gen_common.cc revision 90969af6deb19b1dbe356d62fe68d8f5698d3d8f
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include "dex/compiler_ir.h"
17#include "dex/compiler_internals.h"
18#include "dex/quick/arm/arm_lir.h"
19#include "dex/quick/mir_to_lir-inl.h"
20#include "entrypoints/quick/quick_entrypoints.h"
21#include "mirror/array.h"
22#include "mirror/object_array-inl.h"
23#include "mirror/object-inl.h"
24#include "verifier/method_verifier.h"
25#include <functional>
26
27namespace art {
28
29// Shortcuts to repeatedly used long types.
30typedef mirror::ObjectArray<mirror::Object> ObjArray;
31typedef mirror::ObjectArray<mirror::Class> ClassArray;
32
33/*
34 * This source files contains "gen" codegen routines that should
35 * be applicable to most targets.  Only mid-level support utilities
36 * and "op" calls may be used here.
37 */
38
39/*
40 * Generate a kPseudoBarrier marker to indicate the boundary of special
41 * blocks.
42 */
43void Mir2Lir::GenBarrier() {
44  LIR* barrier = NewLIR0(kPseudoBarrier);
45  /* Mark all resources as being clobbered */
46  DCHECK(!barrier->flags.use_def_invalid);
47  barrier->u.m.def_mask = &kEncodeAll;
48}
49
50void Mir2Lir::GenDivZeroException() {
51  LIR* branch = OpUnconditionalBranch(nullptr);
52  AddDivZeroCheckSlowPath(branch);
53}
54
55void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
56  LIR* branch = OpCondBranch(c_code, nullptr);
57  AddDivZeroCheckSlowPath(branch);
58}
59
60void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
61  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
62  AddDivZeroCheckSlowPath(branch);
63}
64
65void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
66  class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
67   public:
68    DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
69        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
70    }
71
72    void Compile() OVERRIDE {
73      m2l_->ResetRegPool();
74      m2l_->ResetDefTracking();
75      GenerateTargetLabel(kPseudoThrowTarget);
76      if (m2l_->cu_->target64) {
77        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowDivZero), true);
78      } else {
79        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowDivZero), true);
80      }
81    }
82  };
83
84  AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
85}
86
87void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
88  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
89   public:
90    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
91        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
92          index_(index), length_(length) {
93    }
94
95    void Compile() OVERRIDE {
96      m2l_->ResetRegPool();
97      m2l_->ResetDefTracking();
98      GenerateTargetLabel(kPseudoThrowTarget);
99      if (m2l_->cu_->target64) {
100        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
101                                      index_, length_, true);
102      } else {
103        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
104                                      index_, length_, true);
105      }
106    }
107
108   private:
109    const RegStorage index_;
110    const RegStorage length_;
111  };
112
113  LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
114  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
115}
116
117void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
118  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
119   public:
120    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
121        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
122          index_(index), length_(length) {
123    }
124
125    void Compile() OVERRIDE {
126      m2l_->ResetRegPool();
127      m2l_->ResetDefTracking();
128      GenerateTargetLabel(kPseudoThrowTarget);
129
130      RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
131      RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
132
133      m2l_->OpRegCopy(arg1_32, length_);
134      m2l_->LoadConstant(arg0_32, index_);
135      if (m2l_->cu_->target64) {
136        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
137                                      arg0_32, arg1_32, true);
138      } else {
139        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
140                                      arg0_32, arg1_32, true);
141      }
142    }
143
144   private:
145    const int32_t index_;
146    const RegStorage length_;
147  };
148
149  LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
150  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
151}
152
153LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
154  class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
155   public:
156    NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
157        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
158    }
159
160    void Compile() OVERRIDE {
161      m2l_->ResetRegPool();
162      m2l_->ResetDefTracking();
163      GenerateTargetLabel(kPseudoThrowTarget);
164      if (m2l_->cu_->target64) {
165        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowNullPointer), true);
166      } else {
167        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowNullPointer), true);
168      }
169    }
170  };
171
172  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
173  AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
174  return branch;
175}
176
177/* Perform null-check on a register.  */
178LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
179  if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
180    return GenExplicitNullCheck(m_reg, opt_flags);
181  }
182  return nullptr;
183}
184
185/* Perform an explicit null-check on a register.  */
186LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
187  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
188    return NULL;
189  }
190  return GenNullCheck(m_reg);
191}
192
193void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
194  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
195    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
196      return;
197    }
198    MarkSafepointPC(last_lir_insn_);
199  }
200}
201
202void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
203  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
204    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
205      return;
206    }
207    MarkSafepointPCAfter(after);
208  }
209}
210
211void Mir2Lir::MarkPossibleStackOverflowException() {
212  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitStackOverflowChecks()) {
213    MarkSafepointPC(last_lir_insn_);
214  }
215}
216
217void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
218  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
219    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
220      return;
221    }
222    // Force an implicit null check by performing a memory operation (load) from the given
223    // register with offset 0.  This will cause a signal if the register contains 0 (null).
224    RegStorage tmp = AllocTemp();
225    // TODO: for Mips, would be best to use rZERO as the bogus register target.
226    LIR* load = Load32Disp(reg, 0, tmp);
227    FreeTemp(tmp);
228    MarkSafepointPC(load);
229  }
230}
231
232void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
233                                  RegLocation rl_src2, LIR* taken,
234                                  LIR* fall_through) {
235  DCHECK(!rl_src1.fp);
236  DCHECK(!rl_src2.fp);
237  ConditionCode cond;
238  switch (opcode) {
239    case Instruction::IF_EQ:
240      cond = kCondEq;
241      break;
242    case Instruction::IF_NE:
243      cond = kCondNe;
244      break;
245    case Instruction::IF_LT:
246      cond = kCondLt;
247      break;
248    case Instruction::IF_GE:
249      cond = kCondGe;
250      break;
251    case Instruction::IF_GT:
252      cond = kCondGt;
253      break;
254    case Instruction::IF_LE:
255      cond = kCondLe;
256      break;
257    default:
258      cond = static_cast<ConditionCode>(0);
259      LOG(FATAL) << "Unexpected opcode " << opcode;
260  }
261
262  // Normalize such that if either operand is constant, src2 will be constant
263  if (rl_src1.is_const) {
264    RegLocation rl_temp = rl_src1;
265    rl_src1 = rl_src2;
266    rl_src2 = rl_temp;
267    cond = FlipComparisonOrder(cond);
268  }
269
270  rl_src1 = LoadValue(rl_src1);
271  // Is this really an immediate comparison?
272  if (rl_src2.is_const) {
273    // If it's already live in a register or not easily materialized, just keep going
274    RegLocation rl_temp = UpdateLoc(rl_src2);
275    if ((rl_temp.location == kLocDalvikFrame) &&
276        InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) {
277      // OK - convert this to a compare immediate and branch
278      OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
279      return;
280    }
281  }
282  rl_src2 = LoadValue(rl_src2);
283  OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
284}
285
286void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
287                                      LIR* fall_through) {
288  ConditionCode cond;
289  DCHECK(!rl_src.fp);
290  rl_src = LoadValue(rl_src);
291  switch (opcode) {
292    case Instruction::IF_EQZ:
293      cond = kCondEq;
294      break;
295    case Instruction::IF_NEZ:
296      cond = kCondNe;
297      break;
298    case Instruction::IF_LTZ:
299      cond = kCondLt;
300      break;
301    case Instruction::IF_GEZ:
302      cond = kCondGe;
303      break;
304    case Instruction::IF_GTZ:
305      cond = kCondGt;
306      break;
307    case Instruction::IF_LEZ:
308      cond = kCondLe;
309      break;
310    default:
311      cond = static_cast<ConditionCode>(0);
312      LOG(FATAL) << "Unexpected opcode " << opcode;
313  }
314  OpCmpImmBranch(cond, rl_src.reg, 0, taken);
315}
316
317void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
318  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
319  if (rl_src.location == kLocPhysReg) {
320    OpRegCopy(rl_result.reg, rl_src.reg);
321  } else {
322    LoadValueDirect(rl_src, rl_result.reg.GetLow());
323  }
324  OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
325  StoreValueWide(rl_dest, rl_result);
326}
327
328void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
329                              RegLocation rl_src) {
330  rl_src = LoadValue(rl_src, kCoreReg);
331  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
332  OpKind op = kOpInvalid;
333  switch (opcode) {
334    case Instruction::INT_TO_BYTE:
335      op = kOp2Byte;
336      break;
337    case Instruction::INT_TO_SHORT:
338       op = kOp2Short;
339       break;
340    case Instruction::INT_TO_CHAR:
341       op = kOp2Char;
342       break;
343    default:
344      LOG(ERROR) << "Bad int conversion type";
345  }
346  OpRegReg(op, rl_result.reg, rl_src.reg);
347  StoreValue(rl_dest, rl_result);
348}
349
350template <size_t pointer_size>
351static void GenNewArrayImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu,
352                            uint32_t type_idx, RegLocation rl_dest,
353                            RegLocation rl_src) {
354  mir_to_lir->FlushAllRegs();  /* Everything to home location */
355  ThreadOffset<pointer_size> func_offset(-1);
356  const DexFile* dex_file = cu->dex_file;
357  CompilerDriver* driver = cu->compiler_driver;
358  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *dex_file,
359                                                      type_idx)) {
360    bool is_type_initialized;  // Ignored as an array does not have an initializer.
361    bool use_direct_type_ptr;
362    uintptr_t direct_type_ptr;
363    bool is_finalizable;
364    if (kEmbedClassInCode &&
365        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
366                                   &direct_type_ptr, &is_finalizable)) {
367      // The fast path.
368      if (!use_direct_type_ptr) {
369        mir_to_lir->LoadClassType(type_idx, kArg0);
370        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
371        mir_to_lir->CallRuntimeHelperRegMethodRegLocation(func_offset,
372                                                          mir_to_lir->TargetReg(kArg0, kNotWide),
373                                                          rl_src, true);
374      } else {
375        // Use the direct pointer.
376        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
377        mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, direct_type_ptr, rl_src,
378                                                          true);
379      }
380    } else {
381      // The slow path.
382      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArray);
383      mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
384    }
385    DCHECK_NE(func_offset.Int32Value(), -1);
386  } else {
387    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayWithAccessCheck);
388    mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
389  }
390  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
391  mir_to_lir->StoreValue(rl_dest, rl_result);
392}
393
394/*
395 * Let helper function take care of everything.  Will call
396 * Array::AllocFromCode(type_idx, method, count);
397 * Note: AllocFromCode will handle checks for errNegativeArraySize.
398 */
399void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
400                          RegLocation rl_src) {
401  if (cu_->target64) {
402    GenNewArrayImpl<8>(this, cu_, type_idx, rl_dest, rl_src);
403  } else {
404    GenNewArrayImpl<4>(this, cu_, type_idx, rl_dest, rl_src);
405  }
406}
407
408template <size_t pointer_size>
409static void GenFilledNewArrayCall(Mir2Lir* mir_to_lir, CompilationUnit* cu, int elems, int type_idx) {
410  ThreadOffset<pointer_size> func_offset(-1);
411  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *cu->dex_file,
412                                                      type_idx)) {
413    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArray);
414  } else {
415    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArrayWithAccessCheck);
416  }
417  mir_to_lir->CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true);
418}
419
420/*
421 * Similar to GenNewArray, but with post-allocation initialization.
422 * Verifier guarantees we're dealing with an array class.  Current
423 * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
424 * Current code also throws internal unimp if not 'L', '[' or 'I'.
425 */
426void Mir2Lir::GenFilledNewArray(CallInfo* info) {
427  int elems = info->num_arg_words;
428  int type_idx = info->index;
429  FlushAllRegs();  /* Everything to home location */
430  if (cu_->target64) {
431    GenFilledNewArrayCall<8>(this, cu_, elems, type_idx);
432  } else {
433    GenFilledNewArrayCall<4>(this, cu_, elems, type_idx);
434  }
435  FreeTemp(TargetReg(kArg2, kNotWide));
436  FreeTemp(TargetReg(kArg1, kNotWide));
437  /*
438   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
439   * return region.  Because AllocFromCode placed the new array
440   * in kRet0, we'll just lock it into place.  When debugger support is
441   * added, it may be necessary to additionally copy all return
442   * values to a home location in thread-local storage
443   */
444  RegStorage ref_reg = TargetReg(kRet0, kRef);
445  LockTemp(ref_reg);
446
447  // TODO: use the correct component size, currently all supported types
448  // share array alignment with ints (see comment at head of function)
449  size_t component_size = sizeof(int32_t);
450
451  // Having a range of 0 is legal
452  if (info->is_range && (elems > 0)) {
453    /*
454     * Bit of ugliness here.  We're going generate a mem copy loop
455     * on the register range, but it is possible that some regs
456     * in the range have been promoted.  This is unlikely, but
457     * before generating the copy, we'll just force a flush
458     * of any regs in the source range that have been promoted to
459     * home location.
460     */
461    for (int i = 0; i < elems; i++) {
462      RegLocation loc = UpdateLoc(info->args[i]);
463      if (loc.location == kLocPhysReg) {
464        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
465        Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
466      }
467    }
468    /*
469     * TUNING note: generated code here could be much improved, but
470     * this is an uncommon operation and isn't especially performance
471     * critical.
472     */
473    // This is addressing the stack, which may be out of the 4G area.
474    RegStorage r_src = AllocTempRef();
475    RegStorage r_dst = AllocTempRef();
476    RegStorage r_idx = AllocTempRef();  // Not really a reference, but match src/dst.
477    RegStorage r_val;
478    switch (cu_->instruction_set) {
479      case kThumb2:
480      case kArm64:
481        r_val = TargetReg(kLr, kNotWide);
482        break;
483      case kX86:
484      case kX86_64:
485        FreeTemp(ref_reg);
486        r_val = AllocTemp();
487        break;
488      case kMips:
489        r_val = AllocTemp();
490        break;
491      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
492    }
493    // Set up source pointer
494    RegLocation rl_first = info->args[0];
495    OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
496    // Set up the target pointer
497    OpRegRegImm(kOpAdd, r_dst, ref_reg,
498                mirror::Array::DataOffset(component_size).Int32Value());
499    // Set up the loop counter (known to be > 0)
500    LoadConstant(r_idx, elems - 1);
501    // Generate the copy loop.  Going backwards for convenience
502    LIR* target = NewLIR0(kPseudoTargetLabel);
503    // Copy next element
504    {
505      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
506      LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
507      // NOTE: No dalvik register annotation, local optimizations will be stopped
508      // by the loop boundaries.
509    }
510    StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
511    FreeTemp(r_val);
512    OpDecAndBranch(kCondGe, r_idx, target);
513    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
514      // Restore the target pointer
515      OpRegRegImm(kOpAdd, ref_reg, r_dst,
516                  -mirror::Array::DataOffset(component_size).Int32Value());
517    }
518  } else if (!info->is_range) {
519    // TUNING: interleave
520    for (int i = 0; i < elems; i++) {
521      RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
522      Store32Disp(ref_reg,
523                  mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
524      // If the LoadValue caused a temp to be allocated, free it
525      if (IsTemp(rl_arg.reg)) {
526        FreeTemp(rl_arg.reg);
527      }
528    }
529  }
530  if (info->result.location != kLocInvalid) {
531    StoreValue(info->result, GetReturn(kRefReg));
532  }
533}
534
535//
536// Slow path to ensure a class is initialized for sget/sput.
537//
538class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
539 public:
540  StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
541                      RegStorage r_base) :
542    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
543               storage_index_(storage_index), r_base_(r_base) {
544  }
545
546  void Compile() {
547    LIR* unresolved_target = GenerateTargetLabel();
548    uninit_->target = unresolved_target;
549    if (cu_->target64) {
550      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeStaticStorage),
551                                 storage_index_, true);
552    } else {
553      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeStaticStorage),
554                                 storage_index_, true);
555    }
556    // Copy helper's result into r_base, a no-op on all but MIPS.
557    m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0, kRef));
558
559    m2l_->OpUnconditionalBranch(cont_);
560  }
561
562 private:
563  LIR* const uninit_;
564  const int storage_index_;
565  const RegStorage r_base_;
566};
567
568template <size_t pointer_size>
569static void GenSputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
570                        const MirSFieldLoweringInfo* field_info, RegLocation rl_src) {
571  ThreadOffset<pointer_size> setter_offset =
572      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Static)
573          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjStatic)
574              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Static));
575  mir_to_lir->CallRuntimeHelperImmRegLocation(setter_offset, field_info->FieldIndex(), rl_src,
576                                              true);
577}
578
579void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
580                      bool is_object) {
581  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
582  cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
583  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
584  if (!SLOW_FIELD_PATH && field_info.FastPut() &&
585      (!field_info.IsVolatile() || SupportsVolatileLoadStore(store_size))) {
586    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
587    RegStorage r_base;
588    if (field_info.IsReferrersClass()) {
589      // Fast path, static storage base is this method's class
590      RegLocation rl_method = LoadCurrMethod();
591      r_base = AllocTempRef();
592      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
593                  kNotVolatile);
594      if (IsTemp(rl_method.reg)) {
595        FreeTemp(rl_method.reg);
596      }
597    } else {
598      // Medium path, static storage base in a different class which requires checks that the other
599      // class is initialized.
600      // TODO: remove initialized check now that we are initializing classes in the compiler driver.
601      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
602      // May do runtime call so everything to home locations.
603      FlushAllRegs();
604      // Using fixed register to sync with possible call to runtime support.
605      RegStorage r_method = TargetReg(kArg1, kRef);
606      LockTemp(r_method);
607      LoadCurrMethodDirect(r_method);
608      r_base = TargetReg(kArg0, kRef);
609      LockTemp(r_base);
610      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
611                  kNotVolatile);
612      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
613      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
614      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
615      if (!field_info.IsInitialized() &&
616          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
617        // Check if r_base is NULL or a not yet initialized class.
618
619        // The slow path is invoked if the r_base is NULL or the class pointed
620        // to by it is not initialized.
621        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
622        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
623        LockTemp(r_tmp);
624        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
625                                          mirror::Class::StatusOffset().Int32Value(),
626                                          mirror::Class::kStatusInitialized, NULL);
627        LIR* cont = NewLIR0(kPseudoTargetLabel);
628
629        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
630                                                     field_info.StorageIndex(), r_base));
631
632        FreeTemp(r_tmp);
633        // Ensure load of status and store of value don't re-order.
634        // TODO: Presumably the actual value store is control-dependent on the status load,
635        // and will thus not be reordered in any case, since stores are never speculated.
636        // Does later code "know" that the class is now initialized?  If so, we still
637        // need the barrier to guard later static loads.
638        GenMemBarrier(kLoadAny);
639      }
640      FreeTemp(r_method);
641    }
642    // rBase now holds static storage base
643    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
644    if (is_long_or_double) {
645      rl_src = LoadValueWide(rl_src, reg_class);
646    } else {
647      rl_src = LoadValue(rl_src, reg_class);
648    }
649    if (is_object) {
650      StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
651                   field_info.IsVolatile() ? kVolatile : kNotVolatile);
652    } else {
653      StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size,
654                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
655    }
656    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
657      MarkGCCard(rl_src.reg, r_base);
658    }
659    FreeTemp(r_base);
660  } else {
661    FlushAllRegs();  // Everything to home locations
662    if (cu_->target64) {
663      GenSputCall<8>(this, is_long_or_double, is_object, &field_info, rl_src);
664    } else {
665      GenSputCall<4>(this, is_long_or_double, is_object, &field_info, rl_src);
666    }
667  }
668}
669
670template <size_t pointer_size>
671static void GenSgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
672                        const MirSFieldLoweringInfo* field_info) {
673  ThreadOffset<pointer_size> getter_offset =
674      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Static)
675          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjStatic)
676              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Static));
677  mir_to_lir->CallRuntimeHelperImm(getter_offset, field_info->FieldIndex(), true);
678}
679
680void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
681                      bool is_long_or_double, bool is_object) {
682  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
683  cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
684  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
685  if (!SLOW_FIELD_PATH && field_info.FastGet() &&
686      (!field_info.IsVolatile() || SupportsVolatileLoadStore(load_size))) {
687    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
688    RegStorage r_base;
689    if (field_info.IsReferrersClass()) {
690      // Fast path, static storage base is this method's class
691      RegLocation rl_method  = LoadCurrMethod();
692      r_base = AllocTempRef();
693      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
694                  kNotVolatile);
695    } else {
696      // Medium path, static storage base in a different class which requires checks that the other
697      // class is initialized
698      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
699      // May do runtime call so everything to home locations.
700      FlushAllRegs();
701      // Using fixed register to sync with possible call to runtime support.
702      RegStorage r_method = TargetReg(kArg1, kRef);
703      LockTemp(r_method);
704      LoadCurrMethodDirect(r_method);
705      r_base = TargetReg(kArg0, kRef);
706      LockTemp(r_base);
707      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
708                  kNotVolatile);
709      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
710      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
711      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
712      if (!field_info.IsInitialized() &&
713          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
714        // Check if r_base is NULL or a not yet initialized class.
715
716        // The slow path is invoked if the r_base is NULL or the class pointed
717        // to by it is not initialized.
718        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
719        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
720        LockTemp(r_tmp);
721        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
722                                          mirror::Class::StatusOffset().Int32Value(),
723                                          mirror::Class::kStatusInitialized, NULL);
724        LIR* cont = NewLIR0(kPseudoTargetLabel);
725
726        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
727                                                     field_info.StorageIndex(), r_base));
728
729        FreeTemp(r_tmp);
730        // Ensure load of status and load of value don't re-order.
731        GenMemBarrier(kLoadAny);
732      }
733      FreeTemp(r_method);
734    }
735    // r_base now holds static storage base
736    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
737    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
738
739    int field_offset = field_info.FieldOffset().Int32Value();
740    if (is_object) {
741      LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
742          kNotVolatile);
743    } else {
744      LoadBaseDisp(r_base, field_offset, rl_result.reg, load_size, field_info.IsVolatile() ?
745          kVolatile : kNotVolatile);
746    }
747    FreeTemp(r_base);
748
749    if (is_long_or_double) {
750      StoreValueWide(rl_dest, rl_result);
751    } else {
752      StoreValue(rl_dest, rl_result);
753    }
754  } else {
755    FlushAllRegs();  // Everything to home locations
756    if (cu_->target64) {
757      GenSgetCall<8>(this, is_long_or_double, is_object, &field_info);
758    } else {
759      GenSgetCall<4>(this, is_long_or_double, is_object, &field_info);
760    }
761    // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
762    if (is_long_or_double) {
763      RegLocation rl_result = GetReturnWide(kCoreReg);
764      StoreValueWide(rl_dest, rl_result);
765    } else {
766      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
767      StoreValue(rl_dest, rl_result);
768    }
769  }
770}
771
772// Generate code for all slow paths.
773void Mir2Lir::HandleSlowPaths() {
774  // We should check slow_paths_.Size() every time, because a new slow path
775  // may be created during slowpath->Compile().
776  for (size_t i = 0; i < slow_paths_.Size(); ++i) {
777    LIRSlowPath* slowpath = slow_paths_.Get(i);
778    slowpath->Compile();
779  }
780  slow_paths_.Reset();
781}
782
783template <size_t pointer_size>
784static void GenIgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
785                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj) {
786  ThreadOffset<pointer_size> getter_offset =
787      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Instance)
788          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjInstance)
789              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Instance));
790  mir_to_lir->CallRuntimeHelperImmRegLocation(getter_offset, field_info->FieldIndex(), rl_obj,
791                                              true);
792}
793
794void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
795                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
796                      bool is_object) {
797  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
798  cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
799  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
800  if (!SLOW_FIELD_PATH && field_info.FastGet() &&
801      (!field_info.IsVolatile() || SupportsVolatileLoadStore(load_size))) {
802    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
803    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
804    rl_obj = LoadValue(rl_obj, kRefReg);
805    GenNullCheck(rl_obj.reg, opt_flags);
806    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
807    int field_offset = field_info.FieldOffset().Int32Value();
808    LIR* load_lir;
809    if (is_object) {
810      load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
811          kVolatile : kNotVolatile);
812    } else {
813      load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, load_size,
814                              field_info.IsVolatile() ? kVolatile : kNotVolatile);
815    }
816    MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
817    if (is_long_or_double) {
818      StoreValueWide(rl_dest, rl_result);
819    } else {
820      StoreValue(rl_dest, rl_result);
821    }
822  } else {
823    if (cu_->target64) {
824      GenIgetCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj);
825    } else {
826      GenIgetCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj);
827    }
828    // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
829    if (is_long_or_double) {
830      RegLocation rl_result = GetReturnWide(kCoreReg);
831      StoreValueWide(rl_dest, rl_result);
832    } else {
833      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
834      StoreValue(rl_dest, rl_result);
835    }
836  }
837}
838
839template <size_t pointer_size>
840static void GenIputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
841                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj,
842                        RegLocation rl_src) {
843  ThreadOffset<pointer_size> setter_offset =
844      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Instance)
845          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjInstance)
846              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Instance));
847  mir_to_lir->CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_info->FieldIndex(),
848                                                         rl_obj, rl_src, true);
849}
850
851void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
852                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
853                      bool is_object) {
854  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
855  cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
856  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
857  if (!SLOW_FIELD_PATH && field_info.FastPut() &&
858      (!field_info.IsVolatile() || SupportsVolatileLoadStore(store_size))) {
859    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
860    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
861    rl_obj = LoadValue(rl_obj, kRefReg);
862    if (is_long_or_double) {
863      rl_src = LoadValueWide(rl_src, reg_class);
864    } else {
865      rl_src = LoadValue(rl_src, reg_class);
866    }
867    GenNullCheck(rl_obj.reg, opt_flags);
868    int field_offset = field_info.FieldOffset().Int32Value();
869    LIR* store;
870    if (is_object) {
871      store = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
872          kVolatile : kNotVolatile);
873    } else {
874      store = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, store_size,
875                            field_info.IsVolatile() ? kVolatile : kNotVolatile);
876    }
877    MarkPossibleNullPointerExceptionAfter(opt_flags, store);
878    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
879      MarkGCCard(rl_src.reg, rl_obj.reg);
880    }
881  } else {
882    if (cu_->target64) {
883      GenIputCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
884    } else {
885      GenIputCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
886    }
887  }
888}
889
890template <size_t pointer_size>
891static void GenArrayObjPutCall(Mir2Lir* mir_to_lir, bool needs_range_check, bool needs_null_check,
892                               RegLocation rl_array, RegLocation rl_index, RegLocation rl_src) {
893  ThreadOffset<pointer_size> helper = needs_range_check
894        ? (needs_null_check ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithNullAndBoundCheck)
895                            : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithBoundCheck))
896        : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObject);
897  mir_to_lir->CallRuntimeHelperRegLocationRegLocationRegLocation(helper, rl_array, rl_index, rl_src,
898                                                                 true);
899}
900
901void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
902                             RegLocation rl_src) {
903  bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
904  bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
905      (opt_flags & MIR_IGNORE_NULL_CHECK));
906  if (cu_->target64) {
907    GenArrayObjPutCall<8>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
908  } else {
909    GenArrayObjPutCall<4>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
910  }
911}
912
913void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
914  RegLocation rl_method = LoadCurrMethod();
915  CheckRegLocation(rl_method);
916  RegStorage res_reg = AllocTempRef();
917  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
918  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
919                                                        *cu_->dex_file,
920                                                        type_idx)) {
921    // Call out to helper which resolves type and verifies access.
922    // Resolved type returned in kRet0.
923    if (cu_->target64) {
924      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
925                              type_idx, rl_method.reg, true);
926    } else {
927      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
928                              type_idx, rl_method.reg, true);
929    }
930    RegLocation rl_result = GetReturn(kRefReg);
931    StoreValue(rl_dest, rl_result);
932  } else {
933    // We're don't need access checks, load type from dex cache
934    int32_t dex_cache_offset =
935        mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
936    LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg, kNotVolatile);
937    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
938    LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
939    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
940        type_idx) || SLOW_TYPE_PATH) {
941      // Slow path, at runtime test if type is null and if so initialize
942      FlushAllRegs();
943      LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
944      LIR* cont = NewLIR0(kPseudoTargetLabel);
945
946      // Object to generate the slow path for class resolution.
947      class SlowPath : public LIRSlowPath {
948       public:
949        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
950                 const RegLocation& rl_method, const RegLocation& rl_result) :
951                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
952                   rl_method_(rl_method), rl_result_(rl_result) {
953        }
954
955        void Compile() {
956          GenerateTargetLabel();
957
958          if (cu_->target64) {
959            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
960                                          rl_method_.reg, true);
961          } else {
962            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
963                                                      rl_method_.reg, true);
964          }
965          m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetReg(kRet0, kRef));
966
967          m2l_->OpUnconditionalBranch(cont_);
968        }
969
970       private:
971        const int type_idx_;
972        const RegLocation rl_method_;
973        const RegLocation rl_result_;
974      };
975
976      // Add to list for future.
977      AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
978
979      StoreValue(rl_dest, rl_result);
980     } else {
981      // Fast path, we're done - just store result
982      StoreValue(rl_dest, rl_result);
983    }
984  }
985}
986
987void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
988  /* NOTE: Most strings should be available at compile time */
989  int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
990                                                                                      Int32Value();
991  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
992      *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
993    // slow path, resolve string if not in dex cache
994    FlushAllRegs();
995    LockCallTemps();  // Using explicit registers
996
997    // If the Method* is already in a register, we can save a copy.
998    RegLocation rl_method = mir_graph_->GetMethodLoc();
999    RegStorage r_method;
1000    if (rl_method.location == kLocPhysReg) {
1001      // A temp would conflict with register use below.
1002      DCHECK(!IsTemp(rl_method.reg));
1003      r_method = rl_method.reg;
1004    } else {
1005      r_method = TargetReg(kArg2, kRef);
1006      LoadCurrMethodDirect(r_method);
1007    }
1008    LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(),
1009                TargetReg(kArg0, kRef), kNotVolatile);
1010
1011    // Might call out to helper, which will return resolved string in kRet0
1012    LoadRefDisp(TargetReg(kArg0, kRef), offset_of_string, TargetReg(kRet0, kRef), kNotVolatile);
1013    LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0, kRef), 0, NULL);
1014    LIR* cont = NewLIR0(kPseudoTargetLabel);
1015
1016    {
1017      // Object to generate the slow path for string resolution.
1018      class SlowPath : public LIRSlowPath {
1019       public:
1020        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
1021          LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
1022          r_method_(r_method), string_idx_(string_idx) {
1023        }
1024
1025        void Compile() {
1026          GenerateTargetLabel();
1027          if (cu_->target64) {
1028            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pResolveString),
1029                                          r_method_, string_idx_, true);
1030          } else {
1031            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pResolveString),
1032                                          r_method_, string_idx_, true);
1033          }
1034          m2l_->OpUnconditionalBranch(cont_);
1035        }
1036
1037       private:
1038         const RegStorage r_method_;
1039         const int32_t string_idx_;
1040      };
1041
1042      AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
1043    }
1044
1045    GenBarrier();
1046    StoreValue(rl_dest, GetReturn(kRefReg));
1047  } else {
1048    RegLocation rl_method = LoadCurrMethod();
1049    RegStorage res_reg = AllocTempRef();
1050    RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1051    LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg,
1052                kNotVolatile);
1053    LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
1054    StoreValue(rl_dest, rl_result);
1055  }
1056}
1057
1058template <size_t pointer_size>
1059static void GenNewInstanceImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, uint32_t type_idx,
1060                               RegLocation rl_dest) {
1061  mir_to_lir->FlushAllRegs();  /* Everything to home location */
1062  // alloc will always check for resolution, do we also need to verify
1063  // access because the verifier was unable to?
1064  ThreadOffset<pointer_size> func_offset(-1);
1065  const DexFile* dex_file = cu->dex_file;
1066  CompilerDriver* driver = cu->compiler_driver;
1067  if (driver->CanAccessInstantiableTypeWithoutChecks(
1068      cu->method_idx, *dex_file, type_idx)) {
1069    bool is_type_initialized;
1070    bool use_direct_type_ptr;
1071    uintptr_t direct_type_ptr;
1072    bool is_finalizable;
1073    if (kEmbedClassInCode &&
1074        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
1075                                   &direct_type_ptr, &is_finalizable) &&
1076                                   !is_finalizable) {
1077      // The fast path.
1078      if (!use_direct_type_ptr) {
1079        mir_to_lir->LoadClassType(type_idx, kArg0);
1080        if (!is_type_initialized) {
1081          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1082          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetReg(kArg0, kRef),
1083                                                 true);
1084        } else {
1085          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1086          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetReg(kArg0, kRef),
1087                                                 true);
1088        }
1089      } else {
1090        // Use the direct pointer.
1091        if (!is_type_initialized) {
1092          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1093          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1094        } else {
1095          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1096          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1097        }
1098      }
1099    } else {
1100      // The slow path.
1101      DCHECK_EQ(func_offset.Int32Value(), -1);
1102      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObject);
1103      mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1104    }
1105    DCHECK_NE(func_offset.Int32Value(), -1);
1106  } else {
1107    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectWithAccessCheck);
1108    mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1109  }
1110  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
1111  mir_to_lir->StoreValue(rl_dest, rl_result);
1112}
1113
1114/*
1115 * Let helper function take care of everything.  Will
1116 * call Class::NewInstanceFromCode(type_idx, method);
1117 */
1118void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
1119  if (cu_->target64) {
1120    GenNewInstanceImpl<8>(this, cu_, type_idx, rl_dest);
1121  } else {
1122    GenNewInstanceImpl<4>(this, cu_, type_idx, rl_dest);
1123  }
1124}
1125
1126void Mir2Lir::GenThrow(RegLocation rl_src) {
1127  FlushAllRegs();
1128  if (cu_->target64) {
1129    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pDeliverException), rl_src, true);
1130  } else {
1131    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pDeliverException), rl_src, true);
1132  }
1133}
1134
1135// For final classes there are no sub-classes to check and so we can answer the instance-of
1136// question with simple comparisons.
1137void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
1138                                 RegLocation rl_src) {
1139  // X86 has its own implementation.
1140  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1141
1142  RegLocation object = LoadValue(rl_src, kRefReg);
1143  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1144  RegStorage result_reg = rl_result.reg;
1145  if (IsSameReg(result_reg, object.reg)) {
1146    result_reg = AllocTypedTemp(false, kCoreReg);
1147    DCHECK(!IsSameReg(result_reg, object.reg));
1148  }
1149  LoadConstant(result_reg, 0);     // assume false
1150  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1151
1152  RegStorage check_class = AllocTypedTemp(false, kRefReg);
1153  RegStorage object_class = AllocTypedTemp(false, kRefReg);
1154
1155  LoadCurrMethodDirect(check_class);
1156  if (use_declaring_class) {
1157    LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
1158                kNotVolatile);
1159    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1160                kNotVolatile);
1161  } else {
1162    LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1163                check_class, kNotVolatile);
1164    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1165                kNotVolatile);
1166    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1167    LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
1168  }
1169
1170  // FIXME: what should we be comparing here? compressed or decompressed references?
1171  if (cu_->instruction_set == kThumb2) {
1172    OpRegReg(kOpCmp, check_class, object_class);  // Same?
1173    LIR* it = OpIT(kCondEq, "");   // if-convert the test
1174    LoadConstant(result_reg, 1);     // .eq case - load true
1175    OpEndIT(it);
1176  } else {
1177    GenSelectConst32(check_class, object_class, kCondEq, 1, 0, result_reg, kCoreReg);
1178  }
1179  LIR* target = NewLIR0(kPseudoTargetLabel);
1180  null_branchover->target = target;
1181  FreeTemp(object_class);
1182  FreeTemp(check_class);
1183  if (IsTemp(result_reg)) {
1184    OpRegCopy(rl_result.reg, result_reg);
1185    FreeTemp(result_reg);
1186  }
1187  StoreValue(rl_dest, rl_result);
1188}
1189
1190void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1191                                         bool type_known_abstract, bool use_declaring_class,
1192                                         bool can_assume_type_is_in_dex_cache,
1193                                         uint32_t type_idx, RegLocation rl_dest,
1194                                         RegLocation rl_src) {
1195  // X86 has its own implementation.
1196  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1197
1198  FlushAllRegs();
1199  // May generate a call - use explicit registers
1200  LockCallTemps();
1201  RegStorage method_reg = TargetReg(kArg1, kRef);
1202  LoadCurrMethodDirect(method_reg);   // kArg1 <= current Method*
1203  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1204  if (needs_access_check) {
1205    // Check we have access to type_idx and if not throw IllegalAccessError,
1206    // returns Class* in kArg0
1207    if (cu_->target64) {
1208      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1209                           type_idx, true);
1210    } else {
1211      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1212                           type_idx, true);
1213    }
1214    OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1215    LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1216  } else if (use_declaring_class) {
1217    LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1218    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1219                class_reg, kNotVolatile);
1220  } else {
1221    if (can_assume_type_is_in_dex_cache) {
1222      // Conditionally, as in the other case we will also load it.
1223      LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1224    }
1225
1226    // Load dex cache entry into class_reg (kArg2)
1227    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1228                class_reg, kNotVolatile);
1229    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1230    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1231    if (!can_assume_type_is_in_dex_cache) {
1232      LIR* slow_path_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1233      LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
1234
1235      // Should load value here.
1236      LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1237
1238      class InitTypeSlowPath : public Mir2Lir::LIRSlowPath {
1239       public:
1240        InitTypeSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont, uint32_t type_idx,
1241                         RegLocation rl_src)
1242            : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont), type_idx_(type_idx),
1243              rl_src_(rl_src) {
1244        }
1245
1246        void Compile() OVERRIDE {
1247          GenerateTargetLabel();
1248
1249          if (cu_->target64) {
1250            m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
1251                                       true);
1252          } else {
1253            m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
1254                                       true);
1255          }
1256          m2l_->OpRegCopy(m2l_->TargetReg(kArg2, kRef),
1257                          m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1258
1259          m2l_->OpUnconditionalBranch(cont_);
1260        }
1261
1262       private:
1263        uint32_t type_idx_;
1264        RegLocation rl_src_;
1265      };
1266
1267      AddSlowPath(new (arena_) InitTypeSlowPath(this, slow_path_branch, slow_path_target,
1268                                                type_idx, rl_src));
1269    }
1270  }
1271  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1272  RegLocation rl_result = GetReturn(kCoreReg);
1273  if (cu_->instruction_set == kMips) {
1274    // On MIPS rArg0 != rl_result, place false in result if branch is taken.
1275    LoadConstant(rl_result.reg, 0);
1276  }
1277  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, NULL);
1278
1279  /* load object->klass_ */
1280  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1281  LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1282              TargetReg(kArg1, kRef), kNotVolatile);
1283  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1284  LIR* branchover = NULL;
1285  if (type_known_final) {
1286    // rl_result == ref == null == 0.
1287    GenSelectConst32(TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), kCondEq, 1, 0, rl_result.reg,
1288                     kCoreReg);
1289  } else {
1290    if (cu_->instruction_set == kThumb2) {
1291      RegStorage r_tgt = cu_->target64 ?
1292          LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial)) :
1293          LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1294      LIR* it = nullptr;
1295      if (!type_known_abstract) {
1296      /* Uses conditional nullification */
1297        OpRegReg(kOpCmp, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef));  // Same?
1298        it = OpIT(kCondEq, "EE");   // if-convert the test
1299        LoadConstant(TargetReg(kArg0, kNotWide), 1);     // .eq case - load true
1300      }
1301      OpRegCopy(TargetReg(kArg0, kRef), TargetReg(kArg2, kRef));    // .ne case - arg0 <= class
1302      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1303      if (it != nullptr) {
1304        OpEndIT(it);
1305      }
1306      FreeTemp(r_tgt);
1307    } else {
1308      if (!type_known_abstract) {
1309        /* Uses branchovers */
1310        LoadConstant(rl_result.reg, 1);     // assume true
1311        branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL);
1312      }
1313
1314      OpRegCopy(TargetReg(kArg0, kRef), TargetReg(kArg2, kRef));    // .ne case - arg0 <= class
1315      if (cu_->target64) {
1316        CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial), false);
1317      } else {
1318        CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial), false);
1319      }
1320    }
1321  }
1322  // TODO: only clobber when type isn't final?
1323  ClobberCallerSave();
1324  /* branch targets here */
1325  LIR* target = NewLIR0(kPseudoTargetLabel);
1326  StoreValue(rl_dest, rl_result);
1327  branch1->target = target;
1328  if (branchover != NULL) {
1329    branchover->target = target;
1330  }
1331}
1332
1333void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1334  bool type_known_final, type_known_abstract, use_declaring_class;
1335  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1336                                                                              *cu_->dex_file,
1337                                                                              type_idx,
1338                                                                              &type_known_final,
1339                                                                              &type_known_abstract,
1340                                                                              &use_declaring_class);
1341  bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1342      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1343
1344  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1345    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1346  } else {
1347    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1348                               use_declaring_class, can_assume_type_is_in_dex_cache,
1349                               type_idx, rl_dest, rl_src);
1350  }
1351}
1352
1353void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1354  bool type_known_final, type_known_abstract, use_declaring_class;
1355  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1356                                                                              *cu_->dex_file,
1357                                                                              type_idx,
1358                                                                              &type_known_final,
1359                                                                              &type_known_abstract,
1360                                                                              &use_declaring_class);
1361  // Note: currently type_known_final is unused, as optimizing will only improve the performance
1362  // of the exception throw path.
1363  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1364  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1365    // Verifier type analysis proved this check cast would never cause an exception.
1366    return;
1367  }
1368  FlushAllRegs();
1369  // May generate a call - use explicit registers
1370  LockCallTemps();
1371  RegStorage method_reg = TargetReg(kArg1, kRef);
1372  LoadCurrMethodDirect(method_reg);  // kArg1 <= current Method*
1373  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1374  if (needs_access_check) {
1375    // Check we have access to type_idx and if not throw IllegalAccessError,
1376    // returns Class* in kRet0
1377    // InitializeTypeAndVerifyAccess(idx, method)
1378    if (cu_->target64) {
1379      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1380                           type_idx, true);
1381    } else {
1382      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1383                           type_idx, true);
1384    }
1385    OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1386  } else if (use_declaring_class) {
1387    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1388                class_reg, kNotVolatile);
1389  } else {
1390    // Load dex cache entry into class_reg (kArg2)
1391    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1392                class_reg, kNotVolatile);
1393    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1394    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1395    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1396      // Need to test presence of type in dex cache at runtime
1397      LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1398      LIR* cont = NewLIR0(kPseudoTargetLabel);
1399
1400      // Slow path to initialize the type.  Executed if the type is NULL.
1401      class SlowPath : public LIRSlowPath {
1402       public:
1403        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1404                 const RegStorage class_reg) :
1405                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1406                   class_reg_(class_reg) {
1407        }
1408
1409        void Compile() {
1410          GenerateTargetLabel();
1411
1412          // Call out to helper, which will return resolved type in kArg0
1413          // InitializeTypeFromCode(idx, method)
1414          if (m2l_->cu_->target64) {
1415            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
1416                                          m2l_->TargetReg(kArg1, kRef), true);
1417          } else {
1418            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
1419                                          m2l_->TargetReg(kArg1, kRef), true);
1420          }
1421          m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1422          m2l_->OpUnconditionalBranch(cont_);
1423        }
1424
1425       public:
1426        const int type_idx_;
1427        const RegStorage class_reg_;
1428      };
1429
1430      AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
1431    }
1432  }
1433  // At this point, class_reg (kArg2) has class
1434  LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1435
1436  // Slow path for the case where the classes are not equal.  In this case we need
1437  // to call a helper function to do the check.
1438  class SlowPath : public LIRSlowPath {
1439   public:
1440    SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1441               LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1442    }
1443
1444    void Compile() {
1445      GenerateTargetLabel();
1446
1447      if (load_) {
1448        m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1449                          m2l_->TargetReg(kArg1, kRef), kNotVolatile);
1450      }
1451      if (m2l_->cu_->target64) {
1452        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pCheckCast),
1453                                      m2l_->TargetReg(kArg2, kRef), m2l_->TargetReg(kArg1, kRef),
1454                                      true);
1455      } else {
1456        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pCheckCast),
1457                                      m2l_->TargetReg(kArg2, kRef), m2l_->TargetReg(kArg1, kRef),
1458                                      true);
1459      }
1460
1461      m2l_->OpUnconditionalBranch(cont_);
1462    }
1463
1464   private:
1465    const bool load_;
1466  };
1467
1468  if (type_known_abstract) {
1469    // Easier case, run slow path if target is non-null (slow path will load from target)
1470    LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
1471    LIR* cont = NewLIR0(kPseudoTargetLabel);
1472    AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1473  } else {
1474    // Harder, more common case.  We need to generate a forward branch over the load
1475    // if the target is null.  If it's non-null we perform the load and branch to the
1476    // slow path if the classes are not equal.
1477
1478    /* Null is OK - continue */
1479    LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
1480    /* load object->klass_ */
1481    DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1482    LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1483                TargetReg(kArg1, kRef), kNotVolatile);
1484
1485    LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
1486    LIR* cont = NewLIR0(kPseudoTargetLabel);
1487
1488    // Add the slow path that will not perform load since this is already done.
1489    AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1490
1491    // Set the null check to branch to the continuation.
1492    branch1->target = cont;
1493  }
1494}
1495
1496void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1497                           RegLocation rl_src1, RegLocation rl_src2) {
1498  RegLocation rl_result;
1499  if (cu_->instruction_set == kThumb2) {
1500    /*
1501     * NOTE:  This is the one place in the code in which we might have
1502     * as many as six live temporary registers.  There are 5 in the normal
1503     * set for Arm.  Until we have spill capabilities, temporarily add
1504     * lr to the temp set.  It is safe to do this locally, but note that
1505     * lr is used explicitly elsewhere in the code generator and cannot
1506     * normally be used as a general temp register.
1507     */
1508    MarkTemp(TargetReg(kLr, kNotWide));   // Add lr to the temp pool
1509    FreeTemp(TargetReg(kLr, kNotWide));   // and make it available
1510  }
1511  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1512  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1513  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1514  // The longs may overlap - use intermediate temp if so
1515  if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1516    RegStorage t_reg = AllocTemp();
1517    OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1518    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1519    OpRegCopy(rl_result.reg.GetLow(), t_reg);
1520    FreeTemp(t_reg);
1521  } else {
1522    OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1523    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1524  }
1525  /*
1526   * NOTE: If rl_dest refers to a frame variable in a large frame, the
1527   * following StoreValueWide might need to allocate a temp register.
1528   * To further work around the lack of a spill capability, explicitly
1529   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1530   * Remove when spill is functional.
1531   */
1532  FreeRegLocTemps(rl_result, rl_src1);
1533  FreeRegLocTemps(rl_result, rl_src2);
1534  StoreValueWide(rl_dest, rl_result);
1535  if (cu_->instruction_set == kThumb2) {
1536    Clobber(TargetReg(kLr, kNotWide));
1537    UnmarkTemp(TargetReg(kLr, kNotWide));  // Remove lr from the temp pool
1538  }
1539}
1540
1541
1542template <size_t pointer_size>
1543static void GenShiftOpLongCall(Mir2Lir* mir_to_lir, Instruction::Code opcode, RegLocation rl_src1,
1544                               RegLocation rl_shift) {
1545  ThreadOffset<pointer_size> func_offset(-1);
1546
1547  switch (opcode) {
1548    case Instruction::SHL_LONG:
1549    case Instruction::SHL_LONG_2ADDR:
1550      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShlLong);
1551      break;
1552    case Instruction::SHR_LONG:
1553    case Instruction::SHR_LONG_2ADDR:
1554      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShrLong);
1555      break;
1556    case Instruction::USHR_LONG:
1557    case Instruction::USHR_LONG_2ADDR:
1558      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pUshrLong);
1559      break;
1560    default:
1561      LOG(FATAL) << "Unexpected case";
1562  }
1563  mir_to_lir->FlushAllRegs();   /* Send everything to home location */
1564  mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false);
1565}
1566
1567void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1568                             RegLocation rl_src1, RegLocation rl_shift) {
1569  if (cu_->target64) {
1570    GenShiftOpLongCall<8>(this, opcode, rl_src1, rl_shift);
1571  } else {
1572    GenShiftOpLongCall<4>(this, opcode, rl_src1, rl_shift);
1573  }
1574  RegLocation rl_result = GetReturnWide(kCoreReg);
1575  StoreValueWide(rl_dest, rl_result);
1576}
1577
1578
1579void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1580                            RegLocation rl_src1, RegLocation rl_src2) {
1581  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1582  OpKind op = kOpBkpt;
1583  bool is_div_rem = false;
1584  bool check_zero = false;
1585  bool unary = false;
1586  RegLocation rl_result;
1587  bool shift_op = false;
1588  switch (opcode) {
1589    case Instruction::NEG_INT:
1590      op = kOpNeg;
1591      unary = true;
1592      break;
1593    case Instruction::NOT_INT:
1594      op = kOpMvn;
1595      unary = true;
1596      break;
1597    case Instruction::ADD_INT:
1598    case Instruction::ADD_INT_2ADDR:
1599      op = kOpAdd;
1600      break;
1601    case Instruction::SUB_INT:
1602    case Instruction::SUB_INT_2ADDR:
1603      op = kOpSub;
1604      break;
1605    case Instruction::MUL_INT:
1606    case Instruction::MUL_INT_2ADDR:
1607      op = kOpMul;
1608      break;
1609    case Instruction::DIV_INT:
1610    case Instruction::DIV_INT_2ADDR:
1611      check_zero = true;
1612      op = kOpDiv;
1613      is_div_rem = true;
1614      break;
1615    /* NOTE: returns in kArg1 */
1616    case Instruction::REM_INT:
1617    case Instruction::REM_INT_2ADDR:
1618      check_zero = true;
1619      op = kOpRem;
1620      is_div_rem = true;
1621      break;
1622    case Instruction::AND_INT:
1623    case Instruction::AND_INT_2ADDR:
1624      op = kOpAnd;
1625      break;
1626    case Instruction::OR_INT:
1627    case Instruction::OR_INT_2ADDR:
1628      op = kOpOr;
1629      break;
1630    case Instruction::XOR_INT:
1631    case Instruction::XOR_INT_2ADDR:
1632      op = kOpXor;
1633      break;
1634    case Instruction::SHL_INT:
1635    case Instruction::SHL_INT_2ADDR:
1636      shift_op = true;
1637      op = kOpLsl;
1638      break;
1639    case Instruction::SHR_INT:
1640    case Instruction::SHR_INT_2ADDR:
1641      shift_op = true;
1642      op = kOpAsr;
1643      break;
1644    case Instruction::USHR_INT:
1645    case Instruction::USHR_INT_2ADDR:
1646      shift_op = true;
1647      op = kOpLsr;
1648      break;
1649    default:
1650      LOG(FATAL) << "Invalid word arith op: " << opcode;
1651  }
1652  if (!is_div_rem) {
1653    if (unary) {
1654      rl_src1 = LoadValue(rl_src1, kCoreReg);
1655      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1656      OpRegReg(op, rl_result.reg, rl_src1.reg);
1657    } else {
1658      if ((shift_op) && (cu_->instruction_set != kArm64)) {
1659        rl_src2 = LoadValue(rl_src2, kCoreReg);
1660        RegStorage t_reg = AllocTemp();
1661        OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1662        rl_src1 = LoadValue(rl_src1, kCoreReg);
1663        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1664        OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1665        FreeTemp(t_reg);
1666      } else {
1667        rl_src1 = LoadValue(rl_src1, kCoreReg);
1668        rl_src2 = LoadValue(rl_src2, kCoreReg);
1669        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1670        OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1671      }
1672    }
1673    StoreValue(rl_dest, rl_result);
1674  } else {
1675    bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1676    if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1677      rl_src1 = LoadValue(rl_src1, kCoreReg);
1678      rl_src2 = LoadValue(rl_src2, kCoreReg);
1679      if (check_zero) {
1680        GenDivZeroCheck(rl_src2.reg);
1681      }
1682      rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1683      done = true;
1684    } else if (cu_->instruction_set == kThumb2) {
1685      if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1686        // Use ARM SDIV instruction for division.  For remainder we also need to
1687        // calculate using a MUL and subtract.
1688        rl_src1 = LoadValue(rl_src1, kCoreReg);
1689        rl_src2 = LoadValue(rl_src2, kCoreReg);
1690        if (check_zero) {
1691          GenDivZeroCheck(rl_src2.reg);
1692        }
1693        rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1694        done = true;
1695      }
1696    }
1697
1698    // If we haven't already generated the code use the callout function.
1699    if (!done) {
1700      FlushAllRegs();   /* Send everything to home location */
1701      LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
1702      RegStorage r_tgt = cu_->target64 ?
1703          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod)) :
1704          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod));
1705      LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
1706      if (check_zero) {
1707        GenDivZeroCheck(TargetReg(kArg1, kNotWide));
1708      }
1709      // NOTE: callout here is not a safepoint.
1710      if (cu_->target64) {
1711        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), false /* not a safepoint */);
1712      } else {
1713        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), false /* not a safepoint */);
1714      }
1715      if (op == kOpDiv)
1716        rl_result = GetReturn(kCoreReg);
1717      else
1718        rl_result = GetReturnAlt();
1719    }
1720    StoreValue(rl_dest, rl_result);
1721  }
1722}
1723
1724/*
1725 * The following are the first-level codegen routines that analyze the format
1726 * of each bytecode then either dispatch special purpose codegen routines
1727 * or produce corresponding Thumb instructions directly.
1728 */
1729
1730// Returns true if no more than two bits are set in 'x'.
1731static bool IsPopCountLE2(unsigned int x) {
1732  x &= x - 1;
1733  return (x & (x - 1)) == 0;
1734}
1735
1736// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1737// and store the result in 'rl_dest'.
1738bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1739                               RegLocation rl_src, RegLocation rl_dest, int lit) {
1740  if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1741    return false;
1742  }
1743  // No divide instruction for Arm, so check for more special cases
1744  if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1745    return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1746  }
1747  int k = LowestSetBit(lit);
1748  if (k >= 30) {
1749    // Avoid special cases.
1750    return false;
1751  }
1752  rl_src = LoadValue(rl_src, kCoreReg);
1753  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1754  if (is_div) {
1755    RegStorage t_reg = AllocTemp();
1756    if (lit == 2) {
1757      // Division by 2 is by far the most common division by constant.
1758      OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1759      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1760      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1761    } else {
1762      OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1763      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1764      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1765      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1766    }
1767  } else {
1768    RegStorage t_reg1 = AllocTemp();
1769    RegStorage t_reg2 = AllocTemp();
1770    if (lit == 2) {
1771      OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1772      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1773      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1774      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1775    } else {
1776      OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1777      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1778      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1779      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1780      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1781    }
1782  }
1783  StoreValue(rl_dest, rl_result);
1784  return true;
1785}
1786
1787// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1788// and store the result in 'rl_dest'.
1789bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1790  if (lit < 0) {
1791    return false;
1792  }
1793  if (lit == 0) {
1794    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1795    LoadConstant(rl_result.reg, 0);
1796    StoreValue(rl_dest, rl_result);
1797    return true;
1798  }
1799  if (lit == 1) {
1800    rl_src = LoadValue(rl_src, kCoreReg);
1801    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1802    OpRegCopy(rl_result.reg, rl_src.reg);
1803    StoreValue(rl_dest, rl_result);
1804    return true;
1805  }
1806  // There is RegRegRegShift on Arm, so check for more special cases
1807  if (cu_->instruction_set == kThumb2) {
1808    return EasyMultiply(rl_src, rl_dest, lit);
1809  }
1810  // Can we simplify this multiplication?
1811  bool power_of_two = false;
1812  bool pop_count_le2 = false;
1813  bool power_of_two_minus_one = false;
1814  if (IsPowerOfTwo(lit)) {
1815    power_of_two = true;
1816  } else if (IsPopCountLE2(lit)) {
1817    pop_count_le2 = true;
1818  } else if (IsPowerOfTwo(lit + 1)) {
1819    power_of_two_minus_one = true;
1820  } else {
1821    return false;
1822  }
1823  rl_src = LoadValue(rl_src, kCoreReg);
1824  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1825  if (power_of_two) {
1826    // Shift.
1827    OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
1828  } else if (pop_count_le2) {
1829    // Shift and add and shift.
1830    int first_bit = LowestSetBit(lit);
1831    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1832    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1833  } else {
1834    // Reverse subtract: (src << (shift + 1)) - src.
1835    DCHECK(power_of_two_minus_one);
1836    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1837    RegStorage t_reg = AllocTemp();
1838    OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
1839    OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1840  }
1841  StoreValue(rl_dest, rl_result);
1842  return true;
1843}
1844
1845void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1846                               int lit) {
1847  RegLocation rl_result;
1848  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1849  int shift_op = false;
1850  bool is_div = false;
1851
1852  switch (opcode) {
1853    case Instruction::RSUB_INT_LIT8:
1854    case Instruction::RSUB_INT: {
1855      rl_src = LoadValue(rl_src, kCoreReg);
1856      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1857      if (cu_->instruction_set == kThumb2) {
1858        OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1859      } else {
1860        OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1861        OpRegImm(kOpAdd, rl_result.reg, lit);
1862      }
1863      StoreValue(rl_dest, rl_result);
1864      return;
1865    }
1866
1867    case Instruction::SUB_INT:
1868    case Instruction::SUB_INT_2ADDR:
1869      lit = -lit;
1870      // Intended fallthrough
1871    case Instruction::ADD_INT:
1872    case Instruction::ADD_INT_2ADDR:
1873    case Instruction::ADD_INT_LIT8:
1874    case Instruction::ADD_INT_LIT16:
1875      op = kOpAdd;
1876      break;
1877    case Instruction::MUL_INT:
1878    case Instruction::MUL_INT_2ADDR:
1879    case Instruction::MUL_INT_LIT8:
1880    case Instruction::MUL_INT_LIT16: {
1881      if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1882        return;
1883      }
1884      op = kOpMul;
1885      break;
1886    }
1887    case Instruction::AND_INT:
1888    case Instruction::AND_INT_2ADDR:
1889    case Instruction::AND_INT_LIT8:
1890    case Instruction::AND_INT_LIT16:
1891      op = kOpAnd;
1892      break;
1893    case Instruction::OR_INT:
1894    case Instruction::OR_INT_2ADDR:
1895    case Instruction::OR_INT_LIT8:
1896    case Instruction::OR_INT_LIT16:
1897      op = kOpOr;
1898      break;
1899    case Instruction::XOR_INT:
1900    case Instruction::XOR_INT_2ADDR:
1901    case Instruction::XOR_INT_LIT8:
1902    case Instruction::XOR_INT_LIT16:
1903      op = kOpXor;
1904      break;
1905    case Instruction::SHL_INT_LIT8:
1906    case Instruction::SHL_INT:
1907    case Instruction::SHL_INT_2ADDR:
1908      lit &= 31;
1909      shift_op = true;
1910      op = kOpLsl;
1911      break;
1912    case Instruction::SHR_INT_LIT8:
1913    case Instruction::SHR_INT:
1914    case Instruction::SHR_INT_2ADDR:
1915      lit &= 31;
1916      shift_op = true;
1917      op = kOpAsr;
1918      break;
1919    case Instruction::USHR_INT_LIT8:
1920    case Instruction::USHR_INT:
1921    case Instruction::USHR_INT_2ADDR:
1922      lit &= 31;
1923      shift_op = true;
1924      op = kOpLsr;
1925      break;
1926
1927    case Instruction::DIV_INT:
1928    case Instruction::DIV_INT_2ADDR:
1929    case Instruction::DIV_INT_LIT8:
1930    case Instruction::DIV_INT_LIT16:
1931    case Instruction::REM_INT:
1932    case Instruction::REM_INT_2ADDR:
1933    case Instruction::REM_INT_LIT8:
1934    case Instruction::REM_INT_LIT16: {
1935      if (lit == 0) {
1936        GenDivZeroException();
1937        return;
1938      }
1939      if ((opcode == Instruction::DIV_INT) ||
1940          (opcode == Instruction::DIV_INT_2ADDR) ||
1941          (opcode == Instruction::DIV_INT_LIT8) ||
1942          (opcode == Instruction::DIV_INT_LIT16)) {
1943        is_div = true;
1944      } else {
1945        is_div = false;
1946      }
1947      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1948        return;
1949      }
1950
1951      bool done = false;
1952      if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1953        rl_src = LoadValue(rl_src, kCoreReg);
1954        rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1955        done = true;
1956      } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1957        rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1958        done = true;
1959      } else if (cu_->instruction_set == kThumb2) {
1960        if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1961          // Use ARM SDIV instruction for division.  For remainder we also need to
1962          // calculate using a MUL and subtract.
1963          rl_src = LoadValue(rl_src, kCoreReg);
1964          rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1965          done = true;
1966        }
1967      }
1968
1969      if (!done) {
1970        FlushAllRegs();   /* Everything to home location. */
1971        LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
1972        Clobber(TargetReg(kArg0, kNotWide));
1973        if (cu_->target64) {
1974          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), TargetReg(kArg0, kNotWide),
1975                                  lit, false);
1976        } else {
1977          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), TargetReg(kArg0, kNotWide),
1978                                  lit, false);
1979        }
1980        if (is_div)
1981          rl_result = GetReturn(kCoreReg);
1982        else
1983          rl_result = GetReturnAlt();
1984      }
1985      StoreValue(rl_dest, rl_result);
1986      return;
1987    }
1988    default:
1989      LOG(FATAL) << "Unexpected opcode " << opcode;
1990  }
1991  rl_src = LoadValue(rl_src, kCoreReg);
1992  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1993  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1994  if (shift_op && (lit == 0)) {
1995    OpRegCopy(rl_result.reg, rl_src.reg);
1996  } else {
1997    OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
1998  }
1999  StoreValue(rl_dest, rl_result);
2000}
2001
2002template <size_t pointer_size>
2003static void GenArithOpLongImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, Instruction::Code opcode,
2004                               RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
2005  RegLocation rl_result;
2006  OpKind first_op = kOpBkpt;
2007  OpKind second_op = kOpBkpt;
2008  bool call_out = false;
2009  bool check_zero = false;
2010  ThreadOffset<pointer_size> func_offset(-1);
2011  int ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2012
2013  switch (opcode) {
2014    case Instruction::NOT_LONG:
2015      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2016        mir_to_lir->GenNotLong(rl_dest, rl_src2);
2017        return;
2018      }
2019      rl_src2 = mir_to_lir->LoadValueWide(rl_src2, kCoreReg);
2020      rl_result = mir_to_lir->EvalLoc(rl_dest, kCoreReg, true);
2021      // Check for destructive overlap
2022      if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
2023        RegStorage t_reg = mir_to_lir->AllocTemp();
2024        mir_to_lir->OpRegCopy(t_reg, rl_src2.reg.GetHigh());
2025        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
2026        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
2027        mir_to_lir->FreeTemp(t_reg);
2028      } else {
2029        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
2030        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
2031      }
2032      mir_to_lir->StoreValueWide(rl_dest, rl_result);
2033      return;
2034    case Instruction::ADD_LONG:
2035    case Instruction::ADD_LONG_2ADDR:
2036      if (cu->instruction_set != kThumb2) {
2037        mir_to_lir->GenAddLong(opcode, rl_dest, rl_src1, rl_src2);
2038        return;
2039      }
2040      first_op = kOpAdd;
2041      second_op = kOpAdc;
2042      break;
2043    case Instruction::SUB_LONG:
2044    case Instruction::SUB_LONG_2ADDR:
2045      if (cu->instruction_set != kThumb2) {
2046        mir_to_lir->GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
2047        return;
2048      }
2049      first_op = kOpSub;
2050      second_op = kOpSbc;
2051      break;
2052    case Instruction::MUL_LONG:
2053    case Instruction::MUL_LONG_2ADDR:
2054      if (cu->instruction_set != kMips) {
2055        mir_to_lir->GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
2056        return;
2057      } else {
2058        call_out = true;
2059        ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2060        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmul);
2061      }
2062      break;
2063    case Instruction::DIV_LONG:
2064    case Instruction::DIV_LONG_2ADDR:
2065      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2066        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true);
2067        return;
2068      }
2069      call_out = true;
2070      check_zero = true;
2071      ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2072      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLdiv);
2073      break;
2074    case Instruction::REM_LONG:
2075    case Instruction::REM_LONG_2ADDR:
2076      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2077        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false);
2078        return;
2079      }
2080      call_out = true;
2081      check_zero = true;
2082      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmod);
2083      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
2084      ret_reg = (cu->instruction_set == kThumb2) ? mir_to_lir->TargetReg(kArg2, kNotWide).GetReg() :
2085          mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2086      break;
2087    case Instruction::AND_LONG_2ADDR:
2088    case Instruction::AND_LONG:
2089      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2090          cu->instruction_set == kArm64) {
2091        return mir_to_lir->GenAndLong(opcode, rl_dest, rl_src1, rl_src2);
2092      }
2093      first_op = kOpAnd;
2094      second_op = kOpAnd;
2095      break;
2096    case Instruction::OR_LONG:
2097    case Instruction::OR_LONG_2ADDR:
2098      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2099          cu->instruction_set == kArm64) {
2100        mir_to_lir->GenOrLong(opcode, rl_dest, rl_src1, rl_src2);
2101        return;
2102      }
2103      first_op = kOpOr;
2104      second_op = kOpOr;
2105      break;
2106    case Instruction::XOR_LONG:
2107    case Instruction::XOR_LONG_2ADDR:
2108      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2109          cu->instruction_set == kArm64) {
2110        mir_to_lir->GenXorLong(opcode, rl_dest, rl_src1, rl_src2);
2111        return;
2112      }
2113      first_op = kOpXor;
2114      second_op = kOpXor;
2115      break;
2116    case Instruction::NEG_LONG: {
2117      mir_to_lir->GenNegLong(rl_dest, rl_src2);
2118      return;
2119    }
2120    default:
2121      LOG(FATAL) << "Invalid long arith op";
2122  }
2123  if (!call_out) {
2124    mir_to_lir->GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
2125  } else {
2126    mir_to_lir->FlushAllRegs();   /* Send everything to home location */
2127    if (check_zero) {
2128      RegStorage r_tmp1 = mir_to_lir->TargetReg(kArg0, kWide);
2129      RegStorage r_tmp2 = mir_to_lir->TargetReg(kArg2, kWide);
2130      mir_to_lir->LoadValueDirectWideFixed(rl_src2, r_tmp2);
2131      RegStorage r_tgt = mir_to_lir->CallHelperSetup(func_offset);
2132      mir_to_lir->GenDivZeroCheckWide(r_tmp2);
2133      mir_to_lir->LoadValueDirectWideFixed(rl_src1, r_tmp1);
2134      // NOTE: callout here is not a safepoint
2135      mir_to_lir->CallHelper(r_tgt, func_offset, false /* not safepoint */);
2136    } else {
2137      mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false);
2138    }
2139    // Adjust return regs in to handle case of rem returning kArg2/kArg3
2140    if (ret_reg == mir_to_lir->TargetReg(kRet0, kNotWide).GetReg())
2141      rl_result = mir_to_lir->GetReturnWide(kCoreReg);
2142    else
2143      rl_result = mir_to_lir->GetReturnWideAlt();
2144    mir_to_lir->StoreValueWide(rl_dest, rl_result);
2145  }
2146}
2147
2148void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
2149                             RegLocation rl_src1, RegLocation rl_src2) {
2150  if (cu_->target64) {
2151    GenArithOpLongImpl<8>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2152  } else {
2153    GenArithOpLongImpl<4>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2154  }
2155}
2156
2157void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
2158  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2159  LoadConstantNoClobber(rl_result.reg, value);
2160  StoreValue(rl_dest, rl_result);
2161  if (value == 0) {
2162    Workaround7250540(rl_dest, rl_result.reg);
2163  }
2164}
2165
2166template <size_t pointer_size>
2167void Mir2Lir::GenConversionCall(ThreadOffset<pointer_size> func_offset,
2168                                RegLocation rl_dest, RegLocation rl_src) {
2169  /*
2170   * Don't optimize the register usage since it calls out to support
2171   * functions
2172   */
2173  DCHECK_EQ(pointer_size, GetInstructionSetPointerSize(cu_->instruction_set));
2174
2175  FlushAllRegs();   /* Send everything to home location */
2176  CallRuntimeHelperRegLocation(func_offset, rl_src, false);
2177  if (rl_dest.wide) {
2178    RegLocation rl_result;
2179    rl_result = GetReturnWide(LocToRegClass(rl_dest));
2180    StoreValueWide(rl_dest, rl_result);
2181  } else {
2182    RegLocation rl_result;
2183    rl_result = GetReturn(LocToRegClass(rl_dest));
2184    StoreValue(rl_dest, rl_result);
2185  }
2186}
2187template void Mir2Lir::GenConversionCall(ThreadOffset<4> func_offset,
2188                                         RegLocation rl_dest, RegLocation rl_src);
2189template void Mir2Lir::GenConversionCall(ThreadOffset<8> func_offset,
2190                                         RegLocation rl_dest, RegLocation rl_src);
2191
2192class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
2193 public:
2194  SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
2195      : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
2196  }
2197
2198  void Compile() OVERRIDE {
2199    m2l_->ResetRegPool();
2200    m2l_->ResetDefTracking();
2201    GenerateTargetLabel(kPseudoSuspendTarget);
2202    if (cu_->target64) {
2203      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pTestSuspend), true);
2204    } else {
2205      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pTestSuspend), true);
2206    }
2207    if (cont_ != nullptr) {
2208      m2l_->OpUnconditionalBranch(cont_);
2209    }
2210  }
2211};
2212
2213/* Check if we need to check for pending suspend request */
2214void Mir2Lir::GenSuspendTest(int opt_flags) {
2215  if (cu_->compiler_driver->GetCompilerOptions().GetExplicitSuspendChecks()) {
2216    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2217      return;
2218    }
2219    FlushAllRegs();
2220    LIR* branch = OpTestSuspend(NULL);
2221    LIR* cont = NewLIR0(kPseudoTargetLabel);
2222    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
2223  } else {
2224    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2225      return;
2226    }
2227    FlushAllRegs();     // TODO: needed?
2228    LIR* inst = CheckSuspendUsingLoad();
2229    MarkSafepointPC(inst);
2230  }
2231}
2232
2233/* Check if we need to check for pending suspend request */
2234void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
2235  if (cu_->compiler_driver->GetCompilerOptions().GetExplicitSuspendChecks()) {
2236    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2237      OpUnconditionalBranch(target);
2238      return;
2239    }
2240    OpTestSuspend(target);
2241    FlushAllRegs();
2242    LIR* branch = OpUnconditionalBranch(nullptr);
2243    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
2244  } else {
2245    // For the implicit suspend check, just perform the trigger
2246    // load and branch to the target.
2247    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2248      OpUnconditionalBranch(target);
2249      return;
2250    }
2251    FlushAllRegs();
2252    LIR* inst = CheckSuspendUsingLoad();
2253    MarkSafepointPC(inst);
2254    OpUnconditionalBranch(target);
2255  }
2256}
2257
2258/* Call out to helper assembly routine that will null check obj and then lock it. */
2259void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
2260  FlushAllRegs();
2261  if (cu_->target64) {
2262    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pLockObject), rl_src, true);
2263  } else {
2264    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pLockObject), rl_src, true);
2265  }
2266}
2267
2268/* Call out to helper assembly routine that will null check obj and then unlock it. */
2269void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2270  FlushAllRegs();
2271  if (cu_->target64) {
2272    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pUnlockObject), rl_src, true);
2273  } else {
2274    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject), rl_src, true);
2275  }
2276}
2277
2278/* Generic code for generating a wide constant into a VR. */
2279void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2280  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2281  LoadConstantWide(rl_result.reg, value);
2282  StoreValueWide(rl_dest, rl_result);
2283}
2284
2285}  // namespace art
2286