usage with fast path
1213    LoadValueDirectFixed(rl_src, TargetRefReg(kArg0));  // kArg0 <= ref
1214  } else if (use_declaring_class) {
1215    LoadValueDirectFixed(rl_src, TargetRefReg(kArg0));  // kArg0 <= ref
1216    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1217                class_reg, kNotVolatile);
1218  } else {
1219    // Load dex cache entry into class_reg (kArg2)
1220    LoadValueDirectFixed(rl_src, TargetRefReg(kArg0));  // kArg0 <= ref
1221    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1222                class_reg, kNotVolatile);
1223    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1224    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1225    if (!can_assume_type_is_in_dex_cache) {
1226      // Need to test presence of type in dex cache at runtime
1227      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1228      // Not resolved
1229      // Call out to helper, which will return resolved type in kRet0
1230      if (cu_->target64) {
1231        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx, true);
1232      } else {
1233        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
1234      }
1235      OpRegCopy(TargetRefReg(kArg2), TargetRefReg(kRet0));  // Align usage with fast path
1236      LoadValueDirectFixed(rl_src, TargetRefReg(kArg0));  /* reload Ref */
1237      // Rejoin code paths
1238      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1239      hop_branch->target = hop_target;
1240    }
1241  }
1242  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1243  RegLocation rl_result = GetReturn(kCoreReg);
1244  if (cu_->instruction_set == kMips) {
1245    // On MIPS rArg0 != rl_result, place false in result if branch is taken.
1246    LoadConstant(rl_result.reg, 0);
1247  }
1248  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetRefReg(kArg0), 0, NULL);
1249
1250  /* load object->klass_ */
1251  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1252  LoadRefDisp(TargetRefReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetRefReg(kArg1),
1253              kNotVolatile);
1254  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1255  LIR* branchover = NULL;
1256  if (type_known_final) {
1257    // rl_result == ref == null == 0.
1258    if (cu_->instruction_set == kThumb2) {
1259      OpRegReg(kOpCmp, TargetRefReg(kArg1), TargetRefReg(kArg2));  // Same?
1260      LIR* it = OpIT(kCondEq, "E");   // if-convert the test
1261      LoadConstant(rl_result.reg, 1);     // .eq case - load true
1262      LoadConstant(rl_result.reg, 0);     // .ne case - load false
1263      OpEndIT(it);
1264    } else {
1265      LoadConstant(rl_result.reg, 0);     // ne case - load false
1266      branchover = OpCmpBranch(kCondNe, TargetRefReg(kArg1), TargetRefReg(kArg2), NULL);
1267      LoadConstant(rl_result.reg, 1);     // eq case - load true
1268    }
1269  } else {
1270    if (cu_->instruction_set == kThumb2) {
1271      RegStorage r_tgt = cu_->target64 ?
1272          LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial)) :
1273          LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1274      LIR* it = nullptr;
1275      if (!type_known_abstract) {
1276      /* Uses conditional nullification */
1277        OpRegReg(kOpCmp, TargetRefReg(kArg1), TargetRefReg(kArg2));  // Same?
1278        it = OpIT(kCondEq, "EE");   // if-convert the test
1279        LoadConstant(TargetReg(kArg0, false), 1);     // .eq case - load true
1280      }
1281      OpRegCopy(TargetRefReg(kArg0), TargetRefReg(kArg2));    // .ne case - arg0 <= class
1282      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1283      if (it != nullptr) {
1284        OpEndIT(it);
1285      }
1286      FreeTemp(r_tgt);
1287    } else {
1288      if (!type_known_abstract) {
1289        /* Uses branchovers */
1290        LoadConstant(rl_result.reg, 1);     // assume true
1291        branchover = OpCmpBranch(kCondEq, TargetRefReg(kArg1), TargetRefReg(kArg2), NULL);
1292      }
1293      RegStorage r_tgt = cu_->target64 ?
1294          LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial)) :
1295          LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1296      OpRegCopy(TargetRefReg(kArg0), TargetRefReg(kArg2));    // .ne case - arg0 <= class
1297      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1298      FreeTemp(r_tgt);
1299    }
1300  }
1301  // TODO: only clobber when type isn't final?
1302  ClobberCallerSave();
1303  /* branch targets here */
1304  LIR* target = NewLIR0(kPseudoTargetLabel);
1305  StoreValue(rl_dest, rl_result);
1306  branch1->target = target;
1307  if (branchover != NULL) {
1308    branchover->target = target;
1309  }
1310}
1311
1312void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1313  bool type_known_final, type_known_abstract, use_declaring_class;
1314  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1315                                                                              *cu_->dex_file,
1316                                                                              type_idx,
1317                                                                              &type_known_final,
1318                                                                              &type_known_abstract,
1319                                                                              &use_declaring_class);
1320  bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1321      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1322
1323  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1324    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1325  } else {
1326    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1327                               use_declaring_class, can_assume_type_is_in_dex_cache,
1328                               type_idx, rl_dest, rl_src);
1329  }
1330}
1331
1332void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1333  bool type_known_final, type_known_abstract, use_declaring_class;
1334  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1335                                                                              *cu_->dex_file,
1336                                                                              type_idx,
1337                                                                              &type_known_final,
1338                                                                              &type_known_abstract,
1339                                                                              &use_declaring_class);
1340  // Note: currently type_known_final is unused, as optimizing will only improve the performance
1341  // of the exception throw path.
1342  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1343  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1344    // Verifier type analysis proved this check cast would never cause an exception.
1345    return;
1346  }
1347  FlushAllRegs();
1348  // May generate a call - use explicit registers
1349  LockCallTemps();
1350  RegStorage method_reg = TargetRefReg(kArg1);
1351  LoadCurrMethodDirect(method_reg);  // kArg1 <= current Method*
1352  RegStorage class_reg = TargetRefReg(kArg2);  // kArg2 will hold the Class*
1353  if (needs_access_check) {
1354    // Check we have access to type_idx and if not throw IllegalAccessError,
1355    // returns Class* in kRet0
1356    // InitializeTypeAndVerifyAccess(idx, method)
1357    if (cu_->target64) {
1358      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1359                           type_idx, true);
1360    } else {
1361      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1362                           type_idx, true);
1363    }
1364    OpRegCopy(class_reg, TargetRefReg(kRet0));  // Align usage with fast path
1365  } else if (use_declaring_class) {
1366    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1367                class_reg, kNotVolatile);
1368  } else {
1369    // Load dex cache entry into class_reg (kArg2)
1370    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1371                class_reg, kNotVolatile);
1372    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1373    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1374    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1375      // Need to test presence of type in dex cache at runtime
1376      LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1377      LIR* cont = NewLIR0(kPseudoTargetLabel);
1378
1379      // Slow path to initialize the type.  Executed if the type is NULL.
1380      class SlowPath : public LIRSlowPath {
1381       public:
1382        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1383                 const RegStorage class_reg) :
1384                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1385                   class_reg_(class_reg) {
1386        }
1387
1388        void Compile() {
1389          GenerateTargetLabel();
1390
1391          // Call out to helper, which will return resolved type in kArg0
1392          // InitializeTypeFromCode(idx, method)
1393          if (m2l_->cu_->target64) {
1394            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
1395                                          m2l_->TargetRefReg(kArg1), true);
1396          } else {
1397            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
1398                                          m2l_->TargetRefReg(kArg1), true);
1399          }
1400          m2l_->OpRegCopy(class_reg_, m2l_->TargetRefReg(kRet0));  // Align usage with fast path
1401          m2l_->OpUnconditionalBranch(cont_);
1402        }
1403
1404       public:
1405        const int type_idx_;
1406        const RegStorage class_reg_;
1407      };
1408
1409      AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
1410    }
1411  }
1412  // At this point, class_reg (kArg2) has class
1413  LoadValueDirectFixed(rl_src, TargetRefReg(kArg0));  // kArg0 <= ref
1414
1415  // Slow path for the case where the classes are not equal.  In this case we need
1416  // to call a helper function to do the check.
1417  class SlowPath : public LIRSlowPath {
1418   public:
1419    SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1420               LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1421    }
1422
1423    void Compile() {
1424      GenerateTargetLabel();
1425
1426      if (load_) {
1427        m2l_->LoadRefDisp(m2l_->TargetRefReg(kArg0), mirror::Object::ClassOffset().Int32Value(),
1428                          m2l_->TargetRefReg(kArg1), kNotVolatile);
1429      }
1430      if (m2l_->cu_->target64) {
1431        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pCheckCast), m2l_->TargetRefReg(kArg2),
1432                                      m2l_->TargetRefReg(kArg1), true);
1433      } else {
1434        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pCheckCast), m2l_->TargetRefReg(kArg2),
1435                                              m2l_->TargetRefReg(kArg1), true);
1436      }
1437
1438      m2l_->OpUnconditionalBranch(cont_);
1439    }
1440
1441   private:
1442    const bool load_;
1443  };
1444
1445  if (type_known_abstract) {
1446    // Easier case, run slow path if target is non-null (slow path will load from target)
1447    LIR* branch = OpCmpImmBranch(kCondNe, TargetRefReg(kArg0), 0, nullptr);
1448    LIR* cont = NewLIR0(kPseudoTargetLabel);
1449    AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1450  } else {
1451    // Harder, more common case.  We need to generate a forward branch over the load
1452    // if the target is null.  If it's non-null we perform the load and branch to the
1453    // slow path if the classes are not equal.
1454
1455    /* Null is OK - continue */
1456    LIR* branch1 = OpCmpImmBranch(kCondEq, TargetRefReg(kArg0), 0, nullptr);
1457    /* load object->klass_ */
1458    DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1459    LoadRefDisp(TargetRefReg(kArg0), mirror::Object::ClassOffset().Int32Value(),
1460                TargetRefReg(kArg1), kNotVolatile);
1461
1462    LIR* branch2 = OpCmpBranch(kCondNe, TargetRefReg(kArg1), class_reg, nullptr);
1463    LIR* cont = NewLIR0(kPseudoTargetLabel);
1464
1465    // Add the slow path that will not perform load since this is already done.
1466    AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1467
1468    // Set the null check to branch to the continuation.
1469    branch1->target = cont;
1470  }
1471}
1472
1473void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1474                           RegLocation rl_src1, RegLocation rl_src2) {
1475  RegLocation rl_result;
1476  if (cu_->instruction_set == kThumb2) {
1477    /*
1478     * NOTE:  This is the one place in the code in which we might have
1479     * as many as six live temporary registers.  There are 5 in the normal
1480     * set for Arm.  Until we have spill capabilities, temporarily add
1481     * lr to the temp set.  It is safe to do this locally, but note that
1482     * lr is used explicitly elsewhere in the code generator and cannot
1483     * normally be used as a general temp register.
1484     */
1485    MarkTemp(TargetReg(kLr));   // Add lr to the temp pool
1486    FreeTemp(TargetReg(kLr));   // and make it available
1487  }
1488  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1489  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1490  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1491  // The longs may overlap - use intermediate temp if so
1492  if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1493    RegStorage t_reg = AllocTemp();
1494    OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1495    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1496    OpRegCopy(rl_result.reg.GetLow(), t_reg);
1497    FreeTemp(t_reg);
1498  } else {
1499    OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1500    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1501  }
1502  /*
1503   * NOTE: If rl_dest refers to a frame variable in a large frame, the
1504   * following StoreValueWide might need to allocate a temp register.
1505   * To further work around the lack of a spill capability, explicitly
1506   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1507   * Remove when spill is functional.
1508   */
1509  FreeRegLocTemps(rl_result, rl_src1);
1510  FreeRegLocTemps(rl_result, rl_src2);
1511  StoreValueWide(rl_dest, rl_result);
1512  if (cu_->instruction_set == kThumb2) {
1513    Clobber(TargetReg(kLr));
1514    UnmarkTemp(TargetReg(kLr));  // Remove lr from the temp pool
1515  }
1516}
1517
1518
1519template <size_t pointer_size>
1520static void GenShiftOpLongCall(Mir2Lir* mir_to_lir, Instruction::Code opcode, RegLocation rl_src1,
1521                               RegLocation rl_shift) {
1522  ThreadOffset<pointer_size> func_offset(-1);
1523
1524  switch (opcode) {
1525    case Instruction::SHL_LONG:
1526    case Instruction::SHL_LONG_2ADDR:
1527      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShlLong);
1528      break;
1529    case Instruction::SHR_LONG:
1530    case Instruction::SHR_LONG_2ADDR:
1531      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShrLong);
1532      break;
1533    case Instruction::USHR_LONG:
1534    case Instruction::USHR_LONG_2ADDR:
1535      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pUshrLong);
1536      break;
1537    default:
1538      LOG(FATAL) << "Unexpected case";
1539  }
1540  mir_to_lir->FlushAllRegs();   /* Send everything to home location */
1541  mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false);
1542}
1543
1544void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1545                             RegLocation rl_src1, RegLocation rl_shift) {
1546  if (cu_->target64) {
1547    GenShiftOpLongCall<8>(this, opcode, rl_src1, rl_shift);
1548  } else {
1549    GenShiftOpLongCall<4>(this, opcode, rl_src1, rl_shift);
1550  }
1551  RegLocation rl_result = GetReturnWide(kCoreReg);
1552  StoreValueWide(rl_dest, rl_result);
1553}
1554
1555
1556void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1557                            RegLocation rl_src1, RegLocation rl_src2) {
1558  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1559  OpKind op = kOpBkpt;
1560  bool is_div_rem = false;
1561  bool check_zero = false;
1562  bool unary = false;
1563  RegLocation rl_result;
1564  bool shift_op = false;
1565  switch (opcode) {
1566    case Instruction::NEG_INT:
1567      op = kOpNeg;
1568      unary = true;
1569      break;
1570    case Instruction::NOT_INT:
1571      op = kOpMvn;
1572      unary = true;
1573      break;
1574    case Instruction::ADD_INT:
1575    case Instruction::ADD_INT_2ADDR:
1576      op = kOpAdd;
1577      break;
1578    case Instruction::SUB_INT:
1579    case Instruction::SUB_INT_2ADDR:
1580      op = kOpSub;
1581      break;
1582    case Instruction::MUL_INT:
1583    case Instruction::MUL_INT_2ADDR:
1584      op = kOpMul;
1585      break;
1586    case Instruction::DIV_INT:
1587    case Instruction::DIV_INT_2ADDR:
1588      check_zero = true;
1589      op = kOpDiv;
1590      is_div_rem = true;
1591      break;
1592    /* NOTE: returns in kArg1 */
1593    case Instruction::REM_INT:
1594    case Instruction::REM_INT_2ADDR:
1595      check_zero = true;
1596      op = kOpRem;
1597      is_div_rem = true;
1598      break;
1599    case Instruction::AND_INT:
1600    case Instruction::AND_INT_2ADDR:
1601      op = kOpAnd;
1602      break;
1603    case Instruction::OR_INT:
1604    case Instruction::OR_INT_2ADDR:
1605      op = kOpOr;
1606      break;
1607    case Instruction::XOR_INT:
1608    case Instruction::XOR_INT_2ADDR:
1609      op = kOpXor;
1610      break;
1611    case Instruction::SHL_INT:
1612    case Instruction::SHL_INT_2ADDR:
1613      shift_op = true;
1614      op = kOpLsl;
1615      break;
1616    case Instruction::SHR_INT:
1617    case Instruction::SHR_INT_2ADDR:
1618      shift_op = true;
1619      op = kOpAsr;
1620      break;
1621    case Instruction::USHR_INT:
1622    case Instruction::USHR_INT_2ADDR:
1623      shift_op = true;
1624      op = kOpLsr;
1625      break;
1626    default:
1627      LOG(FATAL) << "Invalid word arith op: " << opcode;
1628  }
1629  if (!is_div_rem) {
1630    if (unary) {
1631      rl_src1 = LoadValue(rl_src1, kCoreReg);
1632      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1633      OpRegReg(op, rl_result.reg, rl_src1.reg);
1634    } else {
1635      if ((shift_op) && (cu_->instruction_set != kArm64)) {
1636        rl_src2 = LoadValue(rl_src2, kCoreReg);
1637        RegStorage t_reg = AllocTemp();
1638        OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1639        rl_src1 = LoadValue(rl_src1, kCoreReg);
1640        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1641        OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1642        FreeTemp(t_reg);
1643      } else {
1644        rl_src1 = LoadValue(rl_src1, kCoreReg);
1645        rl_src2 = LoadValue(rl_src2, kCoreReg);
1646        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1647        OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1648      }
1649    }
1650    StoreValue(rl_dest, rl_result);
1651  } else {
1652    bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1653    if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1654      rl_src1 = LoadValue(rl_src1, kCoreReg);
1655      rl_src2 = LoadValue(rl_src2, kCoreReg);
1656      if (check_zero) {
1657        GenDivZeroCheck(rl_src2.reg);
1658      }
1659      rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1660      done = true;
1661    } else if (cu_->instruction_set == kThumb2) {
1662      if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1663        // Use ARM SDIV instruction for division.  For remainder we also need to
1664        // calculate using a MUL and subtract.
1665        rl_src1 = LoadValue(rl_src1, kCoreReg);
1666        rl_src2 = LoadValue(rl_src2, kCoreReg);
1667        if (check_zero) {
1668          GenDivZeroCheck(rl_src2.reg);
1669        }
1670        rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1671        done = true;
1672      }
1673    }
1674
1675    // If we haven't already generated the code use the callout function.
1676    if (!done) {
1677      FlushAllRegs();   /* Send everything to home location */
1678      LoadValueDirectFixed(rl_src2, TargetReg(kArg1, false));
1679      RegStorage r_tgt = cu_->target64 ?
1680          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod)) :
1681          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod));
1682      LoadValueDirectFixed(rl_src1, TargetReg(kArg0, false));
1683      if (check_zero) {
1684        GenDivZeroCheck(TargetReg(kArg1, false));
1685      }
1686      // NOTE: callout here is not a safepoint.
1687      if (cu_->target64) {
1688        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), false /* not a safepoint */);
1689      } else {
1690        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), false /* not a safepoint */);
1691      }
1692      if (op == kOpDiv)
1693        rl_result = GetReturn(kCoreReg);
1694      else
1695        rl_result = GetReturnAlt();
1696    }
1697    StoreValue(rl_dest, rl_result);
1698  }
1699}
1700
1701/*
1702 * The following are the first-level codegen routines that analyze the format
1703 * of each bytecode then either dispatch special purpose codegen routines
1704 * or produce corresponding Thumb instructions directly.
1705 */
1706
1707// Returns true if no more than two bits are set in 'x'.
1708static bool IsPopCountLE2(unsigned int x) {
1709  x &= x - 1;
1710  return (x & (x - 1)) == 0;
1711}
1712
1713// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1714// and store the result in 'rl_dest'.
1715bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1716                               RegLocation rl_src, RegLocation rl_dest, int lit) {
1717  if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1718    return false;
1719  }
1720  // No divide instruction for Arm, so check for more special cases
1721  if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1722    return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1723  }
1724  int k = LowestSetBit(lit);
1725  if (k >= 30) {
1726    // Avoid special cases.
1727    return false;
1728  }
1729  rl_src = LoadValue(rl_src, kCoreReg);
1730  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1731  if (is_div) {
1732    RegStorage t_reg = AllocTemp();
1733    if (lit == 2) {
1734      // Division by 2 is by far the most common division by constant.
1735      OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1736      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1737      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1738    } else {
1739      OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1740      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1741      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1742      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1743    }
1744  } else {
1745    RegStorage t_reg1 = AllocTemp();
1746    RegStorage t_reg2 = AllocTemp();
1747    if (lit == 2) {
1748      OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1749      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1750      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1751      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1752    } else {
1753      OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1754      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1755      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1756      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1757      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1758    }
1759  }
1760  StoreValue(rl_dest, rl_result);
1761  return true;
1762}
1763
1764// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1765// and store the result in 'rl_dest'.
1766bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1767  if (lit < 0) {
1768    return false;
1769  }
1770  if (lit == 0) {
1771    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1772    LoadConstant(rl_result.reg, 0);
1773    StoreValue(rl_dest, rl_result);
1774    return true;
1775  }
1776  if (lit == 1) {
1777    rl_src = LoadValue(rl_src, kCoreReg);
1778    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1779    OpRegCopy(rl_result.reg, rl_src.reg);
1780    StoreValue(rl_dest, rl_result);
1781    return true;
1782  }
1783  // There is RegRegRegShift on Arm, so check for more special cases
1784  if (cu_->instruction_set == kThumb2) {
1785    return EasyMultiply(rl_src, rl_dest, lit);
1786  }
1787  // Can we simplify this multiplication?
1788  bool power_of_two = false;
1789  bool pop_count_le2 = false;
1790  bool power_of_two_minus_one = false;
1791  if (IsPowerOfTwo(lit)) {
1792    power_of_two = true;
1793  } else if (IsPopCountLE2(lit)) {
1794    pop_count_le2 = true;
1795  } else if (IsPowerOfTwo(lit + 1)) {
1796    power_of_two_minus_one = true;
1797  } else {
1798    return false;
1799  }
1800  rl_src = LoadValue(rl_src, kCoreReg);
1801  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1802  if (power_of_two) {
1803    // Shift.
1804    OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
1805  } else if (pop_count_le2) {
1806    // Shift and add and shift.
1807    int first_bit = LowestSetBit(lit);
1808    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1809    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1810  } else {
1811    // Reverse subtract: (src << (shift + 1)) - src.
1812    DCHECK(power_of_two_minus_one);
1813    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1814    RegStorage t_reg = AllocTemp();
1815    OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
1816    OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1817  }
1818  StoreValue(rl_dest, rl_result);
1819  return true;
1820}
1821
1822void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1823                               int lit) {
1824  RegLocation rl_result;
1825  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1826  int shift_op = false;
1827  bool is_div = false;
1828
1829  switch (opcode) {
1830    case Instruction::RSUB_INT_LIT8:
1831    case Instruction::RSUB_INT: {
1832      rl_src = LoadValue(rl_src, kCoreReg);
1833      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1834      if (cu_->instruction_set == kThumb2) {
1835        OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1836      } else {
1837        OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1838        OpRegImm(kOpAdd, rl_result.reg, lit);
1839      }
1840      StoreValue(rl_dest, rl_result);
1841      return;
1842    }
1843
1844    case Instruction::SUB_INT:
1845    case Instruction::SUB_INT_2ADDR:
1846      lit = -lit;
1847      // Intended fallthrough
1848    case Instruction::ADD_INT:
1849    case Instruction::ADD_INT_2ADDR:
1850    case Instruction::ADD_INT_LIT8:
1851    case Instruction::ADD_INT_LIT16:
1852      op = kOpAdd;
1853      break;
1854    case Instruction::MUL_INT:
1855    case Instruction::MUL_INT_2ADDR:
1856    case Instruction::MUL_INT_LIT8:
1857    case Instruction::MUL_INT_LIT16: {
1858      if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1859        return;
1860      }
1861      op = kOpMul;
1862      break;
1863    }
1864    case Instruction::AND_INT:
1865    case Instruction::AND_INT_2ADDR:
1866    case Instruction::AND_INT_LIT8:
1867    case Instruction::AND_INT_LIT16:
1868      op = kOpAnd;
1869      break;
1870    case Instruction::OR_INT:
1871    case Instruction::OR_INT_2ADDR:
1872    case Instruction::OR_INT_LIT8:
1873    case Instruction::OR_INT_LIT16:
1874      op = kOpOr;
1875      break;
1876    case Instruction::XOR_INT:
1877    case Instruction::XOR_INT_2ADDR:
1878    case Instruction::XOR_INT_LIT8:
1879    case Instruction::XOR_INT_LIT16:
1880      op = kOpXor;
1881      break;
1882    case Instruction::SHL_INT_LIT8:
1883    case Instruction::SHL_INT:
1884    case Instruction::SHL_INT_2ADDR:
1885      lit &= 31;
1886      shift_op = true;
1887      op = kOpLsl;
1888      break;
1889    case Instruction::SHR_INT_LIT8:
1890    case Instruction::SHR_INT:
1891    case Instruction::SHR_INT_2ADDR:
1892      lit &= 31;
1893      shift_op = true;
1894      op = kOpAsr;
1895      break;
1896    case Instruction::USHR_INT_LIT8:
1897    case Instruction::USHR_INT:
1898    case Instruction::USHR_INT_2ADDR:
1899      lit &= 31;
1900      shift_op = true;
1901      op = kOpLsr;
1902      break;
1903
1904    case Instruction::DIV_INT:
1905    case Instruction::DIV_INT_2ADDR:
1906    case Instruction::DIV_INT_LIT8:
1907    case Instruction::DIV_INT_LIT16:
1908    case Instruction::REM_INT:
1909    case Instruction::REM_INT_2ADDR:
1910    case Instruction::REM_INT_LIT8:
1911    case Instruction::REM_INT_LIT16: {
1912      if (lit == 0) {
1913        GenDivZeroException();
1914        return;
1915      }
1916      if ((opcode == Instruction::DIV_INT) ||
1917          (opcode == Instruction::DIV_INT_2ADDR) ||
1918          (opcode == Instruction::DIV_INT_LIT8) ||
1919          (opcode == Instruction::DIV_INT_LIT16)) {
1920        is_div = true;
1921      } else {
1922        is_div = false;
1923      }
1924      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1925        return;
1926      }
1927
1928      bool done = false;
1929      if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1930        rl_src = LoadValue(rl_src, kCoreReg);
1931        rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1932        done = true;
1933      } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1934        rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1935        done = true;
1936      } else if (cu_->instruction_set == kThumb2) {
1937        if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1938          // Use ARM SDIV instruction for division.  For remainder we also need to
1939          // calculate using a MUL and subtract.
1940          rl_src = LoadValue(rl_src, kCoreReg);
1941          rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1942          done = true;
1943        }
1944      }
1945
1946      if (!done) {
1947        FlushAllRegs();   /* Everything to home location. */
1948        LoadValueDirectFixed(rl_src, TargetReg(kArg0, false));
1949        Clobber(TargetReg(kArg0, false));
1950        if (cu_->target64) {
1951          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), TargetReg(kArg0, false), lit,
1952                                  false);
1953        } else {
1954          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), TargetReg(kArg0, false), lit,
1955                                  false);
1956        }
1957        if (is_div)
1958          rl_result = GetReturn(kCoreReg);
1959        else
1960          rl_result = GetReturnAlt();
1961      }
1962      StoreValue(rl_dest, rl_result);
1963      return;
1964    }
1965    default:
1966      LOG(FATAL) << "Unexpected opcode " << opcode;
1967  }
1968  rl_src = LoadValue(rl_src, kCoreReg);
1969  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1970  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1971  if (shift_op && (lit == 0)) {
1972    OpRegCopy(rl_result.reg, rl_src.reg);
1973  } else {
1974    OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
1975  }
1976  StoreValue(rl_dest, rl_result);
1977}
1978
1979template <size_t pointer_size>
1980static void GenArithOpLongImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, Instruction::Code opcode,
1981                               RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1982  RegLocation rl_result;
1983  OpKind first_op = kOpBkpt;
1984  OpKind second_op = kOpBkpt;
1985  bool call_out = false;
1986  bool check_zero = false;
1987  ThreadOffset<pointer_size> func_offset(-1);
1988  int ret_reg = mir_to_lir->TargetReg(kRet0, false).GetReg();
1989
1990  switch (opcode) {
1991    case Instruction::NOT_LONG:
1992      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
1993        mir_to_lir->GenNotLong(rl_dest, rl_src2);
1994        return;
1995      }
1996      rl_src2 = mir_to_lir->LoadValueWide(rl_src2, kCoreReg);
1997      rl_result = mir_to_lir->EvalLoc(rl_dest, kCoreReg, true);
1998      // Check for destructive overlap
1999      if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
2000        RegStorage t_reg = mir_to_lir->AllocTemp();
2001        mir_to_lir->OpRegCopy(t_reg, rl_src2.reg.GetHigh());
2002        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
2003        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
2004        mir_to_lir->FreeTemp(t_reg);
2005      } else {
2006        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
2007        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
2008      }
2009      mir_to_lir->StoreValueWide(rl_dest, rl_result);
2010      return;
2011    case Instruction::ADD_LONG:
2012    case Instruction::ADD_LONG_2ADDR:
2013      if (cu->instruction_set != kThumb2) {
2014        mir_to_lir->GenAddLong(opcode, rl_dest, rl_src1, rl_src2);
2015        return;
2016      }
2017      first_op = kOpAdd;
2018      second_op = kOpAdc;
2019      break;
2020    case Instruction::SUB_LONG:
2021    case Instruction::SUB_LONG_2ADDR:
2022      if (cu->instruction_set != kThumb2) {
2023        mir_to_lir->GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
2024        return;
2025      }
2026      first_op = kOpSub;
2027      second_op = kOpSbc;
2028      break;
2029    case Instruction::MUL_LONG:
2030    case Instruction::MUL_LONG_2ADDR:
2031      if (cu->instruction_set != kMips) {
2032        mir_to_lir->GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
2033        return;
2034      } else {
2035        call_out = true;
2036        ret_reg = mir_to_lir->TargetReg(kRet0, false).GetReg();
2037        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmul);
2038      }
2039      break;
2040    case Instruction::DIV_LONG:
2041    case Instruction::DIV_LONG_2ADDR:
2042      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2043        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true);
2044        return;
2045      }
2046      call_out = true;
2047      check_zero = true;
2048      ret_reg = mir_to_lir->TargetReg(kRet0, false).GetReg();
2049      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLdiv);
2050      break;
2051    case Instruction::REM_LONG:
2052    case Instruction::REM_LONG_2ADDR:
2053      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2054        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false);
2055        return;
2056      }
2057      call_out = true;
2058      check_zero = true;
2059      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmod);
2060      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
2061      ret_reg = (cu->instruction_set == kThumb2) ? mir_to_lir->TargetReg(kArg2, false).GetReg() :
2062          mir_to_lir->TargetReg(kRet0, false).GetReg();
2063      break;
2064    case Instruction::AND_LONG_2ADDR:
2065    case Instruction::AND_LONG:
2066      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2067          cu->instruction_set == kArm64) {
2068        return mir_to_lir->GenAndLong(opcode, rl_dest, rl_src1, rl_src2);
2069      }
2070      first_op = kOpAnd;
2071      second_op = kOpAnd;
2072      break;
2073    case Instruction::OR_LONG:
2074    case Instruction::OR_LONG_2ADDR:
2075      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2076          cu->instruction_set == kArm64) {
2077        mir_to_lir->GenOrLong(opcode, rl_dest, rl_src1, rl_src2);
2078        return;
2079      }
2080      first_op = kOpOr;
2081      second_op = kOpOr;
2082      break;
2083    case Instruction::XOR_LONG:
2084    case Instruction::XOR_LONG_2ADDR:
2085      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2086          cu->instruction_set == kArm64) {
2087        mir_to_lir->GenXorLong(opcode, rl_dest, rl_src1, rl_src2);
2088        return;
2089      }
2090      first_op = kOpXor;
2091      second_op = kOpXor;
2092      break;
2093    case Instruction::NEG_LONG: {
2094      mir_to_lir->GenNegLong(rl_dest, rl_src2);
2095      return;
2096    }
2097    default:
2098      LOG(FATAL) << "Invalid long arith op";
2099  }
2100  if (!call_out) {
2101    mir_to_lir->GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
2102  } else {
2103    mir_to_lir->FlushAllRegs();   /* Send everything to home location */
2104    if (check_zero) {
2105      RegStorage r_tmp1 = mir_to_lir->TargetReg(kArg0, kArg1);
2106      RegStorage r_tmp2 = mir_to_lir->TargetReg(kArg2, kArg3);
2107      mir_to_lir->LoadValueDirectWideFixed(rl_src2, r_tmp2);
2108      RegStorage r_tgt = mir_to_lir->CallHelperSetup(func_offset);
2109      mir_to_lir->GenDivZeroCheckWide(mir_to_lir->TargetReg(kArg2, kArg3));
2110      mir_to_lir->LoadValueDirectWideFixed(rl_src1, r_tmp1);
2111      // NOTE: callout here is not a safepoint
2112      mir_to_lir->CallHelper(r_tgt, func_offset, false /* not safepoint */);
2113    } else {
2114      mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false);
2115    }
2116    // Adjust return regs in to handle case of rem returning kArg2/kArg3
2117    if (ret_reg == mir_to_lir->TargetReg(kRet0, false).GetReg())
2118      rl_result = mir_to_lir->GetReturnWide(kCoreReg);
2119    else
2120      rl_result = mir_to_lir->GetReturnWideAlt();
2121    mir_to_lir->StoreValueWide(rl_dest, rl_result);
2122  }
2123}
2124
2125void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
2126                             RegLocation rl_src1, RegLocation rl_src2) {
2127  if (cu_->target64) {
2128    GenArithOpLongImpl<8>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2129  } else {
2130    GenArithOpLongImpl<4>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2131  }
2132}
2133
2134void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
2135  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2136  LoadConstantNoClobber(rl_result.reg, value);
2137  StoreValue(rl_dest, rl_result);
2138  if (value == 0) {
2139    Workaround7250540(rl_dest, rl_result.reg);
2140  }
2141}
2142
2143template <size_t pointer_size>
2144void Mir2Lir::GenConversionCall(ThreadOffset<pointer_size> func_offset,
2145                                RegLocation rl_dest, RegLocation rl_src) {
2146  /*
2147   * Don't optimize the register usage since it calls out to support
2148   * functions
2149   */
2150  DCHECK_EQ(pointer_size, GetInstructionSetPointerSize(cu_->instruction_set));
2151
2152  FlushAllRegs();   /* Send everything to home location */
2153  CallRuntimeHelperRegLocation(func_offset, rl_src, false);
2154  if (rl_dest.wide) {
2155    RegLocation rl_result;
2156    rl_result = GetReturnWide(LocToRegClass(rl_dest));
2157    StoreValueWide(rl_dest, rl_result);
2158  } else {
2159    RegLocation rl_result;
2160    rl_result = GetReturn(LocToRegClass(rl_dest));
2161    StoreValue(rl_dest, rl_result);
2162  }
2163}
2164template void Mir2Lir::GenConversionCall(ThreadOffset<4> func_offset,
2165                                         RegLocation rl_dest, RegLocation rl_src);
2166template void Mir2Lir::GenConversionCall(ThreadOffset<8> func_offset,
2167                                         RegLocation rl_dest, RegLocation rl_src);
2168
2169class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
2170 public:
2171  SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
2172      : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
2173  }
2174
2175  void Compile() OVERRIDE {
2176    m2l_->ResetRegPool();
2177    m2l_->ResetDefTracking();
2178    GenerateTargetLabel(kPseudoSuspendTarget);
2179    if (cu_->target64) {
2180      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pTestSuspend), true);
2181    } else {
2182      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pTestSuspend), true);
2183    }
2184    if (cont_ != nullptr) {
2185      m2l_->OpUnconditionalBranch(cont_);
2186    }
2187  }
2188};
2189
2190/* Check if we need to check for pending suspend request */
2191void Mir2Lir::GenSuspendTest(int opt_flags) {
2192  if (cu_->compiler_driver->GetCompilerOptions().GetExplicitSuspendChecks()) {
2193    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2194      return;
2195    }
2196    FlushAllRegs();
2197    LIR* branch = OpTestSuspend(NULL);
2198    LIR* cont = NewLIR0(kPseudoTargetLabel);
2199    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
2200  } else {
2201    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2202      return;
2203    }
2204    FlushAllRegs();     // TODO: needed?
2205    LIR* inst = CheckSuspendUsingLoad();
2206    MarkSafepointPC(inst);
2207  }
2208}
2209
2210/* Check if we need to check for pending suspend request */
2211void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
2212  if (cu_->compiler_driver->GetCompilerOptions().GetExplicitSuspendChecks()) {
2213    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2214      OpUnconditionalBranch(target);
2215      return;
2216    }
2217    OpTestSuspend(target);
2218    FlushAllRegs();
2219    LIR* branch = OpUnconditionalBranch(nullptr);
2220    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
2221  } else {
2222    // For the implicit suspend check, just perform the trigger
2223    // load and branch to the target.
2224    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2225      OpUnconditionalBranch(target);
2226      return;
2227    }
2228    FlushAllRegs();
2229    LIR* inst = CheckSuspendUsingLoad();
2230    MarkSafepointPC(inst);
2231    OpUnconditionalBranch(target);
2232  }
2233}
2234
2235/* Call out to helper assembly routine that will null check obj and then lock it. */
2236void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
2237  FlushAllRegs();
2238  if (cu_->target64) {
2239    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pLockObject), rl_src, true);
2240  } else {
2241    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pLockObject), rl_src, true);
2242  }
2243}
2244
2245/* Call out to helper assembly routine that will null check obj and then unlock it. */
2246void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2247  FlushAllRegs();
2248  if (cu_->target64) {
2249    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pUnlockObject), rl_src, true);
2250  } else {
2251    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject), rl_src, true);
2252  }
2253}
2254
2255/* Generic code for generating a wide constant into a VR. */
2256void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2257  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2258  LoadConstantWide(rl_result.reg, value);
2259  StoreValueWide(rl_dest, rl_result);
2260}
2261
2262}  // namespace art
2263