gen_common.cc revision 0237ac84b1459cb1718dce23f3572ae2fe1bd77e
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include "dex/compiler_ir.h"
17#include "dex/compiler_internals.h"
18#include "dex/quick/arm/arm_lir.h"
19#include "dex/quick/mir_to_lir-inl.h"
20#include "entrypoints/quick/quick_entrypoints.h"
21#include "mirror/array.h"
22#include "mirror/object_array-inl.h"
23#include "mirror/object-inl.h"
24#include "verifier/method_verifier.h"
25#include <functional>
26
27namespace art {
28
29// Shortcuts to repeatedly used long types.
30typedef mirror::ObjectArray<mirror::Object> ObjArray;
31typedef mirror::ObjectArray<mirror::Class> ClassArray;
32
33/*
34 * This source files contains "gen" codegen routines that should
35 * be applicable to most targets.  Only mid-level support utilities
36 * and "op" calls may be used here.
37 */
38
39/*
40 * Generate a kPseudoBarrier marker to indicate the boundary of special
41 * blocks.
42 */
43void Mir2Lir::GenBarrier() {
44  LIR* barrier = NewLIR0(kPseudoBarrier);
45  /* Mark all resources as being clobbered */
46  DCHECK(!barrier->flags.use_def_invalid);
47  barrier->u.m.def_mask = &kEncodeAll;
48}
49
50void Mir2Lir::GenDivZeroException() {
51  LIR* branch = OpUnconditionalBranch(nullptr);
52  AddDivZeroCheckSlowPath(branch);
53}
54
55void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
56  LIR* branch = OpCondBranch(c_code, nullptr);
57  AddDivZeroCheckSlowPath(branch);
58}
59
60void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
61  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
62  AddDivZeroCheckSlowPath(branch);
63}
64
65void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
66  class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
67   public:
68    DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
69        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
70    }
71
72    void Compile() OVERRIDE {
73      m2l_->ResetRegPool();
74      m2l_->ResetDefTracking();
75      GenerateTargetLabel(kPseudoThrowTarget);
76      if (m2l_->cu_->target64) {
77        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowDivZero), true);
78      } else {
79        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowDivZero), true);
80      }
81    }
82  };
83
84  AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
85}
86
87void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
88  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
89   public:
90    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
91        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
92          index_(index), length_(length) {
93    }
94
95    void Compile() OVERRIDE {
96      m2l_->ResetRegPool();
97      m2l_->ResetDefTracking();
98      GenerateTargetLabel(kPseudoThrowTarget);
99      if (m2l_->cu_->target64) {
100        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
101                                      index_, length_, true);
102      } else {
103        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
104                                      index_, length_, true);
105      }
106    }
107
108   private:
109    const RegStorage index_;
110    const RegStorage length_;
111  };
112
113  LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
114  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
115}
116
117void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
118  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
119   public:
120    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
121        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
122          index_(index), length_(length) {
123    }
124
125    void Compile() OVERRIDE {
126      m2l_->ResetRegPool();
127      m2l_->ResetDefTracking();
128      GenerateTargetLabel(kPseudoThrowTarget);
129
130      RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
131      RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
132
133      m2l_->OpRegCopy(arg1_32, length_);
134      m2l_->LoadConstant(arg0_32, index_);
135      if (m2l_->cu_->target64) {
136        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
137                                      arg0_32, arg1_32, true);
138      } else {
139        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
140                                      arg0_32, arg1_32, true);
141      }
142    }
143
144   private:
145    const int32_t index_;
146    const RegStorage length_;
147  };
148
149  LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
150  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
151}
152
153LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
154  class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
155   public:
156    NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
157        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
158    }
159
160    void Compile() OVERRIDE {
161      m2l_->ResetRegPool();
162      m2l_->ResetDefTracking();
163      GenerateTargetLabel(kPseudoThrowTarget);
164      if (m2l_->cu_->target64) {
165        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowNullPointer), true);
166      } else {
167        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowNullPointer), true);
168      }
169    }
170  };
171
172  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
173  AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
174  return branch;
175}
176
177/* Perform null-check on a register.  */
178LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
179  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
180    return GenExplicitNullCheck(m_reg, opt_flags);
181  }
182  return nullptr;
183}
184
185/* Perform an explicit null-check on a register.  */
186LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
187  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
188    return NULL;
189  }
190  return GenNullCheck(m_reg);
191}
192
193void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
194  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
195    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
196      return;
197    }
198    // Insert after last instruction.
199    MarkSafepointPC(last_lir_insn_);
200  }
201}
202
203void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
204  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
205    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
206      return;
207    }
208    MarkSafepointPCAfter(after);
209  }
210}
211
212void Mir2Lir::MarkPossibleStackOverflowException() {
213  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
214    MarkSafepointPC(last_lir_insn_);
215  }
216}
217
218void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
219  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
220    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
221      return;
222    }
223    // Force an implicit null check by performing a memory operation (load) from the given
224    // register with offset 0.  This will cause a signal if the register contains 0 (null).
225    RegStorage tmp = AllocTemp();
226    // TODO: for Mips, would be best to use rZERO as the bogus register target.
227    LIR* load = Load32Disp(reg, 0, tmp);
228    FreeTemp(tmp);
229    MarkSafepointPC(load);
230  }
231}
232
233void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
234                                  RegLocation rl_src2, LIR* taken,
235                                  LIR* fall_through) {
236  DCHECK(!rl_src1.fp);
237  DCHECK(!rl_src2.fp);
238  ConditionCode cond;
239  switch (opcode) {
240    case Instruction::IF_EQ:
241      cond = kCondEq;
242      break;
243    case Instruction::IF_NE:
244      cond = kCondNe;
245      break;
246    case Instruction::IF_LT:
247      cond = kCondLt;
248      break;
249    case Instruction::IF_GE:
250      cond = kCondGe;
251      break;
252    case Instruction::IF_GT:
253      cond = kCondGt;
254      break;
255    case Instruction::IF_LE:
256      cond = kCondLe;
257      break;
258    default:
259      cond = static_cast<ConditionCode>(0);
260      LOG(FATAL) << "Unexpected opcode " << opcode;
261  }
262
263  // Normalize such that if either operand is constant, src2 will be constant
264  if (rl_src1.is_const) {
265    RegLocation rl_temp = rl_src1;
266    rl_src1 = rl_src2;
267    rl_src2 = rl_temp;
268    cond = FlipComparisonOrder(cond);
269  }
270
271  rl_src1 = LoadValue(rl_src1);
272  // Is this really an immediate comparison?
273  if (rl_src2.is_const) {
274    // If it's already live in a register or not easily materialized, just keep going
275    RegLocation rl_temp = UpdateLoc(rl_src2);
276    int32_t constant_value = mir_graph_->ConstantValue(rl_src2);
277    if ((rl_temp.location == kLocDalvikFrame) &&
278        InexpensiveConstantInt(constant_value)) {
279      // OK - convert this to a compare immediate and branch
280      OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
281      return;
282    }
283
284    // It's also commonly more efficient to have a test against zero with Eq/Ne. This is not worse
285    // for x86, and allows a cbz/cbnz for Arm and Mips. At the same time, it works around a register
286    // mismatch for 64b systems, where a reference is compared against null, as dex bytecode uses
287    // the 32b literal 0 for null.
288    if (constant_value == 0 && (cond == kCondEq || cond == kCondNe)) {
289      // Use the OpCmpImmBranch and ignore the value in the register.
290      OpCmpImmBranch(cond, rl_src1.reg, 0, taken);
291      return;
292    }
293  }
294
295  rl_src2 = LoadValue(rl_src2);
296  OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
297}
298
299void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
300                                      LIR* fall_through) {
301  ConditionCode cond;
302  DCHECK(!rl_src.fp);
303  rl_src = LoadValue(rl_src);
304  switch (opcode) {
305    case Instruction::IF_EQZ:
306      cond = kCondEq;
307      break;
308    case Instruction::IF_NEZ:
309      cond = kCondNe;
310      break;
311    case Instruction::IF_LTZ:
312      cond = kCondLt;
313      break;
314    case Instruction::IF_GEZ:
315      cond = kCondGe;
316      break;
317    case Instruction::IF_GTZ:
318      cond = kCondGt;
319      break;
320    case Instruction::IF_LEZ:
321      cond = kCondLe;
322      break;
323    default:
324      cond = static_cast<ConditionCode>(0);
325      LOG(FATAL) << "Unexpected opcode " << opcode;
326  }
327  OpCmpImmBranch(cond, rl_src.reg, 0, taken);
328}
329
330void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
331  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
332  if (rl_src.location == kLocPhysReg) {
333    OpRegCopy(rl_result.reg, rl_src.reg);
334  } else {
335    LoadValueDirect(rl_src, rl_result.reg.GetLow());
336  }
337  OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
338  StoreValueWide(rl_dest, rl_result);
339}
340
341void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
342                              RegLocation rl_src) {
343  rl_src = LoadValue(rl_src, kCoreReg);
344  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
345  OpKind op = kOpInvalid;
346  switch (opcode) {
347    case Instruction::INT_TO_BYTE:
348      op = kOp2Byte;
349      break;
350    case Instruction::INT_TO_SHORT:
351       op = kOp2Short;
352       break;
353    case Instruction::INT_TO_CHAR:
354       op = kOp2Char;
355       break;
356    default:
357      LOG(ERROR) << "Bad int conversion type";
358  }
359  OpRegReg(op, rl_result.reg, rl_src.reg);
360  StoreValue(rl_dest, rl_result);
361}
362
363template <size_t pointer_size>
364static void GenNewArrayImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu,
365                            uint32_t type_idx, RegLocation rl_dest,
366                            RegLocation rl_src) {
367  mir_to_lir->FlushAllRegs();  /* Everything to home location */
368  ThreadOffset<pointer_size> func_offset(-1);
369  const DexFile* dex_file = cu->dex_file;
370  CompilerDriver* driver = cu->compiler_driver;
371  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *dex_file,
372                                                      type_idx)) {
373    bool is_type_initialized;  // Ignored as an array does not have an initializer.
374    bool use_direct_type_ptr;
375    uintptr_t direct_type_ptr;
376    bool is_finalizable;
377    if (kEmbedClassInCode &&
378        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
379                                   &direct_type_ptr, &is_finalizable)) {
380      // The fast path.
381      if (!use_direct_type_ptr) {
382        mir_to_lir->LoadClassType(type_idx, kArg0);
383        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
384        mir_to_lir->CallRuntimeHelperRegMethodRegLocation(func_offset,
385                                                          mir_to_lir->TargetReg(kArg0, kNotWide),
386                                                          rl_src, true);
387      } else {
388        // Use the direct pointer.
389        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
390        mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, direct_type_ptr, rl_src,
391                                                          true);
392      }
393    } else {
394      // The slow path.
395      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArray);
396      mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
397    }
398    DCHECK_NE(func_offset.Int32Value(), -1);
399  } else {
400    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayWithAccessCheck);
401    mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
402  }
403  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
404  mir_to_lir->StoreValue(rl_dest, rl_result);
405}
406
407/*
408 * Let helper function take care of everything.  Will call
409 * Array::AllocFromCode(type_idx, method, count);
410 * Note: AllocFromCode will handle checks for errNegativeArraySize.
411 */
412void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
413                          RegLocation rl_src) {
414  if (cu_->target64) {
415    GenNewArrayImpl<8>(this, cu_, type_idx, rl_dest, rl_src);
416  } else {
417    GenNewArrayImpl<4>(this, cu_, type_idx, rl_dest, rl_src);
418  }
419}
420
421template <size_t pointer_size>
422static void GenFilledNewArrayCall(Mir2Lir* mir_to_lir, CompilationUnit* cu, int elems, int type_idx) {
423  ThreadOffset<pointer_size> func_offset(-1);
424  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *cu->dex_file,
425                                                      type_idx)) {
426    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArray);
427  } else {
428    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArrayWithAccessCheck);
429  }
430  mir_to_lir->CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true);
431}
432
433/*
434 * Similar to GenNewArray, but with post-allocation initialization.
435 * Verifier guarantees we're dealing with an array class.  Current
436 * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
437 * Current code also throws internal unimp if not 'L', '[' or 'I'.
438 */
439void Mir2Lir::GenFilledNewArray(CallInfo* info) {
440  int elems = info->num_arg_words;
441  int type_idx = info->index;
442  FlushAllRegs();  /* Everything to home location */
443  if (cu_->target64) {
444    GenFilledNewArrayCall<8>(this, cu_, elems, type_idx);
445  } else {
446    GenFilledNewArrayCall<4>(this, cu_, elems, type_idx);
447  }
448  FreeTemp(TargetReg(kArg2, kNotWide));
449  FreeTemp(TargetReg(kArg1, kNotWide));
450  /*
451   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
452   * return region.  Because AllocFromCode placed the new array
453   * in kRet0, we'll just lock it into place.  When debugger support is
454   * added, it may be necessary to additionally copy all return
455   * values to a home location in thread-local storage
456   */
457  RegStorage ref_reg = TargetReg(kRet0, kRef);
458  LockTemp(ref_reg);
459
460  // TODO: use the correct component size, currently all supported types
461  // share array alignment with ints (see comment at head of function)
462  size_t component_size = sizeof(int32_t);
463
464  // Having a range of 0 is legal
465  if (info->is_range && (elems > 0)) {
466    /*
467     * Bit of ugliness here.  We're going generate a mem copy loop
468     * on the register range, but it is possible that some regs
469     * in the range have been promoted.  This is unlikely, but
470     * before generating the copy, we'll just force a flush
471     * of any regs in the source range that have been promoted to
472     * home location.
473     */
474    for (int i = 0; i < elems; i++) {
475      RegLocation loc = UpdateLoc(info->args[i]);
476      if (loc.location == kLocPhysReg) {
477        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
478        Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
479      }
480    }
481    /*
482     * TUNING note: generated code here could be much improved, but
483     * this is an uncommon operation and isn't especially performance
484     * critical.
485     */
486    // This is addressing the stack, which may be out of the 4G area.
487    RegStorage r_src = AllocTempRef();
488    RegStorage r_dst = AllocTempRef();
489    RegStorage r_idx = AllocTempRef();  // Not really a reference, but match src/dst.
490    RegStorage r_val;
491    switch (cu_->instruction_set) {
492      case kThumb2:
493      case kArm64:
494        r_val = TargetReg(kLr, kNotWide);
495        break;
496      case kX86:
497      case kX86_64:
498        FreeTemp(ref_reg);
499        r_val = AllocTemp();
500        break;
501      case kMips:
502        r_val = AllocTemp();
503        break;
504      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
505    }
506    // Set up source pointer
507    RegLocation rl_first = info->args[0];
508    OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
509    // Set up the target pointer
510    OpRegRegImm(kOpAdd, r_dst, ref_reg,
511                mirror::Array::DataOffset(component_size).Int32Value());
512    // Set up the loop counter (known to be > 0)
513    LoadConstant(r_idx, elems - 1);
514    // Generate the copy loop.  Going backwards for convenience
515    LIR* target = NewLIR0(kPseudoTargetLabel);
516    // Copy next element
517    {
518      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
519      LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
520      // NOTE: No dalvik register annotation, local optimizations will be stopped
521      // by the loop boundaries.
522    }
523    StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
524    FreeTemp(r_val);
525    OpDecAndBranch(kCondGe, r_idx, target);
526    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
527      // Restore the target pointer
528      OpRegRegImm(kOpAdd, ref_reg, r_dst,
529                  -mirror::Array::DataOffset(component_size).Int32Value());
530    }
531  } else if (!info->is_range) {
532    // TUNING: interleave
533    for (int i = 0; i < elems; i++) {
534      RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
535      Store32Disp(ref_reg,
536                  mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
537      // If the LoadValue caused a temp to be allocated, free it
538      if (IsTemp(rl_arg.reg)) {
539        FreeTemp(rl_arg.reg);
540      }
541    }
542  }
543  if (info->result.location != kLocInvalid) {
544    StoreValue(info->result, GetReturn(kRefReg));
545  }
546}
547
548//
549// Slow path to ensure a class is initialized for sget/sput.
550//
551class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
552 public:
553  StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
554                      RegStorage r_base) :
555    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
556               storage_index_(storage_index), r_base_(r_base) {
557  }
558
559  void Compile() {
560    LIR* unresolved_target = GenerateTargetLabel();
561    uninit_->target = unresolved_target;
562    if (cu_->target64) {
563      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeStaticStorage),
564                                 storage_index_, true);
565    } else {
566      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeStaticStorage),
567                                 storage_index_, true);
568    }
569    // Copy helper's result into r_base, a no-op on all but MIPS.
570    m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0, kRef));
571
572    m2l_->OpUnconditionalBranch(cont_);
573  }
574
575 private:
576  LIR* const uninit_;
577  const int storage_index_;
578  const RegStorage r_base_;
579};
580
581template <size_t pointer_size>
582static void GenSputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
583                        const MirSFieldLoweringInfo* field_info, RegLocation rl_src) {
584  ThreadOffset<pointer_size> setter_offset =
585      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Static)
586          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjStatic)
587              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Static));
588  mir_to_lir->CallRuntimeHelperImmRegLocation(setter_offset, field_info->FieldIndex(), rl_src,
589                                              true);
590}
591
592void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
593                      bool is_object) {
594  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
595  cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
596  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
597  if (!SLOW_FIELD_PATH && field_info.FastPut() &&
598      (!field_info.IsVolatile() || SupportsVolatileLoadStore(store_size))) {
599    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
600    RegStorage r_base;
601    if (field_info.IsReferrersClass()) {
602      // Fast path, static storage base is this method's class
603      RegLocation rl_method = LoadCurrMethod();
604      r_base = AllocTempRef();
605      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
606                  kNotVolatile);
607      if (IsTemp(rl_method.reg)) {
608        FreeTemp(rl_method.reg);
609      }
610    } else {
611      // Medium path, static storage base in a different class which requires checks that the other
612      // class is initialized.
613      // TODO: remove initialized check now that we are initializing classes in the compiler driver.
614      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
615      // May do runtime call so everything to home locations.
616      FlushAllRegs();
617      // Using fixed register to sync with possible call to runtime support.
618      RegStorage r_method = TargetReg(kArg1, kRef);
619      LockTemp(r_method);
620      LoadCurrMethodDirect(r_method);
621      r_base = TargetReg(kArg0, kRef);
622      LockTemp(r_base);
623      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
624                  kNotVolatile);
625      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
626      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
627      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
628      if (!field_info.IsInitialized() &&
629          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
630        // Check if r_base is NULL or a not yet initialized class.
631
632        // The slow path is invoked if the r_base is NULL or the class pointed
633        // to by it is not initialized.
634        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
635        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
636        LockTemp(r_tmp);
637        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
638                                          mirror::Class::StatusOffset().Int32Value(),
639                                          mirror::Class::kStatusInitialized, nullptr, nullptr);
640        LIR* cont = NewLIR0(kPseudoTargetLabel);
641
642        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
643                                                     field_info.StorageIndex(), r_base));
644
645        FreeTemp(r_tmp);
646        // Ensure load of status and store of value don't re-order.
647        // TODO: Presumably the actual value store is control-dependent on the status load,
648        // and will thus not be reordered in any case, since stores are never speculated.
649        // Does later code "know" that the class is now initialized?  If so, we still
650        // need the barrier to guard later static loads.
651        GenMemBarrier(kLoadAny);
652      }
653      FreeTemp(r_method);
654    }
655    // rBase now holds static storage base
656    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
657    if (is_long_or_double) {
658      rl_src = LoadValueWide(rl_src, reg_class);
659    } else {
660      rl_src = LoadValue(rl_src, reg_class);
661    }
662    if (is_object) {
663      StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
664                   field_info.IsVolatile() ? kVolatile : kNotVolatile);
665    } else {
666      StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size,
667                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
668    }
669    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
670      MarkGCCard(rl_src.reg, r_base);
671    }
672    FreeTemp(r_base);
673  } else {
674    FlushAllRegs();  // Everything to home locations
675    if (cu_->target64) {
676      GenSputCall<8>(this, is_long_or_double, is_object, &field_info, rl_src);
677    } else {
678      GenSputCall<4>(this, is_long_or_double, is_object, &field_info, rl_src);
679    }
680  }
681}
682
683template <size_t pointer_size>
684static void GenSgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
685                        const MirSFieldLoweringInfo* field_info) {
686  ThreadOffset<pointer_size> getter_offset =
687      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Static)
688          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjStatic)
689              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Static));
690  mir_to_lir->CallRuntimeHelperImm(getter_offset, field_info->FieldIndex(), true);
691}
692
693void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
694                      bool is_long_or_double, bool is_object) {
695  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
696  cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
697  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
698  if (!SLOW_FIELD_PATH && field_info.FastGet() &&
699      (!field_info.IsVolatile() || SupportsVolatileLoadStore(load_size))) {
700    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
701    RegStorage r_base;
702    if (field_info.IsReferrersClass()) {
703      // Fast path, static storage base is this method's class
704      RegLocation rl_method  = LoadCurrMethod();
705      r_base = AllocTempRef();
706      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
707                  kNotVolatile);
708    } else {
709      // Medium path, static storage base in a different class which requires checks that the other
710      // class is initialized
711      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
712      // May do runtime call so everything to home locations.
713      FlushAllRegs();
714      // Using fixed register to sync with possible call to runtime support.
715      RegStorage r_method = TargetReg(kArg1, kRef);
716      LockTemp(r_method);
717      LoadCurrMethodDirect(r_method);
718      r_base = TargetReg(kArg0, kRef);
719      LockTemp(r_base);
720      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
721                  kNotVolatile);
722      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
723      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
724      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
725      if (!field_info.IsInitialized() &&
726          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
727        // Check if r_base is NULL or a not yet initialized class.
728
729        // The slow path is invoked if the r_base is NULL or the class pointed
730        // to by it is not initialized.
731        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
732        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
733        LockTemp(r_tmp);
734        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
735                                          mirror::Class::StatusOffset().Int32Value(),
736                                          mirror::Class::kStatusInitialized, nullptr, nullptr);
737        LIR* cont = NewLIR0(kPseudoTargetLabel);
738
739        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
740                                                     field_info.StorageIndex(), r_base));
741
742        FreeTemp(r_tmp);
743        // Ensure load of status and load of value don't re-order.
744        GenMemBarrier(kLoadAny);
745      }
746      FreeTemp(r_method);
747    }
748    // r_base now holds static storage base
749    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
750    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
751
752    int field_offset = field_info.FieldOffset().Int32Value();
753    if (is_object) {
754      LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
755          kNotVolatile);
756    } else {
757      LoadBaseDisp(r_base, field_offset, rl_result.reg, load_size, field_info.IsVolatile() ?
758          kVolatile : kNotVolatile);
759    }
760    FreeTemp(r_base);
761
762    if (is_long_or_double) {
763      StoreValueWide(rl_dest, rl_result);
764    } else {
765      StoreValue(rl_dest, rl_result);
766    }
767  } else {
768    FlushAllRegs();  // Everything to home locations
769    if (cu_->target64) {
770      GenSgetCall<8>(this, is_long_or_double, is_object, &field_info);
771    } else {
772      GenSgetCall<4>(this, is_long_or_double, is_object, &field_info);
773    }
774    // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
775    if (is_long_or_double) {
776      RegLocation rl_result = GetReturnWide(kCoreReg);
777      StoreValueWide(rl_dest, rl_result);
778    } else {
779      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
780      StoreValue(rl_dest, rl_result);
781    }
782  }
783}
784
785// Generate code for all slow paths.
786void Mir2Lir::HandleSlowPaths() {
787  // We should check slow_paths_.Size() every time, because a new slow path
788  // may be created during slowpath->Compile().
789  for (size_t i = 0; i < slow_paths_.Size(); ++i) {
790    LIRSlowPath* slowpath = slow_paths_.Get(i);
791    slowpath->Compile();
792  }
793  slow_paths_.Reset();
794}
795
796template <size_t pointer_size>
797static void GenIgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
798                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj) {
799  ThreadOffset<pointer_size> getter_offset =
800      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Instance)
801          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjInstance)
802              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Instance));
803  mir_to_lir->CallRuntimeHelperImmRegLocation(getter_offset, field_info->FieldIndex(), rl_obj,
804                                              true);
805}
806
807void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
808                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
809                      bool is_object) {
810  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
811  cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
812  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
813  if (!SLOW_FIELD_PATH && field_info.FastGet() &&
814      (!field_info.IsVolatile() || SupportsVolatileLoadStore(load_size))) {
815    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
816    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
817    rl_obj = LoadValue(rl_obj, kRefReg);
818    GenNullCheck(rl_obj.reg, opt_flags);
819    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
820    int field_offset = field_info.FieldOffset().Int32Value();
821    LIR* load_lir;
822    if (is_object) {
823      load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
824          kVolatile : kNotVolatile);
825    } else {
826      load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, load_size,
827                              field_info.IsVolatile() ? kVolatile : kNotVolatile);
828    }
829    MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
830    if (is_long_or_double) {
831      StoreValueWide(rl_dest, rl_result);
832    } else {
833      StoreValue(rl_dest, rl_result);
834    }
835  } else {
836    if (cu_->target64) {
837      GenIgetCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj);
838    } else {
839      GenIgetCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj);
840    }
841    // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
842    if (is_long_or_double) {
843      RegLocation rl_result = GetReturnWide(kCoreReg);
844      StoreValueWide(rl_dest, rl_result);
845    } else {
846      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
847      StoreValue(rl_dest, rl_result);
848    }
849  }
850}
851
852template <size_t pointer_size>
853static void GenIputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
854                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj,
855                        RegLocation rl_src) {
856  ThreadOffset<pointer_size> setter_offset =
857      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Instance)
858          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjInstance)
859              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Instance));
860  mir_to_lir->CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_info->FieldIndex(),
861                                                         rl_obj, rl_src, true);
862}
863
864void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
865                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
866                      bool is_object) {
867  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
868  cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
869  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
870  if (!SLOW_FIELD_PATH && field_info.FastPut() &&
871      (!field_info.IsVolatile() || SupportsVolatileLoadStore(store_size))) {
872    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
873    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
874    rl_obj = LoadValue(rl_obj, kRefReg);
875    if (is_long_or_double) {
876      rl_src = LoadValueWide(rl_src, reg_class);
877    } else {
878      rl_src = LoadValue(rl_src, reg_class);
879    }
880    GenNullCheck(rl_obj.reg, opt_flags);
881    int field_offset = field_info.FieldOffset().Int32Value();
882    LIR* store;
883    if (is_object) {
884      store = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
885          kVolatile : kNotVolatile);
886    } else {
887      store = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, store_size,
888                            field_info.IsVolatile() ? kVolatile : kNotVolatile);
889    }
890    MarkPossibleNullPointerExceptionAfter(opt_flags, store);
891    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
892      MarkGCCard(rl_src.reg, rl_obj.reg);
893    }
894  } else {
895    if (cu_->target64) {
896      GenIputCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
897    } else {
898      GenIputCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
899    }
900  }
901}
902
903template <size_t pointer_size>
904static void GenArrayObjPutCall(Mir2Lir* mir_to_lir, bool needs_range_check, bool needs_null_check,
905                               RegLocation rl_array, RegLocation rl_index, RegLocation rl_src) {
906  ThreadOffset<pointer_size> helper = needs_range_check
907        ? (needs_null_check ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithNullAndBoundCheck)
908                            : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithBoundCheck))
909        : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObject);
910  mir_to_lir->CallRuntimeHelperRegLocationRegLocationRegLocation(helper, rl_array, rl_index, rl_src,
911                                                                 true);
912}
913
914void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
915                             RegLocation rl_src) {
916  bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
917  bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
918      (opt_flags & MIR_IGNORE_NULL_CHECK));
919  if (cu_->target64) {
920    GenArrayObjPutCall<8>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
921  } else {
922    GenArrayObjPutCall<4>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
923  }
924}
925
926void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
927  RegLocation rl_method = LoadCurrMethod();
928  CheckRegLocation(rl_method);
929  RegStorage res_reg = AllocTempRef();
930  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
931  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
932                                                        *cu_->dex_file,
933                                                        type_idx)) {
934    // Call out to helper which resolves type and verifies access.
935    // Resolved type returned in kRet0.
936    if (cu_->target64) {
937      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
938                              type_idx, rl_method.reg, true);
939    } else {
940      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
941                              type_idx, rl_method.reg, true);
942    }
943    RegLocation rl_result = GetReturn(kRefReg);
944    StoreValue(rl_dest, rl_result);
945  } else {
946    // We're don't need access checks, load type from dex cache
947    int32_t dex_cache_offset =
948        mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
949    LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg, kNotVolatile);
950    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
951    LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
952    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
953        type_idx) || SLOW_TYPE_PATH) {
954      // Slow path, at runtime test if type is null and if so initialize
955      FlushAllRegs();
956      LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
957      LIR* cont = NewLIR0(kPseudoTargetLabel);
958
959      // Object to generate the slow path for class resolution.
960      class SlowPath : public LIRSlowPath {
961       public:
962        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
963                 const RegLocation& rl_method, const RegLocation& rl_result) :
964                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
965                   rl_method_(rl_method), rl_result_(rl_result) {
966        }
967
968        void Compile() {
969          GenerateTargetLabel();
970
971          if (cu_->target64) {
972            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
973                                          rl_method_.reg, true);
974          } else {
975            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
976                                                      rl_method_.reg, true);
977          }
978          m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetReg(kRet0, kRef));
979
980          m2l_->OpUnconditionalBranch(cont_);
981        }
982
983       private:
984        const int type_idx_;
985        const RegLocation rl_method_;
986        const RegLocation rl_result_;
987      };
988
989      // Add to list for future.
990      AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
991
992      StoreValue(rl_dest, rl_result);
993     } else {
994      // Fast path, we're done - just store result
995      StoreValue(rl_dest, rl_result);
996    }
997  }
998}
999
1000void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
1001  /* NOTE: Most strings should be available at compile time */
1002  int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
1003                                                                                      Int32Value();
1004  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
1005      *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
1006    // slow path, resolve string if not in dex cache
1007    FlushAllRegs();
1008    LockCallTemps();  // Using explicit registers
1009
1010    // If the Method* is already in a register, we can save a copy.
1011    RegLocation rl_method = mir_graph_->GetMethodLoc();
1012    RegStorage r_method;
1013    if (rl_method.location == kLocPhysReg) {
1014      // A temp would conflict with register use below.
1015      DCHECK(!IsTemp(rl_method.reg));
1016      r_method = rl_method.reg;
1017    } else {
1018      r_method = TargetReg(kArg2, kRef);
1019      LoadCurrMethodDirect(r_method);
1020    }
1021    LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(),
1022                TargetReg(kArg0, kRef), kNotVolatile);
1023
1024    // Might call out to helper, which will return resolved string in kRet0
1025    LoadRefDisp(TargetReg(kArg0, kRef), offset_of_string, TargetReg(kRet0, kRef), kNotVolatile);
1026    LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0, kRef), 0, NULL);
1027    LIR* cont = NewLIR0(kPseudoTargetLabel);
1028
1029    {
1030      // Object to generate the slow path for string resolution.
1031      class SlowPath : public LIRSlowPath {
1032       public:
1033        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
1034          LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
1035          r_method_(r_method), string_idx_(string_idx) {
1036        }
1037
1038        void Compile() {
1039          GenerateTargetLabel();
1040          if (cu_->target64) {
1041            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pResolveString),
1042                                          r_method_, string_idx_, true);
1043          } else {
1044            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pResolveString),
1045                                          r_method_, string_idx_, true);
1046          }
1047          m2l_->OpUnconditionalBranch(cont_);
1048        }
1049
1050       private:
1051         const RegStorage r_method_;
1052         const int32_t string_idx_;
1053      };
1054
1055      AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
1056    }
1057
1058    GenBarrier();
1059    StoreValue(rl_dest, GetReturn(kRefReg));
1060  } else {
1061    RegLocation rl_method = LoadCurrMethod();
1062    RegStorage res_reg = AllocTempRef();
1063    RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1064    LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg,
1065                kNotVolatile);
1066    LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
1067    StoreValue(rl_dest, rl_result);
1068  }
1069}
1070
1071template <size_t pointer_size>
1072static void GenNewInstanceImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, uint32_t type_idx,
1073                               RegLocation rl_dest) {
1074  mir_to_lir->FlushAllRegs();  /* Everything to home location */
1075  // alloc will always check for resolution, do we also need to verify
1076  // access because the verifier was unable to?
1077  ThreadOffset<pointer_size> func_offset(-1);
1078  const DexFile* dex_file = cu->dex_file;
1079  CompilerDriver* driver = cu->compiler_driver;
1080  if (driver->CanAccessInstantiableTypeWithoutChecks(
1081      cu->method_idx, *dex_file, type_idx)) {
1082    bool is_type_initialized;
1083    bool use_direct_type_ptr;
1084    uintptr_t direct_type_ptr;
1085    bool is_finalizable;
1086    if (kEmbedClassInCode &&
1087        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
1088                                   &direct_type_ptr, &is_finalizable) &&
1089                                   !is_finalizable) {
1090      // The fast path.
1091      if (!use_direct_type_ptr) {
1092        mir_to_lir->LoadClassType(type_idx, kArg0);
1093        if (!is_type_initialized) {
1094          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1095          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetReg(kArg0, kRef),
1096                                                 true);
1097        } else {
1098          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1099          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetReg(kArg0, kRef),
1100                                                 true);
1101        }
1102      } else {
1103        // Use the direct pointer.
1104        if (!is_type_initialized) {
1105          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1106          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1107        } else {
1108          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1109          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1110        }
1111      }
1112    } else {
1113      // The slow path.
1114      DCHECK_EQ(func_offset.Int32Value(), -1);
1115      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObject);
1116      mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1117    }
1118    DCHECK_NE(func_offset.Int32Value(), -1);
1119  } else {
1120    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectWithAccessCheck);
1121    mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1122  }
1123  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
1124  mir_to_lir->StoreValue(rl_dest, rl_result);
1125}
1126
1127/*
1128 * Let helper function take care of everything.  Will
1129 * call Class::NewInstanceFromCode(type_idx, method);
1130 */
1131void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
1132  if (cu_->target64) {
1133    GenNewInstanceImpl<8>(this, cu_, type_idx, rl_dest);
1134  } else {
1135    GenNewInstanceImpl<4>(this, cu_, type_idx, rl_dest);
1136  }
1137}
1138
1139void Mir2Lir::GenThrow(RegLocation rl_src) {
1140  FlushAllRegs();
1141  if (cu_->target64) {
1142    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pDeliverException), rl_src, true);
1143  } else {
1144    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pDeliverException), rl_src, true);
1145  }
1146}
1147
1148// For final classes there are no sub-classes to check and so we can answer the instance-of
1149// question with simple comparisons.
1150void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
1151                                 RegLocation rl_src) {
1152  // X86 has its own implementation.
1153  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1154
1155  RegLocation object = LoadValue(rl_src, kRefReg);
1156  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1157  RegStorage result_reg = rl_result.reg;
1158  if (IsSameReg(result_reg, object.reg)) {
1159    result_reg = AllocTypedTemp(false, kCoreReg);
1160    DCHECK(!IsSameReg(result_reg, object.reg));
1161  }
1162  LoadConstant(result_reg, 0);     // assume false
1163  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1164
1165  RegStorage check_class = AllocTypedTemp(false, kRefReg);
1166  RegStorage object_class = AllocTypedTemp(false, kRefReg);
1167
1168  LoadCurrMethodDirect(check_class);
1169  if (use_declaring_class) {
1170    LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
1171                kNotVolatile);
1172    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1173                kNotVolatile);
1174  } else {
1175    LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1176                check_class, kNotVolatile);
1177    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1178                kNotVolatile);
1179    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1180    LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
1181  }
1182
1183  // FIXME: what should we be comparing here? compressed or decompressed references?
1184  if (cu_->instruction_set == kThumb2) {
1185    OpRegReg(kOpCmp, check_class, object_class);  // Same?
1186    LIR* it = OpIT(kCondEq, "");   // if-convert the test
1187    LoadConstant(result_reg, 1);     // .eq case - load true
1188    OpEndIT(it);
1189  } else {
1190    GenSelectConst32(check_class, object_class, kCondEq, 1, 0, result_reg, kCoreReg);
1191  }
1192  LIR* target = NewLIR0(kPseudoTargetLabel);
1193  null_branchover->target = target;
1194  FreeTemp(object_class);
1195  FreeTemp(check_class);
1196  if (IsTemp(result_reg)) {
1197    OpRegCopy(rl_result.reg, result_reg);
1198    FreeTemp(result_reg);
1199  }
1200  StoreValue(rl_dest, rl_result);
1201}
1202
1203void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1204                                         bool type_known_abstract, bool use_declaring_class,
1205                                         bool can_assume_type_is_in_dex_cache,
1206                                         uint32_t type_idx, RegLocation rl_dest,
1207                                         RegLocation rl_src) {
1208  // X86 has its own implementation.
1209  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1210
1211  FlushAllRegs();
1212  // May generate a call - use explicit registers
1213  LockCallTemps();
1214  RegStorage method_reg = TargetReg(kArg1, kRef);
1215  LoadCurrMethodDirect(method_reg);   // kArg1 <= current Method*
1216  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1217  if (needs_access_check) {
1218    // Check we have access to type_idx and if not throw IllegalAccessError,
1219    // returns Class* in kArg0
1220    if (cu_->target64) {
1221      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1222                           type_idx, true);
1223    } else {
1224      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1225                           type_idx, true);
1226    }
1227    OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1228    LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1229  } else if (use_declaring_class) {
1230    LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1231    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1232                class_reg, kNotVolatile);
1233  } else {
1234    if (can_assume_type_is_in_dex_cache) {
1235      // Conditionally, as in the other case we will also load it.
1236      LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1237    }
1238
1239    // Load dex cache entry into class_reg (kArg2)
1240    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1241                class_reg, kNotVolatile);
1242    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1243    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1244    if (!can_assume_type_is_in_dex_cache) {
1245      LIR* slow_path_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1246      LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
1247
1248      // Should load value here.
1249      LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1250
1251      class InitTypeSlowPath : public Mir2Lir::LIRSlowPath {
1252       public:
1253        InitTypeSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont, uint32_t type_idx,
1254                         RegLocation rl_src)
1255            : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont), type_idx_(type_idx),
1256              rl_src_(rl_src) {
1257        }
1258
1259        void Compile() OVERRIDE {
1260          GenerateTargetLabel();
1261
1262          if (cu_->target64) {
1263            m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
1264                                       true);
1265          } else {
1266            m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
1267                                       true);
1268          }
1269          m2l_->OpRegCopy(m2l_->TargetReg(kArg2, kRef),
1270                          m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1271
1272          m2l_->OpUnconditionalBranch(cont_);
1273        }
1274
1275       private:
1276        uint32_t type_idx_;
1277        RegLocation rl_src_;
1278      };
1279
1280      AddSlowPath(new (arena_) InitTypeSlowPath(this, slow_path_branch, slow_path_target,
1281                                                type_idx, rl_src));
1282    }
1283  }
1284  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1285  RegLocation rl_result = GetReturn(kCoreReg);
1286  if (cu_->instruction_set == kMips) {
1287    // On MIPS rArg0 != rl_result, place false in result if branch is taken.
1288    LoadConstant(rl_result.reg, 0);
1289  }
1290  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, NULL);
1291
1292  /* load object->klass_ */
1293  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1294  LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1295              TargetReg(kArg1, kRef), kNotVolatile);
1296  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1297  LIR* branchover = NULL;
1298  if (type_known_final) {
1299    // rl_result == ref == null == 0.
1300    GenSelectConst32(TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), kCondEq, 1, 0, rl_result.reg,
1301                     kCoreReg);
1302  } else {
1303    if (cu_->instruction_set == kThumb2) {
1304      RegStorage r_tgt = cu_->target64 ?
1305          LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial)) :
1306          LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1307      LIR* it = nullptr;
1308      if (!type_known_abstract) {
1309      /* Uses conditional nullification */
1310        OpRegReg(kOpCmp, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef));  // Same?
1311        it = OpIT(kCondEq, "EE");   // if-convert the test
1312        LoadConstant(TargetReg(kArg0, kNotWide), 1);     // .eq case - load true
1313      }
1314      OpRegCopy(TargetReg(kArg0, kRef), TargetReg(kArg2, kRef));    // .ne case - arg0 <= class
1315      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1316      if (it != nullptr) {
1317        OpEndIT(it);
1318      }
1319      FreeTemp(r_tgt);
1320    } else {
1321      if (!type_known_abstract) {
1322        /* Uses branchovers */
1323        LoadConstant(rl_result.reg, 1);     // assume true
1324        branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL);
1325      }
1326
1327      OpRegCopy(TargetReg(kArg0, kRef), TargetReg(kArg2, kRef));    // .ne case - arg0 <= class
1328      if (cu_->target64) {
1329        CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial), false);
1330      } else {
1331        CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial), false);
1332      }
1333    }
1334  }
1335  // TODO: only clobber when type isn't final?
1336  ClobberCallerSave();
1337  /* branch targets here */
1338  LIR* target = NewLIR0(kPseudoTargetLabel);
1339  StoreValue(rl_dest, rl_result);
1340  branch1->target = target;
1341  if (branchover != NULL) {
1342    branchover->target = target;
1343  }
1344}
1345
1346void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1347  bool type_known_final, type_known_abstract, use_declaring_class;
1348  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1349                                                                              *cu_->dex_file,
1350                                                                              type_idx,
1351                                                                              &type_known_final,
1352                                                                              &type_known_abstract,
1353                                                                              &use_declaring_class);
1354  bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1355      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1356
1357  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1358    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1359  } else {
1360    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1361                               use_declaring_class, can_assume_type_is_in_dex_cache,
1362                               type_idx, rl_dest, rl_src);
1363  }
1364}
1365
1366void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1367  bool type_known_final, type_known_abstract, use_declaring_class;
1368  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1369                                                                              *cu_->dex_file,
1370                                                                              type_idx,
1371                                                                              &type_known_final,
1372                                                                              &type_known_abstract,
1373                                                                              &use_declaring_class);
1374  // Note: currently type_known_final is unused, as optimizing will only improve the performance
1375  // of the exception throw path.
1376  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1377  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1378    // Verifier type analysis proved this check cast would never cause an exception.
1379    return;
1380  }
1381  FlushAllRegs();
1382  // May generate a call - use explicit registers
1383  LockCallTemps();
1384  RegStorage method_reg = TargetReg(kArg1, kRef);
1385  LoadCurrMethodDirect(method_reg);  // kArg1 <= current Method*
1386  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1387  if (needs_access_check) {
1388    // Check we have access to type_idx and if not throw IllegalAccessError,
1389    // returns Class* in kRet0
1390    // InitializeTypeAndVerifyAccess(idx, method)
1391    if (cu_->target64) {
1392      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1393                           type_idx, true);
1394    } else {
1395      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1396                           type_idx, true);
1397    }
1398    OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1399  } else if (use_declaring_class) {
1400    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1401                class_reg, kNotVolatile);
1402  } else {
1403    // Load dex cache entry into class_reg (kArg2)
1404    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1405                class_reg, kNotVolatile);
1406    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1407    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1408    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1409      // Need to test presence of type in dex cache at runtime
1410      LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1411      LIR* cont = NewLIR0(kPseudoTargetLabel);
1412
1413      // Slow path to initialize the type.  Executed if the type is NULL.
1414      class SlowPath : public LIRSlowPath {
1415       public:
1416        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1417                 const RegStorage class_reg) :
1418                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1419                   class_reg_(class_reg) {
1420        }
1421
1422        void Compile() {
1423          GenerateTargetLabel();
1424
1425          // Call out to helper, which will return resolved type in kArg0
1426          // InitializeTypeFromCode(idx, method)
1427          if (m2l_->cu_->target64) {
1428            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
1429                                          m2l_->TargetReg(kArg1, kRef), true);
1430          } else {
1431            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
1432                                          m2l_->TargetReg(kArg1, kRef), true);
1433          }
1434          m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1435          m2l_->OpUnconditionalBranch(cont_);
1436        }
1437
1438       public:
1439        const int type_idx_;
1440        const RegStorage class_reg_;
1441      };
1442
1443      AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
1444    }
1445  }
1446  // At this point, class_reg (kArg2) has class
1447  LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1448
1449  // Slow path for the case where the classes are not equal.  In this case we need
1450  // to call a helper function to do the check.
1451  class SlowPath : public LIRSlowPath {
1452   public:
1453    SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1454               LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1455    }
1456
1457    void Compile() {
1458      GenerateTargetLabel();
1459
1460      if (load_) {
1461        m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1462                          m2l_->TargetReg(kArg1, kRef), kNotVolatile);
1463      }
1464      if (m2l_->cu_->target64) {
1465        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pCheckCast),
1466                                      m2l_->TargetReg(kArg2, kRef), m2l_->TargetReg(kArg1, kRef),
1467                                      true);
1468      } else {
1469        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pCheckCast),
1470                                      m2l_->TargetReg(kArg2, kRef), m2l_->TargetReg(kArg1, kRef),
1471                                      true);
1472      }
1473
1474      m2l_->OpUnconditionalBranch(cont_);
1475    }
1476
1477   private:
1478    const bool load_;
1479  };
1480
1481  if (type_known_abstract) {
1482    // Easier case, run slow path if target is non-null (slow path will load from target)
1483    LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
1484    LIR* cont = NewLIR0(kPseudoTargetLabel);
1485    AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1486  } else {
1487    // Harder, more common case.  We need to generate a forward branch over the load
1488    // if the target is null.  If it's non-null we perform the load and branch to the
1489    // slow path if the classes are not equal.
1490
1491    /* Null is OK - continue */
1492    LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
1493    /* load object->klass_ */
1494    DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1495    LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1496                TargetReg(kArg1, kRef), kNotVolatile);
1497
1498    LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
1499    LIR* cont = NewLIR0(kPseudoTargetLabel);
1500
1501    // Add the slow path that will not perform load since this is already done.
1502    AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1503
1504    // Set the null check to branch to the continuation.
1505    branch1->target = cont;
1506  }
1507}
1508
1509void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1510                           RegLocation rl_src1, RegLocation rl_src2) {
1511  RegLocation rl_result;
1512  if (cu_->instruction_set == kThumb2) {
1513    /*
1514     * NOTE:  This is the one place in the code in which we might have
1515     * as many as six live temporary registers.  There are 5 in the normal
1516     * set for Arm.  Until we have spill capabilities, temporarily add
1517     * lr to the temp set.  It is safe to do this locally, but note that
1518     * lr is used explicitly elsewhere in the code generator and cannot
1519     * normally be used as a general temp register.
1520     */
1521    MarkTemp(TargetReg(kLr, kNotWide));   // Add lr to the temp pool
1522    FreeTemp(TargetReg(kLr, kNotWide));   // and make it available
1523  }
1524  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1525  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1526  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1527  // The longs may overlap - use intermediate temp if so
1528  if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1529    RegStorage t_reg = AllocTemp();
1530    OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1531    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1532    OpRegCopy(rl_result.reg.GetLow(), t_reg);
1533    FreeTemp(t_reg);
1534  } else {
1535    OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1536    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1537  }
1538  /*
1539   * NOTE: If rl_dest refers to a frame variable in a large frame, the
1540   * following StoreValueWide might need to allocate a temp register.
1541   * To further work around the lack of a spill capability, explicitly
1542   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1543   * Remove when spill is functional.
1544   */
1545  FreeRegLocTemps(rl_result, rl_src1);
1546  FreeRegLocTemps(rl_result, rl_src2);
1547  StoreValueWide(rl_dest, rl_result);
1548  if (cu_->instruction_set == kThumb2) {
1549    Clobber(TargetReg(kLr, kNotWide));
1550    UnmarkTemp(TargetReg(kLr, kNotWide));  // Remove lr from the temp pool
1551  }
1552}
1553
1554
1555template <size_t pointer_size>
1556static void GenShiftOpLongCall(Mir2Lir* mir_to_lir, Instruction::Code opcode, RegLocation rl_src1,
1557                               RegLocation rl_shift) {
1558  ThreadOffset<pointer_size> func_offset(-1);
1559
1560  switch (opcode) {
1561    case Instruction::SHL_LONG:
1562    case Instruction::SHL_LONG_2ADDR:
1563      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShlLong);
1564      break;
1565    case Instruction::SHR_LONG:
1566    case Instruction::SHR_LONG_2ADDR:
1567      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShrLong);
1568      break;
1569    case Instruction::USHR_LONG:
1570    case Instruction::USHR_LONG_2ADDR:
1571      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pUshrLong);
1572      break;
1573    default:
1574      LOG(FATAL) << "Unexpected case";
1575  }
1576  mir_to_lir->FlushAllRegs();   /* Send everything to home location */
1577  mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false);
1578}
1579
1580void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1581                             RegLocation rl_src1, RegLocation rl_shift) {
1582  if (cu_->target64) {
1583    GenShiftOpLongCall<8>(this, opcode, rl_src1, rl_shift);
1584  } else {
1585    GenShiftOpLongCall<4>(this, opcode, rl_src1, rl_shift);
1586  }
1587  RegLocation rl_result = GetReturnWide(kCoreReg);
1588  StoreValueWide(rl_dest, rl_result);
1589}
1590
1591
1592void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1593                            RegLocation rl_src1, RegLocation rl_src2) {
1594  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1595  OpKind op = kOpBkpt;
1596  bool is_div_rem = false;
1597  bool check_zero = false;
1598  bool unary = false;
1599  RegLocation rl_result;
1600  bool shift_op = false;
1601  switch (opcode) {
1602    case Instruction::NEG_INT:
1603      op = kOpNeg;
1604      unary = true;
1605      break;
1606    case Instruction::NOT_INT:
1607      op = kOpMvn;
1608      unary = true;
1609      break;
1610    case Instruction::ADD_INT:
1611    case Instruction::ADD_INT_2ADDR:
1612      op = kOpAdd;
1613      break;
1614    case Instruction::SUB_INT:
1615    case Instruction::SUB_INT_2ADDR:
1616      op = kOpSub;
1617      break;
1618    case Instruction::MUL_INT:
1619    case Instruction::MUL_INT_2ADDR:
1620      op = kOpMul;
1621      break;
1622    case Instruction::DIV_INT:
1623    case Instruction::DIV_INT_2ADDR:
1624      check_zero = true;
1625      op = kOpDiv;
1626      is_div_rem = true;
1627      break;
1628    /* NOTE: returns in kArg1 */
1629    case Instruction::REM_INT:
1630    case Instruction::REM_INT_2ADDR:
1631      check_zero = true;
1632      op = kOpRem;
1633      is_div_rem = true;
1634      break;
1635    case Instruction::AND_INT:
1636    case Instruction::AND_INT_2ADDR:
1637      op = kOpAnd;
1638      break;
1639    case Instruction::OR_INT:
1640    case Instruction::OR_INT_2ADDR:
1641      op = kOpOr;
1642      break;
1643    case Instruction::XOR_INT:
1644    case Instruction::XOR_INT_2ADDR:
1645      op = kOpXor;
1646      break;
1647    case Instruction::SHL_INT:
1648    case Instruction::SHL_INT_2ADDR:
1649      shift_op = true;
1650      op = kOpLsl;
1651      break;
1652    case Instruction::SHR_INT:
1653    case Instruction::SHR_INT_2ADDR:
1654      shift_op = true;
1655      op = kOpAsr;
1656      break;
1657    case Instruction::USHR_INT:
1658    case Instruction::USHR_INT_2ADDR:
1659      shift_op = true;
1660      op = kOpLsr;
1661      break;
1662    default:
1663      LOG(FATAL) << "Invalid word arith op: " << opcode;
1664  }
1665  if (!is_div_rem) {
1666    if (unary) {
1667      rl_src1 = LoadValue(rl_src1, kCoreReg);
1668      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1669      OpRegReg(op, rl_result.reg, rl_src1.reg);
1670    } else {
1671      if ((shift_op) && (cu_->instruction_set != kArm64)) {
1672        rl_src2 = LoadValue(rl_src2, kCoreReg);
1673        RegStorage t_reg = AllocTemp();
1674        OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1675        rl_src1 = LoadValue(rl_src1, kCoreReg);
1676        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1677        OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1678        FreeTemp(t_reg);
1679      } else {
1680        rl_src1 = LoadValue(rl_src1, kCoreReg);
1681        rl_src2 = LoadValue(rl_src2, kCoreReg);
1682        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1683        OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1684      }
1685    }
1686    StoreValue(rl_dest, rl_result);
1687  } else {
1688    bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1689    if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1690      rl_src1 = LoadValue(rl_src1, kCoreReg);
1691      rl_src2 = LoadValue(rl_src2, kCoreReg);
1692      if (check_zero) {
1693        GenDivZeroCheck(rl_src2.reg);
1694      }
1695      rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1696      done = true;
1697    } else if (cu_->instruction_set == kThumb2) {
1698      if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1699        // Use ARM SDIV instruction for division.  For remainder we also need to
1700        // calculate using a MUL and subtract.
1701        rl_src1 = LoadValue(rl_src1, kCoreReg);
1702        rl_src2 = LoadValue(rl_src2, kCoreReg);
1703        if (check_zero) {
1704          GenDivZeroCheck(rl_src2.reg);
1705        }
1706        rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1707        done = true;
1708      }
1709    }
1710
1711    // If we haven't already generated the code use the callout function.
1712    if (!done) {
1713      FlushAllRegs();   /* Send everything to home location */
1714      LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
1715      RegStorage r_tgt = cu_->target64 ?
1716          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod)) :
1717          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod));
1718      LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
1719      if (check_zero) {
1720        GenDivZeroCheck(TargetReg(kArg1, kNotWide));
1721      }
1722      // NOTE: callout here is not a safepoint.
1723      if (cu_->target64) {
1724        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), false /* not a safepoint */);
1725      } else {
1726        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), false /* not a safepoint */);
1727      }
1728      if (op == kOpDiv)
1729        rl_result = GetReturn(kCoreReg);
1730      else
1731        rl_result = GetReturnAlt();
1732    }
1733    StoreValue(rl_dest, rl_result);
1734  }
1735}
1736
1737/*
1738 * The following are the first-level codegen routines that analyze the format
1739 * of each bytecode then either dispatch special purpose codegen routines
1740 * or produce corresponding Thumb instructions directly.
1741 */
1742
1743// Returns true if no more than two bits are set in 'x'.
1744static bool IsPopCountLE2(unsigned int x) {
1745  x &= x - 1;
1746  return (x & (x - 1)) == 0;
1747}
1748
1749// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1750// and store the result in 'rl_dest'.
1751bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1752                               RegLocation rl_src, RegLocation rl_dest, int lit) {
1753  if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1754    return false;
1755  }
1756  // No divide instruction for Arm, so check for more special cases
1757  if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1758    return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1759  }
1760  int k = LowestSetBit(lit);
1761  if (k >= 30) {
1762    // Avoid special cases.
1763    return false;
1764  }
1765  rl_src = LoadValue(rl_src, kCoreReg);
1766  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1767  if (is_div) {
1768    RegStorage t_reg = AllocTemp();
1769    if (lit == 2) {
1770      // Division by 2 is by far the most common division by constant.
1771      OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1772      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1773      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1774    } else {
1775      OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1776      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1777      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1778      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1779    }
1780  } else {
1781    RegStorage t_reg1 = AllocTemp();
1782    RegStorage t_reg2 = AllocTemp();
1783    if (lit == 2) {
1784      OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1785      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1786      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1787      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1788    } else {
1789      OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1790      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1791      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1792      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1793      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1794    }
1795  }
1796  StoreValue(rl_dest, rl_result);
1797  return true;
1798}
1799
1800// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1801// and store the result in 'rl_dest'.
1802bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1803  if (lit < 0) {
1804    return false;
1805  }
1806  if (lit == 0) {
1807    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1808    LoadConstant(rl_result.reg, 0);
1809    StoreValue(rl_dest, rl_result);
1810    return true;
1811  }
1812  if (lit == 1) {
1813    rl_src = LoadValue(rl_src, kCoreReg);
1814    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1815    OpRegCopy(rl_result.reg, rl_src.reg);
1816    StoreValue(rl_dest, rl_result);
1817    return true;
1818  }
1819  // There is RegRegRegShift on Arm, so check for more special cases
1820  if (cu_->instruction_set == kThumb2) {
1821    return EasyMultiply(rl_src, rl_dest, lit);
1822  }
1823  // Can we simplify this multiplication?
1824  bool power_of_two = false;
1825  bool pop_count_le2 = false;
1826  bool power_of_two_minus_one = false;
1827  if (IsPowerOfTwo(lit)) {
1828    power_of_two = true;
1829  } else if (IsPopCountLE2(lit)) {
1830    pop_count_le2 = true;
1831  } else if (IsPowerOfTwo(lit + 1)) {
1832    power_of_two_minus_one = true;
1833  } else {
1834    return false;
1835  }
1836  rl_src = LoadValue(rl_src, kCoreReg);
1837  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1838  if (power_of_two) {
1839    // Shift.
1840    OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
1841  } else if (pop_count_le2) {
1842    // Shift and add and shift.
1843    int first_bit = LowestSetBit(lit);
1844    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1845    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1846  } else {
1847    // Reverse subtract: (src << (shift + 1)) - src.
1848    DCHECK(power_of_two_minus_one);
1849    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1850    RegStorage t_reg = AllocTemp();
1851    OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
1852    OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1853  }
1854  StoreValue(rl_dest, rl_result);
1855  return true;
1856}
1857
1858void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1859                               int lit) {
1860  RegLocation rl_result;
1861  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1862  int shift_op = false;
1863  bool is_div = false;
1864
1865  switch (opcode) {
1866    case Instruction::RSUB_INT_LIT8:
1867    case Instruction::RSUB_INT: {
1868      rl_src = LoadValue(rl_src, kCoreReg);
1869      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1870      if (cu_->instruction_set == kThumb2) {
1871        OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1872      } else {
1873        OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1874        OpRegImm(kOpAdd, rl_result.reg, lit);
1875      }
1876      StoreValue(rl_dest, rl_result);
1877      return;
1878    }
1879
1880    case Instruction::SUB_INT:
1881    case Instruction::SUB_INT_2ADDR:
1882      lit = -lit;
1883      // Intended fallthrough
1884    case Instruction::ADD_INT:
1885    case Instruction::ADD_INT_2ADDR:
1886    case Instruction::ADD_INT_LIT8:
1887    case Instruction::ADD_INT_LIT16:
1888      op = kOpAdd;
1889      break;
1890    case Instruction::MUL_INT:
1891    case Instruction::MUL_INT_2ADDR:
1892    case Instruction::MUL_INT_LIT8:
1893    case Instruction::MUL_INT_LIT16: {
1894      if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1895        return;
1896      }
1897      op = kOpMul;
1898      break;
1899    }
1900    case Instruction::AND_INT:
1901    case Instruction::AND_INT_2ADDR:
1902    case Instruction::AND_INT_LIT8:
1903    case Instruction::AND_INT_LIT16:
1904      op = kOpAnd;
1905      break;
1906    case Instruction::OR_INT:
1907    case Instruction::OR_INT_2ADDR:
1908    case Instruction::OR_INT_LIT8:
1909    case Instruction::OR_INT_LIT16:
1910      op = kOpOr;
1911      break;
1912    case Instruction::XOR_INT:
1913    case Instruction::XOR_INT_2ADDR:
1914    case Instruction::XOR_INT_LIT8:
1915    case Instruction::XOR_INT_LIT16:
1916      op = kOpXor;
1917      break;
1918    case Instruction::SHL_INT_LIT8:
1919    case Instruction::SHL_INT:
1920    case Instruction::SHL_INT_2ADDR:
1921      lit &= 31;
1922      shift_op = true;
1923      op = kOpLsl;
1924      break;
1925    case Instruction::SHR_INT_LIT8:
1926    case Instruction::SHR_INT:
1927    case Instruction::SHR_INT_2ADDR:
1928      lit &= 31;
1929      shift_op = true;
1930      op = kOpAsr;
1931      break;
1932    case Instruction::USHR_INT_LIT8:
1933    case Instruction::USHR_INT:
1934    case Instruction::USHR_INT_2ADDR:
1935      lit &= 31;
1936      shift_op = true;
1937      op = kOpLsr;
1938      break;
1939
1940    case Instruction::DIV_INT:
1941    case Instruction::DIV_INT_2ADDR:
1942    case Instruction::DIV_INT_LIT8:
1943    case Instruction::DIV_INT_LIT16:
1944    case Instruction::REM_INT:
1945    case Instruction::REM_INT_2ADDR:
1946    case Instruction::REM_INT_LIT8:
1947    case Instruction::REM_INT_LIT16: {
1948      if (lit == 0) {
1949        GenDivZeroException();
1950        return;
1951      }
1952      if ((opcode == Instruction::DIV_INT) ||
1953          (opcode == Instruction::DIV_INT_2ADDR) ||
1954          (opcode == Instruction::DIV_INT_LIT8) ||
1955          (opcode == Instruction::DIV_INT_LIT16)) {
1956        is_div = true;
1957      } else {
1958        is_div = false;
1959      }
1960      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1961        return;
1962      }
1963
1964      bool done = false;
1965      if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1966        rl_src = LoadValue(rl_src, kCoreReg);
1967        rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1968        done = true;
1969      } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1970        rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1971        done = true;
1972      } else if (cu_->instruction_set == kThumb2) {
1973        if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1974          // Use ARM SDIV instruction for division.  For remainder we also need to
1975          // calculate using a MUL and subtract.
1976          rl_src = LoadValue(rl_src, kCoreReg);
1977          rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1978          done = true;
1979        }
1980      }
1981
1982      if (!done) {
1983        FlushAllRegs();   /* Everything to home location. */
1984        LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
1985        Clobber(TargetReg(kArg0, kNotWide));
1986        if (cu_->target64) {
1987          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), TargetReg(kArg0, kNotWide),
1988                                  lit, false);
1989        } else {
1990          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), TargetReg(kArg0, kNotWide),
1991                                  lit, false);
1992        }
1993        if (is_div)
1994          rl_result = GetReturn(kCoreReg);
1995        else
1996          rl_result = GetReturnAlt();
1997      }
1998      StoreValue(rl_dest, rl_result);
1999      return;
2000    }
2001    default:
2002      LOG(FATAL) << "Unexpected opcode " << opcode;
2003  }
2004  rl_src = LoadValue(rl_src, kCoreReg);
2005  rl_result = EvalLoc(rl_dest, kCoreReg, true);
2006  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
2007  if (shift_op && (lit == 0)) {
2008    OpRegCopy(rl_result.reg, rl_src.reg);
2009  } else {
2010    OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
2011  }
2012  StoreValue(rl_dest, rl_result);
2013}
2014
2015template <size_t pointer_size>
2016static void GenArithOpLongImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, Instruction::Code opcode,
2017                               RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
2018  RegLocation rl_result;
2019  OpKind first_op = kOpBkpt;
2020  OpKind second_op = kOpBkpt;
2021  bool call_out = false;
2022  bool check_zero = false;
2023  ThreadOffset<pointer_size> func_offset(-1);
2024  int ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2025
2026  switch (opcode) {
2027    case Instruction::NOT_LONG:
2028      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2029        mir_to_lir->GenNotLong(rl_dest, rl_src2);
2030        return;
2031      }
2032      rl_src2 = mir_to_lir->LoadValueWide(rl_src2, kCoreReg);
2033      rl_result = mir_to_lir->EvalLoc(rl_dest, kCoreReg, true);
2034      // Check for destructive overlap
2035      if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
2036        RegStorage t_reg = mir_to_lir->AllocTemp();
2037        mir_to_lir->OpRegCopy(t_reg, rl_src2.reg.GetHigh());
2038        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
2039        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
2040        mir_to_lir->FreeTemp(t_reg);
2041      } else {
2042        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
2043        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
2044      }
2045      mir_to_lir->StoreValueWide(rl_dest, rl_result);
2046      return;
2047    case Instruction::ADD_LONG:
2048    case Instruction::ADD_LONG_2ADDR:
2049      if (cu->instruction_set != kThumb2) {
2050        mir_to_lir->GenAddLong(opcode, rl_dest, rl_src1, rl_src2);
2051        return;
2052      }
2053      first_op = kOpAdd;
2054      second_op = kOpAdc;
2055      break;
2056    case Instruction::SUB_LONG:
2057    case Instruction::SUB_LONG_2ADDR:
2058      if (cu->instruction_set != kThumb2) {
2059        mir_to_lir->GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
2060        return;
2061      }
2062      first_op = kOpSub;
2063      second_op = kOpSbc;
2064      break;
2065    case Instruction::MUL_LONG:
2066    case Instruction::MUL_LONG_2ADDR:
2067      if (cu->instruction_set != kMips) {
2068        mir_to_lir->GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
2069        return;
2070      } else {
2071        call_out = true;
2072        ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2073        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmul);
2074      }
2075      break;
2076    case Instruction::DIV_LONG:
2077    case Instruction::DIV_LONG_2ADDR:
2078      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2079        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true);
2080        return;
2081      }
2082      call_out = true;
2083      check_zero = true;
2084      ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2085      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLdiv);
2086      break;
2087    case Instruction::REM_LONG:
2088    case Instruction::REM_LONG_2ADDR:
2089      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2090        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false);
2091        return;
2092      }
2093      call_out = true;
2094      check_zero = true;
2095      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmod);
2096      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
2097      ret_reg = (cu->instruction_set == kThumb2) ? mir_to_lir->TargetReg(kArg2, kNotWide).GetReg() :
2098          mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2099      break;
2100    case Instruction::AND_LONG_2ADDR:
2101    case Instruction::AND_LONG:
2102      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2103          cu->instruction_set == kArm64) {
2104        return mir_to_lir->GenAndLong(opcode, rl_dest, rl_src1, rl_src2);
2105      }
2106      first_op = kOpAnd;
2107      second_op = kOpAnd;
2108      break;
2109    case Instruction::OR_LONG:
2110    case Instruction::OR_LONG_2ADDR:
2111      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2112          cu->instruction_set == kArm64) {
2113        mir_to_lir->GenOrLong(opcode, rl_dest, rl_src1, rl_src2);
2114        return;
2115      }
2116      first_op = kOpOr;
2117      second_op = kOpOr;
2118      break;
2119    case Instruction::XOR_LONG:
2120    case Instruction::XOR_LONG_2ADDR:
2121      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2122          cu->instruction_set == kArm64) {
2123        mir_to_lir->GenXorLong(opcode, rl_dest, rl_src1, rl_src2);
2124        return;
2125      }
2126      first_op = kOpXor;
2127      second_op = kOpXor;
2128      break;
2129    case Instruction::NEG_LONG: {
2130      mir_to_lir->GenNegLong(rl_dest, rl_src2);
2131      return;
2132    }
2133    default:
2134      LOG(FATAL) << "Invalid long arith op";
2135  }
2136  if (!call_out) {
2137    mir_to_lir->GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
2138  } else {
2139    mir_to_lir->FlushAllRegs();   /* Send everything to home location */
2140    if (check_zero) {
2141      RegStorage r_tmp1 = mir_to_lir->TargetReg(kArg0, kWide);
2142      RegStorage r_tmp2 = mir_to_lir->TargetReg(kArg2, kWide);
2143      mir_to_lir->LoadValueDirectWideFixed(rl_src2, r_tmp2);
2144      RegStorage r_tgt = mir_to_lir->CallHelperSetup(func_offset);
2145      mir_to_lir->GenDivZeroCheckWide(r_tmp2);
2146      mir_to_lir->LoadValueDirectWideFixed(rl_src1, r_tmp1);
2147      // NOTE: callout here is not a safepoint
2148      mir_to_lir->CallHelper(r_tgt, func_offset, false /* not safepoint */);
2149    } else {
2150      mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false);
2151    }
2152    // Adjust return regs in to handle case of rem returning kArg2/kArg3
2153    if (ret_reg == mir_to_lir->TargetReg(kRet0, kNotWide).GetReg())
2154      rl_result = mir_to_lir->GetReturnWide(kCoreReg);
2155    else
2156      rl_result = mir_to_lir->GetReturnWideAlt();
2157    mir_to_lir->StoreValueWide(rl_dest, rl_result);
2158  }
2159}
2160
2161void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
2162                             RegLocation rl_src1, RegLocation rl_src2) {
2163  if (cu_->target64) {
2164    GenArithOpLongImpl<8>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2165  } else {
2166    GenArithOpLongImpl<4>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2167  }
2168}
2169
2170void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
2171  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2172  LoadConstantNoClobber(rl_result.reg, value);
2173  StoreValue(rl_dest, rl_result);
2174  if (value == 0) {
2175    Workaround7250540(rl_dest, rl_result.reg);
2176  }
2177}
2178
2179template <size_t pointer_size>
2180void Mir2Lir::GenConversionCall(ThreadOffset<pointer_size> func_offset,
2181                                RegLocation rl_dest, RegLocation rl_src) {
2182  /*
2183   * Don't optimize the register usage since it calls out to support
2184   * functions
2185   */
2186  DCHECK_EQ(pointer_size, GetInstructionSetPointerSize(cu_->instruction_set));
2187
2188  FlushAllRegs();   /* Send everything to home location */
2189  CallRuntimeHelperRegLocation(func_offset, rl_src, false);
2190  if (rl_dest.wide) {
2191    RegLocation rl_result;
2192    rl_result = GetReturnWide(LocToRegClass(rl_dest));
2193    StoreValueWide(rl_dest, rl_result);
2194  } else {
2195    RegLocation rl_result;
2196    rl_result = GetReturn(LocToRegClass(rl_dest));
2197    StoreValue(rl_dest, rl_result);
2198  }
2199}
2200template void Mir2Lir::GenConversionCall(ThreadOffset<4> func_offset,
2201                                         RegLocation rl_dest, RegLocation rl_src);
2202template void Mir2Lir::GenConversionCall(ThreadOffset<8> func_offset,
2203                                         RegLocation rl_dest, RegLocation rl_src);
2204
2205class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
2206 public:
2207  SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
2208      : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
2209  }
2210
2211  void Compile() OVERRIDE {
2212    m2l_->ResetRegPool();
2213    m2l_->ResetDefTracking();
2214    GenerateTargetLabel(kPseudoSuspendTarget);
2215    if (cu_->target64) {
2216      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pTestSuspend), true);
2217    } else {
2218      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pTestSuspend), true);
2219    }
2220    if (cont_ != nullptr) {
2221      m2l_->OpUnconditionalBranch(cont_);
2222    }
2223  }
2224};
2225
2226/* Check if we need to check for pending suspend request */
2227void Mir2Lir::GenSuspendTest(int opt_flags) {
2228  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
2229    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2230      return;
2231    }
2232    FlushAllRegs();
2233    LIR* branch = OpTestSuspend(NULL);
2234    LIR* cont = NewLIR0(kPseudoTargetLabel);
2235    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
2236  } else {
2237    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2238      return;
2239    }
2240    FlushAllRegs();     // TODO: needed?
2241    LIR* inst = CheckSuspendUsingLoad();
2242    MarkSafepointPC(inst);
2243  }
2244}
2245
2246/* Check if we need to check for pending suspend request */
2247void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
2248  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
2249    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2250      OpUnconditionalBranch(target);
2251      return;
2252    }
2253    OpTestSuspend(target);
2254    FlushAllRegs();
2255    LIR* branch = OpUnconditionalBranch(nullptr);
2256    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
2257  } else {
2258    // For the implicit suspend check, just perform the trigger
2259    // load and branch to the target.
2260    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2261      OpUnconditionalBranch(target);
2262      return;
2263    }
2264    FlushAllRegs();
2265    LIR* inst = CheckSuspendUsingLoad();
2266    MarkSafepointPC(inst);
2267    OpUnconditionalBranch(target);
2268  }
2269}
2270
2271/* Call out to helper assembly routine that will null check obj and then lock it. */
2272void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
2273  FlushAllRegs();
2274  if (cu_->target64) {
2275    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pLockObject), rl_src, true);
2276  } else {
2277    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pLockObject), rl_src, true);
2278  }
2279}
2280
2281/* Call out to helper assembly routine that will null check obj and then unlock it. */
2282void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2283  FlushAllRegs();
2284  if (cu_->target64) {
2285    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pUnlockObject), rl_src, true);
2286  } else {
2287    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject), rl_src, true);
2288  }
2289}
2290
2291/* Generic code for generating a wide constant into a VR. */
2292void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2293  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2294  LoadConstantWide(rl_result.reg, value);
2295  StoreValueWide(rl_dest, rl_result);
2296}
2297
2298}  // namespace art
2299