gen_common.cc revision 9c3b089519792245ab9f658865f44b8639b8d696
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include "dex/compiler_ir.h"
17#include "dex/compiler_internals.h"
18#include "dex/quick/arm/arm_lir.h"
19#include "dex/quick/mir_to_lir-inl.h"
20#include "entrypoints/quick/quick_entrypoints.h"
21#include "mirror/array.h"
22#include "mirror/object_array-inl.h"
23#include "mirror/object-inl.h"
24#include "verifier/method_verifier.h"
25#include <functional>
26
27namespace art {
28
29// Shortcuts to repeatedly used long types.
30typedef mirror::ObjectArray<mirror::Object> ObjArray;
31typedef mirror::ObjectArray<mirror::Class> ClassArray;
32
33/*
34 * This source files contains "gen" codegen routines that should
35 * be applicable to most targets.  Only mid-level support utilities
36 * and "op" calls may be used here.
37 */
38
39/*
40 * Generate a kPseudoBarrier marker to indicate the boundary of special
41 * blocks.
42 */
43void Mir2Lir::GenBarrier() {
44  LIR* barrier = NewLIR0(kPseudoBarrier);
45  /* Mark all resources as being clobbered */
46  DCHECK(!barrier->flags.use_def_invalid);
47  barrier->u.m.def_mask = ENCODE_ALL;
48}
49
50void Mir2Lir::GenDivZeroException() {
51  LIR* branch = OpUnconditionalBranch(nullptr);
52  AddDivZeroCheckSlowPath(branch);
53}
54
55void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
56  LIR* branch = OpCondBranch(c_code, nullptr);
57  AddDivZeroCheckSlowPath(branch);
58}
59
60void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
61  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
62  AddDivZeroCheckSlowPath(branch);
63}
64
65void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
66  class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
67   public:
68    DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
69        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
70    }
71
72    void Compile() OVERRIDE {
73      m2l_->ResetRegPool();
74      m2l_->ResetDefTracking();
75      GenerateTargetLabel();
76      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowDivZero), true);
77    }
78  };
79
80  AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
81}
82
83void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
84  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
85   public:
86    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
87        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
88          index_(index), length_(length) {
89    }
90
91    void Compile() OVERRIDE {
92      m2l_->ResetRegPool();
93      m2l_->ResetDefTracking();
94      GenerateTargetLabel();
95      m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
96                                    index_, length_, true);
97    }
98
99   private:
100    const RegStorage index_;
101    const RegStorage length_;
102  };
103
104  LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
105  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
106}
107
108void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
109  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
110   public:
111    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
112        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
113          index_(index), length_(length) {
114    }
115
116    void Compile() OVERRIDE {
117      m2l_->ResetRegPool();
118      m2l_->ResetDefTracking();
119      GenerateTargetLabel();
120
121      m2l_->OpRegCopy(m2l_->TargetReg(kArg1), length_);
122      m2l_->LoadConstant(m2l_->TargetReg(kArg0), index_);
123      m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
124                                    m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
125    }
126
127   private:
128    const int32_t index_;
129    const RegStorage length_;
130  };
131
132  LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
133  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
134}
135
136LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
137  class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
138   public:
139    NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
140        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
141    }
142
143    void Compile() OVERRIDE {
144      m2l_->ResetRegPool();
145      m2l_->ResetDefTracking();
146      GenerateTargetLabel();
147      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowNullPointer), true);
148    }
149  };
150
151  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
152  AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
153  return branch;
154}
155
156/* Perform null-check on a register.  */
157LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
158  if (Runtime::Current()->ExplicitNullChecks()) {
159    return GenExplicitNullCheck(m_reg, opt_flags);
160  }
161  return nullptr;
162}
163
164/* Perform an explicit null-check on a register.  */
165LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
166  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
167    return NULL;
168  }
169  return GenNullCheck(m_reg);
170}
171
172void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
173  if (!Runtime::Current()->ExplicitNullChecks()) {
174    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
175      return;
176    }
177    MarkSafepointPC(last_lir_insn_);
178  }
179}
180
181void Mir2Lir::MarkPossibleStackOverflowException() {
182  if (!Runtime::Current()->ExplicitStackOverflowChecks()) {
183    MarkSafepointPC(last_lir_insn_);
184  }
185}
186
187void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
188  if (!Runtime::Current()->ExplicitNullChecks()) {
189    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
190      return;
191    }
192    // Force an implicit null check by performing a memory operation (load) from the given
193    // register with offset 0.  This will cause a signal if the register contains 0 (null).
194    RegStorage tmp = AllocTemp();
195    // TODO: for Mips, would be best to use rZERO as the bogus register target.
196    LIR* load = Load32Disp(reg, 0, tmp);
197    FreeTemp(tmp);
198    MarkSafepointPC(load);
199  }
200}
201
202void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
203                                  RegLocation rl_src2, LIR* taken,
204                                  LIR* fall_through) {
205  ConditionCode cond;
206  switch (opcode) {
207    case Instruction::IF_EQ:
208      cond = kCondEq;
209      break;
210    case Instruction::IF_NE:
211      cond = kCondNe;
212      break;
213    case Instruction::IF_LT:
214      cond = kCondLt;
215      break;
216    case Instruction::IF_GE:
217      cond = kCondGe;
218      break;
219    case Instruction::IF_GT:
220      cond = kCondGt;
221      break;
222    case Instruction::IF_LE:
223      cond = kCondLe;
224      break;
225    default:
226      cond = static_cast<ConditionCode>(0);
227      LOG(FATAL) << "Unexpected opcode " << opcode;
228  }
229
230  // Normalize such that if either operand is constant, src2 will be constant
231  if (rl_src1.is_const) {
232    RegLocation rl_temp = rl_src1;
233    rl_src1 = rl_src2;
234    rl_src2 = rl_temp;
235    cond = FlipComparisonOrder(cond);
236  }
237
238  rl_src1 = LoadValue(rl_src1, kCoreReg);
239  // Is this really an immediate comparison?
240  if (rl_src2.is_const) {
241    // If it's already live in a register or not easily materialized, just keep going
242    RegLocation rl_temp = UpdateLoc(rl_src2);
243    if ((rl_temp.location == kLocDalvikFrame) &&
244        InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) {
245      // OK - convert this to a compare immediate and branch
246      OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
247      return;
248    }
249  }
250  rl_src2 = LoadValue(rl_src2, kCoreReg);
251  OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
252}
253
254void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
255                                      LIR* fall_through) {
256  ConditionCode cond;
257  rl_src = LoadValue(rl_src, kCoreReg);
258  switch (opcode) {
259    case Instruction::IF_EQZ:
260      cond = kCondEq;
261      break;
262    case Instruction::IF_NEZ:
263      cond = kCondNe;
264      break;
265    case Instruction::IF_LTZ:
266      cond = kCondLt;
267      break;
268    case Instruction::IF_GEZ:
269      cond = kCondGe;
270      break;
271    case Instruction::IF_GTZ:
272      cond = kCondGt;
273      break;
274    case Instruction::IF_LEZ:
275      cond = kCondLe;
276      break;
277    default:
278      cond = static_cast<ConditionCode>(0);
279      LOG(FATAL) << "Unexpected opcode " << opcode;
280  }
281  OpCmpImmBranch(cond, rl_src.reg, 0, taken);
282}
283
284void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
285  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
286  if (rl_src.location == kLocPhysReg) {
287    OpRegCopy(rl_result.reg, rl_src.reg);
288  } else {
289    LoadValueDirect(rl_src, rl_result.reg.GetLow());
290  }
291  OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
292  StoreValueWide(rl_dest, rl_result);
293}
294
295void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
296                              RegLocation rl_src) {
297  rl_src = LoadValue(rl_src, kCoreReg);
298  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
299  OpKind op = kOpInvalid;
300  switch (opcode) {
301    case Instruction::INT_TO_BYTE:
302      op = kOp2Byte;
303      break;
304    case Instruction::INT_TO_SHORT:
305       op = kOp2Short;
306       break;
307    case Instruction::INT_TO_CHAR:
308       op = kOp2Char;
309       break;
310    default:
311      LOG(ERROR) << "Bad int conversion type";
312  }
313  OpRegReg(op, rl_result.reg, rl_src.reg);
314  StoreValue(rl_dest, rl_result);
315}
316
317/*
318 * Let helper function take care of everything.  Will call
319 * Array::AllocFromCode(type_idx, method, count);
320 * Note: AllocFromCode will handle checks for errNegativeArraySize.
321 */
322void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
323                          RegLocation rl_src) {
324  FlushAllRegs();  /* Everything to home location */
325  ThreadOffset<4> func_offset(-1);
326  const DexFile* dex_file = cu_->dex_file;
327  CompilerDriver* driver = cu_->compiler_driver;
328  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file,
329                                                       type_idx)) {
330    bool is_type_initialized;  // Ignored as an array does not have an initializer.
331    bool use_direct_type_ptr;
332    uintptr_t direct_type_ptr;
333    if (kEmbedClassInCode &&
334        driver->CanEmbedTypeInCode(*dex_file, type_idx,
335                                   &is_type_initialized, &use_direct_type_ptr, &direct_type_ptr)) {
336      // The fast path.
337      if (!use_direct_type_ptr) {
338        LoadClassType(type_idx, kArg0);
339        func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocArrayResolved);
340        CallRuntimeHelperRegMethodRegLocation(func_offset, TargetReg(kArg0), rl_src, true);
341      } else {
342        // Use the direct pointer.
343        func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocArrayResolved);
344        CallRuntimeHelperImmMethodRegLocation(func_offset, direct_type_ptr, rl_src, true);
345      }
346    } else {
347      // The slow path.
348      DCHECK_EQ(func_offset.Int32Value(), -1);
349      func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocArray);
350      CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
351    }
352    DCHECK_NE(func_offset.Int32Value(), -1);
353  } else {
354    func_offset= QUICK_ENTRYPOINT_OFFSET(4, pAllocArrayWithAccessCheck);
355    CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
356  }
357  RegLocation rl_result = GetReturn(false);
358  StoreValue(rl_dest, rl_result);
359}
360
361/*
362 * Similar to GenNewArray, but with post-allocation initialization.
363 * Verifier guarantees we're dealing with an array class.  Current
364 * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
365 * Current code also throws internal unimp if not 'L', '[' or 'I'.
366 */
367void Mir2Lir::GenFilledNewArray(CallInfo* info) {
368  int elems = info->num_arg_words;
369  int type_idx = info->index;
370  FlushAllRegs();  /* Everything to home location */
371  ThreadOffset<4> func_offset(-1);
372  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
373                                                       type_idx)) {
374    func_offset = QUICK_ENTRYPOINT_OFFSET(4, pCheckAndAllocArray);
375  } else {
376    func_offset = QUICK_ENTRYPOINT_OFFSET(4, pCheckAndAllocArrayWithAccessCheck);
377  }
378  CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true);
379  FreeTemp(TargetReg(kArg2));
380  FreeTemp(TargetReg(kArg1));
381  /*
382   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
383   * return region.  Because AllocFromCode placed the new array
384   * in kRet0, we'll just lock it into place.  When debugger support is
385   * added, it may be necessary to additionally copy all return
386   * values to a home location in thread-local storage
387   */
388  LockTemp(TargetReg(kRet0));
389
390  // TODO: use the correct component size, currently all supported types
391  // share array alignment with ints (see comment at head of function)
392  size_t component_size = sizeof(int32_t);
393
394  // Having a range of 0 is legal
395  if (info->is_range && (elems > 0)) {
396    /*
397     * Bit of ugliness here.  We're going generate a mem copy loop
398     * on the register range, but it is possible that some regs
399     * in the range have been promoted.  This is unlikely, but
400     * before generating the copy, we'll just force a flush
401     * of any regs in the source range that have been promoted to
402     * home location.
403     */
404    for (int i = 0; i < elems; i++) {
405      RegLocation loc = UpdateLoc(info->args[i]);
406      if (loc.location == kLocPhysReg) {
407        Store32Disp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
408      }
409    }
410    /*
411     * TUNING note: generated code here could be much improved, but
412     * this is an uncommon operation and isn't especially performance
413     * critical.
414     */
415    RegStorage r_src = AllocTemp();
416    RegStorage r_dst = AllocTemp();
417    RegStorage r_idx = AllocTemp();
418    RegStorage r_val;
419    switch (cu_->instruction_set) {
420      case kThumb2:
421        r_val = TargetReg(kLr);
422        break;
423      case kX86:
424      case kX86_64:
425        FreeTemp(TargetReg(kRet0));
426        r_val = AllocTemp();
427        break;
428      case kMips:
429        r_val = AllocTemp();
430        break;
431      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
432    }
433    // Set up source pointer
434    RegLocation rl_first = info->args[0];
435    OpRegRegImm(kOpAdd, r_src, TargetReg(kSp), SRegOffset(rl_first.s_reg_low));
436    // Set up the target pointer
437    OpRegRegImm(kOpAdd, r_dst, TargetReg(kRet0),
438                mirror::Array::DataOffset(component_size).Int32Value());
439    // Set up the loop counter (known to be > 0)
440    LoadConstant(r_idx, elems - 1);
441    // Generate the copy loop.  Going backwards for convenience
442    LIR* target = NewLIR0(kPseudoTargetLabel);
443    // Copy next element
444    LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
445    StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
446    FreeTemp(r_val);
447    OpDecAndBranch(kCondGe, r_idx, target);
448    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
449      // Restore the target pointer
450      OpRegRegImm(kOpAdd, TargetReg(kRet0), r_dst,
451                  -mirror::Array::DataOffset(component_size).Int32Value());
452    }
453  } else if (!info->is_range) {
454    // TUNING: interleave
455    for (int i = 0; i < elems; i++) {
456      RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
457      Store32Disp(TargetReg(kRet0),
458                    mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
459      // If the LoadValue caused a temp to be allocated, free it
460      if (IsTemp(rl_arg.reg)) {
461        FreeTemp(rl_arg.reg);
462      }
463    }
464  }
465  if (info->result.location != kLocInvalid) {
466    StoreValue(info->result, GetReturn(false /* not fp */));
467  }
468}
469
470//
471// Slow path to ensure a class is initialized for sget/sput.
472//
473class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
474 public:
475  StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
476                      RegStorage r_base) :
477    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
478               storage_index_(storage_index), r_base_(r_base) {
479  }
480
481  void Compile() {
482    LIR* unresolved_target = GenerateTargetLabel();
483    uninit_->target = unresolved_target;
484    m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeStaticStorage),
485                               storage_index_, true);
486    // Copy helper's result into r_base, a no-op on all but MIPS.
487    m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0));
488
489    m2l_->OpUnconditionalBranch(cont_);
490  }
491
492 private:
493  LIR* const uninit_;
494  const int storage_index_;
495  const RegStorage r_base_;
496};
497
498void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
499                      bool is_object) {
500  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
501  cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
502  if (field_info.FastPut() && !SLOW_FIELD_PATH) {
503    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
504    RegStorage r_base;
505    if (field_info.IsReferrersClass()) {
506      // Fast path, static storage base is this method's class
507      RegLocation rl_method  = LoadCurrMethod();
508      r_base = AllocTemp();
509      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base);
510      if (IsTemp(rl_method.reg)) {
511        FreeTemp(rl_method.reg);
512      }
513    } else {
514      // Medium path, static storage base in a different class which requires checks that the other
515      // class is initialized.
516      // TODO: remove initialized check now that we are initializing classes in the compiler driver.
517      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
518      // May do runtime call so everything to home locations.
519      FlushAllRegs();
520      // Using fixed register to sync with possible call to runtime support.
521      RegStorage r_method = TargetReg(kArg1);
522      LockTemp(r_method);
523      LoadCurrMethodDirect(r_method);
524      r_base = TargetReg(kArg0);
525      LockTemp(r_base);
526      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base);
527      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
528      LoadRefDisp(r_base, offset_of_field, r_base);
529      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
530      if (!field_info.IsInitialized() &&
531          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
532        // Check if r_base is NULL or a not yet initialized class.
533
534        // The slow path is invoked if the r_base is NULL or the class pointed
535        // to by it is not initialized.
536        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
537        RegStorage r_tmp = TargetReg(kArg2);
538        LockTemp(r_tmp);
539        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
540                                          mirror::Class::StatusOffset().Int32Value(),
541                                          mirror::Class::kStatusInitialized, NULL);
542        LIR* cont = NewLIR0(kPseudoTargetLabel);
543
544        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
545                                                     field_info.StorageIndex(), r_base));
546
547        FreeTemp(r_tmp);
548      }
549      FreeTemp(r_method);
550    }
551    // rBase now holds static storage base
552    if (is_long_or_double) {
553      RegisterClass register_kind = kAnyReg;
554      if (field_info.IsVolatile() && cu_->instruction_set == kX86) {
555        // Force long/double volatile stores into SSE registers to avoid tearing.
556        register_kind = kFPReg;
557      }
558      rl_src = LoadValueWide(rl_src, register_kind);
559    } else {
560      rl_src = LoadValue(rl_src, kAnyReg);
561    }
562    if (field_info.IsVolatile()) {
563      // There might have been a store before this volatile one so insert StoreStore barrier.
564      GenMemBarrier(kStoreStore);
565    }
566    if (is_long_or_double) {
567      StoreBaseDispWide(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg);
568    } else if (rl_src.ref) {
569      StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg);
570    } else {
571      Store32Disp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg);
572    }
573    if (field_info.IsVolatile()) {
574      // A load might follow the volatile store so insert a StoreLoad barrier.
575      GenMemBarrier(kStoreLoad);
576    }
577    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
578      MarkGCCard(rl_src.reg, r_base);
579    }
580    FreeTemp(r_base);
581  } else {
582    FlushAllRegs();  // Everything to home locations
583    ThreadOffset<4> setter_offset =
584        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pSet64Static)
585                          : (is_object ? QUICK_ENTRYPOINT_OFFSET(4, pSetObjStatic)
586                                       : QUICK_ENTRYPOINT_OFFSET(4, pSet32Static));
587    CallRuntimeHelperImmRegLocation(setter_offset, field_info.FieldIndex(), rl_src, true);
588  }
589}
590
591void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
592                      bool is_long_or_double, bool is_object) {
593  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
594  cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
595  if (field_info.FastGet() && !SLOW_FIELD_PATH) {
596    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
597    RegStorage r_base;
598    if (field_info.IsReferrersClass()) {
599      // Fast path, static storage base is this method's class
600      RegLocation rl_method  = LoadCurrMethod();
601      r_base = AllocTemp();
602      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base);
603    } else {
604      // Medium path, static storage base in a different class which requires checks that the other
605      // class is initialized
606      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
607      // May do runtime call so everything to home locations.
608      FlushAllRegs();
609      // Using fixed register to sync with possible call to runtime support.
610      RegStorage r_method = TargetReg(kArg1);
611      LockTemp(r_method);
612      LoadCurrMethodDirect(r_method);
613      r_base = TargetReg(kArg0);
614      LockTemp(r_base);
615      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base);
616      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
617      LoadRefDisp(r_base, offset_of_field, r_base);
618      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
619      if (!field_info.IsInitialized() &&
620          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
621        // Check if r_base is NULL or a not yet initialized class.
622
623        // The slow path is invoked if the r_base is NULL or the class pointed
624        // to by it is not initialized.
625        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
626        RegStorage r_tmp = TargetReg(kArg2);
627        LockTemp(r_tmp);
628        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
629                                          mirror::Class::StatusOffset().Int32Value(),
630                                          mirror::Class::kStatusInitialized, NULL);
631        LIR* cont = NewLIR0(kPseudoTargetLabel);
632
633        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
634                                                     field_info.StorageIndex(), r_base));
635
636        FreeTemp(r_tmp);
637      }
638      FreeTemp(r_method);
639    }
640    // r_base now holds static storage base
641    RegisterClass result_reg_kind = kAnyReg;
642    if (field_info.IsVolatile() && cu_->instruction_set == kX86) {
643      // Force long/double volatile loads into SSE registers to avoid tearing.
644      result_reg_kind = kFPReg;
645    }
646    RegLocation rl_result = EvalLoc(rl_dest, result_reg_kind, true);
647
648    if (is_long_or_double) {
649      LoadBaseDispWide(r_base, field_info.FieldOffset().Int32Value(), rl_result.reg, INVALID_SREG);
650    } else if (rl_result.ref) {
651      LoadRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_result.reg);
652    } else {
653      Load32Disp(r_base, field_info.FieldOffset().Int32Value(), rl_result.reg);
654    }
655    FreeTemp(r_base);
656
657    if (field_info.IsVolatile()) {
658      // Without context sensitive analysis, we must issue the most conservative barriers.
659      // In this case, either a load or store may follow so we issue both barriers.
660      GenMemBarrier(kLoadLoad);
661      GenMemBarrier(kLoadStore);
662    }
663
664    if (is_long_or_double) {
665      StoreValueWide(rl_dest, rl_result);
666    } else {
667      StoreValue(rl_dest, rl_result);
668    }
669  } else {
670    FlushAllRegs();  // Everything to home locations
671    ThreadOffset<4> getterOffset =
672        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pGet64Static)
673                          :(is_object ? QUICK_ENTRYPOINT_OFFSET(4, pGetObjStatic)
674                                      : QUICK_ENTRYPOINT_OFFSET(4, pGet32Static));
675    CallRuntimeHelperImm(getterOffset, field_info.FieldIndex(), true);
676    if (is_long_or_double) {
677      RegLocation rl_result = GetReturnWide(rl_dest.fp);
678      StoreValueWide(rl_dest, rl_result);
679    } else {
680      RegLocation rl_result = GetReturn(rl_dest.fp);
681      StoreValue(rl_dest, rl_result);
682    }
683  }
684}
685
686// Generate code for all slow paths.
687void Mir2Lir::HandleSlowPaths() {
688  int n = slow_paths_.Size();
689  for (int i = 0; i < n; ++i) {
690    LIRSlowPath* slowpath = slow_paths_.Get(i);
691    slowpath->Compile();
692  }
693  slow_paths_.Reset();
694}
695
696void Mir2Lir::HandleSuspendLaunchPads() {
697  int num_elems = suspend_launchpads_.Size();
698  ThreadOffset<4> helper_offset = QUICK_ENTRYPOINT_OFFSET(4, pTestSuspend);
699  for (int i = 0; i < num_elems; i++) {
700    ResetRegPool();
701    ResetDefTracking();
702    LIR* lab = suspend_launchpads_.Get(i);
703    LIR* resume_lab = reinterpret_cast<LIR*>(UnwrapPointer(lab->operands[0]));
704    current_dalvik_offset_ = lab->operands[1];
705    AppendLIR(lab);
706    RegStorage r_tgt = CallHelperSetup(helper_offset);
707    CallHelper(r_tgt, helper_offset, true /* MarkSafepointPC */);
708    OpUnconditionalBranch(resume_lab);
709  }
710}
711
712void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
713                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
714                      bool is_object) {
715  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
716  cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
717  if (field_info.FastGet() && !SLOW_FIELD_PATH) {
718    RegLocation rl_result;
719    RegisterClass reg_class = oat_reg_class_by_size(size);
720    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
721    rl_obj = LoadValue(rl_obj, kCoreReg);
722    if (is_long_or_double) {
723      DCHECK(rl_dest.wide);
724      GenNullCheck(rl_obj.reg, opt_flags);
725      if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
726        RegisterClass result_reg_kind = kAnyReg;
727        if (field_info.IsVolatile() && cu_->instruction_set == kX86) {
728          // Force long/double volatile loads into SSE registers to avoid tearing.
729          result_reg_kind = kFPReg;
730        }
731        rl_result = EvalLoc(rl_dest, result_reg_kind, true);
732        LoadBaseDispWide(rl_obj.reg, field_info.FieldOffset().Int32Value(), rl_result.reg,
733                         rl_obj.s_reg_low);
734        MarkPossibleNullPointerException(opt_flags);
735        if (field_info.IsVolatile()) {
736          // Without context sensitive analysis, we must issue the most conservative barriers.
737          // In this case, either a load or store may follow so we issue both barriers.
738          GenMemBarrier(kLoadLoad);
739          GenMemBarrier(kLoadStore);
740        }
741      } else {
742        RegStorage reg_ptr = AllocTemp();
743        OpRegRegImm(kOpAdd, reg_ptr, rl_obj.reg, field_info.FieldOffset().Int32Value());
744        rl_result = EvalLoc(rl_dest, reg_class, true);
745        LoadBaseDispWide(reg_ptr, 0, rl_result.reg, INVALID_SREG);
746        MarkPossibleNullPointerException(opt_flags);
747        if (field_info.IsVolatile()) {
748          // Without context sensitive analysis, we must issue the most conservative barriers.
749          // In this case, either a load or store may follow so we issue both barriers.
750          GenMemBarrier(kLoadLoad);
751          GenMemBarrier(kLoadStore);
752        }
753        FreeTemp(reg_ptr);
754      }
755      StoreValueWide(rl_dest, rl_result);
756    } else {
757      rl_result = EvalLoc(rl_dest, reg_class, true);
758      GenNullCheck(rl_obj.reg, opt_flags);
759      LoadBaseDisp(rl_obj.reg, field_info.FieldOffset().Int32Value(), rl_result.reg, k32,
760                   rl_obj.s_reg_low);
761      MarkPossibleNullPointerException(opt_flags);
762      if (field_info.IsVolatile()) {
763        // Without context sensitive analysis, we must issue the most conservative barriers.
764        // In this case, either a load or store may follow so we issue both barriers.
765        GenMemBarrier(kLoadLoad);
766        GenMemBarrier(kLoadStore);
767      }
768      StoreValue(rl_dest, rl_result);
769    }
770  } else {
771    ThreadOffset<4> getterOffset =
772        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pGet64Instance)
773                          : (is_object ? QUICK_ENTRYPOINT_OFFSET(4, pGetObjInstance)
774                                       : QUICK_ENTRYPOINT_OFFSET(4, pGet32Instance));
775    CallRuntimeHelperImmRegLocation(getterOffset, field_info.FieldIndex(), rl_obj, true);
776    if (is_long_or_double) {
777      RegLocation rl_result = GetReturnWide(rl_dest.fp);
778      StoreValueWide(rl_dest, rl_result);
779    } else {
780      RegLocation rl_result = GetReturn(rl_dest.fp);
781      StoreValue(rl_dest, rl_result);
782    }
783  }
784}
785
786void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
787                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
788                      bool is_object) {
789  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
790  cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
791  if (field_info.FastPut() && !SLOW_FIELD_PATH) {
792    RegisterClass reg_class = oat_reg_class_by_size(size);
793    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
794    rl_obj = LoadValue(rl_obj, kCoreReg);
795    if (is_long_or_double) {
796      RegisterClass src_reg_kind = kAnyReg;
797      if (field_info.IsVolatile() && cu_->instruction_set == kX86) {
798        // Force long/double volatile stores into SSE registers to avoid tearing.
799        src_reg_kind = kFPReg;
800      }
801      rl_src = LoadValueWide(rl_src, src_reg_kind);
802      GenNullCheck(rl_obj.reg, opt_flags);
803      RegStorage reg_ptr = AllocTemp();
804      OpRegRegImm(kOpAdd, reg_ptr, rl_obj.reg, field_info.FieldOffset().Int32Value());
805      if (field_info.IsVolatile()) {
806        // There might have been a store before this volatile one so insert StoreStore barrier.
807        GenMemBarrier(kStoreStore);
808      }
809      StoreBaseDispWide(reg_ptr, 0, rl_src.reg);
810      MarkPossibleNullPointerException(opt_flags);
811      if (field_info.IsVolatile()) {
812        // A load might follow the volatile store so insert a StoreLoad barrier.
813        GenMemBarrier(kStoreLoad);
814      }
815      FreeTemp(reg_ptr);
816    } else {
817      rl_src = LoadValue(rl_src, reg_class);
818      GenNullCheck(rl_obj.reg, opt_flags);
819      if (field_info.IsVolatile()) {
820        // There might have been a store before this volatile one so insert StoreStore barrier.
821        GenMemBarrier(kStoreStore);
822      }
823      Store32Disp(rl_obj.reg, field_info.FieldOffset().Int32Value(), rl_src.reg);
824      MarkPossibleNullPointerException(opt_flags);
825      if (field_info.IsVolatile()) {
826        // A load might follow the volatile store so insert a StoreLoad barrier.
827        GenMemBarrier(kStoreLoad);
828      }
829      if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
830        MarkGCCard(rl_src.reg, rl_obj.reg);
831      }
832    }
833  } else {
834    ThreadOffset<4> setter_offset =
835        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pSet64Instance)
836                          : (is_object ? QUICK_ENTRYPOINT_OFFSET(4, pSetObjInstance)
837                                       : QUICK_ENTRYPOINT_OFFSET(4, pSet32Instance));
838    CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_info.FieldIndex(),
839                                               rl_obj, rl_src, true);
840  }
841}
842
843void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
844                             RegLocation rl_src) {
845  bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
846  bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
847      (opt_flags & MIR_IGNORE_NULL_CHECK));
848  ThreadOffset<4> helper = needs_range_check
849      ? (needs_null_check ? QUICK_ENTRYPOINT_OFFSET(4, pAputObjectWithNullAndBoundCheck)
850                          : QUICK_ENTRYPOINT_OFFSET(4, pAputObjectWithBoundCheck))
851      : QUICK_ENTRYPOINT_OFFSET(4, pAputObject);
852  CallRuntimeHelperRegLocationRegLocationRegLocation(helper, rl_array, rl_index, rl_src, true);
853}
854
855void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
856  RegLocation rl_method = LoadCurrMethod();
857  RegStorage res_reg = AllocTemp();
858  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
859  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
860                                                   *cu_->dex_file,
861                                                   type_idx)) {
862    // Call out to helper which resolves type and verifies access.
863    // Resolved type returned in kRet0.
864    CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
865                            type_idx, rl_method.reg, true);
866    RegLocation rl_result = GetReturn(false);
867    StoreValue(rl_dest, rl_result);
868  } else {
869    // We're don't need access checks, load type from dex cache
870    int32_t dex_cache_offset =
871        mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
872    Load32Disp(rl_method.reg, dex_cache_offset, res_reg);
873    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
874    Load32Disp(res_reg, offset_of_type, rl_result.reg);
875    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
876        type_idx) || SLOW_TYPE_PATH) {
877      // Slow path, at runtime test if type is null and if so initialize
878      FlushAllRegs();
879      LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
880      LIR* cont = NewLIR0(kPseudoTargetLabel);
881
882      // Object to generate the slow path for class resolution.
883      class SlowPath : public LIRSlowPath {
884       public:
885        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
886                 const RegLocation& rl_method, const RegLocation& rl_result) :
887                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
888                   rl_method_(rl_method), rl_result_(rl_result) {
889        }
890
891        void Compile() {
892          GenerateTargetLabel();
893
894          m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
895                                        rl_method_.reg, true);
896          m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetReg(kRet0));
897
898          m2l_->OpUnconditionalBranch(cont_);
899        }
900
901       private:
902        const int type_idx_;
903        const RegLocation rl_method_;
904        const RegLocation rl_result_;
905      };
906
907      // Add to list for future.
908      AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
909
910      StoreValue(rl_dest, rl_result);
911     } else {
912      // Fast path, we're done - just store result
913      StoreValue(rl_dest, rl_result);
914    }
915  }
916}
917
918void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
919  /* NOTE: Most strings should be available at compile time */
920  int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
921                                                                                      Int32Value();
922  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
923      *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
924    // slow path, resolve string if not in dex cache
925    FlushAllRegs();
926    LockCallTemps();  // Using explicit registers
927
928    // If the Method* is already in a register, we can save a copy.
929    RegLocation rl_method = mir_graph_->GetMethodLoc();
930    RegStorage r_method;
931    if (rl_method.location == kLocPhysReg) {
932      // A temp would conflict with register use below.
933      DCHECK(!IsTemp(rl_method.reg));
934      r_method = rl_method.reg;
935    } else {
936      r_method = TargetReg(kArg2);
937      LoadCurrMethodDirect(r_method);
938    }
939    LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(),
940                TargetReg(kArg0));
941
942    // Might call out to helper, which will return resolved string in kRet0
943    Load32Disp(TargetReg(kArg0), offset_of_string, TargetReg(kRet0));
944    if (cu_->instruction_set == kThumb2 ||
945        cu_->instruction_set == kMips) {
946      //  OpRegImm(kOpCmp, TargetReg(kRet0), 0);  // Is resolved?
947      LoadConstant(TargetReg(kArg1), string_idx);
948      LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0), 0, NULL);
949      LIR* cont = NewLIR0(kPseudoTargetLabel);
950      GenBarrier();
951
952      // Object to generate the slow path for string resolution.
953      class SlowPath : public LIRSlowPath {
954       public:
955        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method) :
956          LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), r_method_(r_method) {
957        }
958
959        void Compile() {
960          GenerateTargetLabel();
961
962          RegStorage r_tgt = m2l_->CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(4, pResolveString));
963
964          m2l_->OpRegCopy(m2l_->TargetReg(kArg0), r_method_);   // .eq
965          LIR* call_inst = m2l_->OpReg(kOpBlx, r_tgt);
966          m2l_->MarkSafepointPC(call_inst);
967          m2l_->FreeTemp(r_tgt);
968
969          m2l_->OpUnconditionalBranch(cont_);
970        }
971
972       private:
973         RegStorage r_method_;
974      };
975
976      // Add to list for future.
977      AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method));
978    } else {
979      DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
980      LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kRet0), 0, NULL);
981      LoadConstant(TargetReg(kArg1), string_idx);
982      CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pResolveString), r_method, TargetReg(kArg1),
983                              true);
984      LIR* target = NewLIR0(kPseudoTargetLabel);
985      branch->target = target;
986    }
987    GenBarrier();
988    StoreValue(rl_dest, GetReturn(false));
989  } else {
990    RegLocation rl_method = LoadCurrMethod();
991    RegStorage res_reg = AllocTemp();
992    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
993    LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg);
994    Load32Disp(res_reg, offset_of_string, rl_result.reg);
995    StoreValue(rl_dest, rl_result);
996  }
997}
998
999/*
1000 * Let helper function take care of everything.  Will
1001 * call Class::NewInstanceFromCode(type_idx, method);
1002 */
1003void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
1004  FlushAllRegs();  /* Everything to home location */
1005  // alloc will always check for resolution, do we also need to verify
1006  // access because the verifier was unable to?
1007  ThreadOffset<4> func_offset(-1);
1008  const DexFile* dex_file = cu_->dex_file;
1009  CompilerDriver* driver = cu_->compiler_driver;
1010  if (driver->CanAccessInstantiableTypeWithoutChecks(
1011      cu_->method_idx, *dex_file, type_idx)) {
1012    bool is_type_initialized;
1013    bool use_direct_type_ptr;
1014    uintptr_t direct_type_ptr;
1015    if (kEmbedClassInCode &&
1016        driver->CanEmbedTypeInCode(*dex_file, type_idx,
1017                                   &is_type_initialized, &use_direct_type_ptr, &direct_type_ptr)) {
1018      // The fast path.
1019      if (!use_direct_type_ptr) {
1020        LoadClassType(type_idx, kArg0);
1021        if (!is_type_initialized) {
1022          func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectResolved);
1023          CallRuntimeHelperRegMethod(func_offset, TargetReg(kArg0), true);
1024        } else {
1025          func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectInitialized);
1026          CallRuntimeHelperRegMethod(func_offset, TargetReg(kArg0), true);
1027        }
1028      } else {
1029        // Use the direct pointer.
1030        if (!is_type_initialized) {
1031          func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectResolved);
1032          CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1033        } else {
1034          func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectInitialized);
1035          CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1036        }
1037      }
1038    } else {
1039      // The slow path.
1040      DCHECK_EQ(func_offset.Int32Value(), -1);
1041      func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObject);
1042      CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1043    }
1044    DCHECK_NE(func_offset.Int32Value(), -1);
1045  } else {
1046    func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectWithAccessCheck);
1047    CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1048  }
1049  RegLocation rl_result = GetReturn(false);
1050  StoreValue(rl_dest, rl_result);
1051}
1052
1053void Mir2Lir::GenThrow(RegLocation rl_src) {
1054  FlushAllRegs();
1055  CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pDeliverException), rl_src, true);
1056}
1057
1058// For final classes there are no sub-classes to check and so we can answer the instance-of
1059// question with simple comparisons.
1060void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
1061                                 RegLocation rl_src) {
1062  // X86 has its own implementation.
1063  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1064
1065  RegLocation object = LoadValue(rl_src, kCoreReg);
1066  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1067  RegStorage result_reg = rl_result.reg;
1068  if (result_reg == object.reg) {
1069    result_reg = AllocTypedTemp(false, kCoreReg);
1070  }
1071  LoadConstant(result_reg, 0);     // assume false
1072  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1073
1074  RegStorage check_class = AllocTypedTemp(false, kCoreReg);
1075  RegStorage object_class = AllocTypedTemp(false, kCoreReg);
1076
1077  LoadCurrMethodDirect(check_class);
1078  if (use_declaring_class) {
1079    LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class);
1080    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class);
1081  } else {
1082    LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1083                check_class);
1084    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class);
1085    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1086    LoadRefDisp(check_class, offset_of_type, check_class);
1087  }
1088
1089  LIR* ne_branchover = NULL;
1090  // FIXME: what should we be comparing here? compressed or decompressed references?
1091  if (cu_->instruction_set == kThumb2) {
1092    OpRegReg(kOpCmp, check_class, object_class);  // Same?
1093    LIR* it = OpIT(kCondEq, "");   // if-convert the test
1094    LoadConstant(result_reg, 1);     // .eq case - load true
1095    OpEndIT(it);
1096  } else {
1097    ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL);
1098    LoadConstant(result_reg, 1);     // eq case - load true
1099  }
1100  LIR* target = NewLIR0(kPseudoTargetLabel);
1101  null_branchover->target = target;
1102  if (ne_branchover != NULL) {
1103    ne_branchover->target = target;
1104  }
1105  FreeTemp(object_class);
1106  FreeTemp(check_class);
1107  if (IsTemp(result_reg)) {
1108    OpRegCopy(rl_result.reg, result_reg);
1109    FreeTemp(result_reg);
1110  }
1111  StoreValue(rl_dest, rl_result);
1112}
1113
1114void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1115                                         bool type_known_abstract, bool use_declaring_class,
1116                                         bool can_assume_type_is_in_dex_cache,
1117                                         uint32_t type_idx, RegLocation rl_dest,
1118                                         RegLocation rl_src) {
1119  // X86 has its own implementation.
1120  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1121
1122  FlushAllRegs();
1123  // May generate a call - use explicit registers
1124  LockCallTemps();
1125  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 <= current Method*
1126  RegStorage class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*
1127  if (needs_access_check) {
1128    // Check we have access to type_idx and if not throw IllegalAccessError,
1129    // returns Class* in kArg0
1130    CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1131                         type_idx, true);
1132    OpRegCopy(class_reg, TargetReg(kRet0));  // Align usage with fast path
1133    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1134  } else if (use_declaring_class) {
1135    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1136    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1137                 class_reg);
1138  } else {
1139    // Load dex cache entry into class_reg (kArg2)
1140    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1141    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1142                class_reg);
1143    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1144    LoadRefDisp(class_reg, offset_of_type, class_reg);
1145    if (!can_assume_type_is_in_dex_cache) {
1146      // Need to test presence of type in dex cache at runtime
1147      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1148      // Not resolved
1149      // Call out to helper, which will return resolved type in kRet0
1150      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
1151      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path
1152      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* reload Ref */
1153      // Rejoin code paths
1154      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1155      hop_branch->target = hop_target;
1156    }
1157  }
1158  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1159  RegLocation rl_result = GetReturn(false);
1160  if (cu_->instruction_set == kMips) {
1161    // On MIPS rArg0 != rl_result, place false in result if branch is taken.
1162    LoadConstant(rl_result.reg, 0);
1163  }
1164  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1165
1166  /* load object->klass_ */
1167  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1168  LoadRefDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1169  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1170  LIR* branchover = NULL;
1171  if (type_known_final) {
1172    // rl_result == ref == null == 0.
1173    if (cu_->instruction_set == kThumb2) {
1174      OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));  // Same?
1175      LIR* it = OpIT(kCondEq, "E");   // if-convert the test
1176      LoadConstant(rl_result.reg, 1);     // .eq case - load true
1177      LoadConstant(rl_result.reg, 0);     // .ne case - load false
1178      OpEndIT(it);
1179    } else {
1180      LoadConstant(rl_result.reg, 0);     // ne case - load false
1181      branchover = OpCmpBranch(kCondNe, TargetReg(kArg1), TargetReg(kArg2), NULL);
1182      LoadConstant(rl_result.reg, 1);     // eq case - load true
1183    }
1184  } else {
1185    if (cu_->instruction_set == kThumb2) {
1186      RegStorage r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1187      LIR* it = nullptr;
1188      if (!type_known_abstract) {
1189      /* Uses conditional nullification */
1190        OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));  // Same?
1191        it = OpIT(kCondEq, "EE");   // if-convert the test
1192        LoadConstant(TargetReg(kArg0), 1);     // .eq case - load true
1193      }
1194      OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class
1195      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1196      if (it != nullptr) {
1197        OpEndIT(it);
1198      }
1199      FreeTemp(r_tgt);
1200    } else {
1201      if (!type_known_abstract) {
1202        /* Uses branchovers */
1203        LoadConstant(rl_result.reg, 1);     // assume true
1204        branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1205      }
1206      RegStorage r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1207      OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class
1208      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1209      FreeTemp(r_tgt);
1210    }
1211  }
1212  // TODO: only clobber when type isn't final?
1213  ClobberCallerSave();
1214  /* branch targets here */
1215  LIR* target = NewLIR0(kPseudoTargetLabel);
1216  StoreValue(rl_dest, rl_result);
1217  branch1->target = target;
1218  if (branchover != NULL) {
1219    branchover->target = target;
1220  }
1221}
1222
1223void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1224  bool type_known_final, type_known_abstract, use_declaring_class;
1225  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1226                                                                              *cu_->dex_file,
1227                                                                              type_idx,
1228                                                                              &type_known_final,
1229                                                                              &type_known_abstract,
1230                                                                              &use_declaring_class);
1231  bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1232      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1233
1234  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1235    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1236  } else {
1237    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1238                               use_declaring_class, can_assume_type_is_in_dex_cache,
1239                               type_idx, rl_dest, rl_src);
1240  }
1241}
1242
1243void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1244  bool type_known_final, type_known_abstract, use_declaring_class;
1245  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1246                                                                              *cu_->dex_file,
1247                                                                              type_idx,
1248                                                                              &type_known_final,
1249                                                                              &type_known_abstract,
1250                                                                              &use_declaring_class);
1251  // Note: currently type_known_final is unused, as optimizing will only improve the performance
1252  // of the exception throw path.
1253  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1254  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1255    // Verifier type analysis proved this check cast would never cause an exception.
1256    return;
1257  }
1258  FlushAllRegs();
1259  // May generate a call - use explicit registers
1260  LockCallTemps();
1261  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 <= current Method*
1262  RegStorage class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*
1263  if (needs_access_check) {
1264    // Check we have access to type_idx and if not throw IllegalAccessError,
1265    // returns Class* in kRet0
1266    // InitializeTypeAndVerifyAccess(idx, method)
1267    CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1268                            type_idx, TargetReg(kArg1), true);
1269    OpRegCopy(class_reg, TargetReg(kRet0));  // Align usage with fast path
1270  } else if (use_declaring_class) {
1271    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1272                class_reg);
1273  } else {
1274    // Load dex cache entry into class_reg (kArg2)
1275    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1276                class_reg);
1277    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1278    LoadRefDisp(class_reg, offset_of_type, class_reg);
1279    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1280      // Need to test presence of type in dex cache at runtime
1281      LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1282      LIR* cont = NewLIR0(kPseudoTargetLabel);
1283
1284      // Slow path to initialize the type.  Executed if the type is NULL.
1285      class SlowPath : public LIRSlowPath {
1286       public:
1287        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1288                 const RegStorage class_reg) :
1289                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1290                   class_reg_(class_reg) {
1291        }
1292
1293        void Compile() {
1294          GenerateTargetLabel();
1295
1296          // Call out to helper, which will return resolved type in kArg0
1297          // InitializeTypeFromCode(idx, method)
1298          m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
1299                                        m2l_->TargetReg(kArg1), true);
1300          m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0));  // Align usage with fast path
1301          m2l_->OpUnconditionalBranch(cont_);
1302        }
1303       public:
1304        const int type_idx_;
1305        const RegStorage class_reg_;
1306      };
1307
1308      AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
1309    }
1310  }
1311  // At this point, class_reg (kArg2) has class
1312  LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref
1313
1314  // Slow path for the case where the classes are not equal.  In this case we need
1315  // to call a helper function to do the check.
1316  class SlowPath : public LIRSlowPath {
1317   public:
1318    SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1319               LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1320    }
1321
1322    void Compile() {
1323      GenerateTargetLabel();
1324
1325      if (load_) {
1326        m2l_->LoadRefDisp(m2l_->TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(),
1327                          m2l_->TargetReg(kArg1));
1328      }
1329      m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pCheckCast), m2l_->TargetReg(kArg2),
1330                                    m2l_->TargetReg(kArg1), true);
1331
1332      m2l_->OpUnconditionalBranch(cont_);
1333    }
1334
1335   private:
1336    bool load_;
1337  };
1338
1339  if (type_known_abstract) {
1340    // Easier case, run slow path if target is non-null (slow path will load from target)
1341    LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0), 0, NULL);
1342    LIR* cont = NewLIR0(kPseudoTargetLabel);
1343    AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1344  } else {
1345    // Harder, more common case.  We need to generate a forward branch over the load
1346    // if the target is null.  If it's non-null we perform the load and branch to the
1347    // slow path if the classes are not equal.
1348
1349    /* Null is OK - continue */
1350    LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1351    /* load object->klass_ */
1352    DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1353    LoadRefDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1354
1355    LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1), class_reg, NULL);
1356    LIR* cont = NewLIR0(kPseudoTargetLabel);
1357
1358    // Add the slow path that will not perform load since this is already done.
1359    AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1360
1361    // Set the null check to branch to the continuation.
1362    branch1->target = cont;
1363  }
1364}
1365
1366void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1367                           RegLocation rl_src1, RegLocation rl_src2) {
1368  RegLocation rl_result;
1369  if (cu_->instruction_set == kThumb2) {
1370    /*
1371     * NOTE:  This is the one place in the code in which we might have
1372     * as many as six live temporary registers.  There are 5 in the normal
1373     * set for Arm.  Until we have spill capabilities, temporarily add
1374     * lr to the temp set.  It is safe to do this locally, but note that
1375     * lr is used explicitly elsewhere in the code generator and cannot
1376     * normally be used as a general temp register.
1377     */
1378    MarkTemp(TargetReg(kLr));   // Add lr to the temp pool
1379    FreeTemp(TargetReg(kLr));   // and make it available
1380  }
1381  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1382  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1383  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1384  // The longs may overlap - use intermediate temp if so
1385  if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1386    RegStorage t_reg = AllocTemp();
1387    OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1388    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1389    OpRegCopy(rl_result.reg.GetLow(), t_reg);
1390    FreeTemp(t_reg);
1391  } else {
1392    OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1393    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1394  }
1395  /*
1396   * NOTE: If rl_dest refers to a frame variable in a large frame, the
1397   * following StoreValueWide might need to allocate a temp register.
1398   * To further work around the lack of a spill capability, explicitly
1399   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1400   * Remove when spill is functional.
1401   */
1402  FreeRegLocTemps(rl_result, rl_src1);
1403  FreeRegLocTemps(rl_result, rl_src2);
1404  StoreValueWide(rl_dest, rl_result);
1405  if (cu_->instruction_set == kThumb2) {
1406    Clobber(TargetReg(kLr));
1407    UnmarkTemp(TargetReg(kLr));  // Remove lr from the temp pool
1408  }
1409}
1410
1411
1412void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1413                             RegLocation rl_src1, RegLocation rl_shift) {
1414  ThreadOffset<4> func_offset(-1);
1415
1416  switch (opcode) {
1417    case Instruction::SHL_LONG:
1418    case Instruction::SHL_LONG_2ADDR:
1419      func_offset = QUICK_ENTRYPOINT_OFFSET(4, pShlLong);
1420      break;
1421    case Instruction::SHR_LONG:
1422    case Instruction::SHR_LONG_2ADDR:
1423      func_offset = QUICK_ENTRYPOINT_OFFSET(4, pShrLong);
1424      break;
1425    case Instruction::USHR_LONG:
1426    case Instruction::USHR_LONG_2ADDR:
1427      func_offset = QUICK_ENTRYPOINT_OFFSET(4, pUshrLong);
1428      break;
1429    default:
1430      LOG(FATAL) << "Unexpected case";
1431  }
1432  FlushAllRegs();   /* Send everything to home location */
1433  CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false);
1434  RegLocation rl_result = GetReturnWide(false);
1435  StoreValueWide(rl_dest, rl_result);
1436}
1437
1438
1439void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1440                            RegLocation rl_src1, RegLocation rl_src2) {
1441  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1442  OpKind op = kOpBkpt;
1443  bool is_div_rem = false;
1444  bool check_zero = false;
1445  bool unary = false;
1446  RegLocation rl_result;
1447  bool shift_op = false;
1448  switch (opcode) {
1449    case Instruction::NEG_INT:
1450      op = kOpNeg;
1451      unary = true;
1452      break;
1453    case Instruction::NOT_INT:
1454      op = kOpMvn;
1455      unary = true;
1456      break;
1457    case Instruction::ADD_INT:
1458    case Instruction::ADD_INT_2ADDR:
1459      op = kOpAdd;
1460      break;
1461    case Instruction::SUB_INT:
1462    case Instruction::SUB_INT_2ADDR:
1463      op = kOpSub;
1464      break;
1465    case Instruction::MUL_INT:
1466    case Instruction::MUL_INT_2ADDR:
1467      op = kOpMul;
1468      break;
1469    case Instruction::DIV_INT:
1470    case Instruction::DIV_INT_2ADDR:
1471      check_zero = true;
1472      op = kOpDiv;
1473      is_div_rem = true;
1474      break;
1475    /* NOTE: returns in kArg1 */
1476    case Instruction::REM_INT:
1477    case Instruction::REM_INT_2ADDR:
1478      check_zero = true;
1479      op = kOpRem;
1480      is_div_rem = true;
1481      break;
1482    case Instruction::AND_INT:
1483    case Instruction::AND_INT_2ADDR:
1484      op = kOpAnd;
1485      break;
1486    case Instruction::OR_INT:
1487    case Instruction::OR_INT_2ADDR:
1488      op = kOpOr;
1489      break;
1490    case Instruction::XOR_INT:
1491    case Instruction::XOR_INT_2ADDR:
1492      op = kOpXor;
1493      break;
1494    case Instruction::SHL_INT:
1495    case Instruction::SHL_INT_2ADDR:
1496      shift_op = true;
1497      op = kOpLsl;
1498      break;
1499    case Instruction::SHR_INT:
1500    case Instruction::SHR_INT_2ADDR:
1501      shift_op = true;
1502      op = kOpAsr;
1503      break;
1504    case Instruction::USHR_INT:
1505    case Instruction::USHR_INT_2ADDR:
1506      shift_op = true;
1507      op = kOpLsr;
1508      break;
1509    default:
1510      LOG(FATAL) << "Invalid word arith op: " << opcode;
1511  }
1512  if (!is_div_rem) {
1513    if (unary) {
1514      rl_src1 = LoadValue(rl_src1, kCoreReg);
1515      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1516      OpRegReg(op, rl_result.reg, rl_src1.reg);
1517    } else {
1518      if (shift_op) {
1519        rl_src2 = LoadValue(rl_src2, kCoreReg);
1520        RegStorage t_reg = AllocTemp();
1521        OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1522        rl_src1 = LoadValue(rl_src1, kCoreReg);
1523        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1524        OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1525        FreeTemp(t_reg);
1526      } else {
1527        rl_src1 = LoadValue(rl_src1, kCoreReg);
1528        rl_src2 = LoadValue(rl_src2, kCoreReg);
1529        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1530        OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1531      }
1532    }
1533    StoreValue(rl_dest, rl_result);
1534  } else {
1535    bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1536    if (cu_->instruction_set == kMips) {
1537      rl_src1 = LoadValue(rl_src1, kCoreReg);
1538      rl_src2 = LoadValue(rl_src2, kCoreReg);
1539      if (check_zero) {
1540        GenDivZeroCheck(rl_src2.reg);
1541      }
1542      rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1543      done = true;
1544    } else if (cu_->instruction_set == kThumb2) {
1545      if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1546        // Use ARM SDIV instruction for division.  For remainder we also need to
1547        // calculate using a MUL and subtract.
1548        rl_src1 = LoadValue(rl_src1, kCoreReg);
1549        rl_src2 = LoadValue(rl_src2, kCoreReg);
1550        if (check_zero) {
1551          GenDivZeroCheck(rl_src2.reg);
1552        }
1553        rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1554        done = true;
1555      }
1556    }
1557
1558    // If we haven't already generated the code use the callout function.
1559    if (!done) {
1560      ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pIdivmod);
1561      FlushAllRegs();   /* Send everything to home location */
1562      LoadValueDirectFixed(rl_src2, TargetReg(kArg1));
1563      RegStorage r_tgt = CallHelperSetup(func_offset);
1564      LoadValueDirectFixed(rl_src1, TargetReg(kArg0));
1565      if (check_zero) {
1566        GenDivZeroCheck(TargetReg(kArg1));
1567      }
1568      // NOTE: callout here is not a safepoint.
1569      CallHelper(r_tgt, func_offset, false /* not a safepoint */);
1570      if (op == kOpDiv)
1571        rl_result = GetReturn(false);
1572      else
1573        rl_result = GetReturnAlt();
1574    }
1575    StoreValue(rl_dest, rl_result);
1576  }
1577}
1578
1579/*
1580 * The following are the first-level codegen routines that analyze the format
1581 * of each bytecode then either dispatch special purpose codegen routines
1582 * or produce corresponding Thumb instructions directly.
1583 */
1584
1585// Returns true if no more than two bits are set in 'x'.
1586static bool IsPopCountLE2(unsigned int x) {
1587  x &= x - 1;
1588  return (x & (x - 1)) == 0;
1589}
1590
1591// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1592// and store the result in 'rl_dest'.
1593bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1594                               RegLocation rl_src, RegLocation rl_dest, int lit) {
1595  if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1596    return false;
1597  }
1598  // No divide instruction for Arm, so check for more special cases
1599  if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1600    return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1601  }
1602  int k = LowestSetBit(lit);
1603  if (k >= 30) {
1604    // Avoid special cases.
1605    return false;
1606  }
1607  rl_src = LoadValue(rl_src, kCoreReg);
1608  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1609  if (is_div) {
1610    RegStorage t_reg = AllocTemp();
1611    if (lit == 2) {
1612      // Division by 2 is by far the most common division by constant.
1613      OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1614      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1615      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1616    } else {
1617      OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1618      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1619      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1620      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1621    }
1622  } else {
1623    RegStorage t_reg1 = AllocTemp();
1624    RegStorage t_reg2 = AllocTemp();
1625    if (lit == 2) {
1626      OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1627      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1628      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1629      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1630    } else {
1631      OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1632      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1633      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1634      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1635      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1636    }
1637  }
1638  StoreValue(rl_dest, rl_result);
1639  return true;
1640}
1641
1642// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1643// and store the result in 'rl_dest'.
1644bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1645  if (lit < 0) {
1646    return false;
1647  }
1648  if (lit == 0) {
1649    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1650    LoadConstant(rl_result.reg, 0);
1651    StoreValue(rl_dest, rl_result);
1652    return true;
1653  }
1654  if (lit == 1) {
1655    rl_src = LoadValue(rl_src, kCoreReg);
1656    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1657    OpRegCopy(rl_result.reg, rl_src.reg);
1658    StoreValue(rl_dest, rl_result);
1659    return true;
1660  }
1661  // There is RegRegRegShift on Arm, so check for more special cases
1662  if (cu_->instruction_set == kThumb2) {
1663    return EasyMultiply(rl_src, rl_dest, lit);
1664  }
1665  // Can we simplify this multiplication?
1666  bool power_of_two = false;
1667  bool pop_count_le2 = false;
1668  bool power_of_two_minus_one = false;
1669  if (IsPowerOfTwo(lit)) {
1670    power_of_two = true;
1671  } else if (IsPopCountLE2(lit)) {
1672    pop_count_le2 = true;
1673  } else if (IsPowerOfTwo(lit + 1)) {
1674    power_of_two_minus_one = true;
1675  } else {
1676    return false;
1677  }
1678  rl_src = LoadValue(rl_src, kCoreReg);
1679  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1680  if (power_of_two) {
1681    // Shift.
1682    OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
1683  } else if (pop_count_le2) {
1684    // Shift and add and shift.
1685    int first_bit = LowestSetBit(lit);
1686    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1687    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1688  } else {
1689    // Reverse subtract: (src << (shift + 1)) - src.
1690    DCHECK(power_of_two_minus_one);
1691    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1692    RegStorage t_reg = AllocTemp();
1693    OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
1694    OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1695  }
1696  StoreValue(rl_dest, rl_result);
1697  return true;
1698}
1699
1700void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1701                               int lit) {
1702  RegLocation rl_result;
1703  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1704  int shift_op = false;
1705  bool is_div = false;
1706
1707  switch (opcode) {
1708    case Instruction::RSUB_INT_LIT8:
1709    case Instruction::RSUB_INT: {
1710      rl_src = LoadValue(rl_src, kCoreReg);
1711      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1712      if (cu_->instruction_set == kThumb2) {
1713        OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1714      } else {
1715        OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1716        OpRegImm(kOpAdd, rl_result.reg, lit);
1717      }
1718      StoreValue(rl_dest, rl_result);
1719      return;
1720    }
1721
1722    case Instruction::SUB_INT:
1723    case Instruction::SUB_INT_2ADDR:
1724      lit = -lit;
1725      // Intended fallthrough
1726    case Instruction::ADD_INT:
1727    case Instruction::ADD_INT_2ADDR:
1728    case Instruction::ADD_INT_LIT8:
1729    case Instruction::ADD_INT_LIT16:
1730      op = kOpAdd;
1731      break;
1732    case Instruction::MUL_INT:
1733    case Instruction::MUL_INT_2ADDR:
1734    case Instruction::MUL_INT_LIT8:
1735    case Instruction::MUL_INT_LIT16: {
1736      if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1737        return;
1738      }
1739      op = kOpMul;
1740      break;
1741    }
1742    case Instruction::AND_INT:
1743    case Instruction::AND_INT_2ADDR:
1744    case Instruction::AND_INT_LIT8:
1745    case Instruction::AND_INT_LIT16:
1746      op = kOpAnd;
1747      break;
1748    case Instruction::OR_INT:
1749    case Instruction::OR_INT_2ADDR:
1750    case Instruction::OR_INT_LIT8:
1751    case Instruction::OR_INT_LIT16:
1752      op = kOpOr;
1753      break;
1754    case Instruction::XOR_INT:
1755    case Instruction::XOR_INT_2ADDR:
1756    case Instruction::XOR_INT_LIT8:
1757    case Instruction::XOR_INT_LIT16:
1758      op = kOpXor;
1759      break;
1760    case Instruction::SHL_INT_LIT8:
1761    case Instruction::SHL_INT:
1762    case Instruction::SHL_INT_2ADDR:
1763      lit &= 31;
1764      shift_op = true;
1765      op = kOpLsl;
1766      break;
1767    case Instruction::SHR_INT_LIT8:
1768    case Instruction::SHR_INT:
1769    case Instruction::SHR_INT_2ADDR:
1770      lit &= 31;
1771      shift_op = true;
1772      op = kOpAsr;
1773      break;
1774    case Instruction::USHR_INT_LIT8:
1775    case Instruction::USHR_INT:
1776    case Instruction::USHR_INT_2ADDR:
1777      lit &= 31;
1778      shift_op = true;
1779      op = kOpLsr;
1780      break;
1781
1782    case Instruction::DIV_INT:
1783    case Instruction::DIV_INT_2ADDR:
1784    case Instruction::DIV_INT_LIT8:
1785    case Instruction::DIV_INT_LIT16:
1786    case Instruction::REM_INT:
1787    case Instruction::REM_INT_2ADDR:
1788    case Instruction::REM_INT_LIT8:
1789    case Instruction::REM_INT_LIT16: {
1790      if (lit == 0) {
1791        GenDivZeroException();
1792        return;
1793      }
1794      if ((opcode == Instruction::DIV_INT) ||
1795          (opcode == Instruction::DIV_INT_2ADDR) ||
1796          (opcode == Instruction::DIV_INT_LIT8) ||
1797          (opcode == Instruction::DIV_INT_LIT16)) {
1798        is_div = true;
1799      } else {
1800        is_div = false;
1801      }
1802      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1803        return;
1804      }
1805
1806      bool done = false;
1807      if (cu_->instruction_set == kMips) {
1808        rl_src = LoadValue(rl_src, kCoreReg);
1809        rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1810        done = true;
1811      } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1812        rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1813        done = true;
1814      } else if (cu_->instruction_set == kThumb2) {
1815        if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1816          // Use ARM SDIV instruction for division.  For remainder we also need to
1817          // calculate using a MUL and subtract.
1818          rl_src = LoadValue(rl_src, kCoreReg);
1819          rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1820          done = true;
1821        }
1822      }
1823
1824      if (!done) {
1825        FlushAllRegs();   /* Everything to home location. */
1826        LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1827        Clobber(TargetReg(kArg0));
1828        ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pIdivmod);
1829        CallRuntimeHelperRegImm(func_offset, TargetReg(kArg0), lit, false);
1830        if (is_div)
1831          rl_result = GetReturn(false);
1832        else
1833          rl_result = GetReturnAlt();
1834      }
1835      StoreValue(rl_dest, rl_result);
1836      return;
1837    }
1838    default:
1839      LOG(FATAL) << "Unexpected opcode " << opcode;
1840  }
1841  rl_src = LoadValue(rl_src, kCoreReg);
1842  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1843  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1844  if (shift_op && (lit == 0)) {
1845    OpRegCopy(rl_result.reg, rl_src.reg);
1846  } else {
1847    OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
1848  }
1849  StoreValue(rl_dest, rl_result);
1850}
1851
1852void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
1853                             RegLocation rl_src1, RegLocation rl_src2) {
1854  RegLocation rl_result;
1855  OpKind first_op = kOpBkpt;
1856  OpKind second_op = kOpBkpt;
1857  bool call_out = false;
1858  bool check_zero = false;
1859  ThreadOffset<4> func_offset(-1);
1860  int ret_reg = TargetReg(kRet0).GetReg();
1861
1862  switch (opcode) {
1863    case Instruction::NOT_LONG:
1864      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1865      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1866      // Check for destructive overlap
1867      if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
1868        RegStorage t_reg = AllocTemp();
1869        OpRegCopy(t_reg, rl_src2.reg.GetHigh());
1870        OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1871        OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
1872        FreeTemp(t_reg);
1873      } else {
1874        OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1875        OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
1876      }
1877      StoreValueWide(rl_dest, rl_result);
1878      return;
1879    case Instruction::ADD_LONG:
1880    case Instruction::ADD_LONG_2ADDR:
1881      if (cu_->instruction_set != kThumb2) {
1882        GenAddLong(opcode, rl_dest, rl_src1, rl_src2);
1883        return;
1884      }
1885      first_op = kOpAdd;
1886      second_op = kOpAdc;
1887      break;
1888    case Instruction::SUB_LONG:
1889    case Instruction::SUB_LONG_2ADDR:
1890      if (cu_->instruction_set != kThumb2) {
1891        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1892        return;
1893      }
1894      first_op = kOpSub;
1895      second_op = kOpSbc;
1896      break;
1897    case Instruction::MUL_LONG:
1898    case Instruction::MUL_LONG_2ADDR:
1899      if (cu_->instruction_set != kMips) {
1900        GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
1901        return;
1902      } else {
1903        call_out = true;
1904        ret_reg = TargetReg(kRet0).GetReg();
1905        func_offset = QUICK_ENTRYPOINT_OFFSET(4, pLmul);
1906      }
1907      break;
1908    case Instruction::DIV_LONG:
1909    case Instruction::DIV_LONG_2ADDR:
1910      call_out = true;
1911      check_zero = true;
1912      ret_reg = TargetReg(kRet0).GetReg();
1913      func_offset = QUICK_ENTRYPOINT_OFFSET(4, pLdiv);
1914      break;
1915    case Instruction::REM_LONG:
1916    case Instruction::REM_LONG_2ADDR:
1917      call_out = true;
1918      check_zero = true;
1919      func_offset = QUICK_ENTRYPOINT_OFFSET(4, pLmod);
1920      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
1921      ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2).GetReg() : TargetReg(kRet0).GetReg();
1922      break;
1923    case Instruction::AND_LONG_2ADDR:
1924    case Instruction::AND_LONG:
1925      if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1926        return GenAndLong(opcode, rl_dest, rl_src1, rl_src2);
1927      }
1928      first_op = kOpAnd;
1929      second_op = kOpAnd;
1930      break;
1931    case Instruction::OR_LONG:
1932    case Instruction::OR_LONG_2ADDR:
1933      if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1934        GenOrLong(opcode, rl_dest, rl_src1, rl_src2);
1935        return;
1936      }
1937      first_op = kOpOr;
1938      second_op = kOpOr;
1939      break;
1940    case Instruction::XOR_LONG:
1941    case Instruction::XOR_LONG_2ADDR:
1942      if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1943        GenXorLong(opcode, rl_dest, rl_src1, rl_src2);
1944        return;
1945      }
1946      first_op = kOpXor;
1947      second_op = kOpXor;
1948      break;
1949    case Instruction::NEG_LONG: {
1950      GenNegLong(rl_dest, rl_src2);
1951      return;
1952    }
1953    default:
1954      LOG(FATAL) << "Invalid long arith op";
1955  }
1956  if (!call_out) {
1957    GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
1958  } else {
1959    FlushAllRegs();   /* Send everything to home location */
1960    if (check_zero) {
1961      RegStorage r_tmp1 = RegStorage::MakeRegPair(TargetReg(kArg0), TargetReg(kArg1));
1962      RegStorage r_tmp2 = RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3));
1963      LoadValueDirectWideFixed(rl_src2, r_tmp2);
1964      RegStorage r_tgt = CallHelperSetup(func_offset);
1965      GenDivZeroCheckWide(RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3)));
1966      LoadValueDirectWideFixed(rl_src1, r_tmp1);
1967      // NOTE: callout here is not a safepoint
1968      CallHelper(r_tgt, func_offset, false /* not safepoint */);
1969    } else {
1970      CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false);
1971    }
1972    // Adjust return regs in to handle case of rem returning kArg2/kArg3
1973    if (ret_reg == TargetReg(kRet0).GetReg())
1974      rl_result = GetReturnWide(false);
1975    else
1976      rl_result = GetReturnWideAlt();
1977    StoreValueWide(rl_dest, rl_result);
1978  }
1979}
1980
1981void Mir2Lir::GenConversionCall(ThreadOffset<4> func_offset,
1982                                RegLocation rl_dest, RegLocation rl_src) {
1983  /*
1984   * Don't optimize the register usage since it calls out to support
1985   * functions
1986   */
1987  FlushAllRegs();   /* Send everything to home location */
1988  CallRuntimeHelperRegLocation(func_offset, rl_src, false);
1989  if (rl_dest.wide) {
1990    RegLocation rl_result;
1991    rl_result = GetReturnWide(rl_dest.fp);
1992    StoreValueWide(rl_dest, rl_result);
1993  } else {
1994    RegLocation rl_result;
1995    rl_result = GetReturn(rl_dest.fp);
1996    StoreValue(rl_dest, rl_result);
1997  }
1998}
1999
2000/* Check if we need to check for pending suspend request */
2001void Mir2Lir::GenSuspendTest(int opt_flags) {
2002  if (Runtime::Current()->ExplicitSuspendChecks()) {
2003    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2004      return;
2005    }
2006    FlushAllRegs();
2007    LIR* branch = OpTestSuspend(NULL);
2008    LIR* ret_lab = NewLIR0(kPseudoTargetLabel);
2009    LIR* target = RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, WrapPointer(ret_lab),
2010                         current_dalvik_offset_);
2011    branch->target = target;
2012    suspend_launchpads_.Insert(target);
2013  } else {
2014    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2015      return;
2016    }
2017    FlushAllRegs();     // TODO: needed?
2018    LIR* inst = CheckSuspendUsingLoad();
2019    MarkSafepointPC(inst);
2020  }
2021}
2022
2023/* Check if we need to check for pending suspend request */
2024void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
2025  if (Runtime::Current()->ExplicitSuspendChecks()) {
2026    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2027      OpUnconditionalBranch(target);
2028      return;
2029    }
2030    OpTestSuspend(target);
2031    LIR* launch_pad =
2032        RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, WrapPointer(target),
2033               current_dalvik_offset_);
2034    FlushAllRegs();
2035    OpUnconditionalBranch(launch_pad);
2036    suspend_launchpads_.Insert(launch_pad);
2037  } else {
2038    // For the implicit suspend check, just perform the trigger
2039    // load and branch to the target.
2040    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2041      OpUnconditionalBranch(target);
2042      return;
2043    }
2044    FlushAllRegs();
2045    LIR* inst = CheckSuspendUsingLoad();
2046    MarkSafepointPC(inst);
2047    OpUnconditionalBranch(target);
2048  }
2049}
2050
2051/* Call out to helper assembly routine that will null check obj and then lock it. */
2052void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
2053  FlushAllRegs();
2054  CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pLockObject), rl_src, true);
2055}
2056
2057/* Call out to helper assembly routine that will null check obj and then unlock it. */
2058void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2059  FlushAllRegs();
2060  CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject), rl_src, true);
2061}
2062
2063/* Generic code for generating a wide constant into a VR. */
2064void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2065  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2066  LoadConstantWide(rl_result.reg, value);
2067  StoreValueWide(rl_dest, rl_result);
2068}
2069
2070}  // namespace art
2071