gen_common.cc revision 69dfe51b684dd9d510dbcb63295fe180f998efde
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include "dex/compiler_ir.h"
17#include "dex/compiler_internals.h"
18#include "dex/quick/arm/arm_lir.h"
19#include "dex/quick/mir_to_lir-inl.h"
20#include "entrypoints/quick/quick_entrypoints.h"
21#include "mirror/array.h"
22#include "mirror/object_array-inl.h"
23#include "mirror/object-inl.h"
24#include "verifier/method_verifier.h"
25#include <functional>
26
27namespace art {
28
29// Shortcuts to repeatedly used long types.
30typedef mirror::ObjectArray<mirror::Object> ObjArray;
31typedef mirror::ObjectArray<mirror::Class> ClassArray;
32
33/*
34 * This source files contains "gen" codegen routines that should
35 * be applicable to most targets.  Only mid-level support utilities
36 * and "op" calls may be used here.
37 */
38
39/*
40 * Generate a kPseudoBarrier marker to indicate the boundary of special
41 * blocks.
42 */
43void Mir2Lir::GenBarrier() {
44  LIR* barrier = NewLIR0(kPseudoBarrier);
45  /* Mark all resources as being clobbered */
46  DCHECK(!barrier->flags.use_def_invalid);
47  barrier->u.m.def_mask = &kEncodeAll;
48}
49
50void Mir2Lir::GenDivZeroException() {
51  LIR* branch = OpUnconditionalBranch(nullptr);
52  AddDivZeroCheckSlowPath(branch);
53}
54
55void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
56  LIR* branch = OpCondBranch(c_code, nullptr);
57  AddDivZeroCheckSlowPath(branch);
58}
59
60void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
61  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
62  AddDivZeroCheckSlowPath(branch);
63}
64
65void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
66  class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
67   public:
68    DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
69        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
70    }
71
72    void Compile() OVERRIDE {
73      m2l_->ResetRegPool();
74      m2l_->ResetDefTracking();
75      GenerateTargetLabel(kPseudoThrowTarget);
76      if (m2l_->cu_->target64) {
77        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowDivZero), true);
78      } else {
79        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowDivZero), true);
80      }
81    }
82  };
83
84  AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
85}
86
87void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
88  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
89   public:
90    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
91        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
92          index_(index), length_(length) {
93    }
94
95    void Compile() OVERRIDE {
96      m2l_->ResetRegPool();
97      m2l_->ResetDefTracking();
98      GenerateTargetLabel(kPseudoThrowTarget);
99      if (m2l_->cu_->target64) {
100        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
101                                      index_, length_, true);
102      } else {
103        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
104                                      index_, length_, true);
105      }
106    }
107
108   private:
109    const RegStorage index_;
110    const RegStorage length_;
111  };
112
113  LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
114  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
115}
116
117void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
118  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
119   public:
120    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
121        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
122          index_(index), length_(length) {
123    }
124
125    void Compile() OVERRIDE {
126      m2l_->ResetRegPool();
127      m2l_->ResetDefTracking();
128      GenerateTargetLabel(kPseudoThrowTarget);
129
130      RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
131      RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
132
133      m2l_->OpRegCopy(arg1_32, length_);
134      m2l_->LoadConstant(arg0_32, index_);
135      if (m2l_->cu_->target64) {
136        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
137                                      arg0_32, arg1_32, true);
138      } else {
139        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
140                                      arg0_32, arg1_32, true);
141      }
142    }
143
144   private:
145    const int32_t index_;
146    const RegStorage length_;
147  };
148
149  LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
150  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
151}
152
153LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
154  class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
155   public:
156    NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
157        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
158    }
159
160    void Compile() OVERRIDE {
161      m2l_->ResetRegPool();
162      m2l_->ResetDefTracking();
163      GenerateTargetLabel(kPseudoThrowTarget);
164      if (m2l_->cu_->target64) {
165        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowNullPointer), true);
166      } else {
167        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowNullPointer), true);
168      }
169    }
170  };
171
172  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
173  AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
174  return branch;
175}
176
177/* Perform null-check on a register.  */
178LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
179  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
180    return GenExplicitNullCheck(m_reg, opt_flags);
181  }
182  return nullptr;
183}
184
185/* Perform an explicit null-check on a register.  */
186LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
187  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
188    return NULL;
189  }
190  return GenNullCheck(m_reg);
191}
192
193void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
194  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
195    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
196      return;
197    }
198    // Insert after last instruction.
199    MarkSafepointPC(last_lir_insn_);
200  }
201}
202
203void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
204  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
205    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
206      return;
207    }
208    MarkSafepointPCAfter(after);
209  }
210}
211
212void Mir2Lir::MarkPossibleStackOverflowException() {
213  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
214    MarkSafepointPC(last_lir_insn_);
215  }
216}
217
218void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
219  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
220    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
221      return;
222    }
223    // Force an implicit null check by performing a memory operation (load) from the given
224    // register with offset 0.  This will cause a signal if the register contains 0 (null).
225    RegStorage tmp = AllocTemp();
226    // TODO: for Mips, would be best to use rZERO as the bogus register target.
227    LIR* load = Load32Disp(reg, 0, tmp);
228    FreeTemp(tmp);
229    MarkSafepointPC(load);
230  }
231}
232
233void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
234                                  RegLocation rl_src2, LIR* taken,
235                                  LIR* fall_through) {
236  DCHECK(!rl_src1.fp);
237  DCHECK(!rl_src2.fp);
238  ConditionCode cond;
239  switch (opcode) {
240    case Instruction::IF_EQ:
241      cond = kCondEq;
242      break;
243    case Instruction::IF_NE:
244      cond = kCondNe;
245      break;
246    case Instruction::IF_LT:
247      cond = kCondLt;
248      break;
249    case Instruction::IF_GE:
250      cond = kCondGe;
251      break;
252    case Instruction::IF_GT:
253      cond = kCondGt;
254      break;
255    case Instruction::IF_LE:
256      cond = kCondLe;
257      break;
258    default:
259      cond = static_cast<ConditionCode>(0);
260      LOG(FATAL) << "Unexpected opcode " << opcode;
261  }
262
263  // Normalize such that if either operand is constant, src2 will be constant
264  if (rl_src1.is_const) {
265    RegLocation rl_temp = rl_src1;
266    rl_src1 = rl_src2;
267    rl_src2 = rl_temp;
268    cond = FlipComparisonOrder(cond);
269  }
270
271  rl_src1 = LoadValue(rl_src1);
272  // Is this really an immediate comparison?
273  if (rl_src2.is_const) {
274    // If it's already live in a register or not easily materialized, just keep going
275    RegLocation rl_temp = UpdateLoc(rl_src2);
276    if ((rl_temp.location == kLocDalvikFrame) &&
277        InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) {
278      // OK - convert this to a compare immediate and branch
279      OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
280      return;
281    }
282  }
283  rl_src2 = LoadValue(rl_src2);
284  OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
285}
286
287void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
288                                      LIR* fall_through) {
289  ConditionCode cond;
290  DCHECK(!rl_src.fp);
291  rl_src = LoadValue(rl_src);
292  switch (opcode) {
293    case Instruction::IF_EQZ:
294      cond = kCondEq;
295      break;
296    case Instruction::IF_NEZ:
297      cond = kCondNe;
298      break;
299    case Instruction::IF_LTZ:
300      cond = kCondLt;
301      break;
302    case Instruction::IF_GEZ:
303      cond = kCondGe;
304      break;
305    case Instruction::IF_GTZ:
306      cond = kCondGt;
307      break;
308    case Instruction::IF_LEZ:
309      cond = kCondLe;
310      break;
311    default:
312      cond = static_cast<ConditionCode>(0);
313      LOG(FATAL) << "Unexpected opcode " << opcode;
314  }
315  OpCmpImmBranch(cond, rl_src.reg, 0, taken);
316}
317
318void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
319  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
320  if (rl_src.location == kLocPhysReg) {
321    OpRegCopy(rl_result.reg, rl_src.reg);
322  } else {
323    LoadValueDirect(rl_src, rl_result.reg.GetLow());
324  }
325  OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
326  StoreValueWide(rl_dest, rl_result);
327}
328
329void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
330                              RegLocation rl_src) {
331  rl_src = LoadValue(rl_src, kCoreReg);
332  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
333  OpKind op = kOpInvalid;
334  switch (opcode) {
335    case Instruction::INT_TO_BYTE:
336      op = kOp2Byte;
337      break;
338    case Instruction::INT_TO_SHORT:
339       op = kOp2Short;
340       break;
341    case Instruction::INT_TO_CHAR:
342       op = kOp2Char;
343       break;
344    default:
345      LOG(ERROR) << "Bad int conversion type";
346  }
347  OpRegReg(op, rl_result.reg, rl_src.reg);
348  StoreValue(rl_dest, rl_result);
349}
350
351template <size_t pointer_size>
352static void GenNewArrayImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu,
353                            uint32_t type_idx, RegLocation rl_dest,
354                            RegLocation rl_src) {
355  mir_to_lir->FlushAllRegs();  /* Everything to home location */
356  ThreadOffset<pointer_size> func_offset(-1);
357  const DexFile* dex_file = cu->dex_file;
358  CompilerDriver* driver = cu->compiler_driver;
359  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *dex_file,
360                                                      type_idx)) {
361    bool is_type_initialized;  // Ignored as an array does not have an initializer.
362    bool use_direct_type_ptr;
363    uintptr_t direct_type_ptr;
364    bool is_finalizable;
365    if (kEmbedClassInCode &&
366        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
367                                   &direct_type_ptr, &is_finalizable)) {
368      // The fast path.
369      if (!use_direct_type_ptr) {
370        mir_to_lir->LoadClassType(type_idx, kArg0);
371        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
372        mir_to_lir->CallRuntimeHelperRegMethodRegLocation(func_offset,
373                                                          mir_to_lir->TargetReg(kArg0, kNotWide),
374                                                          rl_src, true);
375      } else {
376        // Use the direct pointer.
377        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
378        mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, direct_type_ptr, rl_src,
379                                                          true);
380      }
381    } else {
382      // The slow path.
383      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArray);
384      mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
385    }
386    DCHECK_NE(func_offset.Int32Value(), -1);
387  } else {
388    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayWithAccessCheck);
389    mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
390  }
391  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
392  mir_to_lir->StoreValue(rl_dest, rl_result);
393}
394
395/*
396 * Let helper function take care of everything.  Will call
397 * Array::AllocFromCode(type_idx, method, count);
398 * Note: AllocFromCode will handle checks for errNegativeArraySize.
399 */
400void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
401                          RegLocation rl_src) {
402  if (cu_->target64) {
403    GenNewArrayImpl<8>(this, cu_, type_idx, rl_dest, rl_src);
404  } else {
405    GenNewArrayImpl<4>(this, cu_, type_idx, rl_dest, rl_src);
406  }
407}
408
409template <size_t pointer_size>
410static void GenFilledNewArrayCall(Mir2Lir* mir_to_lir, CompilationUnit* cu, int elems, int type_idx) {
411  ThreadOffset<pointer_size> func_offset(-1);
412  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *cu->dex_file,
413                                                      type_idx)) {
414    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArray);
415  } else {
416    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArrayWithAccessCheck);
417  }
418  mir_to_lir->CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true);
419}
420
421/*
422 * Similar to GenNewArray, but with post-allocation initialization.
423 * Verifier guarantees we're dealing with an array class.  Current
424 * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
425 * Current code also throws internal unimp if not 'L', '[' or 'I'.
426 */
427void Mir2Lir::GenFilledNewArray(CallInfo* info) {
428  int elems = info->num_arg_words;
429  int type_idx = info->index;
430  FlushAllRegs();  /* Everything to home location */
431  if (cu_->target64) {
432    GenFilledNewArrayCall<8>(this, cu_, elems, type_idx);
433  } else {
434    GenFilledNewArrayCall<4>(this, cu_, elems, type_idx);
435  }
436  FreeTemp(TargetReg(kArg2, kNotWide));
437  FreeTemp(TargetReg(kArg1, kNotWide));
438  /*
439   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
440   * return region.  Because AllocFromCode placed the new array
441   * in kRet0, we'll just lock it into place.  When debugger support is
442   * added, it may be necessary to additionally copy all return
443   * values to a home location in thread-local storage
444   */
445  RegStorage ref_reg = TargetReg(kRet0, kRef);
446  LockTemp(ref_reg);
447
448  // TODO: use the correct component size, currently all supported types
449  // share array alignment with ints (see comment at head of function)
450  size_t component_size = sizeof(int32_t);
451
452  // Having a range of 0 is legal
453  if (info->is_range && (elems > 0)) {
454    /*
455     * Bit of ugliness here.  We're going generate a mem copy loop
456     * on the register range, but it is possible that some regs
457     * in the range have been promoted.  This is unlikely, but
458     * before generating the copy, we'll just force a flush
459     * of any regs in the source range that have been promoted to
460     * home location.
461     */
462    for (int i = 0; i < elems; i++) {
463      RegLocation loc = UpdateLoc(info->args[i]);
464      if (loc.location == kLocPhysReg) {
465        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
466        Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
467      }
468    }
469    /*
470     * TUNING note: generated code here could be much improved, but
471     * this is an uncommon operation and isn't especially performance
472     * critical.
473     */
474    // This is addressing the stack, which may be out of the 4G area.
475    RegStorage r_src = AllocTempRef();
476    RegStorage r_dst = AllocTempRef();
477    RegStorage r_idx = AllocTempRef();  // Not really a reference, but match src/dst.
478    RegStorage r_val;
479    switch (cu_->instruction_set) {
480      case kThumb2:
481      case kArm64:
482        r_val = TargetReg(kLr, kNotWide);
483        break;
484      case kX86:
485      case kX86_64:
486        FreeTemp(ref_reg);
487        r_val = AllocTemp();
488        break;
489      case kMips:
490        r_val = AllocTemp();
491        break;
492      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
493    }
494    // Set up source pointer
495    RegLocation rl_first = info->args[0];
496    OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
497    // Set up the target pointer
498    OpRegRegImm(kOpAdd, r_dst, ref_reg,
499                mirror::Array::DataOffset(component_size).Int32Value());
500    // Set up the loop counter (known to be > 0)
501    LoadConstant(r_idx, elems - 1);
502    // Generate the copy loop.  Going backwards for convenience
503    LIR* target = NewLIR0(kPseudoTargetLabel);
504    // Copy next element
505    {
506      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
507      LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
508      // NOTE: No dalvik register annotation, local optimizations will be stopped
509      // by the loop boundaries.
510    }
511    StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
512    FreeTemp(r_val);
513    OpDecAndBranch(kCondGe, r_idx, target);
514    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
515      // Restore the target pointer
516      OpRegRegImm(kOpAdd, ref_reg, r_dst,
517                  -mirror::Array::DataOffset(component_size).Int32Value());
518    }
519  } else if (!info->is_range) {
520    // TUNING: interleave
521    for (int i = 0; i < elems; i++) {
522      RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
523      Store32Disp(ref_reg,
524                  mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
525      // If the LoadValue caused a temp to be allocated, free it
526      if (IsTemp(rl_arg.reg)) {
527        FreeTemp(rl_arg.reg);
528      }
529    }
530  }
531  if (info->result.location != kLocInvalid) {
532    StoreValue(info->result, GetReturn(kRefReg));
533  }
534}
535
536//
537// Slow path to ensure a class is initialized for sget/sput.
538//
539class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
540 public:
541  StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
542                      RegStorage r_base) :
543    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
544               storage_index_(storage_index), r_base_(r_base) {
545  }
546
547  void Compile() {
548    LIR* unresolved_target = GenerateTargetLabel();
549    uninit_->target = unresolved_target;
550    if (cu_->target64) {
551      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeStaticStorage),
552                                 storage_index_, true);
553    } else {
554      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeStaticStorage),
555                                 storage_index_, true);
556    }
557    // Copy helper's result into r_base, a no-op on all but MIPS.
558    m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0, kRef));
559
560    m2l_->OpUnconditionalBranch(cont_);
561  }
562
563 private:
564  LIR* const uninit_;
565  const int storage_index_;
566  const RegStorage r_base_;
567};
568
569template <size_t pointer_size>
570static void GenSputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
571                        const MirSFieldLoweringInfo* field_info, RegLocation rl_src) {
572  ThreadOffset<pointer_size> setter_offset =
573      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Static)
574          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjStatic)
575              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Static));
576  mir_to_lir->CallRuntimeHelperImmRegLocation(setter_offset, field_info->FieldIndex(), rl_src,
577                                              true);
578}
579
580void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
581                      bool is_object) {
582  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
583  cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
584  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
585  if (!SLOW_FIELD_PATH && field_info.FastPut() &&
586      (!field_info.IsVolatile() || SupportsVolatileLoadStore(store_size))) {
587    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
588    RegStorage r_base;
589    if (field_info.IsReferrersClass()) {
590      // Fast path, static storage base is this method's class
591      RegLocation rl_method = LoadCurrMethod();
592      r_base = AllocTempRef();
593      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
594                  kNotVolatile);
595      if (IsTemp(rl_method.reg)) {
596        FreeTemp(rl_method.reg);
597      }
598    } else {
599      // Medium path, static storage base in a different class which requires checks that the other
600      // class is initialized.
601      // TODO: remove initialized check now that we are initializing classes in the compiler driver.
602      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
603      // May do runtime call so everything to home locations.
604      FlushAllRegs();
605      // Using fixed register to sync with possible call to runtime support.
606      RegStorage r_method = TargetReg(kArg1, kRef);
607      LockTemp(r_method);
608      LoadCurrMethodDirect(r_method);
609      r_base = TargetReg(kArg0, kRef);
610      LockTemp(r_base);
611      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
612                  kNotVolatile);
613      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
614      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
615      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
616      if (!field_info.IsInitialized() &&
617          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
618        // Check if r_base is NULL or a not yet initialized class.
619
620        // The slow path is invoked if the r_base is NULL or the class pointed
621        // to by it is not initialized.
622        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
623        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
624        LockTemp(r_tmp);
625        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
626                                          mirror::Class::StatusOffset().Int32Value(),
627                                          mirror::Class::kStatusInitialized, nullptr, nullptr);
628        LIR* cont = NewLIR0(kPseudoTargetLabel);
629
630        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
631                                                     field_info.StorageIndex(), r_base));
632
633        FreeTemp(r_tmp);
634        // Ensure load of status and store of value don't re-order.
635        // TODO: Presumably the actual value store is control-dependent on the status load,
636        // and will thus not be reordered in any case, since stores are never speculated.
637        // Does later code "know" that the class is now initialized?  If so, we still
638        // need the barrier to guard later static loads.
639        GenMemBarrier(kLoadAny);
640      }
641      FreeTemp(r_method);
642    }
643    // rBase now holds static storage base
644    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
645    if (is_long_or_double) {
646      rl_src = LoadValueWide(rl_src, reg_class);
647    } else {
648      rl_src = LoadValue(rl_src, reg_class);
649    }
650    if (is_object) {
651      StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
652                   field_info.IsVolatile() ? kVolatile : kNotVolatile);
653    } else {
654      StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size,
655                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
656    }
657    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
658      MarkGCCard(rl_src.reg, r_base);
659    }
660    FreeTemp(r_base);
661  } else {
662    FlushAllRegs();  // Everything to home locations
663    if (cu_->target64) {
664      GenSputCall<8>(this, is_long_or_double, is_object, &field_info, rl_src);
665    } else {
666      GenSputCall<4>(this, is_long_or_double, is_object, &field_info, rl_src);
667    }
668  }
669}
670
671template <size_t pointer_size>
672static void GenSgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
673                        const MirSFieldLoweringInfo* field_info) {
674  ThreadOffset<pointer_size> getter_offset =
675      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Static)
676          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjStatic)
677              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Static));
678  mir_to_lir->CallRuntimeHelperImm(getter_offset, field_info->FieldIndex(), true);
679}
680
681void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
682                      bool is_long_or_double, bool is_object) {
683  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
684  cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
685  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
686  if (!SLOW_FIELD_PATH && field_info.FastGet() &&
687      (!field_info.IsVolatile() || SupportsVolatileLoadStore(load_size))) {
688    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
689    RegStorage r_base;
690    if (field_info.IsReferrersClass()) {
691      // Fast path, static storage base is this method's class
692      RegLocation rl_method  = LoadCurrMethod();
693      r_base = AllocTempRef();
694      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
695                  kNotVolatile);
696    } else {
697      // Medium path, static storage base in a different class which requires checks that the other
698      // class is initialized
699      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
700      // May do runtime call so everything to home locations.
701      FlushAllRegs();
702      // Using fixed register to sync with possible call to runtime support.
703      RegStorage r_method = TargetReg(kArg1, kRef);
704      LockTemp(r_method);
705      LoadCurrMethodDirect(r_method);
706      r_base = TargetReg(kArg0, kRef);
707      LockTemp(r_base);
708      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
709                  kNotVolatile);
710      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
711      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
712      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
713      if (!field_info.IsInitialized() &&
714          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
715        // Check if r_base is NULL or a not yet initialized class.
716
717        // The slow path is invoked if the r_base is NULL or the class pointed
718        // to by it is not initialized.
719        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
720        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
721        LockTemp(r_tmp);
722        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
723                                          mirror::Class::StatusOffset().Int32Value(),
724                                          mirror::Class::kStatusInitialized, nullptr, nullptr);
725        LIR* cont = NewLIR0(kPseudoTargetLabel);
726
727        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
728                                                     field_info.StorageIndex(), r_base));
729
730        FreeTemp(r_tmp);
731        // Ensure load of status and load of value don't re-order.
732        GenMemBarrier(kLoadAny);
733      }
734      FreeTemp(r_method);
735    }
736    // r_base now holds static storage base
737    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
738    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
739
740    int field_offset = field_info.FieldOffset().Int32Value();
741    if (is_object) {
742      LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
743          kNotVolatile);
744    } else {
745      LoadBaseDisp(r_base, field_offset, rl_result.reg, load_size, field_info.IsVolatile() ?
746          kVolatile : kNotVolatile);
747    }
748    FreeTemp(r_base);
749
750    if (is_long_or_double) {
751      StoreValueWide(rl_dest, rl_result);
752    } else {
753      StoreValue(rl_dest, rl_result);
754    }
755  } else {
756    FlushAllRegs();  // Everything to home locations
757    if (cu_->target64) {
758      GenSgetCall<8>(this, is_long_or_double, is_object, &field_info);
759    } else {
760      GenSgetCall<4>(this, is_long_or_double, is_object, &field_info);
761    }
762    // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
763    if (is_long_or_double) {
764      RegLocation rl_result = GetReturnWide(kCoreReg);
765      StoreValueWide(rl_dest, rl_result);
766    } else {
767      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
768      StoreValue(rl_dest, rl_result);
769    }
770  }
771}
772
773// Generate code for all slow paths.
774void Mir2Lir::HandleSlowPaths() {
775  // We should check slow_paths_.Size() every time, because a new slow path
776  // may be created during slowpath->Compile().
777  for (size_t i = 0; i < slow_paths_.Size(); ++i) {
778    LIRSlowPath* slowpath = slow_paths_.Get(i);
779    slowpath->Compile();
780  }
781  slow_paths_.Reset();
782}
783
784template <size_t pointer_size>
785static void GenIgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
786                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj) {
787  ThreadOffset<pointer_size> getter_offset =
788      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Instance)
789          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjInstance)
790              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Instance));
791  mir_to_lir->CallRuntimeHelperImmRegLocation(getter_offset, field_info->FieldIndex(), rl_obj,
792                                              true);
793}
794
795void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
796                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
797                      bool is_object) {
798  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
799  cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
800  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
801  if (!SLOW_FIELD_PATH && field_info.FastGet() &&
802      (!field_info.IsVolatile() || SupportsVolatileLoadStore(load_size))) {
803    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
804    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
805    rl_obj = LoadValue(rl_obj, kRefReg);
806    GenNullCheck(rl_obj.reg, opt_flags);
807    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
808    int field_offset = field_info.FieldOffset().Int32Value();
809    LIR* load_lir;
810    if (is_object) {
811      load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
812          kVolatile : kNotVolatile);
813    } else {
814      load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, load_size,
815                              field_info.IsVolatile() ? kVolatile : kNotVolatile);
816    }
817    MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
818    if (is_long_or_double) {
819      StoreValueWide(rl_dest, rl_result);
820    } else {
821      StoreValue(rl_dest, rl_result);
822    }
823  } else {
824    if (cu_->target64) {
825      GenIgetCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj);
826    } else {
827      GenIgetCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj);
828    }
829    // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
830    if (is_long_or_double) {
831      RegLocation rl_result = GetReturnWide(kCoreReg);
832      StoreValueWide(rl_dest, rl_result);
833    } else {
834      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
835      StoreValue(rl_dest, rl_result);
836    }
837  }
838}
839
840template <size_t pointer_size>
841static void GenIputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
842                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj,
843                        RegLocation rl_src) {
844  ThreadOffset<pointer_size> setter_offset =
845      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Instance)
846          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjInstance)
847              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Instance));
848  mir_to_lir->CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_info->FieldIndex(),
849                                                         rl_obj, rl_src, true);
850}
851
852void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
853                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
854                      bool is_object) {
855  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
856  cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
857  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
858  if (!SLOW_FIELD_PATH && field_info.FastPut() &&
859      (!field_info.IsVolatile() || SupportsVolatileLoadStore(store_size))) {
860    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
861    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
862    rl_obj = LoadValue(rl_obj, kRefReg);
863    if (is_long_or_double) {
864      rl_src = LoadValueWide(rl_src, reg_class);
865    } else {
866      rl_src = LoadValue(rl_src, reg_class);
867    }
868    GenNullCheck(rl_obj.reg, opt_flags);
869    int field_offset = field_info.FieldOffset().Int32Value();
870    LIR* store;
871    if (is_object) {
872      store = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
873          kVolatile : kNotVolatile);
874    } else {
875      store = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, store_size,
876                            field_info.IsVolatile() ? kVolatile : kNotVolatile);
877    }
878    MarkPossibleNullPointerExceptionAfter(opt_flags, store);
879    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
880      MarkGCCard(rl_src.reg, rl_obj.reg);
881    }
882  } else {
883    if (cu_->target64) {
884      GenIputCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
885    } else {
886      GenIputCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
887    }
888  }
889}
890
891template <size_t pointer_size>
892static void GenArrayObjPutCall(Mir2Lir* mir_to_lir, bool needs_range_check, bool needs_null_check,
893                               RegLocation rl_array, RegLocation rl_index, RegLocation rl_src) {
894  ThreadOffset<pointer_size> helper = needs_range_check
895        ? (needs_null_check ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithNullAndBoundCheck)
896                            : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithBoundCheck))
897        : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObject);
898  mir_to_lir->CallRuntimeHelperRegLocationRegLocationRegLocation(helper, rl_array, rl_index, rl_src,
899                                                                 true);
900}
901
902void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
903                             RegLocation rl_src) {
904  bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
905  bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
906      (opt_flags & MIR_IGNORE_NULL_CHECK));
907  if (cu_->target64) {
908    GenArrayObjPutCall<8>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
909  } else {
910    GenArrayObjPutCall<4>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
911  }
912}
913
914void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
915  RegLocation rl_method = LoadCurrMethod();
916  CheckRegLocation(rl_method);
917  RegStorage res_reg = AllocTempRef();
918  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
919  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
920                                                        *cu_->dex_file,
921                                                        type_idx)) {
922    // Call out to helper which resolves type and verifies access.
923    // Resolved type returned in kRet0.
924    if (cu_->target64) {
925      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
926                              type_idx, rl_method.reg, true);
927    } else {
928      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
929                              type_idx, rl_method.reg, true);
930    }
931    RegLocation rl_result = GetReturn(kRefReg);
932    StoreValue(rl_dest, rl_result);
933  } else {
934    // We're don't need access checks, load type from dex cache
935    int32_t dex_cache_offset =
936        mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
937    LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg, kNotVolatile);
938    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
939    LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
940    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
941        type_idx) || SLOW_TYPE_PATH) {
942      // Slow path, at runtime test if type is null and if so initialize
943      FlushAllRegs();
944      LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
945      LIR* cont = NewLIR0(kPseudoTargetLabel);
946
947      // Object to generate the slow path for class resolution.
948      class SlowPath : public LIRSlowPath {
949       public:
950        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
951                 const RegLocation& rl_method, const RegLocation& rl_result) :
952                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
953                   rl_method_(rl_method), rl_result_(rl_result) {
954        }
955
956        void Compile() {
957          GenerateTargetLabel();
958
959          if (cu_->target64) {
960            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
961                                          rl_method_.reg, true);
962          } else {
963            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
964                                                      rl_method_.reg, true);
965          }
966          m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetReg(kRet0, kRef));
967
968          m2l_->OpUnconditionalBranch(cont_);
969        }
970
971       private:
972        const int type_idx_;
973        const RegLocation rl_method_;
974        const RegLocation rl_result_;
975      };
976
977      // Add to list for future.
978      AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
979
980      StoreValue(rl_dest, rl_result);
981     } else {
982      // Fast path, we're done - just store result
983      StoreValue(rl_dest, rl_result);
984    }
985  }
986}
987
988void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
989  /* NOTE: Most strings should be available at compile time */
990  int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
991                                                                                      Int32Value();
992  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
993      *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
994    // slow path, resolve string if not in dex cache
995    FlushAllRegs();
996    LockCallTemps();  // Using explicit registers
997
998    // If the Method* is already in a register, we can save a copy.
999    RegLocation rl_method = mir_graph_->GetMethodLoc();
1000    RegStorage r_method;
1001    if (rl_method.location == kLocPhysReg) {
1002      // A temp would conflict with register use below.
1003      DCHECK(!IsTemp(rl_method.reg));
1004      r_method = rl_method.reg;
1005    } else {
1006      r_method = TargetReg(kArg2, kRef);
1007      LoadCurrMethodDirect(r_method);
1008    }
1009    LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(),
1010                TargetReg(kArg0, kRef), kNotVolatile);
1011
1012    // Might call out to helper, which will return resolved string in kRet0
1013    LoadRefDisp(TargetReg(kArg0, kRef), offset_of_string, TargetReg(kRet0, kRef), kNotVolatile);
1014    LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0, kRef), 0, NULL);
1015    LIR* cont = NewLIR0(kPseudoTargetLabel);
1016
1017    {
1018      // Object to generate the slow path for string resolution.
1019      class SlowPath : public LIRSlowPath {
1020       public:
1021        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
1022          LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
1023          r_method_(r_method), string_idx_(string_idx) {
1024        }
1025
1026        void Compile() {
1027          GenerateTargetLabel();
1028          if (cu_->target64) {
1029            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pResolveString),
1030                                          r_method_, string_idx_, true);
1031          } else {
1032            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pResolveString),
1033                                          r_method_, string_idx_, true);
1034          }
1035          m2l_->OpUnconditionalBranch(cont_);
1036        }
1037
1038       private:
1039         const RegStorage r_method_;
1040         const int32_t string_idx_;
1041      };
1042
1043      AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
1044    }
1045
1046    GenBarrier();
1047    StoreValue(rl_dest, GetReturn(kRefReg));
1048  } else {
1049    RegLocation rl_method = LoadCurrMethod();
1050    RegStorage res_reg = AllocTempRef();
1051    RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1052    LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg,
1053                kNotVolatile);
1054    LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
1055    StoreValue(rl_dest, rl_result);
1056  }
1057}
1058
1059template <size_t pointer_size>
1060static void GenNewInstanceImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, uint32_t type_idx,
1061                               RegLocation rl_dest) {
1062  mir_to_lir->FlushAllRegs();  /* Everything to home location */
1063  // alloc will always check for resolution, do we also need to verify
1064  // access because the verifier was unable to?
1065  ThreadOffset<pointer_size> func_offset(-1);
1066  const DexFile* dex_file = cu->dex_file;
1067  CompilerDriver* driver = cu->compiler_driver;
1068  if (driver->CanAccessInstantiableTypeWithoutChecks(
1069      cu->method_idx, *dex_file, type_idx)) {
1070    bool is_type_initialized;
1071    bool use_direct_type_ptr;
1072    uintptr_t direct_type_ptr;
1073    bool is_finalizable;
1074    if (kEmbedClassInCode &&
1075        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
1076                                   &direct_type_ptr, &is_finalizable) &&
1077                                   !is_finalizable) {
1078      // The fast path.
1079      if (!use_direct_type_ptr) {
1080        mir_to_lir->LoadClassType(type_idx, kArg0);
1081        if (!is_type_initialized) {
1082          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1083          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetReg(kArg0, kRef),
1084                                                 true);
1085        } else {
1086          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1087          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetReg(kArg0, kRef),
1088                                                 true);
1089        }
1090      } else {
1091        // Use the direct pointer.
1092        if (!is_type_initialized) {
1093          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1094          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1095        } else {
1096          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1097          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1098        }
1099      }
1100    } else {
1101      // The slow path.
1102      DCHECK_EQ(func_offset.Int32Value(), -1);
1103      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObject);
1104      mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1105    }
1106    DCHECK_NE(func_offset.Int32Value(), -1);
1107  } else {
1108    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectWithAccessCheck);
1109    mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1110  }
1111  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
1112  mir_to_lir->StoreValue(rl_dest, rl_result);
1113}
1114
1115/*
1116 * Let helper function take care of everything.  Will
1117 * call Class::NewInstanceFromCode(type_idx, method);
1118 */
1119void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
1120  if (cu_->target64) {
1121    GenNewInstanceImpl<8>(this, cu_, type_idx, rl_dest);
1122  } else {
1123    GenNewInstanceImpl<4>(this, cu_, type_idx, rl_dest);
1124  }
1125}
1126
1127void Mir2Lir::GenThrow(RegLocation rl_src) {
1128  FlushAllRegs();
1129  if (cu_->target64) {
1130    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pDeliverException), rl_src, true);
1131  } else {
1132    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pDeliverException), rl_src, true);
1133  }
1134}
1135
1136// For final classes there are no sub-classes to check and so we can answer the instance-of
1137// question with simple comparisons.
1138void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
1139                                 RegLocation rl_src) {
1140  // X86 has its own implementation.
1141  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1142
1143  RegLocation object = LoadValue(rl_src, kRefReg);
1144  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1145  RegStorage result_reg = rl_result.reg;
1146  if (IsSameReg(result_reg, object.reg)) {
1147    result_reg = AllocTypedTemp(false, kCoreReg);
1148    DCHECK(!IsSameReg(result_reg, object.reg));
1149  }
1150  LoadConstant(result_reg, 0);     // assume false
1151  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1152
1153  RegStorage check_class = AllocTypedTemp(false, kRefReg);
1154  RegStorage object_class = AllocTypedTemp(false, kRefReg);
1155
1156  LoadCurrMethodDirect(check_class);
1157  if (use_declaring_class) {
1158    LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
1159                kNotVolatile);
1160    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1161                kNotVolatile);
1162  } else {
1163    LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1164                check_class, kNotVolatile);
1165    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1166                kNotVolatile);
1167    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1168    LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
1169  }
1170
1171  LIR* ne_branchover = NULL;
1172  // FIXME: what should we be comparing here? compressed or decompressed references?
1173  if (cu_->instruction_set == kThumb2) {
1174    OpRegReg(kOpCmp, check_class, object_class);  // Same?
1175    LIR* it = OpIT(kCondEq, "");   // if-convert the test
1176    LoadConstant(result_reg, 1);     // .eq case - load true
1177    OpEndIT(it);
1178  } else {
1179    ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL);
1180    LoadConstant(result_reg, 1);     // eq case - load true
1181  }
1182  LIR* target = NewLIR0(kPseudoTargetLabel);
1183  null_branchover->target = target;
1184  if (ne_branchover != NULL) {
1185    ne_branchover->target = target;
1186  }
1187  FreeTemp(object_class);
1188  FreeTemp(check_class);
1189  if (IsTemp(result_reg)) {
1190    OpRegCopy(rl_result.reg, result_reg);
1191    FreeTemp(result_reg);
1192  }
1193  StoreValue(rl_dest, rl_result);
1194}
1195
1196void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1197                                         bool type_known_abstract, bool use_declaring_class,
1198                                         bool can_assume_type_is_in_dex_cache,
1199                                         uint32_t type_idx, RegLocation rl_dest,
1200                                         RegLocation rl_src) {
1201  // X86 has its own implementation.
1202  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1203
1204  FlushAllRegs();
1205  // May generate a call - use explicit registers
1206  LockCallTemps();
1207  RegStorage method_reg = TargetReg(kArg1, kRef);
1208  LoadCurrMethodDirect(method_reg);   // kArg1 <= current Method*
1209  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1210  if (needs_access_check) {
1211    // Check we have access to type_idx and if not throw IllegalAccessError,
1212    // returns Class* in kArg0
1213    if (cu_->target64) {
1214      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1215                           type_idx, true);
1216    } else {
1217      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1218                           type_idx, true);
1219    }
1220    OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1221    LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1222  } else if (use_declaring_class) {
1223    LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1224    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1225                class_reg, kNotVolatile);
1226  } else {
1227    // Load dex cache entry into class_reg (kArg2)
1228    LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1229    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1230                class_reg, kNotVolatile);
1231    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1232    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1233    if (!can_assume_type_is_in_dex_cache) {
1234      // Need to test presence of type in dex cache at runtime
1235      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1236      // Not resolved
1237      // Call out to helper, which will return resolved type in kRet0
1238      if (cu_->target64) {
1239        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx, true);
1240      } else {
1241        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
1242      }
1243      OpRegCopy(TargetReg(kArg2, kRef), TargetReg(kRet0, kRef));  // Align usage with fast path
1244      LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  /* reload Ref */
1245      // Rejoin code paths
1246      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1247      hop_branch->target = hop_target;
1248    }
1249  }
1250  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1251  RegLocation rl_result = GetReturn(kCoreReg);
1252  if (cu_->instruction_set == kMips) {
1253    // On MIPS rArg0 != rl_result, place false in result if branch is taken.
1254    LoadConstant(rl_result.reg, 0);
1255  }
1256  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, NULL);
1257
1258  /* load object->klass_ */
1259  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1260  LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1261              TargetReg(kArg1, kRef), kNotVolatile);
1262  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1263  LIR* branchover = NULL;
1264  if (type_known_final) {
1265    // rl_result == ref == null == 0.
1266    if (cu_->instruction_set == kThumb2) {
1267      OpRegReg(kOpCmp, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef));  // Same?
1268      LIR* it = OpIT(kCondEq, "E");   // if-convert the test
1269      LoadConstant(rl_result.reg, 1);     // .eq case - load true
1270      LoadConstant(rl_result.reg, 0);     // .ne case - load false
1271      OpEndIT(it);
1272    } else {
1273      LoadConstant(rl_result.reg, 0);     // ne case - load false
1274      branchover = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL);
1275      LoadConstant(rl_result.reg, 1);     // eq case - load true
1276    }
1277  } else {
1278    if (cu_->instruction_set == kThumb2) {
1279      RegStorage r_tgt = cu_->target64 ?
1280          LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial)) :
1281          LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1282      LIR* it = nullptr;
1283      if (!type_known_abstract) {
1284      /* Uses conditional nullification */
1285        OpRegReg(kOpCmp, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef));  // Same?
1286        it = OpIT(kCondEq, "EE");   // if-convert the test
1287        LoadConstant(TargetReg(kArg0, kNotWide), 1);     // .eq case - load true
1288      }
1289      OpRegCopy(TargetReg(kArg0, kRef), TargetReg(kArg2, kRef));    // .ne case - arg0 <= class
1290      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1291      if (it != nullptr) {
1292        OpEndIT(it);
1293      }
1294      FreeTemp(r_tgt);
1295    } else {
1296      if (!type_known_abstract) {
1297        /* Uses branchovers */
1298        LoadConstant(rl_result.reg, 1);     // assume true
1299        branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL);
1300      }
1301      RegStorage r_tgt = cu_->target64 ?
1302          LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial)) :
1303          LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1304      OpRegCopy(TargetReg(kArg0, kRef), TargetReg(kArg2, kRef));    // .ne case - arg0 <= class
1305      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1306      FreeTemp(r_tgt);
1307    }
1308  }
1309  // TODO: only clobber when type isn't final?
1310  ClobberCallerSave();
1311  /* branch targets here */
1312  LIR* target = NewLIR0(kPseudoTargetLabel);
1313  StoreValue(rl_dest, rl_result);
1314  branch1->target = target;
1315  if (branchover != NULL) {
1316    branchover->target = target;
1317  }
1318}
1319
1320void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1321  bool type_known_final, type_known_abstract, use_declaring_class;
1322  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1323                                                                              *cu_->dex_file,
1324                                                                              type_idx,
1325                                                                              &type_known_final,
1326                                                                              &type_known_abstract,
1327                                                                              &use_declaring_class);
1328  bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1329      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1330
1331  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1332    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1333  } else {
1334    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1335                               use_declaring_class, can_assume_type_is_in_dex_cache,
1336                               type_idx, rl_dest, rl_src);
1337  }
1338}
1339
1340void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1341  bool type_known_final, type_known_abstract, use_declaring_class;
1342  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1343                                                                              *cu_->dex_file,
1344                                                                              type_idx,
1345                                                                              &type_known_final,
1346                                                                              &type_known_abstract,
1347                                                                              &use_declaring_class);
1348  // Note: currently type_known_final is unused, as optimizing will only improve the performance
1349  // of the exception throw path.
1350  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1351  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1352    // Verifier type analysis proved this check cast would never cause an exception.
1353    return;
1354  }
1355  FlushAllRegs();
1356  // May generate a call - use explicit registers
1357  LockCallTemps();
1358  RegStorage method_reg = TargetReg(kArg1, kRef);
1359  LoadCurrMethodDirect(method_reg);  // kArg1 <= current Method*
1360  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1361  if (needs_access_check) {
1362    // Check we have access to type_idx and if not throw IllegalAccessError,
1363    // returns Class* in kRet0
1364    // InitializeTypeAndVerifyAccess(idx, method)
1365    if (cu_->target64) {
1366      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1367                           type_idx, true);
1368    } else {
1369      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1370                           type_idx, true);
1371    }
1372    OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1373  } else if (use_declaring_class) {
1374    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1375                class_reg, kNotVolatile);
1376  } else {
1377    // Load dex cache entry into class_reg (kArg2)
1378    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1379                class_reg, kNotVolatile);
1380    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1381    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1382    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1383      // Need to test presence of type in dex cache at runtime
1384      LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1385      LIR* cont = NewLIR0(kPseudoTargetLabel);
1386
1387      // Slow path to initialize the type.  Executed if the type is NULL.
1388      class SlowPath : public LIRSlowPath {
1389       public:
1390        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1391                 const RegStorage class_reg) :
1392                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1393                   class_reg_(class_reg) {
1394        }
1395
1396        void Compile() {
1397          GenerateTargetLabel();
1398
1399          // Call out to helper, which will return resolved type in kArg0
1400          // InitializeTypeFromCode(idx, method)
1401          if (m2l_->cu_->target64) {
1402            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
1403                                          m2l_->TargetReg(kArg1, kRef), true);
1404          } else {
1405            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
1406                                          m2l_->TargetReg(kArg1, kRef), true);
1407          }
1408          m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1409          m2l_->OpUnconditionalBranch(cont_);
1410        }
1411
1412       public:
1413        const int type_idx_;
1414        const RegStorage class_reg_;
1415      };
1416
1417      AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
1418    }
1419  }
1420  // At this point, class_reg (kArg2) has class
1421  LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1422
1423  // Slow path for the case where the classes are not equal.  In this case we need
1424  // to call a helper function to do the check.
1425  class SlowPath : public LIRSlowPath {
1426   public:
1427    SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1428               LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1429    }
1430
1431    void Compile() {
1432      GenerateTargetLabel();
1433
1434      if (load_) {
1435        m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1436                          m2l_->TargetReg(kArg1, kRef), kNotVolatile);
1437      }
1438      if (m2l_->cu_->target64) {
1439        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pCheckCast),
1440                                      m2l_->TargetReg(kArg2, kRef), m2l_->TargetReg(kArg1, kRef),
1441                                      true);
1442      } else {
1443        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pCheckCast),
1444                                      m2l_->TargetReg(kArg2, kRef), m2l_->TargetReg(kArg1, kRef),
1445                                      true);
1446      }
1447
1448      m2l_->OpUnconditionalBranch(cont_);
1449    }
1450
1451   private:
1452    const bool load_;
1453  };
1454
1455  if (type_known_abstract) {
1456    // Easier case, run slow path if target is non-null (slow path will load from target)
1457    LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
1458    LIR* cont = NewLIR0(kPseudoTargetLabel);
1459    AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1460  } else {
1461    // Harder, more common case.  We need to generate a forward branch over the load
1462    // if the target is null.  If it's non-null we perform the load and branch to the
1463    // slow path if the classes are not equal.
1464
1465    /* Null is OK - continue */
1466    LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
1467    /* load object->klass_ */
1468    DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1469    LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1470                TargetReg(kArg1, kRef), kNotVolatile);
1471
1472    LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
1473    LIR* cont = NewLIR0(kPseudoTargetLabel);
1474
1475    // Add the slow path that will not perform load since this is already done.
1476    AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1477
1478    // Set the null check to branch to the continuation.
1479    branch1->target = cont;
1480  }
1481}
1482
1483void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1484                           RegLocation rl_src1, RegLocation rl_src2) {
1485  RegLocation rl_result;
1486  if (cu_->instruction_set == kThumb2) {
1487    /*
1488     * NOTE:  This is the one place in the code in which we might have
1489     * as many as six live temporary registers.  There are 5 in the normal
1490     * set for Arm.  Until we have spill capabilities, temporarily add
1491     * lr to the temp set.  It is safe to do this locally, but note that
1492     * lr is used explicitly elsewhere in the code generator and cannot
1493     * normally be used as a general temp register.
1494     */
1495    MarkTemp(TargetReg(kLr, kNotWide));   // Add lr to the temp pool
1496    FreeTemp(TargetReg(kLr, kNotWide));   // and make it available
1497  }
1498  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1499  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1500  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1501  // The longs may overlap - use intermediate temp if so
1502  if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1503    RegStorage t_reg = AllocTemp();
1504    OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1505    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1506    OpRegCopy(rl_result.reg.GetLow(), t_reg);
1507    FreeTemp(t_reg);
1508  } else {
1509    OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1510    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1511  }
1512  /*
1513   * NOTE: If rl_dest refers to a frame variable in a large frame, the
1514   * following StoreValueWide might need to allocate a temp register.
1515   * To further work around the lack of a spill capability, explicitly
1516   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1517   * Remove when spill is functional.
1518   */
1519  FreeRegLocTemps(rl_result, rl_src1);
1520  FreeRegLocTemps(rl_result, rl_src2);
1521  StoreValueWide(rl_dest, rl_result);
1522  if (cu_->instruction_set == kThumb2) {
1523    Clobber(TargetReg(kLr, kNotWide));
1524    UnmarkTemp(TargetReg(kLr, kNotWide));  // Remove lr from the temp pool
1525  }
1526}
1527
1528
1529template <size_t pointer_size>
1530static void GenShiftOpLongCall(Mir2Lir* mir_to_lir, Instruction::Code opcode, RegLocation rl_src1,
1531                               RegLocation rl_shift) {
1532  ThreadOffset<pointer_size> func_offset(-1);
1533
1534  switch (opcode) {
1535    case Instruction::SHL_LONG:
1536    case Instruction::SHL_LONG_2ADDR:
1537      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShlLong);
1538      break;
1539    case Instruction::SHR_LONG:
1540    case Instruction::SHR_LONG_2ADDR:
1541      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShrLong);
1542      break;
1543    case Instruction::USHR_LONG:
1544    case Instruction::USHR_LONG_2ADDR:
1545      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pUshrLong);
1546      break;
1547    default:
1548      LOG(FATAL) << "Unexpected case";
1549  }
1550  mir_to_lir->FlushAllRegs();   /* Send everything to home location */
1551  mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false);
1552}
1553
1554void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1555                             RegLocation rl_src1, RegLocation rl_shift) {
1556  if (cu_->target64) {
1557    GenShiftOpLongCall<8>(this, opcode, rl_src1, rl_shift);
1558  } else {
1559    GenShiftOpLongCall<4>(this, opcode, rl_src1, rl_shift);
1560  }
1561  RegLocation rl_result = GetReturnWide(kCoreReg);
1562  StoreValueWide(rl_dest, rl_result);
1563}
1564
1565
1566void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1567                            RegLocation rl_src1, RegLocation rl_src2) {
1568  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1569  OpKind op = kOpBkpt;
1570  bool is_div_rem = false;
1571  bool check_zero = false;
1572  bool unary = false;
1573  RegLocation rl_result;
1574  bool shift_op = false;
1575  switch (opcode) {
1576    case Instruction::NEG_INT:
1577      op = kOpNeg;
1578      unary = true;
1579      break;
1580    case Instruction::NOT_INT:
1581      op = kOpMvn;
1582      unary = true;
1583      break;
1584    case Instruction::ADD_INT:
1585    case Instruction::ADD_INT_2ADDR:
1586      op = kOpAdd;
1587      break;
1588    case Instruction::SUB_INT:
1589    case Instruction::SUB_INT_2ADDR:
1590      op = kOpSub;
1591      break;
1592    case Instruction::MUL_INT:
1593    case Instruction::MUL_INT_2ADDR:
1594      op = kOpMul;
1595      break;
1596    case Instruction::DIV_INT:
1597    case Instruction::DIV_INT_2ADDR:
1598      check_zero = true;
1599      op = kOpDiv;
1600      is_div_rem = true;
1601      break;
1602    /* NOTE: returns in kArg1 */
1603    case Instruction::REM_INT:
1604    case Instruction::REM_INT_2ADDR:
1605      check_zero = true;
1606      op = kOpRem;
1607      is_div_rem = true;
1608      break;
1609    case Instruction::AND_INT:
1610    case Instruction::AND_INT_2ADDR:
1611      op = kOpAnd;
1612      break;
1613    case Instruction::OR_INT:
1614    case Instruction::OR_INT_2ADDR:
1615      op = kOpOr;
1616      break;
1617    case Instruction::XOR_INT:
1618    case Instruction::XOR_INT_2ADDR:
1619      op = kOpXor;
1620      break;
1621    case Instruction::SHL_INT:
1622    case Instruction::SHL_INT_2ADDR:
1623      shift_op = true;
1624      op = kOpLsl;
1625      break;
1626    case Instruction::SHR_INT:
1627    case Instruction::SHR_INT_2ADDR:
1628      shift_op = true;
1629      op = kOpAsr;
1630      break;
1631    case Instruction::USHR_INT:
1632    case Instruction::USHR_INT_2ADDR:
1633      shift_op = true;
1634      op = kOpLsr;
1635      break;
1636    default:
1637      LOG(FATAL) << "Invalid word arith op: " << opcode;
1638  }
1639  if (!is_div_rem) {
1640    if (unary) {
1641      rl_src1 = LoadValue(rl_src1, kCoreReg);
1642      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1643      OpRegReg(op, rl_result.reg, rl_src1.reg);
1644    } else {
1645      if ((shift_op) && (cu_->instruction_set != kArm64)) {
1646        rl_src2 = LoadValue(rl_src2, kCoreReg);
1647        RegStorage t_reg = AllocTemp();
1648        OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1649        rl_src1 = LoadValue(rl_src1, kCoreReg);
1650        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1651        OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1652        FreeTemp(t_reg);
1653      } else {
1654        rl_src1 = LoadValue(rl_src1, kCoreReg);
1655        rl_src2 = LoadValue(rl_src2, kCoreReg);
1656        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1657        OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1658      }
1659    }
1660    StoreValue(rl_dest, rl_result);
1661  } else {
1662    bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1663    if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1664      rl_src1 = LoadValue(rl_src1, kCoreReg);
1665      rl_src2 = LoadValue(rl_src2, kCoreReg);
1666      if (check_zero) {
1667        GenDivZeroCheck(rl_src2.reg);
1668      }
1669      rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1670      done = true;
1671    } else if (cu_->instruction_set == kThumb2) {
1672      if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1673        // Use ARM SDIV instruction for division.  For remainder we also need to
1674        // calculate using a MUL and subtract.
1675        rl_src1 = LoadValue(rl_src1, kCoreReg);
1676        rl_src2 = LoadValue(rl_src2, kCoreReg);
1677        if (check_zero) {
1678          GenDivZeroCheck(rl_src2.reg);
1679        }
1680        rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1681        done = true;
1682      }
1683    }
1684
1685    // If we haven't already generated the code use the callout function.
1686    if (!done) {
1687      FlushAllRegs();   /* Send everything to home location */
1688      LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
1689      RegStorage r_tgt = cu_->target64 ?
1690          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod)) :
1691          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod));
1692      LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
1693      if (check_zero) {
1694        GenDivZeroCheck(TargetReg(kArg1, kNotWide));
1695      }
1696      // NOTE: callout here is not a safepoint.
1697      if (cu_->target64) {
1698        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), false /* not a safepoint */);
1699      } else {
1700        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), false /* not a safepoint */);
1701      }
1702      if (op == kOpDiv)
1703        rl_result = GetReturn(kCoreReg);
1704      else
1705        rl_result = GetReturnAlt();
1706    }
1707    StoreValue(rl_dest, rl_result);
1708  }
1709}
1710
1711/*
1712 * The following are the first-level codegen routines that analyze the format
1713 * of each bytecode then either dispatch special purpose codegen routines
1714 * or produce corresponding Thumb instructions directly.
1715 */
1716
1717// Returns true if no more than two bits are set in 'x'.
1718static bool IsPopCountLE2(unsigned int x) {
1719  x &= x - 1;
1720  return (x & (x - 1)) == 0;
1721}
1722
1723// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1724// and store the result in 'rl_dest'.
1725bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1726                               RegLocation rl_src, RegLocation rl_dest, int lit) {
1727  if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1728    return false;
1729  }
1730  // No divide instruction for Arm, so check for more special cases
1731  if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1732    return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1733  }
1734  int k = LowestSetBit(lit);
1735  if (k >= 30) {
1736    // Avoid special cases.
1737    return false;
1738  }
1739  rl_src = LoadValue(rl_src, kCoreReg);
1740  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1741  if (is_div) {
1742    RegStorage t_reg = AllocTemp();
1743    if (lit == 2) {
1744      // Division by 2 is by far the most common division by constant.
1745      OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1746      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1747      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1748    } else {
1749      OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1750      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1751      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1752      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1753    }
1754  } else {
1755    RegStorage t_reg1 = AllocTemp();
1756    RegStorage t_reg2 = AllocTemp();
1757    if (lit == 2) {
1758      OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1759      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1760      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1761      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1762    } else {
1763      OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1764      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1765      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1766      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1767      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1768    }
1769  }
1770  StoreValue(rl_dest, rl_result);
1771  return true;
1772}
1773
1774// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1775// and store the result in 'rl_dest'.
1776bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1777  if (lit < 0) {
1778    return false;
1779  }
1780  if (lit == 0) {
1781    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1782    LoadConstant(rl_result.reg, 0);
1783    StoreValue(rl_dest, rl_result);
1784    return true;
1785  }
1786  if (lit == 1) {
1787    rl_src = LoadValue(rl_src, kCoreReg);
1788    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1789    OpRegCopy(rl_result.reg, rl_src.reg);
1790    StoreValue(rl_dest, rl_result);
1791    return true;
1792  }
1793  // There is RegRegRegShift on Arm, so check for more special cases
1794  if (cu_->instruction_set == kThumb2) {
1795    return EasyMultiply(rl_src, rl_dest, lit);
1796  }
1797  // Can we simplify this multiplication?
1798  bool power_of_two = false;
1799  bool pop_count_le2 = false;
1800  bool power_of_two_minus_one = false;
1801  if (IsPowerOfTwo(lit)) {
1802    power_of_two = true;
1803  } else if (IsPopCountLE2(lit)) {
1804    pop_count_le2 = true;
1805  } else if (IsPowerOfTwo(lit + 1)) {
1806    power_of_two_minus_one = true;
1807  } else {
1808    return false;
1809  }
1810  rl_src = LoadValue(rl_src, kCoreReg);
1811  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1812  if (power_of_two) {
1813    // Shift.
1814    OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
1815  } else if (pop_count_le2) {
1816    // Shift and add and shift.
1817    int first_bit = LowestSetBit(lit);
1818    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1819    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1820  } else {
1821    // Reverse subtract: (src << (shift + 1)) - src.
1822    DCHECK(power_of_two_minus_one);
1823    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1824    RegStorage t_reg = AllocTemp();
1825    OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
1826    OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1827  }
1828  StoreValue(rl_dest, rl_result);
1829  return true;
1830}
1831
1832void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1833                               int lit) {
1834  RegLocation rl_result;
1835  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1836  int shift_op = false;
1837  bool is_div = false;
1838
1839  switch (opcode) {
1840    case Instruction::RSUB_INT_LIT8:
1841    case Instruction::RSUB_INT: {
1842      rl_src = LoadValue(rl_src, kCoreReg);
1843      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1844      if (cu_->instruction_set == kThumb2) {
1845        OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1846      } else {
1847        OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1848        OpRegImm(kOpAdd, rl_result.reg, lit);
1849      }
1850      StoreValue(rl_dest, rl_result);
1851      return;
1852    }
1853
1854    case Instruction::SUB_INT:
1855    case Instruction::SUB_INT_2ADDR:
1856      lit = -lit;
1857      // Intended fallthrough
1858    case Instruction::ADD_INT:
1859    case Instruction::ADD_INT_2ADDR:
1860    case Instruction::ADD_INT_LIT8:
1861    case Instruction::ADD_INT_LIT16:
1862      op = kOpAdd;
1863      break;
1864    case Instruction::MUL_INT:
1865    case Instruction::MUL_INT_2ADDR:
1866    case Instruction::MUL_INT_LIT8:
1867    case Instruction::MUL_INT_LIT16: {
1868      if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1869        return;
1870      }
1871      op = kOpMul;
1872      break;
1873    }
1874    case Instruction::AND_INT:
1875    case Instruction::AND_INT_2ADDR:
1876    case Instruction::AND_INT_LIT8:
1877    case Instruction::AND_INT_LIT16:
1878      op = kOpAnd;
1879      break;
1880    case Instruction::OR_INT:
1881    case Instruction::OR_INT_2ADDR:
1882    case Instruction::OR_INT_LIT8:
1883    case Instruction::OR_INT_LIT16:
1884      op = kOpOr;
1885      break;
1886    case Instruction::XOR_INT:
1887    case Instruction::XOR_INT_2ADDR:
1888    case Instruction::XOR_INT_LIT8:
1889    case Instruction::XOR_INT_LIT16:
1890      op = kOpXor;
1891      break;
1892    case Instruction::SHL_INT_LIT8:
1893    case Instruction::SHL_INT:
1894    case Instruction::SHL_INT_2ADDR:
1895      lit &= 31;
1896      shift_op = true;
1897      op = kOpLsl;
1898      break;
1899    case Instruction::SHR_INT_LIT8:
1900    case Instruction::SHR_INT:
1901    case Instruction::SHR_INT_2ADDR:
1902      lit &= 31;
1903      shift_op = true;
1904      op = kOpAsr;
1905      break;
1906    case Instruction::USHR_INT_LIT8:
1907    case Instruction::USHR_INT:
1908    case Instruction::USHR_INT_2ADDR:
1909      lit &= 31;
1910      shift_op = true;
1911      op = kOpLsr;
1912      break;
1913
1914    case Instruction::DIV_INT:
1915    case Instruction::DIV_INT_2ADDR:
1916    case Instruction::DIV_INT_LIT8:
1917    case Instruction::DIV_INT_LIT16:
1918    case Instruction::REM_INT:
1919    case Instruction::REM_INT_2ADDR:
1920    case Instruction::REM_INT_LIT8:
1921    case Instruction::REM_INT_LIT16: {
1922      if (lit == 0) {
1923        GenDivZeroException();
1924        return;
1925      }
1926      if ((opcode == Instruction::DIV_INT) ||
1927          (opcode == Instruction::DIV_INT_2ADDR) ||
1928          (opcode == Instruction::DIV_INT_LIT8) ||
1929          (opcode == Instruction::DIV_INT_LIT16)) {
1930        is_div = true;
1931      } else {
1932        is_div = false;
1933      }
1934      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1935        return;
1936      }
1937
1938      bool done = false;
1939      if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1940        rl_src = LoadValue(rl_src, kCoreReg);
1941        rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1942        done = true;
1943      } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1944        rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1945        done = true;
1946      } else if (cu_->instruction_set == kThumb2) {
1947        if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1948          // Use ARM SDIV instruction for division.  For remainder we also need to
1949          // calculate using a MUL and subtract.
1950          rl_src = LoadValue(rl_src, kCoreReg);
1951          rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1952          done = true;
1953        }
1954      }
1955
1956      if (!done) {
1957        FlushAllRegs();   /* Everything to home location. */
1958        LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
1959        Clobber(TargetReg(kArg0, kNotWide));
1960        if (cu_->target64) {
1961          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), TargetReg(kArg0, kNotWide),
1962                                  lit, false);
1963        } else {
1964          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), TargetReg(kArg0, kNotWide),
1965                                  lit, false);
1966        }
1967        if (is_div)
1968          rl_result = GetReturn(kCoreReg);
1969        else
1970          rl_result = GetReturnAlt();
1971      }
1972      StoreValue(rl_dest, rl_result);
1973      return;
1974    }
1975    default:
1976      LOG(FATAL) << "Unexpected opcode " << opcode;
1977  }
1978  rl_src = LoadValue(rl_src, kCoreReg);
1979  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1980  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1981  if (shift_op && (lit == 0)) {
1982    OpRegCopy(rl_result.reg, rl_src.reg);
1983  } else {
1984    OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
1985  }
1986  StoreValue(rl_dest, rl_result);
1987}
1988
1989template <size_t pointer_size>
1990static void GenArithOpLongImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, Instruction::Code opcode,
1991                               RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1992  RegLocation rl_result;
1993  OpKind first_op = kOpBkpt;
1994  OpKind second_op = kOpBkpt;
1995  bool call_out = false;
1996  bool check_zero = false;
1997  ThreadOffset<pointer_size> func_offset(-1);
1998  int ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
1999
2000  switch (opcode) {
2001    case Instruction::NOT_LONG:
2002      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2003        mir_to_lir->GenNotLong(rl_dest, rl_src2);
2004        return;
2005      }
2006      rl_src2 = mir_to_lir->LoadValueWide(rl_src2, kCoreReg);
2007      rl_result = mir_to_lir->EvalLoc(rl_dest, kCoreReg, true);
2008      // Check for destructive overlap
2009      if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
2010        RegStorage t_reg = mir_to_lir->AllocTemp();
2011        mir_to_lir->OpRegCopy(t_reg, rl_src2.reg.GetHigh());
2012        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
2013        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
2014        mir_to_lir->FreeTemp(t_reg);
2015      } else {
2016        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
2017        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
2018      }
2019      mir_to_lir->StoreValueWide(rl_dest, rl_result);
2020      return;
2021    case Instruction::ADD_LONG:
2022    case Instruction::ADD_LONG_2ADDR:
2023      if (cu->instruction_set != kThumb2) {
2024        mir_to_lir->GenAddLong(opcode, rl_dest, rl_src1, rl_src2);
2025        return;
2026      }
2027      first_op = kOpAdd;
2028      second_op = kOpAdc;
2029      break;
2030    case Instruction::SUB_LONG:
2031    case Instruction::SUB_LONG_2ADDR:
2032      if (cu->instruction_set != kThumb2) {
2033        mir_to_lir->GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
2034        return;
2035      }
2036      first_op = kOpSub;
2037      second_op = kOpSbc;
2038      break;
2039    case Instruction::MUL_LONG:
2040    case Instruction::MUL_LONG_2ADDR:
2041      if (cu->instruction_set != kMips) {
2042        mir_to_lir->GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
2043        return;
2044      } else {
2045        call_out = true;
2046        ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2047        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmul);
2048      }
2049      break;
2050    case Instruction::DIV_LONG:
2051    case Instruction::DIV_LONG_2ADDR:
2052      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2053        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true);
2054        return;
2055      }
2056      call_out = true;
2057      check_zero = true;
2058      ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2059      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLdiv);
2060      break;
2061    case Instruction::REM_LONG:
2062    case Instruction::REM_LONG_2ADDR:
2063      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2064        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false);
2065        return;
2066      }
2067      call_out = true;
2068      check_zero = true;
2069      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmod);
2070      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
2071      ret_reg = (cu->instruction_set == kThumb2) ? mir_to_lir->TargetReg(kArg2, kNotWide).GetReg() :
2072          mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2073      break;
2074    case Instruction::AND_LONG_2ADDR:
2075    case Instruction::AND_LONG:
2076      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2077          cu->instruction_set == kArm64) {
2078        return mir_to_lir->GenAndLong(opcode, rl_dest, rl_src1, rl_src2);
2079      }
2080      first_op = kOpAnd;
2081      second_op = kOpAnd;
2082      break;
2083    case Instruction::OR_LONG:
2084    case Instruction::OR_LONG_2ADDR:
2085      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2086          cu->instruction_set == kArm64) {
2087        mir_to_lir->GenOrLong(opcode, rl_dest, rl_src1, rl_src2);
2088        return;
2089      }
2090      first_op = kOpOr;
2091      second_op = kOpOr;
2092      break;
2093    case Instruction::XOR_LONG:
2094    case Instruction::XOR_LONG_2ADDR:
2095      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2096          cu->instruction_set == kArm64) {
2097        mir_to_lir->GenXorLong(opcode, rl_dest, rl_src1, rl_src2);
2098        return;
2099      }
2100      first_op = kOpXor;
2101      second_op = kOpXor;
2102      break;
2103    case Instruction::NEG_LONG: {
2104      mir_to_lir->GenNegLong(rl_dest, rl_src2);
2105      return;
2106    }
2107    default:
2108      LOG(FATAL) << "Invalid long arith op";
2109  }
2110  if (!call_out) {
2111    mir_to_lir->GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
2112  } else {
2113    mir_to_lir->FlushAllRegs();   /* Send everything to home location */
2114    if (check_zero) {
2115      RegStorage r_tmp1 = mir_to_lir->TargetReg(kArg0, kWide);
2116      RegStorage r_tmp2 = mir_to_lir->TargetReg(kArg2, kWide);
2117      mir_to_lir->LoadValueDirectWideFixed(rl_src2, r_tmp2);
2118      RegStorage r_tgt = mir_to_lir->CallHelperSetup(func_offset);
2119      mir_to_lir->GenDivZeroCheckWide(r_tmp2);
2120      mir_to_lir->LoadValueDirectWideFixed(rl_src1, r_tmp1);
2121      // NOTE: callout here is not a safepoint
2122      mir_to_lir->CallHelper(r_tgt, func_offset, false /* not safepoint */);
2123    } else {
2124      mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false);
2125    }
2126    // Adjust return regs in to handle case of rem returning kArg2/kArg3
2127    if (ret_reg == mir_to_lir->TargetReg(kRet0, kNotWide).GetReg())
2128      rl_result = mir_to_lir->GetReturnWide(kCoreReg);
2129    else
2130      rl_result = mir_to_lir->GetReturnWideAlt();
2131    mir_to_lir->StoreValueWide(rl_dest, rl_result);
2132  }
2133}
2134
2135void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
2136                             RegLocation rl_src1, RegLocation rl_src2) {
2137  if (cu_->target64) {
2138    GenArithOpLongImpl<8>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2139  } else {
2140    GenArithOpLongImpl<4>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2141  }
2142}
2143
2144void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
2145  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2146  LoadConstantNoClobber(rl_result.reg, value);
2147  StoreValue(rl_dest, rl_result);
2148  if (value == 0) {
2149    Workaround7250540(rl_dest, rl_result.reg);
2150  }
2151}
2152
2153template <size_t pointer_size>
2154void Mir2Lir::GenConversionCall(ThreadOffset<pointer_size> func_offset,
2155                                RegLocation rl_dest, RegLocation rl_src) {
2156  /*
2157   * Don't optimize the register usage since it calls out to support
2158   * functions
2159   */
2160  DCHECK_EQ(pointer_size, GetInstructionSetPointerSize(cu_->instruction_set));
2161
2162  FlushAllRegs();   /* Send everything to home location */
2163  CallRuntimeHelperRegLocation(func_offset, rl_src, false);
2164  if (rl_dest.wide) {
2165    RegLocation rl_result;
2166    rl_result = GetReturnWide(LocToRegClass(rl_dest));
2167    StoreValueWide(rl_dest, rl_result);
2168  } else {
2169    RegLocation rl_result;
2170    rl_result = GetReturn(LocToRegClass(rl_dest));
2171    StoreValue(rl_dest, rl_result);
2172  }
2173}
2174template void Mir2Lir::GenConversionCall(ThreadOffset<4> func_offset,
2175                                         RegLocation rl_dest, RegLocation rl_src);
2176template void Mir2Lir::GenConversionCall(ThreadOffset<8> func_offset,
2177                                         RegLocation rl_dest, RegLocation rl_src);
2178
2179class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
2180 public:
2181  SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
2182      : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
2183  }
2184
2185  void Compile() OVERRIDE {
2186    m2l_->ResetRegPool();
2187    m2l_->ResetDefTracking();
2188    GenerateTargetLabel(kPseudoSuspendTarget);
2189    if (cu_->target64) {
2190      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pTestSuspend), true);
2191    } else {
2192      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pTestSuspend), true);
2193    }
2194    if (cont_ != nullptr) {
2195      m2l_->OpUnconditionalBranch(cont_);
2196    }
2197  }
2198};
2199
2200/* Check if we need to check for pending suspend request */
2201void Mir2Lir::GenSuspendTest(int opt_flags) {
2202  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
2203    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2204      return;
2205    }
2206    FlushAllRegs();
2207    LIR* branch = OpTestSuspend(NULL);
2208    LIR* cont = NewLIR0(kPseudoTargetLabel);
2209    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
2210  } else {
2211    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2212      return;
2213    }
2214    FlushAllRegs();     // TODO: needed?
2215    LIR* inst = CheckSuspendUsingLoad();
2216    MarkSafepointPC(inst);
2217  }
2218}
2219
2220/* Check if we need to check for pending suspend request */
2221void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
2222  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
2223    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2224      OpUnconditionalBranch(target);
2225      return;
2226    }
2227    OpTestSuspend(target);
2228    FlushAllRegs();
2229    LIR* branch = OpUnconditionalBranch(nullptr);
2230    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
2231  } else {
2232    // For the implicit suspend check, just perform the trigger
2233    // load and branch to the target.
2234    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2235      OpUnconditionalBranch(target);
2236      return;
2237    }
2238    FlushAllRegs();
2239    LIR* inst = CheckSuspendUsingLoad();
2240    MarkSafepointPC(inst);
2241    OpUnconditionalBranch(target);
2242  }
2243}
2244
2245/* Call out to helper assembly routine that will null check obj and then lock it. */
2246void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
2247  FlushAllRegs();
2248  if (cu_->target64) {
2249    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pLockObject), rl_src, true);
2250  } else {
2251    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pLockObject), rl_src, true);
2252  }
2253}
2254
2255/* Call out to helper assembly routine that will null check obj and then unlock it. */
2256void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2257  FlushAllRegs();
2258  if (cu_->target64) {
2259    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pUnlockObject), rl_src, true);
2260  } else {
2261    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject), rl_src, true);
2262  }
2263}
2264
2265/* Generic code for generating a wide constant into a VR. */
2266void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2267  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2268  LoadConstantWide(rl_result.reg, value);
2269  StoreValueWide(rl_dest, rl_result);
2270}
2271
2272}  // namespace art
2273