gen_common.cc revision d9cb8ae2ed78f957a773af61759432d7a7bf78af
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include "dex/compiler_ir.h"
17#include "dex/compiler_internals.h"
18#include "dex/quick/arm/arm_lir.h"
19#include "dex/quick/mir_to_lir-inl.h"
20#include "entrypoints/quick/quick_entrypoints.h"
21#include "mirror/array.h"
22#include "mirror/object_array-inl.h"
23#include "mirror/object-inl.h"
24#include "verifier/method_verifier.h"
25#include <functional>
26
27namespace art {
28
29// Shortcuts to repeatedly used long types.
30typedef mirror::ObjectArray<mirror::Object> ObjArray;
31typedef mirror::ObjectArray<mirror::Class> ClassArray;
32
33/*
34 * This source files contains "gen" codegen routines that should
35 * be applicable to most targets.  Only mid-level support utilities
36 * and "op" calls may be used here.
37 */
38
39/*
40 * Generate a kPseudoBarrier marker to indicate the boundary of special
41 * blocks.
42 */
43void Mir2Lir::GenBarrier() {
44  LIR* barrier = NewLIR0(kPseudoBarrier);
45  /* Mark all resources as being clobbered */
46  DCHECK(!barrier->flags.use_def_invalid);
47  barrier->u.m.def_mask = &kEncodeAll;
48}
49
50void Mir2Lir::GenDivZeroException() {
51  LIR* branch = OpUnconditionalBranch(nullptr);
52  AddDivZeroCheckSlowPath(branch);
53}
54
55void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
56  LIR* branch = OpCondBranch(c_code, nullptr);
57  AddDivZeroCheckSlowPath(branch);
58}
59
60void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
61  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
62  AddDivZeroCheckSlowPath(branch);
63}
64
65void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
66  class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
67   public:
68    DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
69        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
70    }
71
72    void Compile() OVERRIDE {
73      m2l_->ResetRegPool();
74      m2l_->ResetDefTracking();
75      GenerateTargetLabel(kPseudoThrowTarget);
76      if (m2l_->cu_->target64) {
77        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowDivZero), true);
78      } else {
79        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowDivZero), true);
80      }
81    }
82  };
83
84  AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
85}
86
87void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
88  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
89   public:
90    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
91        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
92          index_(index), length_(length) {
93    }
94
95    void Compile() OVERRIDE {
96      m2l_->ResetRegPool();
97      m2l_->ResetDefTracking();
98      GenerateTargetLabel(kPseudoThrowTarget);
99      if (m2l_->cu_->target64) {
100        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
101                                      index_, length_, true);
102      } else {
103        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
104                                      index_, length_, true);
105      }
106    }
107
108   private:
109    const RegStorage index_;
110    const RegStorage length_;
111  };
112
113  LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
114  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
115}
116
117void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
118  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
119   public:
120    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
121        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
122          index_(index), length_(length) {
123    }
124
125    void Compile() OVERRIDE {
126      m2l_->ResetRegPool();
127      m2l_->ResetDefTracking();
128      GenerateTargetLabel(kPseudoThrowTarget);
129
130      RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
131      RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
132
133      m2l_->OpRegCopy(arg1_32, length_);
134      m2l_->LoadConstant(arg0_32, index_);
135      if (m2l_->cu_->target64) {
136        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
137                                      arg0_32, arg1_32, true);
138      } else {
139        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
140                                      arg0_32, arg1_32, true);
141      }
142    }
143
144   private:
145    const int32_t index_;
146    const RegStorage length_;
147  };
148
149  LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
150  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
151}
152
153LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
154  class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
155   public:
156    NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
157        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
158    }
159
160    void Compile() OVERRIDE {
161      m2l_->ResetRegPool();
162      m2l_->ResetDefTracking();
163      GenerateTargetLabel(kPseudoThrowTarget);
164      if (m2l_->cu_->target64) {
165        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pThrowNullPointer), true);
166      } else {
167        m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowNullPointer), true);
168      }
169    }
170  };
171
172  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
173  AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
174  return branch;
175}
176
177/* Perform null-check on a register.  */
178LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
179  if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
180    return GenExplicitNullCheck(m_reg, opt_flags);
181  }
182  return nullptr;
183}
184
185/* Perform an explicit null-check on a register.  */
186LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
187  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
188    return NULL;
189  }
190  return GenNullCheck(m_reg);
191}
192
193void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
194  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
195    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
196      return;
197    }
198    MarkSafepointPC(last_lir_insn_);
199  }
200}
201
202void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
203  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
204    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
205      return;
206    }
207    MarkSafepointPCAfter(after);
208  }
209}
210
211void Mir2Lir::MarkPossibleStackOverflowException() {
212  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitStackOverflowChecks()) {
213    MarkSafepointPC(last_lir_insn_);
214  }
215}
216
217void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
218  if (!cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
219    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
220      return;
221    }
222    // Force an implicit null check by performing a memory operation (load) from the given
223    // register with offset 0.  This will cause a signal if the register contains 0 (null).
224    RegStorage tmp = AllocTemp();
225    // TODO: for Mips, would be best to use rZERO as the bogus register target.
226    LIR* load = Load32Disp(reg, 0, tmp);
227    FreeTemp(tmp);
228    MarkSafepointPC(load);
229  }
230}
231
232void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
233                                  RegLocation rl_src2, LIR* taken,
234                                  LIR* fall_through) {
235  DCHECK(!rl_src1.fp);
236  DCHECK(!rl_src2.fp);
237  ConditionCode cond;
238  switch (opcode) {
239    case Instruction::IF_EQ:
240      cond = kCondEq;
241      break;
242    case Instruction::IF_NE:
243      cond = kCondNe;
244      break;
245    case Instruction::IF_LT:
246      cond = kCondLt;
247      break;
248    case Instruction::IF_GE:
249      cond = kCondGe;
250      break;
251    case Instruction::IF_GT:
252      cond = kCondGt;
253      break;
254    case Instruction::IF_LE:
255      cond = kCondLe;
256      break;
257    default:
258      cond = static_cast<ConditionCode>(0);
259      LOG(FATAL) << "Unexpected opcode " << opcode;
260  }
261
262  // Normalize such that if either operand is constant, src2 will be constant
263  if (rl_src1.is_const) {
264    RegLocation rl_temp = rl_src1;
265    rl_src1 = rl_src2;
266    rl_src2 = rl_temp;
267    cond = FlipComparisonOrder(cond);
268  }
269
270  rl_src1 = LoadValue(rl_src1);
271  // Is this really an immediate comparison?
272  if (rl_src2.is_const) {
273    // If it's already live in a register or not easily materialized, just keep going
274    RegLocation rl_temp = UpdateLoc(rl_src2);
275    if ((rl_temp.location == kLocDalvikFrame) &&
276        InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) {
277      // OK - convert this to a compare immediate and branch
278      OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
279      return;
280    }
281  }
282  rl_src2 = LoadValue(rl_src2);
283  OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
284}
285
286void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
287                                      LIR* fall_through) {
288  ConditionCode cond;
289  DCHECK(!rl_src.fp);
290  rl_src = LoadValue(rl_src);
291  switch (opcode) {
292    case Instruction::IF_EQZ:
293      cond = kCondEq;
294      break;
295    case Instruction::IF_NEZ:
296      cond = kCondNe;
297      break;
298    case Instruction::IF_LTZ:
299      cond = kCondLt;
300      break;
301    case Instruction::IF_GEZ:
302      cond = kCondGe;
303      break;
304    case Instruction::IF_GTZ:
305      cond = kCondGt;
306      break;
307    case Instruction::IF_LEZ:
308      cond = kCondLe;
309      break;
310    default:
311      cond = static_cast<ConditionCode>(0);
312      LOG(FATAL) << "Unexpected opcode " << opcode;
313  }
314  OpCmpImmBranch(cond, rl_src.reg, 0, taken);
315}
316
317void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
318  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
319  if (rl_src.location == kLocPhysReg) {
320    OpRegCopy(rl_result.reg, rl_src.reg);
321  } else {
322    LoadValueDirect(rl_src, rl_result.reg.GetLow());
323  }
324  OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
325  StoreValueWide(rl_dest, rl_result);
326}
327
328void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
329                              RegLocation rl_src) {
330  rl_src = LoadValue(rl_src, kCoreReg);
331  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
332  OpKind op = kOpInvalid;
333  switch (opcode) {
334    case Instruction::INT_TO_BYTE:
335      op = kOp2Byte;
336      break;
337    case Instruction::INT_TO_SHORT:
338       op = kOp2Short;
339       break;
340    case Instruction::INT_TO_CHAR:
341       op = kOp2Char;
342       break;
343    default:
344      LOG(ERROR) << "Bad int conversion type";
345  }
346  OpRegReg(op, rl_result.reg, rl_src.reg);
347  StoreValue(rl_dest, rl_result);
348}
349
350template <size_t pointer_size>
351static void GenNewArrayImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu,
352                            uint32_t type_idx, RegLocation rl_dest,
353                            RegLocation rl_src) {
354  mir_to_lir->FlushAllRegs();  /* Everything to home location */
355  ThreadOffset<pointer_size> func_offset(-1);
356  const DexFile* dex_file = cu->dex_file;
357  CompilerDriver* driver = cu->compiler_driver;
358  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *dex_file,
359                                                      type_idx)) {
360    bool is_type_initialized;  // Ignored as an array does not have an initializer.
361    bool use_direct_type_ptr;
362    uintptr_t direct_type_ptr;
363    bool is_finalizable;
364    if (kEmbedClassInCode &&
365        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
366                                   &direct_type_ptr, &is_finalizable)) {
367      // The fast path.
368      if (!use_direct_type_ptr) {
369        mir_to_lir->LoadClassType(type_idx, kArg0);
370        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
371        mir_to_lir->CallRuntimeHelperRegMethodRegLocation(func_offset,
372                                                          mir_to_lir->TargetReg(kArg0, kNotWide),
373                                                          rl_src, true);
374      } else {
375        // Use the direct pointer.
376        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayResolved);
377        mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, direct_type_ptr, rl_src,
378                                                          true);
379      }
380    } else {
381      // The slow path.
382      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArray);
383      mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
384    }
385    DCHECK_NE(func_offset.Int32Value(), -1);
386  } else {
387    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocArrayWithAccessCheck);
388    mir_to_lir->CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
389  }
390  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
391  mir_to_lir->StoreValue(rl_dest, rl_result);
392}
393
394/*
395 * Let helper function take care of everything.  Will call
396 * Array::AllocFromCode(type_idx, method, count);
397 * Note: AllocFromCode will handle checks for errNegativeArraySize.
398 */
399void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
400                          RegLocation rl_src) {
401  if (cu_->target64) {
402    GenNewArrayImpl<8>(this, cu_, type_idx, rl_dest, rl_src);
403  } else {
404    GenNewArrayImpl<4>(this, cu_, type_idx, rl_dest, rl_src);
405  }
406}
407
408template <size_t pointer_size>
409static void GenFilledNewArrayCall(Mir2Lir* mir_to_lir, CompilationUnit* cu, int elems, int type_idx) {
410  ThreadOffset<pointer_size> func_offset(-1);
411  if (cu->compiler_driver->CanAccessTypeWithoutChecks(cu->method_idx, *cu->dex_file,
412                                                      type_idx)) {
413    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArray);
414  } else {
415    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pCheckAndAllocArrayWithAccessCheck);
416  }
417  mir_to_lir->CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true);
418}
419
420/*
421 * Similar to GenNewArray, but with post-allocation initialization.
422 * Verifier guarantees we're dealing with an array class.  Current
423 * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
424 * Current code also throws internal unimp if not 'L', '[' or 'I'.
425 */
426void Mir2Lir::GenFilledNewArray(CallInfo* info) {
427  int elems = info->num_arg_words;
428  int type_idx = info->index;
429  FlushAllRegs();  /* Everything to home location */
430  if (cu_->target64) {
431    GenFilledNewArrayCall<8>(this, cu_, elems, type_idx);
432  } else {
433    GenFilledNewArrayCall<4>(this, cu_, elems, type_idx);
434  }
435  FreeTemp(TargetReg(kArg2, kNotWide));
436  FreeTemp(TargetReg(kArg1, kNotWide));
437  /*
438   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
439   * return region.  Because AllocFromCode placed the new array
440   * in kRet0, we'll just lock it into place.  When debugger support is
441   * added, it may be necessary to additionally copy all return
442   * values to a home location in thread-local storage
443   */
444  RegStorage ref_reg = TargetReg(kRet0, kRef);
445  LockTemp(ref_reg);
446
447  // TODO: use the correct component size, currently all supported types
448  // share array alignment with ints (see comment at head of function)
449  size_t component_size = sizeof(int32_t);
450
451  // Having a range of 0 is legal
452  if (info->is_range && (elems > 0)) {
453    /*
454     * Bit of ugliness here.  We're going generate a mem copy loop
455     * on the register range, but it is possible that some regs
456     * in the range have been promoted.  This is unlikely, but
457     * before generating the copy, we'll just force a flush
458     * of any regs in the source range that have been promoted to
459     * home location.
460     */
461    for (int i = 0; i < elems; i++) {
462      RegLocation loc = UpdateLoc(info->args[i]);
463      if (loc.location == kLocPhysReg) {
464        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
465        Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
466      }
467    }
468    /*
469     * TUNING note: generated code here could be much improved, but
470     * this is an uncommon operation and isn't especially performance
471     * critical.
472     */
473    // This is addressing the stack, which may be out of the 4G area.
474    RegStorage r_src = AllocTempRef();
475    RegStorage r_dst = AllocTempRef();
476    RegStorage r_idx = AllocTempRef();  // Not really a reference, but match src/dst.
477    RegStorage r_val;
478    switch (cu_->instruction_set) {
479      case kThumb2:
480      case kArm64:
481        r_val = TargetReg(kLr, kNotWide);
482        break;
483      case kX86:
484      case kX86_64:
485        FreeTemp(ref_reg);
486        r_val = AllocTemp();
487        break;
488      case kMips:
489        r_val = AllocTemp();
490        break;
491      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
492    }
493    // Set up source pointer
494    RegLocation rl_first = info->args[0];
495    OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
496    // Set up the target pointer
497    OpRegRegImm(kOpAdd, r_dst, ref_reg,
498                mirror::Array::DataOffset(component_size).Int32Value());
499    // Set up the loop counter (known to be > 0)
500    LoadConstant(r_idx, elems - 1);
501    // Generate the copy loop.  Going backwards for convenience
502    LIR* target = NewLIR0(kPseudoTargetLabel);
503    // Copy next element
504    {
505      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
506      LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
507      // NOTE: No dalvik register annotation, local optimizations will be stopped
508      // by the loop boundaries.
509    }
510    StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
511    FreeTemp(r_val);
512    OpDecAndBranch(kCondGe, r_idx, target);
513    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
514      // Restore the target pointer
515      OpRegRegImm(kOpAdd, ref_reg, r_dst,
516                  -mirror::Array::DataOffset(component_size).Int32Value());
517    }
518  } else if (!info->is_range) {
519    // TUNING: interleave
520    for (int i = 0; i < elems; i++) {
521      RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
522      Store32Disp(ref_reg,
523                  mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
524      // If the LoadValue caused a temp to be allocated, free it
525      if (IsTemp(rl_arg.reg)) {
526        FreeTemp(rl_arg.reg);
527      }
528    }
529  }
530  if (info->result.location != kLocInvalid) {
531    StoreValue(info->result, GetReturn(kRefReg));
532  }
533}
534
535//
536// Slow path to ensure a class is initialized for sget/sput.
537//
538class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
539 public:
540  StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
541                      RegStorage r_base) :
542    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
543               storage_index_(storage_index), r_base_(r_base) {
544  }
545
546  void Compile() {
547    LIR* unresolved_target = GenerateTargetLabel();
548    uninit_->target = unresolved_target;
549    if (cu_->target64) {
550      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeStaticStorage),
551                                 storage_index_, true);
552    } else {
553      m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeStaticStorage),
554                                 storage_index_, true);
555    }
556    // Copy helper's result into r_base, a no-op on all but MIPS.
557    m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0, kRef));
558
559    m2l_->OpUnconditionalBranch(cont_);
560  }
561
562 private:
563  LIR* const uninit_;
564  const int storage_index_;
565  const RegStorage r_base_;
566};
567
568template <size_t pointer_size>
569static void GenSputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
570                        const MirSFieldLoweringInfo* field_info, RegLocation rl_src) {
571  ThreadOffset<pointer_size> setter_offset =
572      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Static)
573          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjStatic)
574              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Static));
575  mir_to_lir->CallRuntimeHelperImmRegLocation(setter_offset, field_info->FieldIndex(), rl_src,
576                                              true);
577}
578
579void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
580                      bool is_object) {
581  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
582  cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
583  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
584  if (!SLOW_FIELD_PATH && field_info.FastPut()) {
585    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
586    RegStorage r_base;
587    if (field_info.IsReferrersClass()) {
588      // Fast path, static storage base is this method's class
589      RegLocation rl_method = LoadCurrMethod();
590      r_base = AllocTempRef();
591      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
592                  kNotVolatile);
593      if (IsTemp(rl_method.reg)) {
594        FreeTemp(rl_method.reg);
595      }
596    } else {
597      // Medium path, static storage base in a different class which requires checks that the other
598      // class is initialized.
599      // TODO: remove initialized check now that we are initializing classes in the compiler driver.
600      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
601      // May do runtime call so everything to home locations.
602      FlushAllRegs();
603      // Using fixed register to sync with possible call to runtime support.
604      RegStorage r_method = TargetReg(kArg1, kRef);
605      LockTemp(r_method);
606      LoadCurrMethodDirect(r_method);
607      r_base = TargetReg(kArg0, kRef);
608      LockTemp(r_base);
609      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
610                  kNotVolatile);
611      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
612      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
613      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
614      if (!field_info.IsInitialized() &&
615          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
616        // Check if r_base is NULL or a not yet initialized class.
617
618        // The slow path is invoked if the r_base is NULL or the class pointed
619        // to by it is not initialized.
620        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
621        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
622        LockTemp(r_tmp);
623        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
624                                          mirror::Class::StatusOffset().Int32Value(),
625                                          mirror::Class::kStatusInitialized, NULL);
626        LIR* cont = NewLIR0(kPseudoTargetLabel);
627
628        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
629                                                     field_info.StorageIndex(), r_base));
630
631        FreeTemp(r_tmp);
632        // Ensure load of status and store of value don't re-order.
633        // TODO: Presumably the actual value store is control-dependent on the status load,
634        // and will thus not be reordered in any case, since stores are never speculated.
635        // Does later code "know" that the class is now initialized?  If so, we still
636        // need the barrier to guard later static loads.
637        GenMemBarrier(kLoadAny);
638      }
639      FreeTemp(r_method);
640    }
641    // rBase now holds static storage base
642    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
643    if (is_long_or_double) {
644      rl_src = LoadValueWide(rl_src, reg_class);
645    } else {
646      rl_src = LoadValue(rl_src, reg_class);
647    }
648    if (is_object) {
649      StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
650                   field_info.IsVolatile() ? kVolatile : kNotVolatile);
651    } else {
652      StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size,
653                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
654    }
655    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
656      MarkGCCard(rl_src.reg, r_base);
657    }
658    FreeTemp(r_base);
659  } else {
660    FlushAllRegs();  // Everything to home locations
661    if (cu_->target64) {
662      GenSputCall<8>(this, is_long_or_double, is_object, &field_info, rl_src);
663    } else {
664      GenSputCall<4>(this, is_long_or_double, is_object, &field_info, rl_src);
665    }
666  }
667}
668
669template <size_t pointer_size>
670static void GenSgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
671                        const MirSFieldLoweringInfo* field_info) {
672  ThreadOffset<pointer_size> getter_offset =
673      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Static)
674          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjStatic)
675              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Static));
676  mir_to_lir->CallRuntimeHelperImm(getter_offset, field_info->FieldIndex(), true);
677}
678
679void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
680                      bool is_long_or_double, bool is_object) {
681  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
682  cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
683  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
684  if (!SLOW_FIELD_PATH && field_info.FastGet()) {
685    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
686    RegStorage r_base;
687    if (field_info.IsReferrersClass()) {
688      // Fast path, static storage base is this method's class
689      RegLocation rl_method  = LoadCurrMethod();
690      r_base = AllocTempRef();
691      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
692                  kNotVolatile);
693    } else {
694      // Medium path, static storage base in a different class which requires checks that the other
695      // class is initialized
696      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
697      // May do runtime call so everything to home locations.
698      FlushAllRegs();
699      // Using fixed register to sync with possible call to runtime support.
700      RegStorage r_method = TargetReg(kArg1, kRef);
701      LockTemp(r_method);
702      LoadCurrMethodDirect(r_method);
703      r_base = TargetReg(kArg0, kRef);
704      LockTemp(r_base);
705      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
706                  kNotVolatile);
707      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
708      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
709      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
710      if (!field_info.IsInitialized() &&
711          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
712        // Check if r_base is NULL or a not yet initialized class.
713
714        // The slow path is invoked if the r_base is NULL or the class pointed
715        // to by it is not initialized.
716        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
717        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
718        LockTemp(r_tmp);
719        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
720                                          mirror::Class::StatusOffset().Int32Value(),
721                                          mirror::Class::kStatusInitialized, NULL);
722        LIR* cont = NewLIR0(kPseudoTargetLabel);
723
724        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
725                                                     field_info.StorageIndex(), r_base));
726
727        FreeTemp(r_tmp);
728        // Ensure load of status and load of value don't re-order.
729        GenMemBarrier(kLoadAny);
730      }
731      FreeTemp(r_method);
732    }
733    // r_base now holds static storage base
734    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
735    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
736
737    int field_offset = field_info.FieldOffset().Int32Value();
738    if (is_object) {
739      LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
740          kNotVolatile);
741    } else {
742      LoadBaseDisp(r_base, field_offset, rl_result.reg, load_size, field_info.IsVolatile() ?
743          kVolatile : kNotVolatile);
744    }
745    FreeTemp(r_base);
746
747    if (is_long_or_double) {
748      StoreValueWide(rl_dest, rl_result);
749    } else {
750      StoreValue(rl_dest, rl_result);
751    }
752  } else {
753    FlushAllRegs();  // Everything to home locations
754    if (cu_->target64) {
755      GenSgetCall<8>(this, is_long_or_double, is_object, &field_info);
756    } else {
757      GenSgetCall<4>(this, is_long_or_double, is_object, &field_info);
758    }
759    // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
760    if (is_long_or_double) {
761      RegLocation rl_result = GetReturnWide(kCoreReg);
762      StoreValueWide(rl_dest, rl_result);
763    } else {
764      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
765      StoreValue(rl_dest, rl_result);
766    }
767  }
768}
769
770// Generate code for all slow paths.
771void Mir2Lir::HandleSlowPaths() {
772  // We should check slow_paths_.Size() every time, because a new slow path
773  // may be created during slowpath->Compile().
774  for (size_t i = 0; i < slow_paths_.Size(); ++i) {
775    LIRSlowPath* slowpath = slow_paths_.Get(i);
776    slowpath->Compile();
777  }
778  slow_paths_.Reset();
779}
780
781template <size_t pointer_size>
782static void GenIgetCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
783                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj) {
784  ThreadOffset<pointer_size> getter_offset =
785      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet64Instance)
786          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pGetObjInstance)
787              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pGet32Instance));
788  // Second argument of pGetXXInstance is always a reference.
789  DCHECK_EQ(static_cast<unsigned int>(rl_obj.wide), 0U);
790  mir_to_lir->CallRuntimeHelperImmRegLocation(getter_offset, field_info->FieldIndex(), rl_obj,
791                                              true);
792}
793
794void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
795                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
796                      bool is_object) {
797  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
798  cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
799  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
800  if (!SLOW_FIELD_PATH && field_info.FastGet()) {
801    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
802    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
803    rl_obj = LoadValue(rl_obj, kRefReg);
804    GenNullCheck(rl_obj.reg, opt_flags);
805    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
806    int field_offset = field_info.FieldOffset().Int32Value();
807    LIR* load_lir;
808    if (is_object) {
809      load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
810          kVolatile : kNotVolatile);
811    } else {
812      load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, load_size,
813                              field_info.IsVolatile() ? kVolatile : kNotVolatile);
814    }
815    MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
816    if (is_long_or_double) {
817      StoreValueWide(rl_dest, rl_result);
818    } else {
819      StoreValue(rl_dest, rl_result);
820    }
821  } else {
822    if (cu_->target64) {
823      GenIgetCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj);
824    } else {
825      GenIgetCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj);
826    }
827    // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
828    if (is_long_or_double) {
829      RegLocation rl_result = GetReturnWide(kCoreReg);
830      StoreValueWide(rl_dest, rl_result);
831    } else {
832      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
833      StoreValue(rl_dest, rl_result);
834    }
835  }
836}
837
838template <size_t pointer_size>
839static void GenIputCall(Mir2Lir* mir_to_lir, bool is_long_or_double, bool is_object,
840                        const MirIFieldLoweringInfo* field_info, RegLocation rl_obj,
841                        RegLocation rl_src) {
842  ThreadOffset<pointer_size> setter_offset =
843      is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet64Instance)
844          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pSetObjInstance)
845              : QUICK_ENTRYPOINT_OFFSET(pointer_size, pSet32Instance));
846  mir_to_lir->CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_info->FieldIndex(),
847                                                         rl_obj, rl_src, true);
848}
849
850void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
851                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
852                      bool is_object) {
853  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
854  cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
855  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
856  if (!SLOW_FIELD_PATH && field_info.FastPut()) {
857    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
858    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
859    rl_obj = LoadValue(rl_obj, kRefReg);
860    if (is_long_or_double) {
861      rl_src = LoadValueWide(rl_src, reg_class);
862    } else {
863      rl_src = LoadValue(rl_src, reg_class);
864    }
865    GenNullCheck(rl_obj.reg, opt_flags);
866    int field_offset = field_info.FieldOffset().Int32Value();
867    LIR* store;
868    if (is_object) {
869      store = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
870          kVolatile : kNotVolatile);
871    } else {
872      store = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, store_size,
873                            field_info.IsVolatile() ? kVolatile : kNotVolatile);
874    }
875    MarkPossibleNullPointerExceptionAfter(opt_flags, store);
876    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
877      MarkGCCard(rl_src.reg, rl_obj.reg);
878    }
879  } else {
880    if (cu_->target64) {
881      GenIputCall<8>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
882    } else {
883      GenIputCall<4>(this, is_long_or_double, is_object, &field_info, rl_obj, rl_src);
884    }
885  }
886}
887
888template <size_t pointer_size>
889static void GenArrayObjPutCall(Mir2Lir* mir_to_lir, bool needs_range_check, bool needs_null_check,
890                               RegLocation rl_array, RegLocation rl_index, RegLocation rl_src) {
891  ThreadOffset<pointer_size> helper = needs_range_check
892        ? (needs_null_check ? QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithNullAndBoundCheck)
893                            : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObjectWithBoundCheck))
894        : QUICK_ENTRYPOINT_OFFSET(pointer_size, pAputObject);
895  mir_to_lir->CallRuntimeHelperRegLocationRegLocationRegLocation(helper, rl_array, rl_index, rl_src,
896                                                                 true);
897}
898
899void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
900                             RegLocation rl_src) {
901  bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
902  bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
903      (opt_flags & MIR_IGNORE_NULL_CHECK));
904  if (cu_->target64) {
905    GenArrayObjPutCall<8>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
906  } else {
907    GenArrayObjPutCall<4>(this, needs_range_check, needs_null_check, rl_array, rl_index, rl_src);
908  }
909}
910
911void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
912  RegLocation rl_method = LoadCurrMethod();
913  CheckRegLocation(rl_method);
914  RegStorage res_reg = AllocTempRef();
915  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
916  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
917                                                        *cu_->dex_file,
918                                                        type_idx)) {
919    // Call out to helper which resolves type and verifies access.
920    // Resolved type returned in kRet0.
921    if (cu_->target64) {
922      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
923                              type_idx, rl_method.reg, true);
924    } else {
925      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
926                              type_idx, rl_method.reg, true);
927    }
928    RegLocation rl_result = GetReturn(kRefReg);
929    StoreValue(rl_dest, rl_result);
930  } else {
931    // We're don't need access checks, load type from dex cache
932    int32_t dex_cache_offset =
933        mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
934    LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg, kNotVolatile);
935    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
936    LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
937    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
938        type_idx) || SLOW_TYPE_PATH) {
939      // Slow path, at runtime test if type is null and if so initialize
940      FlushAllRegs();
941      LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
942      LIR* cont = NewLIR0(kPseudoTargetLabel);
943
944      // Object to generate the slow path for class resolution.
945      class SlowPath : public LIRSlowPath {
946       public:
947        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
948                 const RegLocation& rl_method, const RegLocation& rl_result) :
949                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
950                   rl_method_(rl_method), rl_result_(rl_result) {
951        }
952
953        void Compile() {
954          GenerateTargetLabel();
955
956          if (cu_->target64) {
957            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
958                                          rl_method_.reg, true);
959          } else {
960            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
961                                                      rl_method_.reg, true);
962          }
963          m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetReg(kRet0, kRef));
964
965          m2l_->OpUnconditionalBranch(cont_);
966        }
967
968       private:
969        const int type_idx_;
970        const RegLocation rl_method_;
971        const RegLocation rl_result_;
972      };
973
974      // Add to list for future.
975      AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
976
977      StoreValue(rl_dest, rl_result);
978     } else {
979      // Fast path, we're done - just store result
980      StoreValue(rl_dest, rl_result);
981    }
982  }
983}
984
985void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
986  /* NOTE: Most strings should be available at compile time */
987  int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
988                                                                                      Int32Value();
989  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
990      *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
991    // slow path, resolve string if not in dex cache
992    FlushAllRegs();
993    LockCallTemps();  // Using explicit registers
994
995    // If the Method* is already in a register, we can save a copy.
996    RegLocation rl_method = mir_graph_->GetMethodLoc();
997    RegStorage r_method;
998    if (rl_method.location == kLocPhysReg) {
999      // A temp would conflict with register use below.
1000      DCHECK(!IsTemp(rl_method.reg));
1001      r_method = rl_method.reg;
1002    } else {
1003      r_method = TargetReg(kArg2, kRef);
1004      LoadCurrMethodDirect(r_method);
1005    }
1006    LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(),
1007                TargetReg(kArg0, kRef), kNotVolatile);
1008
1009    // Might call out to helper, which will return resolved string in kRet0
1010    LoadRefDisp(TargetReg(kArg0, kRef), offset_of_string, TargetReg(kRet0, kRef), kNotVolatile);
1011    LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0, kRef), 0, NULL);
1012    LIR* cont = NewLIR0(kPseudoTargetLabel);
1013
1014    {
1015      // Object to generate the slow path for string resolution.
1016      class SlowPath : public LIRSlowPath {
1017       public:
1018        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
1019          LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
1020          r_method_(r_method), string_idx_(string_idx) {
1021        }
1022
1023        void Compile() {
1024          GenerateTargetLabel();
1025          if (cu_->target64) {
1026            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pResolveString),
1027                                          r_method_, string_idx_, true);
1028          } else {
1029            m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pResolveString),
1030                                          r_method_, string_idx_, true);
1031          }
1032          m2l_->OpUnconditionalBranch(cont_);
1033        }
1034
1035       private:
1036         const RegStorage r_method_;
1037         const int32_t string_idx_;
1038      };
1039
1040      AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
1041    }
1042
1043    GenBarrier();
1044    StoreValue(rl_dest, GetReturn(kRefReg));
1045  } else {
1046    RegLocation rl_method = LoadCurrMethod();
1047    RegStorage res_reg = AllocTempRef();
1048    RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1049    LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg,
1050                kNotVolatile);
1051    LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
1052    StoreValue(rl_dest, rl_result);
1053  }
1054}
1055
1056template <size_t pointer_size>
1057static void GenNewInstanceImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, uint32_t type_idx,
1058                               RegLocation rl_dest) {
1059  mir_to_lir->FlushAllRegs();  /* Everything to home location */
1060  // alloc will always check for resolution, do we also need to verify
1061  // access because the verifier was unable to?
1062  ThreadOffset<pointer_size> func_offset(-1);
1063  const DexFile* dex_file = cu->dex_file;
1064  CompilerDriver* driver = cu->compiler_driver;
1065  if (driver->CanAccessInstantiableTypeWithoutChecks(
1066      cu->method_idx, *dex_file, type_idx)) {
1067    bool is_type_initialized;
1068    bool use_direct_type_ptr;
1069    uintptr_t direct_type_ptr;
1070    bool is_finalizable;
1071    if (kEmbedClassInCode &&
1072        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
1073                                   &direct_type_ptr, &is_finalizable) &&
1074                                   !is_finalizable) {
1075      // The fast path.
1076      if (!use_direct_type_ptr) {
1077        mir_to_lir->LoadClassType(type_idx, kArg0);
1078        if (!is_type_initialized) {
1079          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1080          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetReg(kArg0, kRef),
1081                                                 true);
1082        } else {
1083          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1084          mir_to_lir->CallRuntimeHelperRegMethod(func_offset, mir_to_lir->TargetReg(kArg0, kRef),
1085                                                 true);
1086        }
1087      } else {
1088        // Use the direct pointer.
1089        if (!is_type_initialized) {
1090          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectResolved);
1091          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1092        } else {
1093          func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectInitialized);
1094          mir_to_lir->CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
1095        }
1096      }
1097    } else {
1098      // The slow path.
1099      DCHECK_EQ(func_offset.Int32Value(), -1);
1100      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObject);
1101      mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1102    }
1103    DCHECK_NE(func_offset.Int32Value(), -1);
1104  } else {
1105    func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pAllocObjectWithAccessCheck);
1106    mir_to_lir->CallRuntimeHelperImmMethod(func_offset, type_idx, true);
1107  }
1108  RegLocation rl_result = mir_to_lir->GetReturn(kRefReg);
1109  mir_to_lir->StoreValue(rl_dest, rl_result);
1110}
1111
1112/*
1113 * Let helper function take care of everything.  Will
1114 * call Class::NewInstanceFromCode(type_idx, method);
1115 */
1116void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
1117  if (cu_->target64) {
1118    GenNewInstanceImpl<8>(this, cu_, type_idx, rl_dest);
1119  } else {
1120    GenNewInstanceImpl<4>(this, cu_, type_idx, rl_dest);
1121  }
1122}
1123
1124void Mir2Lir::GenThrow(RegLocation rl_src) {
1125  FlushAllRegs();
1126  if (cu_->target64) {
1127    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pDeliverException), rl_src, true);
1128  } else {
1129    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pDeliverException), rl_src, true);
1130  }
1131}
1132
1133// For final classes there are no sub-classes to check and so we can answer the instance-of
1134// question with simple comparisons.
1135void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
1136                                 RegLocation rl_src) {
1137  // X86 has its own implementation.
1138  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1139
1140  RegLocation object = LoadValue(rl_src, kRefReg);
1141  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1142  RegStorage result_reg = rl_result.reg;
1143  if (IsSameReg(result_reg, object.reg)) {
1144    result_reg = AllocTypedTemp(false, kCoreReg);
1145    DCHECK(!IsSameReg(result_reg, object.reg));
1146  }
1147  LoadConstant(result_reg, 0);     // assume false
1148  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1149
1150  RegStorage check_class = AllocTypedTemp(false, kRefReg);
1151  RegStorage object_class = AllocTypedTemp(false, kRefReg);
1152
1153  LoadCurrMethodDirect(check_class);
1154  if (use_declaring_class) {
1155    LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
1156                kNotVolatile);
1157    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1158                kNotVolatile);
1159  } else {
1160    LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1161                check_class, kNotVolatile);
1162    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1163                kNotVolatile);
1164    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1165    LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
1166  }
1167
1168  LIR* ne_branchover = NULL;
1169  // FIXME: what should we be comparing here? compressed or decompressed references?
1170  if (cu_->instruction_set == kThumb2) {
1171    OpRegReg(kOpCmp, check_class, object_class);  // Same?
1172    LIR* it = OpIT(kCondEq, "");   // if-convert the test
1173    LoadConstant(result_reg, 1);     // .eq case - load true
1174    OpEndIT(it);
1175  } else {
1176    ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL);
1177    LoadConstant(result_reg, 1);     // eq case - load true
1178  }
1179  LIR* target = NewLIR0(kPseudoTargetLabel);
1180  null_branchover->target = target;
1181  if (ne_branchover != NULL) {
1182    ne_branchover->target = target;
1183  }
1184  FreeTemp(object_class);
1185  FreeTemp(check_class);
1186  if (IsTemp(result_reg)) {
1187    OpRegCopy(rl_result.reg, result_reg);
1188    FreeTemp(result_reg);
1189  }
1190  StoreValue(rl_dest, rl_result);
1191}
1192
1193void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1194                                         bool type_known_abstract, bool use_declaring_class,
1195                                         bool can_assume_type_is_in_dex_cache,
1196                                         uint32_t type_idx, RegLocation rl_dest,
1197                                         RegLocation rl_src) {
1198  // X86 has its own implementation.
1199  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1200
1201  FlushAllRegs();
1202  // May generate a call - use explicit registers
1203  LockCallTemps();
1204  RegStorage method_reg = TargetReg(kArg1, kRef);
1205  LoadCurrMethodDirect(method_reg);   // kArg1 <= current Method*
1206  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1207  if (needs_access_check) {
1208    // Check we have access to type_idx and if not throw IllegalAccessError,
1209    // returns Class* in kArg0
1210    if (cu_->target64) {
1211      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1212                           type_idx, true);
1213    } else {
1214      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1215                           type_idx, true);
1216    }
1217    OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1218    LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1219  } else if (use_declaring_class) {
1220    LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1221    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1222                class_reg, kNotVolatile);
1223  } else {
1224    // Load dex cache entry into class_reg (kArg2)
1225    LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1226    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1227                class_reg, kNotVolatile);
1228    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1229    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1230    if (!can_assume_type_is_in_dex_cache) {
1231      // Need to test presence of type in dex cache at runtime
1232      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1233      // Not resolved
1234      // Call out to helper, which will return resolved type in kRet0
1235      if (cu_->target64) {
1236        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx, true);
1237      } else {
1238        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
1239      }
1240      OpRegCopy(TargetReg(kArg2, kRef), TargetReg(kRet0, kRef));  // Align usage with fast path
1241      LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  /* reload Ref */
1242      // Rejoin code paths
1243      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1244      hop_branch->target = hop_target;
1245    }
1246  }
1247  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1248  RegLocation rl_result = GetReturn(kCoreReg);
1249  if (cu_->instruction_set == kMips) {
1250    // On MIPS rArg0 != rl_result, place false in result if branch is taken.
1251    LoadConstant(rl_result.reg, 0);
1252  }
1253  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, NULL);
1254
1255  /* load object->klass_ */
1256  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1257  LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1258              TargetReg(kArg1, kRef), kNotVolatile);
1259  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1260  LIR* branchover = NULL;
1261  if (type_known_final) {
1262    // rl_result == ref == null == 0.
1263    if (cu_->instruction_set == kThumb2) {
1264      OpRegReg(kOpCmp, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef));  // Same?
1265      LIR* it = OpIT(kCondEq, "E");   // if-convert the test
1266      LoadConstant(rl_result.reg, 1);     // .eq case - load true
1267      LoadConstant(rl_result.reg, 0);     // .ne case - load false
1268      OpEndIT(it);
1269    } else {
1270      LoadConstant(rl_result.reg, 0);     // ne case - load false
1271      branchover = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL);
1272      LoadConstant(rl_result.reg, 1);     // eq case - load true
1273    }
1274  } else {
1275    if (cu_->instruction_set == kThumb2) {
1276      RegStorage r_tgt = cu_->target64 ?
1277          LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial)) :
1278          LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1279      LIR* it = nullptr;
1280      if (!type_known_abstract) {
1281      /* Uses conditional nullification */
1282        OpRegReg(kOpCmp, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef));  // Same?
1283        it = OpIT(kCondEq, "EE");   // if-convert the test
1284        LoadConstant(TargetReg(kArg0, kNotWide), 1);     // .eq case - load true
1285      }
1286      OpRegCopy(TargetReg(kArg0, kRef), TargetReg(kArg2, kRef));    // .ne case - arg0 <= class
1287      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1288      if (it != nullptr) {
1289        OpEndIT(it);
1290      }
1291      FreeTemp(r_tgt);
1292    } else {
1293      if (!type_known_abstract) {
1294        /* Uses branchovers */
1295        LoadConstant(rl_result.reg, 1);     // assume true
1296        branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL);
1297      }
1298      RegStorage r_tgt = cu_->target64 ?
1299          LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial)) :
1300          LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
1301      OpRegCopy(TargetReg(kArg0, kRef), TargetReg(kArg2, kRef));    // .ne case - arg0 <= class
1302      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1303      FreeTemp(r_tgt);
1304    }
1305  }
1306  // TODO: only clobber when type isn't final?
1307  ClobberCallerSave();
1308  /* branch targets here */
1309  LIR* target = NewLIR0(kPseudoTargetLabel);
1310  StoreValue(rl_dest, rl_result);
1311  branch1->target = target;
1312  if (branchover != NULL) {
1313    branchover->target = target;
1314  }
1315}
1316
1317void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1318  bool type_known_final, type_known_abstract, use_declaring_class;
1319  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1320                                                                              *cu_->dex_file,
1321                                                                              type_idx,
1322                                                                              &type_known_final,
1323                                                                              &type_known_abstract,
1324                                                                              &use_declaring_class);
1325  bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1326      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1327
1328  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1329    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1330  } else {
1331    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1332                               use_declaring_class, can_assume_type_is_in_dex_cache,
1333                               type_idx, rl_dest, rl_src);
1334  }
1335}
1336
1337void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1338  bool type_known_final, type_known_abstract, use_declaring_class;
1339  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1340                                                                              *cu_->dex_file,
1341                                                                              type_idx,
1342                                                                              &type_known_final,
1343                                                                              &type_known_abstract,
1344                                                                              &use_declaring_class);
1345  // Note: currently type_known_final is unused, as optimizing will only improve the performance
1346  // of the exception throw path.
1347  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1348  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1349    // Verifier type analysis proved this check cast would never cause an exception.
1350    return;
1351  }
1352  FlushAllRegs();
1353  // May generate a call - use explicit registers
1354  LockCallTemps();
1355  RegStorage method_reg = TargetReg(kArg1, kRef);
1356  LoadCurrMethodDirect(method_reg);  // kArg1 <= current Method*
1357  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1358  if (needs_access_check) {
1359    // Check we have access to type_idx and if not throw IllegalAccessError,
1360    // returns Class* in kRet0
1361    // InitializeTypeAndVerifyAccess(idx, method)
1362    if (cu_->target64) {
1363      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
1364                           type_idx, true);
1365    } else {
1366      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
1367                           type_idx, true);
1368    }
1369    OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1370  } else if (use_declaring_class) {
1371    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1372                class_reg, kNotVolatile);
1373  } else {
1374    // Load dex cache entry into class_reg (kArg2)
1375    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1376                class_reg, kNotVolatile);
1377    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1378    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1379    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1380      // Need to test presence of type in dex cache at runtime
1381      LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1382      LIR* cont = NewLIR0(kPseudoTargetLabel);
1383
1384      // Slow path to initialize the type.  Executed if the type is NULL.
1385      class SlowPath : public LIRSlowPath {
1386       public:
1387        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1388                 const RegStorage class_reg) :
1389                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1390                   class_reg_(class_reg) {
1391        }
1392
1393        void Compile() {
1394          GenerateTargetLabel();
1395
1396          // Call out to helper, which will return resolved type in kArg0
1397          // InitializeTypeFromCode(idx, method)
1398          if (m2l_->cu_->target64) {
1399            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx_,
1400                                          m2l_->TargetReg(kArg1, kRef), true);
1401          } else {
1402            m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
1403                                          m2l_->TargetReg(kArg1, kRef), true);
1404          }
1405          m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1406          m2l_->OpUnconditionalBranch(cont_);
1407        }
1408
1409       public:
1410        const int type_idx_;
1411        const RegStorage class_reg_;
1412      };
1413
1414      AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
1415    }
1416  }
1417  // At this point, class_reg (kArg2) has class
1418  LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1419
1420  // Slow path for the case where the classes are not equal.  In this case we need
1421  // to call a helper function to do the check.
1422  class SlowPath : public LIRSlowPath {
1423   public:
1424    SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1425               LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1426    }
1427
1428    void Compile() {
1429      GenerateTargetLabel();
1430
1431      if (load_) {
1432        m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1433                          m2l_->TargetReg(kArg1, kRef), kNotVolatile);
1434      }
1435      if (m2l_->cu_->target64) {
1436        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pCheckCast),
1437                                      m2l_->TargetReg(kArg2, kRef), m2l_->TargetReg(kArg1, kRef),
1438                                      true);
1439      } else {
1440        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pCheckCast),
1441                                      m2l_->TargetReg(kArg2, kRef), m2l_->TargetReg(kArg1, kRef),
1442                                      true);
1443      }
1444
1445      m2l_->OpUnconditionalBranch(cont_);
1446    }
1447
1448   private:
1449    const bool load_;
1450  };
1451
1452  if (type_known_abstract) {
1453    // Easier case, run slow path if target is non-null (slow path will load from target)
1454    LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
1455    LIR* cont = NewLIR0(kPseudoTargetLabel);
1456    AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1457  } else {
1458    // Harder, more common case.  We need to generate a forward branch over the load
1459    // if the target is null.  If it's non-null we perform the load and branch to the
1460    // slow path if the classes are not equal.
1461
1462    /* Null is OK - continue */
1463    LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
1464    /* load object->klass_ */
1465    DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1466    LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1467                TargetReg(kArg1, kRef), kNotVolatile);
1468
1469    LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
1470    LIR* cont = NewLIR0(kPseudoTargetLabel);
1471
1472    // Add the slow path that will not perform load since this is already done.
1473    AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1474
1475    // Set the null check to branch to the continuation.
1476    branch1->target = cont;
1477  }
1478}
1479
1480void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1481                           RegLocation rl_src1, RegLocation rl_src2) {
1482  RegLocation rl_result;
1483  if (cu_->instruction_set == kThumb2) {
1484    /*
1485     * NOTE:  This is the one place in the code in which we might have
1486     * as many as six live temporary registers.  There are 5 in the normal
1487     * set for Arm.  Until we have spill capabilities, temporarily add
1488     * lr to the temp set.  It is safe to do this locally, but note that
1489     * lr is used explicitly elsewhere in the code generator and cannot
1490     * normally be used as a general temp register.
1491     */
1492    MarkTemp(TargetReg(kLr, kNotWide));   // Add lr to the temp pool
1493    FreeTemp(TargetReg(kLr, kNotWide));   // and make it available
1494  }
1495  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1496  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1497  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1498  // The longs may overlap - use intermediate temp if so
1499  if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1500    RegStorage t_reg = AllocTemp();
1501    OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1502    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1503    OpRegCopy(rl_result.reg.GetLow(), t_reg);
1504    FreeTemp(t_reg);
1505  } else {
1506    OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1507    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1508  }
1509  /*
1510   * NOTE: If rl_dest refers to a frame variable in a large frame, the
1511   * following StoreValueWide might need to allocate a temp register.
1512   * To further work around the lack of a spill capability, explicitly
1513   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1514   * Remove when spill is functional.
1515   */
1516  FreeRegLocTemps(rl_result, rl_src1);
1517  FreeRegLocTemps(rl_result, rl_src2);
1518  StoreValueWide(rl_dest, rl_result);
1519  if (cu_->instruction_set == kThumb2) {
1520    Clobber(TargetReg(kLr, kNotWide));
1521    UnmarkTemp(TargetReg(kLr, kNotWide));  // Remove lr from the temp pool
1522  }
1523}
1524
1525
1526template <size_t pointer_size>
1527static void GenShiftOpLongCall(Mir2Lir* mir_to_lir, Instruction::Code opcode, RegLocation rl_src1,
1528                               RegLocation rl_shift) {
1529  ThreadOffset<pointer_size> func_offset(-1);
1530
1531  switch (opcode) {
1532    case Instruction::SHL_LONG:
1533    case Instruction::SHL_LONG_2ADDR:
1534      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShlLong);
1535      break;
1536    case Instruction::SHR_LONG:
1537    case Instruction::SHR_LONG_2ADDR:
1538      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pShrLong);
1539      break;
1540    case Instruction::USHR_LONG:
1541    case Instruction::USHR_LONG_2ADDR:
1542      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pUshrLong);
1543      break;
1544    default:
1545      LOG(FATAL) << "Unexpected case";
1546  }
1547  mir_to_lir->FlushAllRegs();   /* Send everything to home location */
1548  mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false);
1549}
1550
1551void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1552                             RegLocation rl_src1, RegLocation rl_shift) {
1553  if (cu_->target64) {
1554    GenShiftOpLongCall<8>(this, opcode, rl_src1, rl_shift);
1555  } else {
1556    GenShiftOpLongCall<4>(this, opcode, rl_src1, rl_shift);
1557  }
1558  RegLocation rl_result = GetReturnWide(kCoreReg);
1559  StoreValueWide(rl_dest, rl_result);
1560}
1561
1562
1563void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1564                            RegLocation rl_src1, RegLocation rl_src2) {
1565  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1566  OpKind op = kOpBkpt;
1567  bool is_div_rem = false;
1568  bool check_zero = false;
1569  bool unary = false;
1570  RegLocation rl_result;
1571  bool shift_op = false;
1572  switch (opcode) {
1573    case Instruction::NEG_INT:
1574      op = kOpNeg;
1575      unary = true;
1576      break;
1577    case Instruction::NOT_INT:
1578      op = kOpMvn;
1579      unary = true;
1580      break;
1581    case Instruction::ADD_INT:
1582    case Instruction::ADD_INT_2ADDR:
1583      op = kOpAdd;
1584      break;
1585    case Instruction::SUB_INT:
1586    case Instruction::SUB_INT_2ADDR:
1587      op = kOpSub;
1588      break;
1589    case Instruction::MUL_INT:
1590    case Instruction::MUL_INT_2ADDR:
1591      op = kOpMul;
1592      break;
1593    case Instruction::DIV_INT:
1594    case Instruction::DIV_INT_2ADDR:
1595      check_zero = true;
1596      op = kOpDiv;
1597      is_div_rem = true;
1598      break;
1599    /* NOTE: returns in kArg1 */
1600    case Instruction::REM_INT:
1601    case Instruction::REM_INT_2ADDR:
1602      check_zero = true;
1603      op = kOpRem;
1604      is_div_rem = true;
1605      break;
1606    case Instruction::AND_INT:
1607    case Instruction::AND_INT_2ADDR:
1608      op = kOpAnd;
1609      break;
1610    case Instruction::OR_INT:
1611    case Instruction::OR_INT_2ADDR:
1612      op = kOpOr;
1613      break;
1614    case Instruction::XOR_INT:
1615    case Instruction::XOR_INT_2ADDR:
1616      op = kOpXor;
1617      break;
1618    case Instruction::SHL_INT:
1619    case Instruction::SHL_INT_2ADDR:
1620      shift_op = true;
1621      op = kOpLsl;
1622      break;
1623    case Instruction::SHR_INT:
1624    case Instruction::SHR_INT_2ADDR:
1625      shift_op = true;
1626      op = kOpAsr;
1627      break;
1628    case Instruction::USHR_INT:
1629    case Instruction::USHR_INT_2ADDR:
1630      shift_op = true;
1631      op = kOpLsr;
1632      break;
1633    default:
1634      LOG(FATAL) << "Invalid word arith op: " << opcode;
1635  }
1636  if (!is_div_rem) {
1637    if (unary) {
1638      rl_src1 = LoadValue(rl_src1, kCoreReg);
1639      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1640      OpRegReg(op, rl_result.reg, rl_src1.reg);
1641    } else {
1642      if ((shift_op) && (cu_->instruction_set != kArm64)) {
1643        rl_src2 = LoadValue(rl_src2, kCoreReg);
1644        RegStorage t_reg = AllocTemp();
1645        OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1646        rl_src1 = LoadValue(rl_src1, kCoreReg);
1647        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1648        OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1649        FreeTemp(t_reg);
1650      } else {
1651        rl_src1 = LoadValue(rl_src1, kCoreReg);
1652        rl_src2 = LoadValue(rl_src2, kCoreReg);
1653        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1654        OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1655      }
1656    }
1657    StoreValue(rl_dest, rl_result);
1658  } else {
1659    bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1660    if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1661      rl_src1 = LoadValue(rl_src1, kCoreReg);
1662      rl_src2 = LoadValue(rl_src2, kCoreReg);
1663      if (check_zero) {
1664        GenDivZeroCheck(rl_src2.reg);
1665      }
1666      rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1667      done = true;
1668    } else if (cu_->instruction_set == kThumb2) {
1669      if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1670        // Use ARM SDIV instruction for division.  For remainder we also need to
1671        // calculate using a MUL and subtract.
1672        rl_src1 = LoadValue(rl_src1, kCoreReg);
1673        rl_src2 = LoadValue(rl_src2, kCoreReg);
1674        if (check_zero) {
1675          GenDivZeroCheck(rl_src2.reg);
1676        }
1677        rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1678        done = true;
1679      }
1680    }
1681
1682    // If we haven't already generated the code use the callout function.
1683    if (!done) {
1684      FlushAllRegs();   /* Send everything to home location */
1685      LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
1686      RegStorage r_tgt = cu_->target64 ?
1687          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod)) :
1688          CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod));
1689      LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
1690      if (check_zero) {
1691        GenDivZeroCheck(TargetReg(kArg1, kNotWide));
1692      }
1693      // NOTE: callout here is not a safepoint.
1694      if (cu_->target64) {
1695        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), false /* not a safepoint */);
1696      } else {
1697        CallHelper(r_tgt, QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), false /* not a safepoint */);
1698      }
1699      if (op == kOpDiv)
1700        rl_result = GetReturn(kCoreReg);
1701      else
1702        rl_result = GetReturnAlt();
1703    }
1704    StoreValue(rl_dest, rl_result);
1705  }
1706}
1707
1708/*
1709 * The following are the first-level codegen routines that analyze the format
1710 * of each bytecode then either dispatch special purpose codegen routines
1711 * or produce corresponding Thumb instructions directly.
1712 */
1713
1714// Returns true if no more than two bits are set in 'x'.
1715static bool IsPopCountLE2(unsigned int x) {
1716  x &= x - 1;
1717  return (x & (x - 1)) == 0;
1718}
1719
1720// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1721// and store the result in 'rl_dest'.
1722bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1723                               RegLocation rl_src, RegLocation rl_dest, int lit) {
1724  if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1725    return false;
1726  }
1727  // No divide instruction for Arm, so check for more special cases
1728  if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1729    return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1730  }
1731  int k = LowestSetBit(lit);
1732  if (k >= 30) {
1733    // Avoid special cases.
1734    return false;
1735  }
1736  rl_src = LoadValue(rl_src, kCoreReg);
1737  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1738  if (is_div) {
1739    RegStorage t_reg = AllocTemp();
1740    if (lit == 2) {
1741      // Division by 2 is by far the most common division by constant.
1742      OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1743      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1744      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1745    } else {
1746      OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1747      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1748      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1749      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1750    }
1751  } else {
1752    RegStorage t_reg1 = AllocTemp();
1753    RegStorage t_reg2 = AllocTemp();
1754    if (lit == 2) {
1755      OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1756      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1757      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1758      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1759    } else {
1760      OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1761      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1762      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1763      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1764      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1765    }
1766  }
1767  StoreValue(rl_dest, rl_result);
1768  return true;
1769}
1770
1771// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1772// and store the result in 'rl_dest'.
1773bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1774  if (lit < 0) {
1775    return false;
1776  }
1777  if (lit == 0) {
1778    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1779    LoadConstant(rl_result.reg, 0);
1780    StoreValue(rl_dest, rl_result);
1781    return true;
1782  }
1783  if (lit == 1) {
1784    rl_src = LoadValue(rl_src, kCoreReg);
1785    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1786    OpRegCopy(rl_result.reg, rl_src.reg);
1787    StoreValue(rl_dest, rl_result);
1788    return true;
1789  }
1790  // There is RegRegRegShift on Arm, so check for more special cases
1791  if (cu_->instruction_set == kThumb2) {
1792    return EasyMultiply(rl_src, rl_dest, lit);
1793  }
1794  // Can we simplify this multiplication?
1795  bool power_of_two = false;
1796  bool pop_count_le2 = false;
1797  bool power_of_two_minus_one = false;
1798  if (IsPowerOfTwo(lit)) {
1799    power_of_two = true;
1800  } else if (IsPopCountLE2(lit)) {
1801    pop_count_le2 = true;
1802  } else if (IsPowerOfTwo(lit + 1)) {
1803    power_of_two_minus_one = true;
1804  } else {
1805    return false;
1806  }
1807  rl_src = LoadValue(rl_src, kCoreReg);
1808  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1809  if (power_of_two) {
1810    // Shift.
1811    OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
1812  } else if (pop_count_le2) {
1813    // Shift and add and shift.
1814    int first_bit = LowestSetBit(lit);
1815    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1816    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1817  } else {
1818    // Reverse subtract: (src << (shift + 1)) - src.
1819    DCHECK(power_of_two_minus_one);
1820    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1821    RegStorage t_reg = AllocTemp();
1822    OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
1823    OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1824  }
1825  StoreValue(rl_dest, rl_result);
1826  return true;
1827}
1828
1829void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1830                               int lit) {
1831  RegLocation rl_result;
1832  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1833  int shift_op = false;
1834  bool is_div = false;
1835
1836  switch (opcode) {
1837    case Instruction::RSUB_INT_LIT8:
1838    case Instruction::RSUB_INT: {
1839      rl_src = LoadValue(rl_src, kCoreReg);
1840      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1841      if (cu_->instruction_set == kThumb2) {
1842        OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1843      } else {
1844        OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1845        OpRegImm(kOpAdd, rl_result.reg, lit);
1846      }
1847      StoreValue(rl_dest, rl_result);
1848      return;
1849    }
1850
1851    case Instruction::SUB_INT:
1852    case Instruction::SUB_INT_2ADDR:
1853      lit = -lit;
1854      // Intended fallthrough
1855    case Instruction::ADD_INT:
1856    case Instruction::ADD_INT_2ADDR:
1857    case Instruction::ADD_INT_LIT8:
1858    case Instruction::ADD_INT_LIT16:
1859      op = kOpAdd;
1860      break;
1861    case Instruction::MUL_INT:
1862    case Instruction::MUL_INT_2ADDR:
1863    case Instruction::MUL_INT_LIT8:
1864    case Instruction::MUL_INT_LIT16: {
1865      if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1866        return;
1867      }
1868      op = kOpMul;
1869      break;
1870    }
1871    case Instruction::AND_INT:
1872    case Instruction::AND_INT_2ADDR:
1873    case Instruction::AND_INT_LIT8:
1874    case Instruction::AND_INT_LIT16:
1875      op = kOpAnd;
1876      break;
1877    case Instruction::OR_INT:
1878    case Instruction::OR_INT_2ADDR:
1879    case Instruction::OR_INT_LIT8:
1880    case Instruction::OR_INT_LIT16:
1881      op = kOpOr;
1882      break;
1883    case Instruction::XOR_INT:
1884    case Instruction::XOR_INT_2ADDR:
1885    case Instruction::XOR_INT_LIT8:
1886    case Instruction::XOR_INT_LIT16:
1887      op = kOpXor;
1888      break;
1889    case Instruction::SHL_INT_LIT8:
1890    case Instruction::SHL_INT:
1891    case Instruction::SHL_INT_2ADDR:
1892      lit &= 31;
1893      shift_op = true;
1894      op = kOpLsl;
1895      break;
1896    case Instruction::SHR_INT_LIT8:
1897    case Instruction::SHR_INT:
1898    case Instruction::SHR_INT_2ADDR:
1899      lit &= 31;
1900      shift_op = true;
1901      op = kOpAsr;
1902      break;
1903    case Instruction::USHR_INT_LIT8:
1904    case Instruction::USHR_INT:
1905    case Instruction::USHR_INT_2ADDR:
1906      lit &= 31;
1907      shift_op = true;
1908      op = kOpLsr;
1909      break;
1910
1911    case Instruction::DIV_INT:
1912    case Instruction::DIV_INT_2ADDR:
1913    case Instruction::DIV_INT_LIT8:
1914    case Instruction::DIV_INT_LIT16:
1915    case Instruction::REM_INT:
1916    case Instruction::REM_INT_2ADDR:
1917    case Instruction::REM_INT_LIT8:
1918    case Instruction::REM_INT_LIT16: {
1919      if (lit == 0) {
1920        GenDivZeroException();
1921        return;
1922      }
1923      if ((opcode == Instruction::DIV_INT) ||
1924          (opcode == Instruction::DIV_INT_2ADDR) ||
1925          (opcode == Instruction::DIV_INT_LIT8) ||
1926          (opcode == Instruction::DIV_INT_LIT16)) {
1927        is_div = true;
1928      } else {
1929        is_div = false;
1930      }
1931      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1932        return;
1933      }
1934
1935      bool done = false;
1936      if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1937        rl_src = LoadValue(rl_src, kCoreReg);
1938        rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1939        done = true;
1940      } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1941        rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1942        done = true;
1943      } else if (cu_->instruction_set == kThumb2) {
1944        if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1945          // Use ARM SDIV instruction for division.  For remainder we also need to
1946          // calculate using a MUL and subtract.
1947          rl_src = LoadValue(rl_src, kCoreReg);
1948          rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1949          done = true;
1950        }
1951      }
1952
1953      if (!done) {
1954        FlushAllRegs();   /* Everything to home location. */
1955        LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
1956        Clobber(TargetReg(kArg0, kNotWide));
1957        if (cu_->target64) {
1958          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(8, pIdivmod), TargetReg(kArg0, kNotWide),
1959                                  lit, false);
1960        } else {
1961          CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pIdivmod), TargetReg(kArg0, kNotWide),
1962                                  lit, false);
1963        }
1964        if (is_div)
1965          rl_result = GetReturn(kCoreReg);
1966        else
1967          rl_result = GetReturnAlt();
1968      }
1969      StoreValue(rl_dest, rl_result);
1970      return;
1971    }
1972    default:
1973      LOG(FATAL) << "Unexpected opcode " << opcode;
1974  }
1975  rl_src = LoadValue(rl_src, kCoreReg);
1976  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1977  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1978  if (shift_op && (lit == 0)) {
1979    OpRegCopy(rl_result.reg, rl_src.reg);
1980  } else {
1981    OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
1982  }
1983  StoreValue(rl_dest, rl_result);
1984}
1985
1986template <size_t pointer_size>
1987static void GenArithOpLongImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, Instruction::Code opcode,
1988                               RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1989  RegLocation rl_result;
1990  OpKind first_op = kOpBkpt;
1991  OpKind second_op = kOpBkpt;
1992  bool call_out = false;
1993  bool check_zero = false;
1994  ThreadOffset<pointer_size> func_offset(-1);
1995  int ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
1996
1997  switch (opcode) {
1998    case Instruction::NOT_LONG:
1999      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2000        mir_to_lir->GenNotLong(rl_dest, rl_src2);
2001        return;
2002      }
2003      rl_src2 = mir_to_lir->LoadValueWide(rl_src2, kCoreReg);
2004      rl_result = mir_to_lir->EvalLoc(rl_dest, kCoreReg, true);
2005      // Check for destructive overlap
2006      if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
2007        RegStorage t_reg = mir_to_lir->AllocTemp();
2008        mir_to_lir->OpRegCopy(t_reg, rl_src2.reg.GetHigh());
2009        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
2010        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
2011        mir_to_lir->FreeTemp(t_reg);
2012      } else {
2013        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
2014        mir_to_lir->OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
2015      }
2016      mir_to_lir->StoreValueWide(rl_dest, rl_result);
2017      return;
2018    case Instruction::ADD_LONG:
2019    case Instruction::ADD_LONG_2ADDR:
2020      if (cu->instruction_set != kThumb2) {
2021        mir_to_lir->GenAddLong(opcode, rl_dest, rl_src1, rl_src2);
2022        return;
2023      }
2024      first_op = kOpAdd;
2025      second_op = kOpAdc;
2026      break;
2027    case Instruction::SUB_LONG:
2028    case Instruction::SUB_LONG_2ADDR:
2029      if (cu->instruction_set != kThumb2) {
2030        mir_to_lir->GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
2031        return;
2032      }
2033      first_op = kOpSub;
2034      second_op = kOpSbc;
2035      break;
2036    case Instruction::MUL_LONG:
2037    case Instruction::MUL_LONG_2ADDR:
2038      if (cu->instruction_set != kMips) {
2039        mir_to_lir->GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
2040        return;
2041      } else {
2042        call_out = true;
2043        ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2044        func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmul);
2045      }
2046      break;
2047    case Instruction::DIV_LONG:
2048    case Instruction::DIV_LONG_2ADDR:
2049      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2050        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true);
2051        return;
2052      }
2053      call_out = true;
2054      check_zero = true;
2055      ret_reg = mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2056      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLdiv);
2057      break;
2058    case Instruction::REM_LONG:
2059    case Instruction::REM_LONG_2ADDR:
2060      if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
2061        mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false);
2062        return;
2063      }
2064      call_out = true;
2065      check_zero = true;
2066      func_offset = QUICK_ENTRYPOINT_OFFSET(pointer_size, pLmod);
2067      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
2068      ret_reg = (cu->instruction_set == kThumb2) ? mir_to_lir->TargetReg(kArg2, kNotWide).GetReg() :
2069          mir_to_lir->TargetReg(kRet0, kNotWide).GetReg();
2070      break;
2071    case Instruction::AND_LONG_2ADDR:
2072    case Instruction::AND_LONG:
2073      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2074          cu->instruction_set == kArm64) {
2075        return mir_to_lir->GenAndLong(opcode, rl_dest, rl_src1, rl_src2);
2076      }
2077      first_op = kOpAnd;
2078      second_op = kOpAnd;
2079      break;
2080    case Instruction::OR_LONG:
2081    case Instruction::OR_LONG_2ADDR:
2082      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2083          cu->instruction_set == kArm64) {
2084        mir_to_lir->GenOrLong(opcode, rl_dest, rl_src1, rl_src2);
2085        return;
2086      }
2087      first_op = kOpOr;
2088      second_op = kOpOr;
2089      break;
2090    case Instruction::XOR_LONG:
2091    case Instruction::XOR_LONG_2ADDR:
2092      if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64 ||
2093          cu->instruction_set == kArm64) {
2094        mir_to_lir->GenXorLong(opcode, rl_dest, rl_src1, rl_src2);
2095        return;
2096      }
2097      first_op = kOpXor;
2098      second_op = kOpXor;
2099      break;
2100    case Instruction::NEG_LONG: {
2101      mir_to_lir->GenNegLong(rl_dest, rl_src2);
2102      return;
2103    }
2104    default:
2105      LOG(FATAL) << "Invalid long arith op";
2106  }
2107  if (!call_out) {
2108    mir_to_lir->GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
2109  } else {
2110    mir_to_lir->FlushAllRegs();   /* Send everything to home location */
2111    if (check_zero) {
2112      RegStorage r_tmp1 = mir_to_lir->TargetReg(kArg0, kWide);
2113      RegStorage r_tmp2 = mir_to_lir->TargetReg(kArg2, kWide);
2114      mir_to_lir->LoadValueDirectWideFixed(rl_src2, r_tmp2);
2115      RegStorage r_tgt = mir_to_lir->CallHelperSetup(func_offset);
2116      mir_to_lir->GenDivZeroCheckWide(r_tmp2);
2117      mir_to_lir->LoadValueDirectWideFixed(rl_src1, r_tmp1);
2118      // NOTE: callout here is not a safepoint
2119      mir_to_lir->CallHelper(r_tgt, func_offset, false /* not safepoint */);
2120    } else {
2121      mir_to_lir->CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false);
2122    }
2123    // Adjust return regs in to handle case of rem returning kArg2/kArg3
2124    if (ret_reg == mir_to_lir->TargetReg(kRet0, kNotWide).GetReg())
2125      rl_result = mir_to_lir->GetReturnWide(kCoreReg);
2126    else
2127      rl_result = mir_to_lir->GetReturnWideAlt();
2128    mir_to_lir->StoreValueWide(rl_dest, rl_result);
2129  }
2130}
2131
2132void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
2133                             RegLocation rl_src1, RegLocation rl_src2) {
2134  if (cu_->target64) {
2135    GenArithOpLongImpl<8>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2136  } else {
2137    GenArithOpLongImpl<4>(this, cu_, opcode, rl_dest, rl_src1, rl_src2);
2138  }
2139}
2140
2141void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
2142  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2143  LoadConstantNoClobber(rl_result.reg, value);
2144  StoreValue(rl_dest, rl_result);
2145  if (value == 0) {
2146    Workaround7250540(rl_dest, rl_result.reg);
2147  }
2148}
2149
2150template <size_t pointer_size>
2151void Mir2Lir::GenConversionCall(ThreadOffset<pointer_size> func_offset,
2152                                RegLocation rl_dest, RegLocation rl_src) {
2153  /*
2154   * Don't optimize the register usage since it calls out to support
2155   * functions
2156   */
2157  DCHECK_EQ(pointer_size, GetInstructionSetPointerSize(cu_->instruction_set));
2158
2159  FlushAllRegs();   /* Send everything to home location */
2160  CallRuntimeHelperRegLocation(func_offset, rl_src, false);
2161  if (rl_dest.wide) {
2162    RegLocation rl_result;
2163    rl_result = GetReturnWide(LocToRegClass(rl_dest));
2164    StoreValueWide(rl_dest, rl_result);
2165  } else {
2166    RegLocation rl_result;
2167    rl_result = GetReturn(LocToRegClass(rl_dest));
2168    StoreValue(rl_dest, rl_result);
2169  }
2170}
2171template void Mir2Lir::GenConversionCall(ThreadOffset<4> func_offset,
2172                                         RegLocation rl_dest, RegLocation rl_src);
2173template void Mir2Lir::GenConversionCall(ThreadOffset<8> func_offset,
2174                                         RegLocation rl_dest, RegLocation rl_src);
2175
2176class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
2177 public:
2178  SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
2179      : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
2180  }
2181
2182  void Compile() OVERRIDE {
2183    m2l_->ResetRegPool();
2184    m2l_->ResetDefTracking();
2185    GenerateTargetLabel(kPseudoSuspendTarget);
2186    if (cu_->target64) {
2187      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(8, pTestSuspend), true);
2188    } else {
2189      m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pTestSuspend), true);
2190    }
2191    if (cont_ != nullptr) {
2192      m2l_->OpUnconditionalBranch(cont_);
2193    }
2194  }
2195};
2196
2197/* Check if we need to check for pending suspend request */
2198void Mir2Lir::GenSuspendTest(int opt_flags) {
2199  if (cu_->compiler_driver->GetCompilerOptions().GetExplicitSuspendChecks()) {
2200    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2201      return;
2202    }
2203    FlushAllRegs();
2204    LIR* branch = OpTestSuspend(NULL);
2205    LIR* cont = NewLIR0(kPseudoTargetLabel);
2206    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
2207  } else {
2208    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2209      return;
2210    }
2211    FlushAllRegs();     // TODO: needed?
2212    LIR* inst = CheckSuspendUsingLoad();
2213    MarkSafepointPC(inst);
2214  }
2215}
2216
2217/* Check if we need to check for pending suspend request */
2218void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
2219  if (cu_->compiler_driver->GetCompilerOptions().GetExplicitSuspendChecks()) {
2220    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2221      OpUnconditionalBranch(target);
2222      return;
2223    }
2224    OpTestSuspend(target);
2225    FlushAllRegs();
2226    LIR* branch = OpUnconditionalBranch(nullptr);
2227    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
2228  } else {
2229    // For the implicit suspend check, just perform the trigger
2230    // load and branch to the target.
2231    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2232      OpUnconditionalBranch(target);
2233      return;
2234    }
2235    FlushAllRegs();
2236    LIR* inst = CheckSuspendUsingLoad();
2237    MarkSafepointPC(inst);
2238    OpUnconditionalBranch(target);
2239  }
2240}
2241
2242/* Call out to helper assembly routine that will null check obj and then lock it. */
2243void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
2244  FlushAllRegs();
2245  if (cu_->target64) {
2246    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pLockObject), rl_src, true);
2247  } else {
2248    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pLockObject), rl_src, true);
2249  }
2250}
2251
2252/* Call out to helper assembly routine that will null check obj and then unlock it. */
2253void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2254  FlushAllRegs();
2255  if (cu_->target64) {
2256    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pUnlockObject), rl_src, true);
2257  } else {
2258    CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject), rl_src, true);
2259  }
2260}
2261
2262/* Generic code for generating a wide constant into a VR. */
2263void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2264  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2265  LoadConstantWide(rl_result.reg, value);
2266  StoreValueWide(rl_dest, rl_result);
2267}
2268
2269}  // namespace art
2270