gen_common.cc revision 8c18c2aaedb171f9b03ec49c94b0e33449dc411b
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include "dex/compiler_ir.h"
17#include "dex/compiler_internals.h"
18#include "dex/quick/arm/arm_lir.h"
19#include "dex/quick/mir_to_lir-inl.h"
20#include "entrypoints/quick/quick_entrypoints.h"
21#include "mirror/array.h"
22#include "mirror/object_array-inl.h"
23#include "mirror/object-inl.h"
24#include "mirror/object_reference.h"
25#include "verifier/method_verifier.h"
26#include <functional>
27
28namespace art {
29
30// Shortcuts to repeatedly used long types.
31typedef mirror::ObjectArray<mirror::Object> ObjArray;
32typedef mirror::ObjectArray<mirror::Class> ClassArray;
33
34/*
35 * This source files contains "gen" codegen routines that should
36 * be applicable to most targets.  Only mid-level support utilities
37 * and "op" calls may be used here.
38 */
39
40/*
41 * Generate a kPseudoBarrier marker to indicate the boundary of special
42 * blocks.
43 */
44void Mir2Lir::GenBarrier() {
45  LIR* barrier = NewLIR0(kPseudoBarrier);
46  /* Mark all resources as being clobbered */
47  DCHECK(!barrier->flags.use_def_invalid);
48  barrier->u.m.def_mask = &kEncodeAll;
49}
50
51void Mir2Lir::GenDivZeroException() {
52  LIR* branch = OpUnconditionalBranch(nullptr);
53  AddDivZeroCheckSlowPath(branch);
54}
55
56void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
57  LIR* branch = OpCondBranch(c_code, nullptr);
58  AddDivZeroCheckSlowPath(branch);
59}
60
61void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
62  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
63  AddDivZeroCheckSlowPath(branch);
64}
65
66void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
67  class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
68   public:
69    DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
70        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
71    }
72
73    void Compile() OVERRIDE {
74      m2l_->ResetRegPool();
75      m2l_->ResetDefTracking();
76      GenerateTargetLabel(kPseudoThrowTarget);
77      m2l_->CallRuntimeHelper(kQuickThrowDivZero, true);
78    }
79  };
80
81  AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
82}
83
84void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
85  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
86   public:
87    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
88        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
89          index_(index), length_(length) {
90    }
91
92    void Compile() OVERRIDE {
93      m2l_->ResetRegPool();
94      m2l_->ResetDefTracking();
95      GenerateTargetLabel(kPseudoThrowTarget);
96      m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, index_, length_, true);
97    }
98
99   private:
100    const RegStorage index_;
101    const RegStorage length_;
102  };
103
104  LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
105  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
106}
107
108void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
109  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
110   public:
111    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
112        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
113          index_(index), length_(length) {
114    }
115
116    void Compile() OVERRIDE {
117      m2l_->ResetRegPool();
118      m2l_->ResetDefTracking();
119      GenerateTargetLabel(kPseudoThrowTarget);
120
121      RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
122      RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
123
124      m2l_->OpRegCopy(arg1_32, length_);
125      m2l_->LoadConstant(arg0_32, index_);
126      m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, arg0_32, arg1_32, true);
127    }
128
129   private:
130    const int32_t index_;
131    const RegStorage length_;
132  };
133
134  LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
135  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
136}
137
138LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
139  class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
140   public:
141    NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
142        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
143    }
144
145    void Compile() OVERRIDE {
146      m2l_->ResetRegPool();
147      m2l_->ResetDefTracking();
148      GenerateTargetLabel(kPseudoThrowTarget);
149      m2l_->CallRuntimeHelper(kQuickThrowNullPointer, true);
150    }
151  };
152
153  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
154  AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
155  return branch;
156}
157
158/* Perform null-check on a register.  */
159LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
160  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
161    return GenExplicitNullCheck(m_reg, opt_flags);
162  }
163  return nullptr;
164}
165
166/* Perform an explicit null-check on a register.  */
167LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
168  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
169    return NULL;
170  }
171  return GenNullCheck(m_reg);
172}
173
174void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
175  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
176    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
177      return;
178    }
179    // Insert after last instruction.
180    MarkSafepointPC(last_lir_insn_);
181  }
182}
183
184void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
185  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
186    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
187      return;
188    }
189    MarkSafepointPCAfter(after);
190  }
191}
192
193void Mir2Lir::MarkPossibleStackOverflowException() {
194  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
195    MarkSafepointPC(last_lir_insn_);
196  }
197}
198
199void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
200  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
201    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
202      return;
203    }
204    // Force an implicit null check by performing a memory operation (load) from the given
205    // register with offset 0.  This will cause a signal if the register contains 0 (null).
206    RegStorage tmp = AllocTemp();
207    // TODO: for Mips, would be best to use rZERO as the bogus register target.
208    LIR* load = Load32Disp(reg, 0, tmp);
209    FreeTemp(tmp);
210    MarkSafepointPC(load);
211  }
212}
213
214void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
215                                  RegLocation rl_src2, LIR* taken,
216                                  LIR* fall_through) {
217  DCHECK(!rl_src1.fp);
218  DCHECK(!rl_src2.fp);
219  ConditionCode cond;
220  switch (opcode) {
221    case Instruction::IF_EQ:
222      cond = kCondEq;
223      break;
224    case Instruction::IF_NE:
225      cond = kCondNe;
226      break;
227    case Instruction::IF_LT:
228      cond = kCondLt;
229      break;
230    case Instruction::IF_GE:
231      cond = kCondGe;
232      break;
233    case Instruction::IF_GT:
234      cond = kCondGt;
235      break;
236    case Instruction::IF_LE:
237      cond = kCondLe;
238      break;
239    default:
240      cond = static_cast<ConditionCode>(0);
241      LOG(FATAL) << "Unexpected opcode " << opcode;
242  }
243
244  // Normalize such that if either operand is constant, src2 will be constant
245  if (rl_src1.is_const) {
246    RegLocation rl_temp = rl_src1;
247    rl_src1 = rl_src2;
248    rl_src2 = rl_temp;
249    cond = FlipComparisonOrder(cond);
250  }
251
252  rl_src1 = LoadValue(rl_src1);
253  // Is this really an immediate comparison?
254  if (rl_src2.is_const) {
255    // If it's already live in a register or not easily materialized, just keep going
256    RegLocation rl_temp = UpdateLoc(rl_src2);
257    int32_t constant_value = mir_graph_->ConstantValue(rl_src2);
258    if ((rl_temp.location == kLocDalvikFrame) &&
259        InexpensiveConstantInt(constant_value, opcode)) {
260      // OK - convert this to a compare immediate and branch
261      OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
262      return;
263    }
264
265    // It's also commonly more efficient to have a test against zero with Eq/Ne. This is not worse
266    // for x86, and allows a cbz/cbnz for Arm and Mips. At the same time, it works around a register
267    // mismatch for 64b systems, where a reference is compared against null, as dex bytecode uses
268    // the 32b literal 0 for null.
269    if (constant_value == 0 && (cond == kCondEq || cond == kCondNe)) {
270      // Use the OpCmpImmBranch and ignore the value in the register.
271      OpCmpImmBranch(cond, rl_src1.reg, 0, taken);
272      return;
273    }
274  }
275
276  rl_src2 = LoadValue(rl_src2);
277  OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
278}
279
280void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
281                                      LIR* fall_through) {
282  ConditionCode cond;
283  DCHECK(!rl_src.fp);
284  rl_src = LoadValue(rl_src);
285  switch (opcode) {
286    case Instruction::IF_EQZ:
287      cond = kCondEq;
288      break;
289    case Instruction::IF_NEZ:
290      cond = kCondNe;
291      break;
292    case Instruction::IF_LTZ:
293      cond = kCondLt;
294      break;
295    case Instruction::IF_GEZ:
296      cond = kCondGe;
297      break;
298    case Instruction::IF_GTZ:
299      cond = kCondGt;
300      break;
301    case Instruction::IF_LEZ:
302      cond = kCondLe;
303      break;
304    default:
305      cond = static_cast<ConditionCode>(0);
306      LOG(FATAL) << "Unexpected opcode " << opcode;
307  }
308  OpCmpImmBranch(cond, rl_src.reg, 0, taken);
309}
310
311void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
312  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
313  if (rl_src.location == kLocPhysReg) {
314    OpRegCopy(rl_result.reg, rl_src.reg);
315  } else {
316    LoadValueDirect(rl_src, rl_result.reg.GetLow());
317  }
318  OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
319  StoreValueWide(rl_dest, rl_result);
320}
321
322void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
323                              RegLocation rl_src) {
324  rl_src = LoadValue(rl_src, kCoreReg);
325  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
326  OpKind op = kOpInvalid;
327  switch (opcode) {
328    case Instruction::INT_TO_BYTE:
329      op = kOp2Byte;
330      break;
331    case Instruction::INT_TO_SHORT:
332       op = kOp2Short;
333       break;
334    case Instruction::INT_TO_CHAR:
335       op = kOp2Char;
336       break;
337    default:
338      LOG(ERROR) << "Bad int conversion type";
339  }
340  OpRegReg(op, rl_result.reg, rl_src.reg);
341  StoreValue(rl_dest, rl_result);
342}
343
344/*
345 * Let helper function take care of everything.  Will call
346 * Array::AllocFromCode(type_idx, method, count);
347 * Note: AllocFromCode will handle checks for errNegativeArraySize.
348 */
349void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
350                          RegLocation rl_src) {
351  FlushAllRegs();  /* Everything to home location */
352  const DexFile* dex_file = cu_->dex_file;
353  CompilerDriver* driver = cu_->compiler_driver;
354  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
355    bool is_type_initialized;  // Ignored as an array does not have an initializer.
356    bool use_direct_type_ptr;
357    uintptr_t direct_type_ptr;
358    bool is_finalizable;
359    if (kEmbedClassInCode &&
360        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
361                                   &direct_type_ptr, &is_finalizable)) {
362      // The fast path.
363      if (!use_direct_type_ptr) {
364        LoadClassType(type_idx, kArg0);
365        CallRuntimeHelperRegMethodRegLocation(kQuickAllocArrayResolved, TargetReg(kArg0, kNotWide),
366                                              rl_src, true);
367      } else {
368        // Use the direct pointer.
369        CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayResolved, direct_type_ptr, rl_src,
370                                              true);
371      }
372    } else {
373      // The slow path.
374      CallRuntimeHelperImmMethodRegLocation(kQuickAllocArray, type_idx, rl_src, true);
375    }
376  } else {
377    CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayWithAccessCheck, type_idx, rl_src, true);
378  }
379  StoreValue(rl_dest, GetReturn(kRefReg));
380}
381
382/*
383 * Similar to GenNewArray, but with post-allocation initialization.
384 * Verifier guarantees we're dealing with an array class.  Current
385 * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
386 * Current code also throws internal unimp if not 'L', '[' or 'I'.
387 */
388void Mir2Lir::GenFilledNewArray(CallInfo* info) {
389  int elems = info->num_arg_words;
390  int type_idx = info->index;
391  FlushAllRegs();  /* Everything to home location */
392  QuickEntrypointEnum target;
393  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
394                                                       type_idx)) {
395    target = kQuickCheckAndAllocArray;
396  } else {
397    target = kQuickCheckAndAllocArrayWithAccessCheck;
398  }
399  CallRuntimeHelperImmMethodImm(target, type_idx, elems, true);
400  FreeTemp(TargetReg(kArg2, kNotWide));
401  FreeTemp(TargetReg(kArg1, kNotWide));
402  /*
403   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
404   * return region.  Because AllocFromCode placed the new array
405   * in kRet0, we'll just lock it into place.  When debugger support is
406   * added, it may be necessary to additionally copy all return
407   * values to a home location in thread-local storage
408   */
409  RegStorage ref_reg = TargetReg(kRet0, kRef);
410  LockTemp(ref_reg);
411
412  // TODO: use the correct component size, currently all supported types
413  // share array alignment with ints (see comment at head of function)
414  size_t component_size = sizeof(int32_t);
415
416  // Having a range of 0 is legal
417  if (info->is_range && (elems > 0)) {
418    /*
419     * Bit of ugliness here.  We're going generate a mem copy loop
420     * on the register range, but it is possible that some regs
421     * in the range have been promoted.  This is unlikely, but
422     * before generating the copy, we'll just force a flush
423     * of any regs in the source range that have been promoted to
424     * home location.
425     */
426    for (int i = 0; i < elems; i++) {
427      RegLocation loc = UpdateLoc(info->args[i]);
428      if (loc.location == kLocPhysReg) {
429        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
430        Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
431      }
432    }
433    /*
434     * TUNING note: generated code here could be much improved, but
435     * this is an uncommon operation and isn't especially performance
436     * critical.
437     */
438    // This is addressing the stack, which may be out of the 4G area.
439    RegStorage r_src = AllocTempRef();
440    RegStorage r_dst = AllocTempRef();
441    RegStorage r_idx = AllocTempRef();  // Not really a reference, but match src/dst.
442    RegStorage r_val;
443    switch (cu_->instruction_set) {
444      case kThumb2:
445      case kArm64:
446        r_val = TargetReg(kLr, kNotWide);
447        break;
448      case kX86:
449      case kX86_64:
450        FreeTemp(ref_reg);
451        r_val = AllocTemp();
452        break;
453      case kMips:
454        r_val = AllocTemp();
455        break;
456      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
457    }
458    // Set up source pointer
459    RegLocation rl_first = info->args[0];
460    OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
461    // Set up the target pointer
462    OpRegRegImm(kOpAdd, r_dst, ref_reg,
463                mirror::Array::DataOffset(component_size).Int32Value());
464    // Set up the loop counter (known to be > 0)
465    LoadConstant(r_idx, elems - 1);
466    // Generate the copy loop.  Going backwards for convenience
467    LIR* target = NewLIR0(kPseudoTargetLabel);
468    // Copy next element
469    {
470      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
471      LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
472      // NOTE: No dalvik register annotation, local optimizations will be stopped
473      // by the loop boundaries.
474    }
475    StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
476    FreeTemp(r_val);
477    OpDecAndBranch(kCondGe, r_idx, target);
478    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
479      // Restore the target pointer
480      OpRegRegImm(kOpAdd, ref_reg, r_dst,
481                  -mirror::Array::DataOffset(component_size).Int32Value());
482    }
483  } else if (!info->is_range) {
484    // TUNING: interleave
485    for (int i = 0; i < elems; i++) {
486      RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
487      Store32Disp(ref_reg,
488                  mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
489      // If the LoadValue caused a temp to be allocated, free it
490      if (IsTemp(rl_arg.reg)) {
491        FreeTemp(rl_arg.reg);
492      }
493    }
494  }
495  if (info->result.location != kLocInvalid) {
496    StoreValue(info->result, GetReturn(kRefReg));
497  }
498}
499
500//
501// Slow path to ensure a class is initialized for sget/sput.
502//
503class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
504 public:
505  StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
506                      RegStorage r_base) :
507    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
508               storage_index_(storage_index), r_base_(r_base) {
509  }
510
511  void Compile() {
512    LIR* unresolved_target = GenerateTargetLabel();
513    uninit_->target = unresolved_target;
514    m2l_->CallRuntimeHelperImm(kQuickInitializeStaticStorage, storage_index_, true);
515    // Copy helper's result into r_base, a no-op on all but MIPS.
516    m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0, kRef));
517
518    m2l_->OpUnconditionalBranch(cont_);
519  }
520
521 private:
522  LIR* const uninit_;
523  const int storage_index_;
524  const RegStorage r_base_;
525};
526
527void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
528                      bool is_object) {
529  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
530  cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
531  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
532  if (!SLOW_FIELD_PATH && field_info.FastPut()) {
533    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
534    RegStorage r_base;
535    if (field_info.IsReferrersClass()) {
536      // Fast path, static storage base is this method's class
537      RegLocation rl_method = LoadCurrMethod();
538      r_base = AllocTempRef();
539      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
540                  kNotVolatile);
541      if (IsTemp(rl_method.reg)) {
542        FreeTemp(rl_method.reg);
543      }
544    } else {
545      // Medium path, static storage base in a different class which requires checks that the other
546      // class is initialized.
547      // TODO: remove initialized check now that we are initializing classes in the compiler driver.
548      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
549      // May do runtime call so everything to home locations.
550      FlushAllRegs();
551      // Using fixed register to sync with possible call to runtime support.
552      RegStorage r_method = TargetReg(kArg1, kRef);
553      LockTemp(r_method);
554      LoadCurrMethodDirect(r_method);
555      r_base = TargetReg(kArg0, kRef);
556      LockTemp(r_base);
557      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
558                  kNotVolatile);
559      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
560      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
561      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
562      if (!field_info.IsInitialized() &&
563          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
564        // Check if r_base is NULL or a not yet initialized class.
565
566        // The slow path is invoked if the r_base is NULL or the class pointed
567        // to by it is not initialized.
568        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
569        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
570        LockTemp(r_tmp);
571        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
572                                          mirror::Class::StatusOffset().Int32Value(),
573                                          mirror::Class::kStatusInitialized, nullptr, nullptr);
574        LIR* cont = NewLIR0(kPseudoTargetLabel);
575
576        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
577                                                     field_info.StorageIndex(), r_base));
578
579        FreeTemp(r_tmp);
580        // Ensure load of status and store of value don't re-order.
581        // TODO: Presumably the actual value store is control-dependent on the status load,
582        // and will thus not be reordered in any case, since stores are never speculated.
583        // Does later code "know" that the class is now initialized?  If so, we still
584        // need the barrier to guard later static loads.
585        GenMemBarrier(kLoadAny);
586      }
587      FreeTemp(r_method);
588    }
589    // rBase now holds static storage base
590    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
591    if (is_long_or_double) {
592      rl_src = LoadValueWide(rl_src, reg_class);
593    } else {
594      rl_src = LoadValue(rl_src, reg_class);
595    }
596    if (is_object) {
597      StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
598                   field_info.IsVolatile() ? kVolatile : kNotVolatile);
599    } else {
600      StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size,
601                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
602    }
603    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
604      MarkGCCard(rl_src.reg, r_base);
605    }
606    FreeTemp(r_base);
607  } else {
608    FlushAllRegs();  // Everything to home locations
609    QuickEntrypointEnum target =
610        is_long_or_double ? kQuickSet64Static
611            : (is_object ? kQuickSetObjStatic : kQuickSet32Static);
612    CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_src, true);
613  }
614}
615
616void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
617                      bool is_long_or_double, bool is_object) {
618  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
619  cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
620  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
621  if (!SLOW_FIELD_PATH && field_info.FastGet()) {
622    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
623    RegStorage r_base;
624    if (field_info.IsReferrersClass()) {
625      // Fast path, static storage base is this method's class
626      RegLocation rl_method  = LoadCurrMethod();
627      r_base = AllocTempRef();
628      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
629                  kNotVolatile);
630    } else {
631      // Medium path, static storage base in a different class which requires checks that the other
632      // class is initialized
633      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
634      // May do runtime call so everything to home locations.
635      FlushAllRegs();
636      // Using fixed register to sync with possible call to runtime support.
637      RegStorage r_method = TargetReg(kArg1, kRef);
638      LockTemp(r_method);
639      LoadCurrMethodDirect(r_method);
640      r_base = TargetReg(kArg0, kRef);
641      LockTemp(r_base);
642      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
643                  kNotVolatile);
644      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
645      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
646      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
647      if (!field_info.IsInitialized() &&
648          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
649        // Check if r_base is NULL or a not yet initialized class.
650
651        // The slow path is invoked if the r_base is NULL or the class pointed
652        // to by it is not initialized.
653        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
654        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
655        LockTemp(r_tmp);
656        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
657                                          mirror::Class::StatusOffset().Int32Value(),
658                                          mirror::Class::kStatusInitialized, nullptr, nullptr);
659        LIR* cont = NewLIR0(kPseudoTargetLabel);
660
661        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
662                                                     field_info.StorageIndex(), r_base));
663
664        FreeTemp(r_tmp);
665        // Ensure load of status and load of value don't re-order.
666        GenMemBarrier(kLoadAny);
667      }
668      FreeTemp(r_method);
669    }
670    // r_base now holds static storage base
671    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
672    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
673
674    int field_offset = field_info.FieldOffset().Int32Value();
675    if (is_object) {
676      LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
677          kNotVolatile);
678    } else {
679      LoadBaseDisp(r_base, field_offset, rl_result.reg, load_size, field_info.IsVolatile() ?
680          kVolatile : kNotVolatile);
681    }
682    FreeTemp(r_base);
683
684    if (is_long_or_double) {
685      StoreValueWide(rl_dest, rl_result);
686    } else {
687      StoreValue(rl_dest, rl_result);
688    }
689  } else {
690    FlushAllRegs();  // Everything to home locations
691    QuickEntrypointEnum target =
692        is_long_or_double ? kQuickGet64Static
693            : (is_object ? kQuickGetObjStatic : kQuickGet32Static);
694    CallRuntimeHelperImm(target, field_info.FieldIndex(), true);
695
696    // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
697    if (is_long_or_double) {
698      RegLocation rl_result = GetReturnWide(kCoreReg);
699      StoreValueWide(rl_dest, rl_result);
700    } else {
701      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
702      StoreValue(rl_dest, rl_result);
703    }
704  }
705}
706
707// Generate code for all slow paths.
708void Mir2Lir::HandleSlowPaths() {
709  // We should check slow_paths_.Size() every time, because a new slow path
710  // may be created during slowpath->Compile().
711  for (size_t i = 0; i < slow_paths_.Size(); ++i) {
712    LIRSlowPath* slowpath = slow_paths_.Get(i);
713    slowpath->Compile();
714  }
715  slow_paths_.Reset();
716}
717
718void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
719                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
720                      bool is_object) {
721  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
722  cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
723  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
724  if (!SLOW_FIELD_PATH && field_info.FastGet()) {
725    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
726    // A load of the class will lead to an iget with offset 0.
727    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
728    rl_obj = LoadValue(rl_obj, kRefReg);
729    GenNullCheck(rl_obj.reg, opt_flags);
730    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
731    int field_offset = field_info.FieldOffset().Int32Value();
732    LIR* load_lir;
733    if (is_object) {
734      load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
735          kVolatile : kNotVolatile);
736    } else {
737      load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, load_size,
738                              field_info.IsVolatile() ? kVolatile : kNotVolatile);
739    }
740    MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
741    if (is_long_or_double) {
742      StoreValueWide(rl_dest, rl_result);
743    } else {
744      StoreValue(rl_dest, rl_result);
745    }
746  } else {
747    QuickEntrypointEnum target =
748        is_long_or_double ? kQuickGet64Instance
749            : (is_object ? kQuickGetObjInstance : kQuickGet32Instance);
750    // Second argument of pGetXXInstance is always a reference.
751    DCHECK_EQ(static_cast<unsigned int>(rl_obj.wide), 0U);
752    CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_obj, true);
753
754    // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
755    if (is_long_or_double) {
756      RegLocation rl_result = GetReturnWide(kCoreReg);
757      StoreValueWide(rl_dest, rl_result);
758    } else {
759      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
760      StoreValue(rl_dest, rl_result);
761    }
762  }
763}
764
765void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
766                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
767                      bool is_object) {
768  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
769  cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
770  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
771  if (!SLOW_FIELD_PATH && field_info.FastPut()) {
772    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
773    // Dex code never writes to the class field.
774    DCHECK_GE(static_cast<uint32_t>(field_info.FieldOffset().Int32Value()),
775              sizeof(mirror::HeapReference<mirror::Class>));
776    rl_obj = LoadValue(rl_obj, kRefReg);
777    if (is_long_or_double) {
778      rl_src = LoadValueWide(rl_src, reg_class);
779    } else {
780      rl_src = LoadValue(rl_src, reg_class);
781    }
782    GenNullCheck(rl_obj.reg, opt_flags);
783    int field_offset = field_info.FieldOffset().Int32Value();
784    LIR* store;
785    if (is_object) {
786      store = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
787          kVolatile : kNotVolatile);
788    } else {
789      store = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, store_size,
790                            field_info.IsVolatile() ? kVolatile : kNotVolatile);
791    }
792    MarkPossibleNullPointerExceptionAfter(opt_flags, store);
793    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
794      MarkGCCard(rl_src.reg, rl_obj.reg);
795    }
796  } else {
797    QuickEntrypointEnum target =
798        is_long_or_double ? kQuickSet64Instance
799            : (is_object ? kQuickSetObjInstance : kQuickSet32Instance);
800    CallRuntimeHelperImmRegLocationRegLocation(target, field_info.FieldIndex(), rl_obj, rl_src,
801                                               true);
802  }
803}
804
805void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
806                             RegLocation rl_src) {
807  bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
808  bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
809      (opt_flags & MIR_IGNORE_NULL_CHECK));
810  QuickEntrypointEnum target = needs_range_check
811        ? (needs_null_check ? kQuickAputObjectWithNullAndBoundCheck
812                            : kQuickAputObjectWithBoundCheck)
813        : kQuickAputObject;
814  CallRuntimeHelperRegLocationRegLocationRegLocation(target, rl_array, rl_index, rl_src, true);
815}
816
817void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
818  RegLocation rl_method = LoadCurrMethod();
819  CheckRegLocation(rl_method);
820  RegStorage res_reg = AllocTempRef();
821  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
822  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
823                                                        *cu_->dex_file,
824                                                        type_idx)) {
825    // Call out to helper which resolves type and verifies access.
826    // Resolved type returned in kRet0.
827    CallRuntimeHelperImmReg(kQuickInitializeTypeAndVerifyAccess, type_idx, rl_method.reg, true);
828    RegLocation rl_result = GetReturn(kRefReg);
829    StoreValue(rl_dest, rl_result);
830  } else {
831    // We're don't need access checks, load type from dex cache
832    int32_t dex_cache_offset =
833        mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
834    LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg, kNotVolatile);
835    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
836    LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
837    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
838        type_idx) || SLOW_TYPE_PATH) {
839      // Slow path, at runtime test if type is null and if so initialize
840      FlushAllRegs();
841      LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
842      LIR* cont = NewLIR0(kPseudoTargetLabel);
843
844      // Object to generate the slow path for class resolution.
845      class SlowPath : public LIRSlowPath {
846       public:
847        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
848                 const RegLocation& rl_method, const RegLocation& rl_result) :
849                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
850                   rl_method_(rl_method), rl_result_(rl_result) {
851        }
852
853        void Compile() {
854          GenerateTargetLabel();
855
856          m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_, rl_method_.reg, true);
857          m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetReg(kRet0, kRef));
858          m2l_->OpUnconditionalBranch(cont_);
859        }
860
861       private:
862        const int type_idx_;
863        const RegLocation rl_method_;
864        const RegLocation rl_result_;
865      };
866
867      // Add to list for future.
868      AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
869
870      StoreValue(rl_dest, rl_result);
871     } else {
872      // Fast path, we're done - just store result
873      StoreValue(rl_dest, rl_result);
874    }
875  }
876}
877
878void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
879  /* NOTE: Most strings should be available at compile time */
880  int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
881                                                                                      Int32Value();
882  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
883      *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
884    // slow path, resolve string if not in dex cache
885    FlushAllRegs();
886    LockCallTemps();  // Using explicit registers
887
888    // If the Method* is already in a register, we can save a copy.
889    RegLocation rl_method = mir_graph_->GetMethodLoc();
890    RegStorage r_method;
891    if (rl_method.location == kLocPhysReg) {
892      // A temp would conflict with register use below.
893      DCHECK(!IsTemp(rl_method.reg));
894      r_method = rl_method.reg;
895    } else {
896      r_method = TargetReg(kArg2, kRef);
897      LoadCurrMethodDirect(r_method);
898    }
899    LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(),
900                TargetReg(kArg0, kRef), kNotVolatile);
901
902    // Might call out to helper, which will return resolved string in kRet0
903    LoadRefDisp(TargetReg(kArg0, kRef), offset_of_string, TargetReg(kRet0, kRef), kNotVolatile);
904    LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0, kRef), 0, NULL);
905    LIR* cont = NewLIR0(kPseudoTargetLabel);
906
907    {
908      // Object to generate the slow path for string resolution.
909      class SlowPath : public LIRSlowPath {
910       public:
911        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
912          LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
913          r_method_(r_method), string_idx_(string_idx) {
914        }
915
916        void Compile() {
917          GenerateTargetLabel();
918          m2l_->CallRuntimeHelperRegImm(kQuickResolveString, r_method_, string_idx_, true);
919          m2l_->OpUnconditionalBranch(cont_);
920        }
921
922       private:
923         const RegStorage r_method_;
924         const int32_t string_idx_;
925      };
926
927      AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
928    }
929
930    GenBarrier();
931    StoreValue(rl_dest, GetReturn(kRefReg));
932  } else {
933    RegLocation rl_method = LoadCurrMethod();
934    RegStorage res_reg = AllocTempRef();
935    RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
936    LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg,
937                kNotVolatile);
938    LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
939    StoreValue(rl_dest, rl_result);
940  }
941}
942
943/*
944 * Let helper function take care of everything.  Will
945 * call Class::NewInstanceFromCode(type_idx, method);
946 */
947void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
948  FlushAllRegs();  /* Everything to home location */
949  // alloc will always check for resolution, do we also need to verify
950  // access because the verifier was unable to?
951  const DexFile* dex_file = cu_->dex_file;
952  CompilerDriver* driver = cu_->compiler_driver;
953  if (driver->CanAccessInstantiableTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
954    bool is_type_initialized;
955    bool use_direct_type_ptr;
956    uintptr_t direct_type_ptr;
957    bool is_finalizable;
958    if (kEmbedClassInCode &&
959        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
960                                   &direct_type_ptr, &is_finalizable) &&
961                                   !is_finalizable) {
962      // The fast path.
963      if (!use_direct_type_ptr) {
964        LoadClassType(type_idx, kArg0);
965        if (!is_type_initialized) {
966          CallRuntimeHelperRegMethod(kQuickAllocObjectResolved, TargetReg(kArg0, kRef), true);
967        } else {
968          CallRuntimeHelperRegMethod(kQuickAllocObjectInitialized, TargetReg(kArg0, kRef), true);
969        }
970      } else {
971        // Use the direct pointer.
972        if (!is_type_initialized) {
973          CallRuntimeHelperImmMethod(kQuickAllocObjectResolved, direct_type_ptr, true);
974        } else {
975          CallRuntimeHelperImmMethod(kQuickAllocObjectInitialized, direct_type_ptr, true);
976        }
977      }
978    } else {
979      // The slow path.
980      CallRuntimeHelperImmMethod(kQuickAllocObject, type_idx, true);
981    }
982  } else {
983    CallRuntimeHelperImmMethod(kQuickAllocObjectWithAccessCheck, type_idx, true);
984  }
985  StoreValue(rl_dest, GetReturn(kRefReg));
986}
987
988void Mir2Lir::GenThrow(RegLocation rl_src) {
989  FlushAllRegs();
990  CallRuntimeHelperRegLocation(kQuickDeliverException, rl_src, true);
991}
992
993// For final classes there are no sub-classes to check and so we can answer the instance-of
994// question with simple comparisons.
995void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
996                                 RegLocation rl_src) {
997  // X86 has its own implementation.
998  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
999
1000  RegLocation object = LoadValue(rl_src, kRefReg);
1001  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1002  RegStorage result_reg = rl_result.reg;
1003  if (IsSameReg(result_reg, object.reg)) {
1004    result_reg = AllocTypedTemp(false, kCoreReg);
1005    DCHECK(!IsSameReg(result_reg, object.reg));
1006  }
1007  LoadConstant(result_reg, 0);     // assume false
1008  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1009
1010  RegStorage check_class = AllocTypedTemp(false, kRefReg);
1011  RegStorage object_class = AllocTypedTemp(false, kRefReg);
1012
1013  LoadCurrMethodDirect(check_class);
1014  if (use_declaring_class) {
1015    LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
1016                kNotVolatile);
1017    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1018                kNotVolatile);
1019  } else {
1020    LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1021                check_class, kNotVolatile);
1022    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1023                kNotVolatile);
1024    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1025    LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
1026  }
1027
1028  // FIXME: what should we be comparing here? compressed or decompressed references?
1029  if (cu_->instruction_set == kThumb2) {
1030    OpRegReg(kOpCmp, check_class, object_class);  // Same?
1031    LIR* it = OpIT(kCondEq, "");   // if-convert the test
1032    LoadConstant(result_reg, 1);     // .eq case - load true
1033    OpEndIT(it);
1034  } else {
1035    GenSelectConst32(check_class, object_class, kCondEq, 1, 0, result_reg, kCoreReg);
1036  }
1037  LIR* target = NewLIR0(kPseudoTargetLabel);
1038  null_branchover->target = target;
1039  FreeTemp(object_class);
1040  FreeTemp(check_class);
1041  if (IsTemp(result_reg)) {
1042    OpRegCopy(rl_result.reg, result_reg);
1043    FreeTemp(result_reg);
1044  }
1045  StoreValue(rl_dest, rl_result);
1046}
1047
1048void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1049                                         bool type_known_abstract, bool use_declaring_class,
1050                                         bool can_assume_type_is_in_dex_cache,
1051                                         uint32_t type_idx, RegLocation rl_dest,
1052                                         RegLocation rl_src) {
1053  FlushAllRegs();
1054  // May generate a call - use explicit registers
1055  LockCallTemps();
1056  RegStorage method_reg = TargetReg(kArg1, kRef);
1057  LoadCurrMethodDirect(method_reg);   // kArg1 <= current Method*
1058  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1059  RegStorage ref_reg = TargetReg(kArg0, kRef);  // kArg0 will hold the ref.
1060  RegStorage ret_reg = GetReturn(kRefReg).reg;
1061  if (needs_access_check) {
1062    // Check we have access to type_idx and if not throw IllegalAccessError,
1063    // returns Class* in kArg0
1064    CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
1065    OpRegCopy(class_reg, ret_reg);  // Align usage with fast path
1066    LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1067  } else if (use_declaring_class) {
1068    LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1069    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1070                class_reg, kNotVolatile);
1071  } else {
1072    if (can_assume_type_is_in_dex_cache) {
1073      // Conditionally, as in the other case we will also load it.
1074      LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1075    }
1076
1077    // Load dex cache entry into class_reg (kArg2)
1078    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1079                class_reg, kNotVolatile);
1080    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1081    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1082    if (!can_assume_type_is_in_dex_cache) {
1083      LIR* slow_path_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1084      LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
1085
1086      // Should load value here.
1087      LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1088
1089      class InitTypeSlowPath : public Mir2Lir::LIRSlowPath {
1090       public:
1091        InitTypeSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont, uint32_t type_idx,
1092                         RegLocation rl_src)
1093            : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont), type_idx_(type_idx),
1094              rl_src_(rl_src) {
1095        }
1096
1097        void Compile() OVERRIDE {
1098          GenerateTargetLabel();
1099
1100          m2l_->CallRuntimeHelperImm(kQuickInitializeType, type_idx_, true);
1101          m2l_->OpRegCopy(m2l_->TargetReg(kArg2, kRef),
1102                          m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1103          m2l_->OpUnconditionalBranch(cont_);
1104        }
1105
1106       private:
1107        uint32_t type_idx_;
1108        RegLocation rl_src_;
1109      };
1110
1111      AddSlowPath(new (arena_) InitTypeSlowPath(this, slow_path_branch, slow_path_target,
1112                                                type_idx, rl_src));
1113    }
1114  }
1115  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1116  RegLocation rl_result = GetReturn(kCoreReg);
1117  if (!IsSameReg(rl_result.reg, ref_reg)) {
1118    // On MIPS and x86_64 rArg0 != rl_result, place false in result if branch is taken.
1119    LoadConstant(rl_result.reg, 0);
1120  }
1121  LIR* branch1 = OpCmpImmBranch(kCondEq, ref_reg, 0, NULL);
1122
1123  /* load object->klass_ */
1124  RegStorage ref_class_reg = TargetReg(kArg1, kRef);  // kArg1 will hold the Class* of ref.
1125  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1126  LoadRefDisp(ref_reg, mirror::Object::ClassOffset().Int32Value(),
1127              ref_class_reg, kNotVolatile);
1128  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1129  LIR* branchover = NULL;
1130  if (type_known_final) {
1131    // rl_result == ref == class.
1132    GenSelectConst32(ref_class_reg, class_reg, kCondEq, 1, 0, rl_result.reg,
1133                     kCoreReg);
1134  } else {
1135    if (cu_->instruction_set == kThumb2) {
1136      RegStorage r_tgt = LoadHelper(kQuickInstanceofNonTrivial);
1137      LIR* it = nullptr;
1138      if (!type_known_abstract) {
1139      /* Uses conditional nullification */
1140        OpRegReg(kOpCmp, ref_class_reg, class_reg);  // Same?
1141        it = OpIT(kCondEq, "EE");   // if-convert the test
1142        LoadConstant(rl_result.reg, 1);     // .eq case - load true
1143      }
1144      OpRegCopy(ref_reg, class_reg);    // .ne case - arg0 <= class
1145      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1146      if (it != nullptr) {
1147        OpEndIT(it);
1148      }
1149      FreeTemp(r_tgt);
1150    } else {
1151      if (!type_known_abstract) {
1152        /* Uses branchovers */
1153        LoadConstant(rl_result.reg, 1);     // assume true
1154        branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL);
1155      }
1156
1157      OpRegCopy(TargetReg(kArg0, kRef), class_reg);    // .ne case - arg0 <= class
1158      CallRuntimeHelper(kQuickInstanceofNonTrivial, false);
1159    }
1160  }
1161  // TODO: only clobber when type isn't final?
1162  ClobberCallerSave();
1163  /* branch targets here */
1164  LIR* target = NewLIR0(kPseudoTargetLabel);
1165  StoreValue(rl_dest, rl_result);
1166  branch1->target = target;
1167  if (branchover != nullptr) {
1168    branchover->target = target;
1169  }
1170}
1171
1172void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1173  bool type_known_final, type_known_abstract, use_declaring_class;
1174  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1175                                                                              *cu_->dex_file,
1176                                                                              type_idx,
1177                                                                              &type_known_final,
1178                                                                              &type_known_abstract,
1179                                                                              &use_declaring_class);
1180  bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1181      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1182
1183  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1184    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1185  } else {
1186    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1187                               use_declaring_class, can_assume_type_is_in_dex_cache,
1188                               type_idx, rl_dest, rl_src);
1189  }
1190}
1191
1192void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1193  bool type_known_final, type_known_abstract, use_declaring_class;
1194  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1195                                                                              *cu_->dex_file,
1196                                                                              type_idx,
1197                                                                              &type_known_final,
1198                                                                              &type_known_abstract,
1199                                                                              &use_declaring_class);
1200  // Note: currently type_known_final is unused, as optimizing will only improve the performance
1201  // of the exception throw path.
1202  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1203  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1204    // Verifier type analysis proved this check cast would never cause an exception.
1205    return;
1206  }
1207  FlushAllRegs();
1208  // May generate a call - use explicit registers
1209  LockCallTemps();
1210  RegStorage method_reg = TargetReg(kArg1, kRef);
1211  LoadCurrMethodDirect(method_reg);  // kArg1 <= current Method*
1212  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1213  if (needs_access_check) {
1214    // Check we have access to type_idx and if not throw IllegalAccessError,
1215    // returns Class* in kRet0
1216    // InitializeTypeAndVerifyAccess(idx, method)
1217    CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
1218    OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1219  } else if (use_declaring_class) {
1220    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1221                class_reg, kNotVolatile);
1222  } else {
1223    // Load dex cache entry into class_reg (kArg2)
1224    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1225                class_reg, kNotVolatile);
1226    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1227    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1228    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1229      // Need to test presence of type in dex cache at runtime
1230      LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1231      LIR* cont = NewLIR0(kPseudoTargetLabel);
1232
1233      // Slow path to initialize the type.  Executed if the type is NULL.
1234      class SlowPath : public LIRSlowPath {
1235       public:
1236        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1237                 const RegStorage class_reg) :
1238                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1239                   class_reg_(class_reg) {
1240        }
1241
1242        void Compile() {
1243          GenerateTargetLabel();
1244
1245          // Call out to helper, which will return resolved type in kArg0
1246          // InitializeTypeFromCode(idx, method)
1247          m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_,
1248                                        m2l_->TargetReg(kArg1, kRef), true);
1249          m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1250          m2l_->OpUnconditionalBranch(cont_);
1251        }
1252
1253       public:
1254        const int type_idx_;
1255        const RegStorage class_reg_;
1256      };
1257
1258      AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
1259    }
1260  }
1261  // At this point, class_reg (kArg2) has class
1262  LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1263
1264  // Slow path for the case where the classes are not equal.  In this case we need
1265  // to call a helper function to do the check.
1266  class SlowPath : public LIRSlowPath {
1267   public:
1268    SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1269               LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1270    }
1271
1272    void Compile() {
1273      GenerateTargetLabel();
1274
1275      if (load_) {
1276        m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1277                          m2l_->TargetReg(kArg1, kRef), kNotVolatile);
1278      }
1279      m2l_->CallRuntimeHelperRegReg(kQuickCheckCast, m2l_->TargetReg(kArg2, kRef),
1280                                    m2l_->TargetReg(kArg1, kRef), true);
1281      m2l_->OpUnconditionalBranch(cont_);
1282    }
1283
1284   private:
1285    const bool load_;
1286  };
1287
1288  if (type_known_abstract) {
1289    // Easier case, run slow path if target is non-null (slow path will load from target)
1290    LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
1291    LIR* cont = NewLIR0(kPseudoTargetLabel);
1292    AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1293  } else {
1294    // Harder, more common case.  We need to generate a forward branch over the load
1295    // if the target is null.  If it's non-null we perform the load and branch to the
1296    // slow path if the classes are not equal.
1297
1298    /* Null is OK - continue */
1299    LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
1300    /* load object->klass_ */
1301    DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1302    LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1303                TargetReg(kArg1, kRef), kNotVolatile);
1304
1305    LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
1306    LIR* cont = NewLIR0(kPseudoTargetLabel);
1307
1308    // Add the slow path that will not perform load since this is already done.
1309    AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1310
1311    // Set the null check to branch to the continuation.
1312    branch1->target = cont;
1313  }
1314}
1315
1316void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1317                           RegLocation rl_src1, RegLocation rl_src2) {
1318  RegLocation rl_result;
1319  if (cu_->instruction_set == kThumb2) {
1320    /*
1321     * NOTE:  This is the one place in the code in which we might have
1322     * as many as six live temporary registers.  There are 5 in the normal
1323     * set for Arm.  Until we have spill capabilities, temporarily add
1324     * lr to the temp set.  It is safe to do this locally, but note that
1325     * lr is used explicitly elsewhere in the code generator and cannot
1326     * normally be used as a general temp register.
1327     */
1328    MarkTemp(TargetReg(kLr, kNotWide));   // Add lr to the temp pool
1329    FreeTemp(TargetReg(kLr, kNotWide));   // and make it available
1330  }
1331  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1332  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1333  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1334  // The longs may overlap - use intermediate temp if so
1335  if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1336    RegStorage t_reg = AllocTemp();
1337    OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1338    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1339    OpRegCopy(rl_result.reg.GetLow(), t_reg);
1340    FreeTemp(t_reg);
1341  } else {
1342    OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1343    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1344  }
1345  /*
1346   * NOTE: If rl_dest refers to a frame variable in a large frame, the
1347   * following StoreValueWide might need to allocate a temp register.
1348   * To further work around the lack of a spill capability, explicitly
1349   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1350   * Remove when spill is functional.
1351   */
1352  FreeRegLocTemps(rl_result, rl_src1);
1353  FreeRegLocTemps(rl_result, rl_src2);
1354  StoreValueWide(rl_dest, rl_result);
1355  if (cu_->instruction_set == kThumb2) {
1356    Clobber(TargetReg(kLr, kNotWide));
1357    UnmarkTemp(TargetReg(kLr, kNotWide));  // Remove lr from the temp pool
1358  }
1359}
1360
1361void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1362                             RegLocation rl_src1, RegLocation rl_shift) {
1363  QuickEntrypointEnum target;
1364  switch (opcode) {
1365    case Instruction::SHL_LONG:
1366    case Instruction::SHL_LONG_2ADDR:
1367      target = kQuickShlLong;
1368      break;
1369    case Instruction::SHR_LONG:
1370    case Instruction::SHR_LONG_2ADDR:
1371      target = kQuickShrLong;
1372      break;
1373    case Instruction::USHR_LONG:
1374    case Instruction::USHR_LONG_2ADDR:
1375      target = kQuickUshrLong;
1376      break;
1377    default:
1378      LOG(FATAL) << "Unexpected case";
1379      target = kQuickShlLong;
1380  }
1381  FlushAllRegs();   /* Send everything to home location */
1382  CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_shift, false);
1383  RegLocation rl_result = GetReturnWide(kCoreReg);
1384  StoreValueWide(rl_dest, rl_result);
1385}
1386
1387
1388void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1389                            RegLocation rl_src1, RegLocation rl_src2) {
1390  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1391  OpKind op = kOpBkpt;
1392  bool is_div_rem = false;
1393  bool check_zero = false;
1394  bool unary = false;
1395  RegLocation rl_result;
1396  bool shift_op = false;
1397  switch (opcode) {
1398    case Instruction::NEG_INT:
1399      op = kOpNeg;
1400      unary = true;
1401      break;
1402    case Instruction::NOT_INT:
1403      op = kOpMvn;
1404      unary = true;
1405      break;
1406    case Instruction::ADD_INT:
1407    case Instruction::ADD_INT_2ADDR:
1408      op = kOpAdd;
1409      break;
1410    case Instruction::SUB_INT:
1411    case Instruction::SUB_INT_2ADDR:
1412      op = kOpSub;
1413      break;
1414    case Instruction::MUL_INT:
1415    case Instruction::MUL_INT_2ADDR:
1416      op = kOpMul;
1417      break;
1418    case Instruction::DIV_INT:
1419    case Instruction::DIV_INT_2ADDR:
1420      check_zero = true;
1421      op = kOpDiv;
1422      is_div_rem = true;
1423      break;
1424    /* NOTE: returns in kArg1 */
1425    case Instruction::REM_INT:
1426    case Instruction::REM_INT_2ADDR:
1427      check_zero = true;
1428      op = kOpRem;
1429      is_div_rem = true;
1430      break;
1431    case Instruction::AND_INT:
1432    case Instruction::AND_INT_2ADDR:
1433      op = kOpAnd;
1434      break;
1435    case Instruction::OR_INT:
1436    case Instruction::OR_INT_2ADDR:
1437      op = kOpOr;
1438      break;
1439    case Instruction::XOR_INT:
1440    case Instruction::XOR_INT_2ADDR:
1441      op = kOpXor;
1442      break;
1443    case Instruction::SHL_INT:
1444    case Instruction::SHL_INT_2ADDR:
1445      shift_op = true;
1446      op = kOpLsl;
1447      break;
1448    case Instruction::SHR_INT:
1449    case Instruction::SHR_INT_2ADDR:
1450      shift_op = true;
1451      op = kOpAsr;
1452      break;
1453    case Instruction::USHR_INT:
1454    case Instruction::USHR_INT_2ADDR:
1455      shift_op = true;
1456      op = kOpLsr;
1457      break;
1458    default:
1459      LOG(FATAL) << "Invalid word arith op: " << opcode;
1460  }
1461  if (!is_div_rem) {
1462    if (unary) {
1463      rl_src1 = LoadValue(rl_src1, kCoreReg);
1464      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1465      OpRegReg(op, rl_result.reg, rl_src1.reg);
1466    } else {
1467      if ((shift_op) && (cu_->instruction_set != kArm64)) {
1468        rl_src2 = LoadValue(rl_src2, kCoreReg);
1469        RegStorage t_reg = AllocTemp();
1470        OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1471        rl_src1 = LoadValue(rl_src1, kCoreReg);
1472        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1473        OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1474        FreeTemp(t_reg);
1475      } else {
1476        rl_src1 = LoadValue(rl_src1, kCoreReg);
1477        rl_src2 = LoadValue(rl_src2, kCoreReg);
1478        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1479        OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1480      }
1481    }
1482    StoreValue(rl_dest, rl_result);
1483  } else {
1484    bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1485    if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1486      rl_src1 = LoadValue(rl_src1, kCoreReg);
1487      rl_src2 = LoadValue(rl_src2, kCoreReg);
1488      if (check_zero) {
1489        GenDivZeroCheck(rl_src2.reg);
1490      }
1491      rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1492      done = true;
1493    } else if (cu_->instruction_set == kThumb2) {
1494      if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1495        // Use ARM SDIV instruction for division.  For remainder we also need to
1496        // calculate using a MUL and subtract.
1497        rl_src1 = LoadValue(rl_src1, kCoreReg);
1498        rl_src2 = LoadValue(rl_src2, kCoreReg);
1499        if (check_zero) {
1500          GenDivZeroCheck(rl_src2.reg);
1501        }
1502        rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1503        done = true;
1504      }
1505    }
1506
1507    // If we haven't already generated the code use the callout function.
1508    if (!done) {
1509      FlushAllRegs();   /* Send everything to home location */
1510      LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
1511      RegStorage r_tgt = CallHelperSetup(kQuickIdivmod);
1512      LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
1513      if (check_zero) {
1514        GenDivZeroCheck(TargetReg(kArg1, kNotWide));
1515      }
1516      // NOTE: callout here is not a safepoint.
1517      CallHelper(r_tgt, kQuickIdivmod, false /* not a safepoint */);
1518      if (op == kOpDiv)
1519        rl_result = GetReturn(kCoreReg);
1520      else
1521        rl_result = GetReturnAlt();
1522    }
1523    StoreValue(rl_dest, rl_result);
1524  }
1525}
1526
1527/*
1528 * The following are the first-level codegen routines that analyze the format
1529 * of each bytecode then either dispatch special purpose codegen routines
1530 * or produce corresponding Thumb instructions directly.
1531 */
1532
1533// Returns true if no more than two bits are set in 'x'.
1534static bool IsPopCountLE2(unsigned int x) {
1535  x &= x - 1;
1536  return (x & (x - 1)) == 0;
1537}
1538
1539// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1540// and store the result in 'rl_dest'.
1541bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1542                               RegLocation rl_src, RegLocation rl_dest, int lit) {
1543  if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1544    return false;
1545  }
1546  // No divide instruction for Arm, so check for more special cases
1547  if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1548    return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1549  }
1550  int k = LowestSetBit(lit);
1551  if (k >= 30) {
1552    // Avoid special cases.
1553    return false;
1554  }
1555  rl_src = LoadValue(rl_src, kCoreReg);
1556  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1557  if (is_div) {
1558    RegStorage t_reg = AllocTemp();
1559    if (lit == 2) {
1560      // Division by 2 is by far the most common division by constant.
1561      OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1562      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1563      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1564    } else {
1565      OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1566      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1567      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1568      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1569    }
1570  } else {
1571    RegStorage t_reg1 = AllocTemp();
1572    RegStorage t_reg2 = AllocTemp();
1573    if (lit == 2) {
1574      OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1575      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1576      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1577      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1578    } else {
1579      OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1580      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1581      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1582      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1583      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1584    }
1585  }
1586  StoreValue(rl_dest, rl_result);
1587  return true;
1588}
1589
1590// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1591// and store the result in 'rl_dest'.
1592bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1593  if (lit < 0) {
1594    return false;
1595  }
1596  if (lit == 0) {
1597    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1598    LoadConstant(rl_result.reg, 0);
1599    StoreValue(rl_dest, rl_result);
1600    return true;
1601  }
1602  if (lit == 1) {
1603    rl_src = LoadValue(rl_src, kCoreReg);
1604    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1605    OpRegCopy(rl_result.reg, rl_src.reg);
1606    StoreValue(rl_dest, rl_result);
1607    return true;
1608  }
1609  // There is RegRegRegShift on Arm, so check for more special cases
1610  if (cu_->instruction_set == kThumb2) {
1611    return EasyMultiply(rl_src, rl_dest, lit);
1612  }
1613  // Can we simplify this multiplication?
1614  bool power_of_two = false;
1615  bool pop_count_le2 = false;
1616  bool power_of_two_minus_one = false;
1617  if (IsPowerOfTwo(lit)) {
1618    power_of_two = true;
1619  } else if (IsPopCountLE2(lit)) {
1620    pop_count_le2 = true;
1621  } else if (IsPowerOfTwo(lit + 1)) {
1622    power_of_two_minus_one = true;
1623  } else {
1624    return false;
1625  }
1626  rl_src = LoadValue(rl_src, kCoreReg);
1627  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1628  if (power_of_two) {
1629    // Shift.
1630    OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
1631  } else if (pop_count_le2) {
1632    // Shift and add and shift.
1633    int first_bit = LowestSetBit(lit);
1634    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1635    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1636  } else {
1637    // Reverse subtract: (src << (shift + 1)) - src.
1638    DCHECK(power_of_two_minus_one);
1639    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1640    RegStorage t_reg = AllocTemp();
1641    OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
1642    OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1643  }
1644  StoreValue(rl_dest, rl_result);
1645  return true;
1646}
1647
1648void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1649                               int lit) {
1650  RegLocation rl_result;
1651  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1652  int shift_op = false;
1653  bool is_div = false;
1654
1655  switch (opcode) {
1656    case Instruction::RSUB_INT_LIT8:
1657    case Instruction::RSUB_INT: {
1658      rl_src = LoadValue(rl_src, kCoreReg);
1659      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1660      if (cu_->instruction_set == kThumb2) {
1661        OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1662      } else {
1663        OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1664        OpRegImm(kOpAdd, rl_result.reg, lit);
1665      }
1666      StoreValue(rl_dest, rl_result);
1667      return;
1668    }
1669
1670    case Instruction::SUB_INT:
1671    case Instruction::SUB_INT_2ADDR:
1672      lit = -lit;
1673      // Intended fallthrough
1674    case Instruction::ADD_INT:
1675    case Instruction::ADD_INT_2ADDR:
1676    case Instruction::ADD_INT_LIT8:
1677    case Instruction::ADD_INT_LIT16:
1678      op = kOpAdd;
1679      break;
1680    case Instruction::MUL_INT:
1681    case Instruction::MUL_INT_2ADDR:
1682    case Instruction::MUL_INT_LIT8:
1683    case Instruction::MUL_INT_LIT16: {
1684      if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1685        return;
1686      }
1687      op = kOpMul;
1688      break;
1689    }
1690    case Instruction::AND_INT:
1691    case Instruction::AND_INT_2ADDR:
1692    case Instruction::AND_INT_LIT8:
1693    case Instruction::AND_INT_LIT16:
1694      op = kOpAnd;
1695      break;
1696    case Instruction::OR_INT:
1697    case Instruction::OR_INT_2ADDR:
1698    case Instruction::OR_INT_LIT8:
1699    case Instruction::OR_INT_LIT16:
1700      op = kOpOr;
1701      break;
1702    case Instruction::XOR_INT:
1703    case Instruction::XOR_INT_2ADDR:
1704    case Instruction::XOR_INT_LIT8:
1705    case Instruction::XOR_INT_LIT16:
1706      op = kOpXor;
1707      break;
1708    case Instruction::SHL_INT_LIT8:
1709    case Instruction::SHL_INT:
1710    case Instruction::SHL_INT_2ADDR:
1711      lit &= 31;
1712      shift_op = true;
1713      op = kOpLsl;
1714      break;
1715    case Instruction::SHR_INT_LIT8:
1716    case Instruction::SHR_INT:
1717    case Instruction::SHR_INT_2ADDR:
1718      lit &= 31;
1719      shift_op = true;
1720      op = kOpAsr;
1721      break;
1722    case Instruction::USHR_INT_LIT8:
1723    case Instruction::USHR_INT:
1724    case Instruction::USHR_INT_2ADDR:
1725      lit &= 31;
1726      shift_op = true;
1727      op = kOpLsr;
1728      break;
1729
1730    case Instruction::DIV_INT:
1731    case Instruction::DIV_INT_2ADDR:
1732    case Instruction::DIV_INT_LIT8:
1733    case Instruction::DIV_INT_LIT16:
1734    case Instruction::REM_INT:
1735    case Instruction::REM_INT_2ADDR:
1736    case Instruction::REM_INT_LIT8:
1737    case Instruction::REM_INT_LIT16: {
1738      if (lit == 0) {
1739        GenDivZeroException();
1740        return;
1741      }
1742      if ((opcode == Instruction::DIV_INT) ||
1743          (opcode == Instruction::DIV_INT_2ADDR) ||
1744          (opcode == Instruction::DIV_INT_LIT8) ||
1745          (opcode == Instruction::DIV_INT_LIT16)) {
1746        is_div = true;
1747      } else {
1748        is_div = false;
1749      }
1750      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1751        return;
1752      }
1753
1754      bool done = false;
1755      if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1756        rl_src = LoadValue(rl_src, kCoreReg);
1757        rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1758        done = true;
1759      } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1760        rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1761        done = true;
1762      } else if (cu_->instruction_set == kThumb2) {
1763        if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1764          // Use ARM SDIV instruction for division.  For remainder we also need to
1765          // calculate using a MUL and subtract.
1766          rl_src = LoadValue(rl_src, kCoreReg);
1767          rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1768          done = true;
1769        }
1770      }
1771
1772      if (!done) {
1773        FlushAllRegs();   /* Everything to home location. */
1774        LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
1775        Clobber(TargetReg(kArg0, kNotWide));
1776        CallRuntimeHelperRegImm(kQuickIdivmod, TargetReg(kArg0, kNotWide), lit, false);
1777        if (is_div)
1778          rl_result = GetReturn(kCoreReg);
1779        else
1780          rl_result = GetReturnAlt();
1781      }
1782      StoreValue(rl_dest, rl_result);
1783      return;
1784    }
1785    default:
1786      LOG(FATAL) << "Unexpected opcode " << opcode;
1787  }
1788  rl_src = LoadValue(rl_src, kCoreReg);
1789  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1790  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1791  if (shift_op && (lit == 0)) {
1792    OpRegCopy(rl_result.reg, rl_src.reg);
1793  } else {
1794    OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
1795  }
1796  StoreValue(rl_dest, rl_result);
1797}
1798
1799void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
1800                             RegLocation rl_src1, RegLocation rl_src2) {
1801  RegLocation rl_result;
1802  OpKind first_op = kOpBkpt;
1803  OpKind second_op = kOpBkpt;
1804  bool call_out = false;
1805  bool check_zero = false;
1806  int ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1807  QuickEntrypointEnum target;
1808
1809  switch (opcode) {
1810    case Instruction::NOT_LONG:
1811      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1812      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1813      // Check for destructive overlap
1814      if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
1815        RegStorage t_reg = AllocTemp();
1816        OpRegCopy(t_reg, rl_src2.reg.GetHigh());
1817        OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1818        OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
1819        FreeTemp(t_reg);
1820      } else {
1821        OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1822        OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
1823      }
1824      StoreValueWide(rl_dest, rl_result);
1825      return;
1826    case Instruction::ADD_LONG:
1827    case Instruction::ADD_LONG_2ADDR:
1828      first_op = kOpAdd;
1829      second_op = kOpAdc;
1830      break;
1831    case Instruction::SUB_LONG:
1832    case Instruction::SUB_LONG_2ADDR:
1833      first_op = kOpSub;
1834      second_op = kOpSbc;
1835      break;
1836    case Instruction::MUL_LONG:
1837    case Instruction::MUL_LONG_2ADDR:
1838      call_out = true;
1839      ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1840      target = kQuickLmul;
1841      break;
1842    case Instruction::DIV_LONG:
1843    case Instruction::DIV_LONG_2ADDR:
1844      call_out = true;
1845      check_zero = true;
1846      ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1847      target = kQuickLdiv;
1848      break;
1849    case Instruction::REM_LONG:
1850    case Instruction::REM_LONG_2ADDR:
1851      call_out = true;
1852      check_zero = true;
1853      target = kQuickLmod;
1854      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
1855      ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2, kNotWide).GetReg() :
1856          TargetReg(kRet0, kNotWide).GetReg();
1857      break;
1858    case Instruction::AND_LONG_2ADDR:
1859    case Instruction::AND_LONG:
1860      first_op = kOpAnd;
1861      second_op = kOpAnd;
1862      break;
1863    case Instruction::OR_LONG:
1864    case Instruction::OR_LONG_2ADDR:
1865      first_op = kOpOr;
1866      second_op = kOpOr;
1867      break;
1868    case Instruction::XOR_LONG:
1869    case Instruction::XOR_LONG_2ADDR:
1870      first_op = kOpXor;
1871      second_op = kOpXor;
1872      break;
1873    default:
1874      LOG(FATAL) << "Invalid long arith op";
1875  }
1876  if (!call_out) {
1877    GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
1878  } else {
1879    FlushAllRegs();   /* Send everything to home location */
1880    if (check_zero) {
1881      RegStorage r_tmp1 = TargetReg(kArg0, kWide);
1882      RegStorage r_tmp2 = TargetReg(kArg2, kWide);
1883      LoadValueDirectWideFixed(rl_src2, r_tmp2);
1884      RegStorage r_tgt = CallHelperSetup(target);
1885      GenDivZeroCheckWide(r_tmp2);
1886      LoadValueDirectWideFixed(rl_src1, r_tmp1);
1887      // NOTE: callout here is not a safepoint
1888      CallHelper(r_tgt, target, false /* not safepoint */);
1889    } else {
1890      CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_src2, false);
1891    }
1892    // Adjust return regs in to handle case of rem returning kArg2/kArg3
1893    if (ret_reg == TargetReg(kRet0, kNotWide).GetReg())
1894      rl_result = GetReturnWide(kCoreReg);
1895    else
1896      rl_result = GetReturnWideAlt();
1897    StoreValueWide(rl_dest, rl_result);
1898  }
1899}
1900
1901void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
1902  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
1903  LoadConstantNoClobber(rl_result.reg, value);
1904  StoreValue(rl_dest, rl_result);
1905  if (value == 0) {
1906    Workaround7250540(rl_dest, rl_result.reg);
1907  }
1908}
1909
1910void Mir2Lir::GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest,
1911                                RegLocation rl_src) {
1912  /*
1913   * Don't optimize the register usage since it calls out to support
1914   * functions
1915   */
1916
1917  FlushAllRegs();   /* Send everything to home location */
1918  CallRuntimeHelperRegLocation(trampoline, rl_src, false);
1919  if (rl_dest.wide) {
1920    RegLocation rl_result;
1921    rl_result = GetReturnWide(LocToRegClass(rl_dest));
1922    StoreValueWide(rl_dest, rl_result);
1923  } else {
1924    RegLocation rl_result;
1925    rl_result = GetReturn(LocToRegClass(rl_dest));
1926    StoreValue(rl_dest, rl_result);
1927  }
1928}
1929
1930class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
1931 public:
1932  SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
1933      : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
1934  }
1935
1936  void Compile() OVERRIDE {
1937    m2l_->ResetRegPool();
1938    m2l_->ResetDefTracking();
1939    GenerateTargetLabel(kPseudoSuspendTarget);
1940    m2l_->CallRuntimeHelper(kQuickTestSuspend, true);
1941    if (cont_ != nullptr) {
1942      m2l_->OpUnconditionalBranch(cont_);
1943    }
1944  }
1945};
1946
1947/* Check if we need to check for pending suspend request */
1948void Mir2Lir::GenSuspendTest(int opt_flags) {
1949  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
1950    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1951      return;
1952    }
1953    FlushAllRegs();
1954    LIR* branch = OpTestSuspend(NULL);
1955    LIR* cont = NewLIR0(kPseudoTargetLabel);
1956    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
1957  } else {
1958    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1959      return;
1960    }
1961    FlushAllRegs();     // TODO: needed?
1962    LIR* inst = CheckSuspendUsingLoad();
1963    MarkSafepointPC(inst);
1964  }
1965}
1966
1967/* Check if we need to check for pending suspend request */
1968void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
1969  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
1970    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1971      OpUnconditionalBranch(target);
1972      return;
1973    }
1974    OpTestSuspend(target);
1975    FlushAllRegs();
1976    LIR* branch = OpUnconditionalBranch(nullptr);
1977    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
1978  } else {
1979    // For the implicit suspend check, just perform the trigger
1980    // load and branch to the target.
1981    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1982      OpUnconditionalBranch(target);
1983      return;
1984    }
1985    FlushAllRegs();
1986    LIR* inst = CheckSuspendUsingLoad();
1987    MarkSafepointPC(inst);
1988    OpUnconditionalBranch(target);
1989  }
1990}
1991
1992/* Call out to helper assembly routine that will null check obj and then lock it. */
1993void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
1994  FlushAllRegs();
1995  CallRuntimeHelperRegLocation(kQuickLockObject, rl_src, true);
1996}
1997
1998/* Call out to helper assembly routine that will null check obj and then unlock it. */
1999void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2000  FlushAllRegs();
2001  CallRuntimeHelperRegLocation(kQuickUnlockObject, rl_src, true);
2002}
2003
2004/* Generic code for generating a wide constant into a VR. */
2005void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2006  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2007  LoadConstantWide(rl_result.reg, value);
2008  StoreValueWide(rl_dest, rl_result);
2009}
2010
2011void Mir2Lir::GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2012  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2013  const uint16_t entries = table[1];
2014  // Chained cmp-and-branch.
2015  const int32_t* as_int32 = reinterpret_cast<const int32_t*>(&table[2]);
2016  int32_t current_key = as_int32[0];
2017  const int32_t* targets = &as_int32[1];
2018  rl_src = LoadValue(rl_src, kCoreReg);
2019  int i = 0;
2020  for (; i < entries; i++, current_key++) {
2021    if (!InexpensiveConstantInt(current_key, Instruction::Code::IF_EQ)) {
2022      // Switch to using a temp and add.
2023      break;
2024    }
2025    BasicBlock* case_block =
2026        mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2027    OpCmpImmBranch(kCondEq, rl_src.reg, current_key, &block_label_list_[case_block->id]);
2028  }
2029  if (i < entries) {
2030    // The rest do not seem to be inexpensive. Try to allocate a temp and use add.
2031    RegStorage key_temp = AllocTypedTemp(false, kCoreReg, false);
2032    if (key_temp.Valid()) {
2033      LoadConstantNoClobber(key_temp, current_key);
2034      for (; i < entries - 1; i++, current_key++) {
2035        BasicBlock* case_block =
2036            mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2037        OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]);
2038        OpRegImm(kOpAdd, key_temp, 1);  // Increment key.
2039      }
2040      BasicBlock* case_block =
2041          mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2042      OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]);
2043    } else {
2044      // No free temp, just finish the old loop.
2045      for (; i < entries; i++, current_key++) {
2046        BasicBlock* case_block =
2047            mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2048        OpCmpImmBranch(kCondEq, rl_src.reg, current_key, &block_label_list_[case_block->id]);
2049      }
2050    }
2051  }
2052}
2053
2054void Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2055  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2056  if (cu_->verbose) {
2057    DumpSparseSwitchTable(table);
2058  }
2059
2060  const uint16_t entries = table[1];
2061  if (entries <= kSmallSwitchThreshold) {
2062    GenSmallPackedSwitch(mir, table_offset, rl_src);
2063  } else {
2064    // Use the backend-specific implementation.
2065    GenLargePackedSwitch(mir, table_offset, rl_src);
2066  }
2067}
2068
2069void Mir2Lir::GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2070  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2071  const uint16_t entries = table[1];
2072  // Chained cmp-and-branch.
2073  const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
2074  const int32_t* targets = &keys[entries];
2075  rl_src = LoadValue(rl_src, kCoreReg);
2076  for (int i = 0; i < entries; i++) {
2077    int key = keys[i];
2078    BasicBlock* case_block =
2079        mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2080    OpCmpImmBranch(kCondEq, rl_src.reg, key, &block_label_list_[case_block->id]);
2081  }
2082}
2083
2084void Mir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2085  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2086  if (cu_->verbose) {
2087    DumpSparseSwitchTable(table);
2088  }
2089
2090  const uint16_t entries = table[1];
2091  if (entries <= kSmallSwitchThreshold) {
2092    GenSmallSparseSwitch(mir, table_offset, rl_src);
2093  } else {
2094    // Use the backend-specific implementation.
2095    GenLargeSparseSwitch(mir, table_offset, rl_src);
2096  }
2097}
2098
2099}  // namespace art
2100