call_mips.cc revision 8c18c2aaedb171f9b03ec49c94b0e33449dc411b
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Mips ISA */
18
19#include "codegen_mips.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "entrypoints/quick/quick_entrypoints.h"
22#include "gc/accounting/card_table.h"
23#include "mips_lir.h"
24
25namespace art {
26
27bool MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir,
28                                 const InlineMethod& special) {
29  // TODO
30  return false;
31}
32
33/*
34 * The lack of pc-relative loads on Mips presents somewhat of a challenge
35 * for our PIC switch table strategy.  To materialize the current location
36 * we'll do a dummy JAL and reference our tables using rRA as the
37 * base register.  Note that rRA will be used both as the base to
38 * locate the switch table data and as the reference base for the switch
39 * target offsets stored in the table.  We'll use a special pseudo-instruction
40 * to represent the jal and trigger the construction of the
41 * switch table offsets (which will happen after final assembly and all
42 * labels are fixed).
43 *
44 * The test loop will look something like:
45 *
46 *   ori   r_end, rZERO, #table_size  ; size in bytes
47 *   jal   BaseLabel         ; stores "return address" (BaseLabel) in rRA
48 *   nop                     ; opportunistically fill
49 * BaseLabel:
50 *   addiu r_base, rRA, <table> - <BaseLabel>    ; table relative to BaseLabel
51     addu  r_end, r_end, r_base                   ; end of table
52 *   lw    r_val, [rSP, v_reg_off]                ; Test Value
53 * loop:
54 *   beq   r_base, r_end, done
55 *   lw    r_key, 0(r_base)
56 *   addu  r_base, 8
57 *   bne   r_val, r_key, loop
58 *   lw    r_disp, -4(r_base)
59 *   addu  rRA, r_disp
60 *   jr    rRA
61 * done:
62 *
63 */
64void MipsMir2Lir::GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
65  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
66  if (cu_->verbose) {
67    DumpSparseSwitchTable(table);
68  }
69  // Add the table to the list - we'll process it later
70  SwitchTable* tab_rec =
71      static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
72  tab_rec->table = table;
73  tab_rec->vaddr = current_dalvik_offset_;
74  int elements = table[1];
75  tab_rec->targets =
76      static_cast<LIR**>(arena_->Alloc(elements * sizeof(LIR*), kArenaAllocLIR));
77  switch_tables_.Insert(tab_rec);
78
79  // The table is composed of 8-byte key/disp pairs
80  int byte_size = elements * 8;
81
82  int size_hi = byte_size >> 16;
83  int size_lo = byte_size & 0xffff;
84
85  RegStorage r_end = AllocTemp();
86  if (size_hi) {
87    NewLIR2(kMipsLui, r_end.GetReg(), size_hi);
88  }
89  // Must prevent code motion for the curr pc pair
90  GenBarrier();  // Scheduling barrier
91  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
92  // Now, fill the branch delay slot
93  if (size_hi) {
94    NewLIR3(kMipsOri, r_end.GetReg(), r_end.GetReg(), size_lo);
95  } else {
96    NewLIR3(kMipsOri, r_end.GetReg(), rZERO, size_lo);
97  }
98  GenBarrier();  // Scheduling barrier
99
100  // Construct BaseLabel and set up table base register
101  LIR* base_label = NewLIR0(kPseudoTargetLabel);
102  // Remember base label so offsets can be computed later
103  tab_rec->anchor = base_label;
104  RegStorage r_base = AllocTemp();
105  NewLIR4(kMipsDelta, r_base.GetReg(), 0, WrapPointer(base_label), WrapPointer(tab_rec));
106  OpRegRegReg(kOpAdd, r_end, r_end, r_base);
107
108  // Grab switch test value
109  rl_src = LoadValue(rl_src, kCoreReg);
110
111  // Test loop
112  RegStorage r_key = AllocTemp();
113  LIR* loop_label = NewLIR0(kPseudoTargetLabel);
114  LIR* exit_branch = OpCmpBranch(kCondEq, r_base, r_end, NULL);
115  Load32Disp(r_base, 0, r_key);
116  OpRegImm(kOpAdd, r_base, 8);
117  OpCmpBranch(kCondNe, rl_src.reg, r_key, loop_label);
118  RegStorage r_disp = AllocTemp();
119  Load32Disp(r_base, -4, r_disp);
120  OpRegRegReg(kOpAdd, rs_rRA, rs_rRA, r_disp);
121  OpReg(kOpBx, rs_rRA);
122
123  // Loop exit
124  LIR* exit_label = NewLIR0(kPseudoTargetLabel);
125  exit_branch->target = exit_label;
126}
127
128/*
129 * Code pattern will look something like:
130 *
131 *   lw    r_val
132 *   jal   BaseLabel         ; stores "return address" (BaseLabel) in rRA
133 *   nop                     ; opportunistically fill
134 *   [subiu r_val, bias]      ; Remove bias if low_val != 0
135 *   bound check -> done
136 *   lw    r_disp, [rRA, r_val]
137 *   addu  rRA, r_disp
138 *   jr    rRA
139 * done:
140 */
141void MipsMir2Lir::GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
142  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
143  if (cu_->verbose) {
144    DumpPackedSwitchTable(table);
145  }
146  // Add the table to the list - we'll process it later
147  SwitchTable* tab_rec =
148      static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
149  tab_rec->table = table;
150  tab_rec->vaddr = current_dalvik_offset_;
151  int size = table[1];
152  tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*),
153                                                      kArenaAllocLIR));
154  switch_tables_.Insert(tab_rec);
155
156  // Get the switch value
157  rl_src = LoadValue(rl_src, kCoreReg);
158
159  // Prepare the bias.  If too big, handle 1st stage here
160  int low_key = s4FromSwitchData(&table[2]);
161  bool large_bias = false;
162  RegStorage r_key;
163  if (low_key == 0) {
164    r_key = rl_src.reg;
165  } else if ((low_key & 0xffff) != low_key) {
166    r_key = AllocTemp();
167    LoadConstant(r_key, low_key);
168    large_bias = true;
169  } else {
170    r_key = AllocTemp();
171  }
172
173  // Must prevent code motion for the curr pc pair
174  GenBarrier();
175  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
176  // Now, fill the branch delay slot with bias strip
177  if (low_key == 0) {
178    NewLIR0(kMipsNop);
179  } else {
180    if (large_bias) {
181      OpRegRegReg(kOpSub, r_key, rl_src.reg, r_key);
182    } else {
183      OpRegRegImm(kOpSub, r_key, rl_src.reg, low_key);
184    }
185  }
186  GenBarrier();  // Scheduling barrier
187
188  // Construct BaseLabel and set up table base register
189  LIR* base_label = NewLIR0(kPseudoTargetLabel);
190  // Remember base label so offsets can be computed later
191  tab_rec->anchor = base_label;
192
193  // Bounds check - if < 0 or >= size continue following switch
194  LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, NULL);
195
196  // Materialize the table base pointer
197  RegStorage r_base = AllocTemp();
198  NewLIR4(kMipsDelta, r_base.GetReg(), 0, WrapPointer(base_label), WrapPointer(tab_rec));
199
200  // Load the displacement from the switch table
201  RegStorage r_disp = AllocTemp();
202  LoadBaseIndexed(r_base, r_key, r_disp, 2, k32);
203
204  // Add to rAP and go
205  OpRegRegReg(kOpAdd, rs_rRA, rs_rRA, r_disp);
206  OpReg(kOpBx, rs_rRA);
207
208  /* branch_over target here */
209  LIR* target = NewLIR0(kPseudoTargetLabel);
210  branch_over->target = target;
211}
212
213/*
214 * Array data table format:
215 *  ushort ident = 0x0300   magic value
216 *  ushort width            width of each element in the table
217 *  uint   size             number of elements in the table
218 *  ubyte  data[size*width] table of data values (may contain a single-byte
219 *                          padding at the end)
220 *
221 * Total size is 4+(width * size + 1)/2 16-bit code units.
222 */
223void MipsMir2Lir::GenFillArrayData(DexOffset table_offset, RegLocation rl_src) {
224  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
225  // Add the table to the list - we'll process it later
226  FillArrayData* tab_rec =
227      reinterpret_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData),
228                                                     kArenaAllocData));
229  tab_rec->table = table;
230  tab_rec->vaddr = current_dalvik_offset_;
231  uint16_t width = tab_rec->table[1];
232  uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
233  tab_rec->size = (size * width) + 8;
234
235  fill_array_data_.Insert(tab_rec);
236
237  // Making a call - use explicit registers
238  FlushAllRegs();   /* Everything to home location */
239  LockCallTemps();
240  LoadValueDirectFixed(rl_src, rs_rMIPS_ARG0);
241
242  // Must prevent code motion for the curr pc pair
243  GenBarrier();
244  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
245  // Now, fill the branch delay slot with the helper load
246  RegStorage r_tgt = LoadHelper(kQuickHandleFillArrayData);
247  GenBarrier();  // Scheduling barrier
248
249  // Construct BaseLabel and set up table base register
250  LIR* base_label = NewLIR0(kPseudoTargetLabel);
251
252  // Materialize a pointer to the fill data image
253  NewLIR4(kMipsDelta, rMIPS_ARG1, 0, WrapPointer(base_label), WrapPointer(tab_rec));
254
255  // And go...
256  ClobberCallerSave();
257  LIR* call_inst = OpReg(kOpBlx, r_tgt);  // ( array*, fill_data* )
258  MarkSafepointPC(call_inst);
259}
260
261void MipsMir2Lir::GenMoveException(RegLocation rl_dest) {
262  int ex_offset = Thread::ExceptionOffset<4>().Int32Value();
263  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
264  RegStorage reset_reg = AllocTempRef();
265  LoadRefDisp(rs_rMIPS_SELF, ex_offset, rl_result.reg, kNotVolatile);
266  LoadConstant(reset_reg, 0);
267  StoreRefDisp(rs_rMIPS_SELF, ex_offset, reset_reg, kNotVolatile);
268  FreeTemp(reset_reg);
269  StoreValue(rl_dest, rl_result);
270}
271
272/*
273 * Mark garbage collection card. Skip if the value we're storing is null.
274 */
275void MipsMir2Lir::MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) {
276  RegStorage reg_card_base = AllocTemp();
277  RegStorage reg_card_no = AllocTemp();
278  LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
279  // NOTE: native pointer.
280  LoadWordDisp(rs_rMIPS_SELF, Thread::CardTableOffset<4>().Int32Value(), reg_card_base);
281  OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
282  StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte);
283  LIR* target = NewLIR0(kPseudoTargetLabel);
284  branch_over->target = target;
285  FreeTemp(reg_card_base);
286  FreeTemp(reg_card_no);
287}
288
289void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
290  int spill_count = num_core_spills_ + num_fp_spills_;
291  /*
292   * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live.  Let the register
293   * allocation mechanism know so it doesn't try to use any of them when
294   * expanding the frame or flushing.  This leaves the utility
295   * code with a single temp: r12.  This should be enough.
296   */
297  LockTemp(rs_rMIPS_ARG0);
298  LockTemp(rs_rMIPS_ARG1);
299  LockTemp(rs_rMIPS_ARG2);
300  LockTemp(rs_rMIPS_ARG3);
301
302  /*
303   * We can safely skip the stack overflow check if we're
304   * a leaf *and* our frame size < fudge factor.
305   */
306  bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !IsLargeFrame(frame_size_, kMips);
307  NewLIR0(kPseudoMethodEntry);
308  RegStorage check_reg = AllocTemp();
309  RegStorage new_sp = AllocTemp();
310  if (!skip_overflow_check) {
311    /* Load stack limit */
312    Load32Disp(rs_rMIPS_SELF, Thread::StackEndOffset<4>().Int32Value(), check_reg);
313  }
314  /* Spill core callee saves */
315  SpillCoreRegs();
316  /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
317  DCHECK_EQ(num_fp_spills_, 0);
318  const int frame_sub = frame_size_ - spill_count * 4;
319  if (!skip_overflow_check) {
320    class StackOverflowSlowPath : public LIRSlowPath {
321     public:
322      StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace)
323          : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, nullptr), sp_displace_(sp_displace) {
324      }
325      void Compile() OVERRIDE {
326        m2l_->ResetRegPool();
327        m2l_->ResetDefTracking();
328        GenerateTargetLabel(kPseudoThrowTarget);
329        // LR is offset 0 since we push in reverse order.
330        m2l_->Load32Disp(rs_rMIPS_SP, 0, rs_rRA);
331        m2l_->OpRegImm(kOpAdd, rs_rMIPS_SP, sp_displace_);
332        m2l_->ClobberCallerSave();
333        RegStorage r_tgt = m2l_->CallHelperSetup(kQuickThrowStackOverflow);  // Doesn't clobber LR.
334        m2l_->CallHelper(r_tgt, kQuickThrowStackOverflow, false /* MarkSafepointPC */,
335                         false /* UseLink */);
336      }
337
338     private:
339      const size_t sp_displace_;
340    };
341    OpRegRegImm(kOpSub, new_sp, rs_rMIPS_SP, frame_sub);
342    LIR* branch = OpCmpBranch(kCondUlt, new_sp, check_reg, nullptr);
343    AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, spill_count * 4));
344    // TODO: avoid copy for small frame sizes.
345    OpRegCopy(rs_rMIPS_SP, new_sp);     // Establish stack
346  } else {
347    OpRegImm(kOpSub, rs_rMIPS_SP, frame_sub);
348  }
349
350  FlushIns(ArgLocs, rl_method);
351
352  FreeTemp(rs_rMIPS_ARG0);
353  FreeTemp(rs_rMIPS_ARG1);
354  FreeTemp(rs_rMIPS_ARG2);
355  FreeTemp(rs_rMIPS_ARG3);
356}
357
358void MipsMir2Lir::GenExitSequence() {
359  /*
360   * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
361   * allocated by the register utilities as temps.
362   */
363  LockTemp(rs_rMIPS_RET0);
364  LockTemp(rs_rMIPS_RET1);
365
366  NewLIR0(kPseudoMethodExit);
367  UnSpillCoreRegs();
368  OpReg(kOpBx, rs_rRA);
369}
370
371void MipsMir2Lir::GenSpecialExitSequence() {
372  OpReg(kOpBx, rs_rRA);
373}
374
375}  // namespace art
376