mir_to_lir.h revision 0f45f22eb3c52f0ece4c56989180e79c6680d825
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_location.h"
25#include "dex/reg_storage.h"
26#include "dex/backend.h"
27#include "dex/quick/resource_mask.h"
28#include "driver/compiler_driver.h"
29#include "instruction_set.h"
30#include "leb128.h"
31#include "safe_map.h"
32#include "utils/array_ref.h"
33#include "utils/arena_allocator.h"
34#include "utils/growable_array.h"
35
36namespace art {
37
38/*
39 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
40 * add type safety (see runtime/offsets.h).
41 */
42typedef uint32_t DexOffset;          // Dex offset in code units.
43typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
44typedef uint32_t CodeOffset;         // Native code offset in bytes.
45
46// Set to 1 to measure cost of suspend check.
47#define NO_SUSPEND 0
48
49#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
50#define IS_BRANCH            (1ULL << kIsBranch)
51#define IS_IT                (1ULL << kIsIT)
52#define IS_LOAD              (1ULL << kMemLoad)
53#define IS_QUAD_OP           (1ULL << kIsQuadOp)
54#define IS_QUIN_OP           (1ULL << kIsQuinOp)
55#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
56#define IS_STORE             (1ULL << kMemStore)
57#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
58#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
59#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
60#define NO_OPERAND           (1ULL << kNoOperand)
61#define REG_DEF0             (1ULL << kRegDef0)
62#define REG_DEF1             (1ULL << kRegDef1)
63#define REG_DEF2             (1ULL << kRegDef2)
64#define REG_DEFA             (1ULL << kRegDefA)
65#define REG_DEFD             (1ULL << kRegDefD)
66#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
67#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
68#define REG_DEF_LIST0        (1ULL << kRegDefList0)
69#define REG_DEF_LIST1        (1ULL << kRegDefList1)
70#define REG_DEF_LR           (1ULL << kRegDefLR)
71#define REG_DEF_SP           (1ULL << kRegDefSP)
72#define REG_USE0             (1ULL << kRegUse0)
73#define REG_USE1             (1ULL << kRegUse1)
74#define REG_USE2             (1ULL << kRegUse2)
75#define REG_USE3             (1ULL << kRegUse3)
76#define REG_USE4             (1ULL << kRegUse4)
77#define REG_USEA             (1ULL << kRegUseA)
78#define REG_USEC             (1ULL << kRegUseC)
79#define REG_USED             (1ULL << kRegUseD)
80#define REG_USEB             (1ULL << kRegUseB)
81#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
82#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
83#define REG_USE_LIST0        (1ULL << kRegUseList0)
84#define REG_USE_LIST1        (1ULL << kRegUseList1)
85#define REG_USE_LR           (1ULL << kRegUseLR)
86#define REG_USE_PC           (1ULL << kRegUsePC)
87#define REG_USE_SP           (1ULL << kRegUseSP)
88#define SETS_CCODES          (1ULL << kSetsCCodes)
89#define USES_CCODES          (1ULL << kUsesCCodes)
90#define USE_FP_STACK         (1ULL << kUseFpStack)
91#define REG_USE_LO           (1ULL << kUseLo)
92#define REG_USE_HI           (1ULL << kUseHi)
93#define REG_DEF_LO           (1ULL << kDefLo)
94#define REG_DEF_HI           (1ULL << kDefHi)
95
96// Common combo register usage patterns.
97#define REG_DEF01            (REG_DEF0 | REG_DEF1)
98#define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
99#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
100#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
101#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
102#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
103#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
104#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
105#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
106#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
107#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
108#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
109#define REG_USE012           (REG_USE01 | REG_USE2)
110#define REG_USE014           (REG_USE01 | REG_USE4)
111#define REG_USE01            (REG_USE0 | REG_USE1)
112#define REG_USE02            (REG_USE0 | REG_USE2)
113#define REG_USE12            (REG_USE1 | REG_USE2)
114#define REG_USE23            (REG_USE2 | REG_USE3)
115#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
116
117// TODO: #includes need a cleanup
118#ifndef INVALID_SREG
119#define INVALID_SREG (-1)
120#endif
121
122struct BasicBlock;
123struct CallInfo;
124struct CompilationUnit;
125struct InlineMethod;
126struct MIR;
127struct LIR;
128struct RegisterInfo;
129class DexFileMethodInliner;
130class MIRGraph;
131class Mir2Lir;
132
133typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
134                            const MethodReference& target_method,
135                            uint32_t method_idx, uintptr_t direct_code,
136                            uintptr_t direct_method, InvokeType type);
137
138typedef std::vector<uint8_t> CodeBuffer;
139
140struct UseDefMasks {
141  const ResourceMask* use_mask;        // Resource mask for use.
142  const ResourceMask* def_mask;        // Resource mask for def.
143};
144
145struct AssemblyInfo {
146  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
147};
148
149struct LIR {
150  CodeOffset offset;             // Offset of this instruction.
151  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
152  int16_t opcode;
153  LIR* next;
154  LIR* prev;
155  LIR* target;
156  struct {
157    unsigned int alias_info:17;  // For Dalvik register disambiguation.
158    bool is_nop:1;               // LIR is optimized away.
159    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
160    bool use_def_invalid:1;      // If true, masks should not be used.
161    unsigned int generation:1;   // Used to track visitation state during fixup pass.
162    unsigned int fixup:8;        // Fixup kind.
163  } flags;
164  union {
165    UseDefMasks m;               // Use & Def masks used during optimization.
166    AssemblyInfo a;              // Instruction info used during assembly phase.
167  } u;
168  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
169};
170
171// Target-specific initialization.
172Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
173                          ArenaAllocator* const arena);
174Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
175                            ArenaAllocator* const arena);
176Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
177                          ArenaAllocator* const arena);
178Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
179                          ArenaAllocator* const arena);
180
181// Utility macros to traverse the LIR list.
182#define NEXT_LIR(lir) (lir->next)
183#define PREV_LIR(lir) (lir->prev)
184
185// Defines for alias_info (tracks Dalvik register references).
186#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
187#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
188#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
189#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
190
191#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
192#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
193  do { \
194    low_reg = both_regs & 0xff; \
195    high_reg = (both_regs >> 8) & 0xff; \
196  } while (false)
197
198// Mask to denote sreg as the start of a 64-bit item.  Must not interfere with low 16 bits.
199#define STARTING_WIDE_SREG 0x10000
200
201// TODO: replace these macros
202#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
203#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
204#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
205#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
206#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
207
208// Size of a frame that we definitely consider large. Anything larger than this should
209// definitely get a stack overflow check.
210static constexpr size_t kLargeFrameSize = 2 * KB;
211
212// Size of a frame that should be small. Anything leaf method smaller than this should run
213// without a stack overflow check.
214// The constant is from experience with frameworks code.
215static constexpr size_t kSmallFrameSize = 1 * KB;
216
217class Mir2Lir : public Backend {
218  public:
219    static constexpr bool kFailOnSizeError = true && kIsDebugBuild;
220    static constexpr bool kReportSizeError = true && kIsDebugBuild;
221
222    // Determine whether a frame is small or large, used in the decision on whether to elide a
223    // stack overflow check on method entry.
224    //
225    // A frame is considered large when it's either above kLargeFrameSize, or a quarter of the
226    // overflow-usable stack space.
227    static bool IsLargeFrame(size_t size, InstructionSet isa) {
228      return size >= kLargeFrameSize || size >= GetStackOverflowReservedBytes(isa) / 4;
229    }
230
231    /*
232     * Auxiliary information describing the location of data embedded in the Dalvik
233     * byte code stream.
234     */
235    struct EmbeddedData {
236      CodeOffset offset;        // Code offset of data block.
237      const uint16_t* table;      // Original dex data.
238      DexOffset vaddr;            // Dalvik offset of parent opcode.
239    };
240
241    struct FillArrayData : EmbeddedData {
242      int32_t size;
243    };
244
245    struct SwitchTable : EmbeddedData {
246      LIR* anchor;                // Reference instruction for relative offsets.
247      LIR** targets;              // Array of case targets.
248    };
249
250    /* Static register use counts */
251    struct RefCounts {
252      int count;
253      int s_reg;
254    };
255
256    /*
257     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
258     * and native register storage.  The primary purpose is to reuse previuosly
259     * loaded values, if possible, and otherwise to keep the value in register
260     * storage as long as possible.
261     *
262     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
263     * this register (or pair).  For example, a 64-bit register containing a 32-bit
264     * Dalvik value would have wide_value==false even though the storage container itself
265     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
266     * would have wide_value==true (and additionally would have its partner field set to the
267     * other half whose wide_value field would also be true.
268     *
269     * NOTE 2: In the case of a register pair, you can determine which of the partners
270     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
271     *
272     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
273     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
274     * value, and the s_reg of the high word is implied (s_reg + 1).
275     *
276     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
277     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
278     * If is_temp==true and live==false, no other fields have
279     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
280     * and def_end describe the relationship between the temp register/register pair and
281     * the Dalvik value[s] described by s_reg/s_reg+1.
282     *
283     * The fields used_storage, master_storage and storage_mask are used to track allocation
284     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
285     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
286     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
287     * change once initialized.  The "used_storage" field tracks current allocation status.
288     * Although each record contains this field, only the field from the largest member of
289     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
290     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
291     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
292     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
293     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
294     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
295     *
296     * For an X86 vector register example, storage_mask would be:
297     *    0x00000001 for 32-bit view of xmm1
298     *    0x00000003 for 64-bit view of xmm1
299     *    0x0000000f for 128-bit view of xmm1
300     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
301     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
302     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
303     *
304     * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
305     * held in the widest member of an aliased set.  Note, though, that for a temp register to
306     * reused as live, it must both be marked live and the associated SReg() must match the
307     * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
308     * members of an aliased set will share the same liveness flags, but each will individually
309     * maintain s_reg_.  In this way we can know that at least one member of an
310     * aliased set is live, but will only fully match on the appropriate alias view.  For example,
311     * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
312     * because it is wide), its aliases s2 and s3 will show as live, but will have
313     * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
314     * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
315     * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
316     * report that v9 is currently not live as a single (which is what we want).
317     *
318     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
319     * to treat xmm registers:
320     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
321     *         o This more closely matches reality, but means you'd need to be able to get
322     *           to the associated RegisterInfo struct to figure out how it's being used.
323     *         o This is how 64-bit core registers will be used - always 64 bits, but the
324     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
325     *     2. View the xmm registers based on contents.
326     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
327     *           be a k64BitVector.
328     *         o Note that the two uses above would be considered distinct registers (but with
329     *           the aliasing mechanism, we could detect interference).
330     *         o This is how aliased double and single float registers will be handled on
331     *           Arm and MIPS.
332     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
333     * mechanism 2 for aliased float registers and x86 vector registers.
334     */
335    class RegisterInfo {
336     public:
337      RegisterInfo(RegStorage r, const ResourceMask& mask = kEncodeAll);
338      ~RegisterInfo() {}
339      static void* operator new(size_t size, ArenaAllocator* arena) {
340        return arena->Alloc(size, kArenaAllocRegAlloc);
341      }
342
343      static const uint32_t k32SoloStorageMask     = 0x00000001;
344      static const uint32_t kLowSingleStorageMask  = 0x00000001;
345      static const uint32_t kHighSingleStorageMask = 0x00000002;
346      static const uint32_t k64SoloStorageMask     = 0x00000003;
347      static const uint32_t k128SoloStorageMask    = 0x0000000f;
348      static const uint32_t k256SoloStorageMask    = 0x000000ff;
349      static const uint32_t k512SoloStorageMask    = 0x0000ffff;
350      static const uint32_t k1024SoloStorageMask   = 0xffffffff;
351
352      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
353      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
354      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
355      // No part of the containing storage is live in this view.
356      bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
357      // Liveness of this view matches.  Note: not equivalent to !IsDead().
358      bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
359      void MarkLive(int s_reg) {
360        // TODO: Anything useful to assert here?
361        s_reg_ = s_reg;
362        master_->liveness_ |= storage_mask_;
363      }
364      void MarkDead() {
365        if (SReg() != INVALID_SREG) {
366          s_reg_ = INVALID_SREG;
367          master_->liveness_ &= ~storage_mask_;
368          ResetDefBody();
369        }
370      }
371      RegStorage GetReg() { return reg_; }
372      void SetReg(RegStorage reg) { reg_ = reg; }
373      bool IsTemp() { return is_temp_; }
374      void SetIsTemp(bool val) { is_temp_ = val; }
375      bool IsWide() { return wide_value_; }
376      void SetIsWide(bool val) {
377        wide_value_ = val;
378        if (!val) {
379          // If not wide, reset partner to self.
380          SetPartner(GetReg());
381        }
382      }
383      bool IsDirty() { return dirty_; }
384      void SetIsDirty(bool val) { dirty_ = val; }
385      RegStorage Partner() { return partner_; }
386      void SetPartner(RegStorage partner) { partner_ = partner; }
387      int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
388      const ResourceMask& DefUseMask() { return def_use_mask_; }
389      void SetDefUseMask(const ResourceMask& def_use_mask) { def_use_mask_ = def_use_mask; }
390      RegisterInfo* Master() { return master_; }
391      void SetMaster(RegisterInfo* master) {
392        master_ = master;
393        if (master != this) {
394          master_->aliased_ = true;
395          DCHECK(alias_chain_ == nullptr);
396          alias_chain_ = master_->alias_chain_;
397          master_->alias_chain_ = this;
398        }
399      }
400      bool IsAliased() { return aliased_; }
401      RegisterInfo* GetAliasChain() { return alias_chain_; }
402      uint32_t StorageMask() { return storage_mask_; }
403      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
404      LIR* DefStart() { return def_start_; }
405      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
406      LIR* DefEnd() { return def_end_; }
407      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
408      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
409      // Find member of aliased set matching storage_used; return nullptr if none.
410      RegisterInfo* FindMatchingView(uint32_t storage_used) {
411        RegisterInfo* res = Master();
412        for (; res != nullptr; res = res->GetAliasChain()) {
413          if (res->StorageMask() == storage_used)
414            break;
415        }
416        return res;
417      }
418
419     private:
420      RegStorage reg_;
421      bool is_temp_;               // Can allocate as temp?
422      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
423      bool dirty_;                 // If live, is it dirty?
424      bool aliased_;               // Is this the master for other aliased RegisterInfo's?
425      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
426      int s_reg_;                  // Name of live value.
427      ResourceMask def_use_mask_;  // Resources for this element.
428      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
429      uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
430      RegisterInfo* master_;       // Pointer to controlling storage mask.
431      uint32_t storage_mask_;      // Track allocation of sub-units.
432      LIR *def_start_;             // Starting inst in last def sequence.
433      LIR *def_end_;               // Ending inst in last def sequence.
434      RegisterInfo* alias_chain_;  // Chain of aliased registers.
435    };
436
437    class RegisterPool {
438     public:
439      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
440                   const ArrayRef<const RegStorage>& core_regs,
441                   const ArrayRef<const RegStorage>& core64_regs,
442                   const ArrayRef<const RegStorage>& sp_regs,
443                   const ArrayRef<const RegStorage>& dp_regs,
444                   const ArrayRef<const RegStorage>& reserved_regs,
445                   const ArrayRef<const RegStorage>& reserved64_regs,
446                   const ArrayRef<const RegStorage>& core_temps,
447                   const ArrayRef<const RegStorage>& core64_temps,
448                   const ArrayRef<const RegStorage>& sp_temps,
449                   const ArrayRef<const RegStorage>& dp_temps);
450      ~RegisterPool() {}
451      static void* operator new(size_t size, ArenaAllocator* arena) {
452        return arena->Alloc(size, kArenaAllocRegAlloc);
453      }
454      void ResetNextTemp() {
455        next_core_reg_ = 0;
456        next_sp_reg_ = 0;
457        next_dp_reg_ = 0;
458      }
459      GrowableArray<RegisterInfo*> core_regs_;
460      int next_core_reg_;
461      GrowableArray<RegisterInfo*> core64_regs_;
462      int next_core64_reg_;
463      GrowableArray<RegisterInfo*> sp_regs_;    // Single precision float.
464      int next_sp_reg_;
465      GrowableArray<RegisterInfo*> dp_regs_;    // Double precision float.
466      int next_dp_reg_;
467      GrowableArray<RegisterInfo*>* ref_regs_;  // Points to core_regs_ or core64_regs_
468      int* next_ref_reg_;
469
470     private:
471      Mir2Lir* const m2l_;
472    };
473
474    struct PromotionMap {
475      RegLocationType core_location:3;
476      uint8_t core_reg;
477      RegLocationType fp_location:3;
478      uint8_t fp_reg;
479      bool first_in_pair;
480    };
481
482    //
483    // Slow paths.  This object is used generate a sequence of code that is executed in the
484    // slow path.  For example, resolving a string or class is slow as it will only be executed
485    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
486    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
487    // branch over them.
488    //
489    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
490    // the Compile() function that will be called near the end of the code generated by the
491    // method.
492    //
493    // The basic flow for a slow path is:
494    //
495    //     CMP reg, #value
496    //     BEQ fromfast
497    //   cont:
498    //     ...
499    //     fast path code
500    //     ...
501    //     more code
502    //     ...
503    //     RETURN
504    ///
505    //   fromfast:
506    //     ...
507    //     slow path code
508    //     ...
509    //     B cont
510    //
511    // So you see we need two labels and two branches.  The first branch (called fromfast) is
512    // the conditional branch to the slow path code.  The second label (called cont) is used
513    // as an unconditional branch target for getting back to the code after the slow path
514    // has completed.
515    //
516
517    class LIRSlowPath {
518     public:
519      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
520                  LIR* cont = nullptr) :
521        m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
522          m2l->StartSlowPath(this);
523      }
524      virtual ~LIRSlowPath() {}
525      virtual void Compile() = 0;
526
527      static void* operator new(size_t size, ArenaAllocator* arena) {
528        return arena->Alloc(size, kArenaAllocData);
529      }
530
531      LIR *GetContinuationLabel() {
532        return cont_;
533      }
534
535      LIR *GetFromFast() {
536        return fromfast_;
537      }
538
539     protected:
540      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
541
542      Mir2Lir* const m2l_;
543      CompilationUnit* const cu_;
544      const DexOffset current_dex_pc_;
545      LIR* const fromfast_;
546      LIR* const cont_;
547    };
548
549    // Helper class for changing mem_ref_type_ until the end of current scope. See mem_ref_type_.
550    class ScopedMemRefType {
551     public:
552      ScopedMemRefType(Mir2Lir* m2l, ResourceMask::ResourceBit new_mem_ref_type)
553          : m2l_(m2l),
554            old_mem_ref_type_(m2l->mem_ref_type_) {
555        m2l_->mem_ref_type_ = new_mem_ref_type;
556      }
557
558      ~ScopedMemRefType() {
559        m2l_->mem_ref_type_ = old_mem_ref_type_;
560      }
561
562     private:
563      Mir2Lir* const m2l_;
564      ResourceMask::ResourceBit old_mem_ref_type_;
565
566      DISALLOW_COPY_AND_ASSIGN(ScopedMemRefType);
567    };
568
569    virtual ~Mir2Lir() {}
570
571    int32_t s4FromSwitchData(const void* switch_data) {
572      return *reinterpret_cast<const int32_t*>(switch_data);
573    }
574
575    /*
576     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
577     * it was introduced, it was intended to be a quick best guess of type without having to
578     * take the time to do type analysis.  Currently, though, we have a much better idea of
579     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
580     * just use our knowledge of type to select the most appropriate register class?
581     */
582    RegisterClass RegClassBySize(OpSize size) {
583      if (size == kReference) {
584        return kRefReg;
585      } else {
586        return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
587                size == kSignedByte) ? kCoreReg : kAnyReg;
588      }
589    }
590
591    size_t CodeBufferSizeInBytes() {
592      return code_buffer_.size() / sizeof(code_buffer_[0]);
593    }
594
595    static bool IsPseudoLirOp(int opcode) {
596      return (opcode < 0);
597    }
598
599    /*
600     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
601     * instructions which require PC-relative fixups), we need the operands to carry
602     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
603     * hold that index in the operand array.
604     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
605     * may be worth conditionally-compiling a set of identity functions here.
606     */
607    uint32_t WrapPointer(void* pointer) {
608      uint32_t res = pointer_storage_.Size();
609      pointer_storage_.Insert(pointer);
610      return res;
611    }
612
613    void* UnwrapPointer(size_t index) {
614      return pointer_storage_.Get(index);
615    }
616
617    // strdup(), but allocates from the arena.
618    char* ArenaStrdup(const char* str) {
619      size_t len = strlen(str) + 1;
620      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
621      if (res != NULL) {
622        strncpy(res, str, len);
623      }
624      return res;
625    }
626
627    // Shared by all targets - implemented in codegen_util.cc
628    void AppendLIR(LIR* lir);
629    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
630    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
631
632    /**
633     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
634     * to place in a frame.
635     * @return Returns the maximum number of compiler temporaries.
636     */
637    size_t GetMaxPossibleCompilerTemps() const;
638
639    /**
640     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
641     * @return Returns the size in bytes for space needed for compiler temporary spill region.
642     */
643    size_t GetNumBytesForCompilerTempSpillRegion();
644
645    DexOffset GetCurrentDexPc() const {
646      return current_dalvik_offset_;
647    }
648
649    RegisterClass ShortyToRegClass(char shorty_type);
650    RegisterClass LocToRegClass(RegLocation loc);
651    int ComputeFrameSize();
652    virtual void Materialize();
653    virtual CompiledMethod* GetCompiledMethod();
654    void MarkSafepointPC(LIR* inst);
655    void MarkSafepointPCAfter(LIR* after);
656    void SetupResourceMasks(LIR* lir);
657    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
658    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
659    void SetupRegMask(ResourceMask* mask, int reg);
660    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
661    void DumpPromotionMap();
662    void CodegenDump();
663    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
664                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
665    LIR* NewLIR0(int opcode);
666    LIR* NewLIR1(int opcode, int dest);
667    LIR* NewLIR2(int opcode, int dest, int src1);
668    LIR* NewLIR2NoDest(int opcode, int src, int info);
669    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
670    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
671    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
672    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
673    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
674    LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
675    LIR* AddWordData(LIR* *constant_list_p, int value);
676    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
677    void ProcessSwitchTables();
678    void DumpSparseSwitchTable(const uint16_t* table);
679    void DumpPackedSwitchTable(const uint16_t* table);
680    void MarkBoundary(DexOffset offset, const char* inst_str);
681    void NopLIR(LIR* lir);
682    void UnlinkLIR(LIR* lir);
683    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
684    bool IsInexpensiveConstant(RegLocation rl_src);
685    ConditionCode FlipComparisonOrder(ConditionCode before);
686    ConditionCode NegateComparison(ConditionCode before);
687    virtual void InstallLiteralPools();
688    void InstallSwitchTables();
689    void InstallFillArrayData();
690    bool VerifyCatchEntries();
691    void CreateMappingTables();
692    void CreateNativeGcMap();
693    int AssignLiteralOffset(CodeOffset offset);
694    int AssignSwitchTablesOffset(CodeOffset offset);
695    int AssignFillArrayDataOffset(CodeOffset offset);
696    virtual LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
697    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
698    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
699
700    virtual void StartSlowPath(LIRSlowPath* slowpath) {}
701    virtual void BeginInvoke(CallInfo* info) {}
702    virtual void EndInvoke(CallInfo* info) {}
703
704
705    // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation.  No code generated.
706    virtual RegLocation NarrowRegLoc(RegLocation loc);
707
708    // Shared by all targets - implemented in local_optimizations.cc
709    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
710    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
711    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
712    virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
713
714    // Shared by all targets - implemented in ralloc_util.cc
715    int GetSRegHi(int lowSreg);
716    bool LiveOut(int s_reg);
717    void SimpleRegAlloc();
718    void ResetRegPool();
719    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
720    void DumpRegPool(GrowableArray<RegisterInfo*>* regs);
721    void DumpCoreRegPool();
722    void DumpFpRegPool();
723    void DumpRegPools();
724    /* Mark a temp register as dead.  Does not affect allocation state. */
725    void Clobber(RegStorage reg);
726    void ClobberSReg(int s_reg);
727    void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
728    int SRegToPMap(int s_reg);
729    void RecordCorePromotion(RegStorage reg, int s_reg);
730    RegStorage AllocPreservedCoreReg(int s_reg);
731    void RecordFpPromotion(RegStorage reg, int s_reg);
732    RegStorage AllocPreservedFpReg(int s_reg);
733    virtual RegStorage AllocPreservedSingle(int s_reg);
734    virtual RegStorage AllocPreservedDouble(int s_reg);
735    RegStorage AllocTempBody(GrowableArray<RegisterInfo*> &regs, int* next_temp, bool required);
736    virtual RegStorage AllocFreeTemp();
737    virtual RegStorage AllocTemp();
738    virtual RegStorage AllocTempWide();
739    virtual RegStorage AllocTempRef();
740    virtual RegStorage AllocTempSingle();
741    virtual RegStorage AllocTempDouble();
742    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class);
743    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class);
744    void FlushReg(RegStorage reg);
745    void FlushRegWide(RegStorage reg);
746    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
747    RegStorage FindLiveReg(GrowableArray<RegisterInfo*> &regs, int s_reg);
748    virtual void FreeTemp(RegStorage reg);
749    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
750    virtual bool IsLive(RegStorage reg);
751    virtual bool IsTemp(RegStorage reg);
752    bool IsPromoted(RegStorage reg);
753    bool IsDirty(RegStorage reg);
754    virtual void LockTemp(RegStorage reg);
755    void ResetDef(RegStorage reg);
756    void NullifyRange(RegStorage reg, int s_reg);
757    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
758    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
759    void ResetDefLoc(RegLocation rl);
760    void ResetDefLocWide(RegLocation rl);
761    void ResetDefTracking();
762    void ClobberAllTemps();
763    void FlushSpecificReg(RegisterInfo* info);
764    void FlushAllRegs();
765    bool RegClassMatches(int reg_class, RegStorage reg);
766    void MarkLive(RegLocation loc);
767    void MarkTemp(RegStorage reg);
768    void UnmarkTemp(RegStorage reg);
769    void MarkWide(RegStorage reg);
770    void MarkNarrow(RegStorage reg);
771    void MarkClean(RegLocation loc);
772    void MarkDirty(RegLocation loc);
773    void MarkInUse(RegStorage reg);
774    bool CheckCorePoolSanity();
775    virtual RegLocation UpdateLoc(RegLocation loc);
776    virtual RegLocation UpdateLocWide(RegLocation loc);
777    RegLocation UpdateRawLoc(RegLocation loc);
778
779    /**
780     * @brief Used to prepare a register location to receive a wide value.
781     * @see EvalLoc
782     * @param loc the location where the value will be stored.
783     * @param reg_class Type of register needed.
784     * @param update Whether the liveness information should be updated.
785     * @return Returns the properly typed temporary in physical register pairs.
786     */
787    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
788
789    /**
790     * @brief Used to prepare a register location to receive a value.
791     * @param loc the location where the value will be stored.
792     * @param reg_class Type of register needed.
793     * @param update Whether the liveness information should be updated.
794     * @return Returns the properly typed temporary in physical register.
795     */
796    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
797
798    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
799    void DumpCounts(const RefCounts* arr, int size, const char* msg);
800    void DoPromotion();
801    int VRegOffset(int v_reg);
802    int SRegOffset(int s_reg);
803    RegLocation GetReturnWide(RegisterClass reg_class);
804    RegLocation GetReturn(RegisterClass reg_class);
805    RegisterInfo* GetRegInfo(RegStorage reg);
806
807    // Shared by all targets - implemented in gen_common.cc.
808    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
809    virtual bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
810                                  RegLocation rl_src, RegLocation rl_dest, int lit);
811    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
812    virtual void HandleSlowPaths();
813    void GenBarrier();
814    void GenDivZeroException();
815    // c_code holds condition code that's generated from testing divisor against 0.
816    void GenDivZeroCheck(ConditionCode c_code);
817    // reg holds divisor.
818    void GenDivZeroCheck(RegStorage reg);
819    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
820    void GenArrayBoundsCheck(int32_t index, RegStorage length);
821    LIR* GenNullCheck(RegStorage reg);
822    void MarkPossibleNullPointerException(int opt_flags);
823    void MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after);
824    void MarkPossibleStackOverflowException();
825    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
826    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
827    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
828    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
829    virtual void GenImplicitNullCheck(RegStorage reg, int opt_flags);
830    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
831                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
832    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
833                                 LIR* taken, LIR* fall_through);
834    virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
835    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
836                         RegLocation rl_src);
837    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
838                     RegLocation rl_src);
839    void GenFilledNewArray(CallInfo* info);
840    void GenSput(MIR* mir, RegLocation rl_src,
841                 bool is_long_or_double, bool is_object);
842    void GenSget(MIR* mir, RegLocation rl_dest,
843                 bool is_long_or_double, bool is_object);
844    void GenIGet(MIR* mir, int opt_flags, OpSize size,
845                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
846    void GenIPut(MIR* mir, int opt_flags, OpSize size,
847                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
848    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
849                        RegLocation rl_src);
850
851    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
852    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
853    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
854    void GenThrow(RegLocation rl_src);
855    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
856    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
857    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
858                      RegLocation rl_src1, RegLocation rl_src2);
859    virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
860                        RegLocation rl_src1, RegLocation rl_shift);
861    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
862                          RegLocation rl_src, int lit);
863    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
864                        RegLocation rl_src1, RegLocation rl_src2);
865    template <size_t pointer_size>
866    void GenConversionCall(ThreadOffset<pointer_size> func_offset, RegLocation rl_dest,
867                           RegLocation rl_src);
868    virtual void GenSuspendTest(int opt_flags);
869    virtual void GenSuspendTestAndBranch(int opt_flags, LIR* target);
870
871    // This will be overridden by x86 implementation.
872    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
873    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
874                       RegLocation rl_src1, RegLocation rl_src2);
875
876    // Shared by all targets - implemented in gen_invoke.cc.
877    template <size_t pointer_size>
878    LIR* CallHelper(RegStorage r_tgt, ThreadOffset<pointer_size> helper_offset, bool safepoint_pc,
879                    bool use_link = true);
880    RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
881    RegStorage CallHelperSetup(ThreadOffset<8> helper_offset);
882    template <size_t pointer_size>
883    void CallRuntimeHelper(ThreadOffset<pointer_size> helper_offset, bool safepoint_pc);
884    template <size_t pointer_size>
885    void CallRuntimeHelperImm(ThreadOffset<pointer_size> helper_offset, int arg0, bool safepoint_pc);
886    template <size_t pointer_size>
887    void CallRuntimeHelperReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, bool safepoint_pc);
888    template <size_t pointer_size>
889    void CallRuntimeHelperRegLocation(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
890                                      bool safepoint_pc);
891    template <size_t pointer_size>
892    void CallRuntimeHelperImmImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg1,
893                                 bool safepoint_pc);
894    template <size_t pointer_size>
895    void CallRuntimeHelperImmRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
896                                         RegLocation arg1, bool safepoint_pc);
897    template <size_t pointer_size>
898    void CallRuntimeHelperRegLocationImm(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
899                                         int arg1, bool safepoint_pc);
900    template <size_t pointer_size>
901    void CallRuntimeHelperImmReg(ThreadOffset<pointer_size> helper_offset, int arg0, RegStorage arg1,
902                                 bool safepoint_pc);
903    template <size_t pointer_size>
904    void CallRuntimeHelperRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, int arg1,
905                                 bool safepoint_pc);
906    template <size_t pointer_size>
907    void CallRuntimeHelperImmMethod(ThreadOffset<pointer_size> helper_offset, int arg0,
908                                    bool safepoint_pc);
909    template <size_t pointer_size>
910    void CallRuntimeHelperRegMethod(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
911                                    bool safepoint_pc);
912    template <size_t pointer_size>
913    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<pointer_size> helper_offset,
914                                               RegStorage arg0, RegLocation arg2, bool safepoint_pc);
915    template <size_t pointer_size>
916    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
917                                                 RegLocation arg0, RegLocation arg1,
918                                                 bool safepoint_pc);
919    template <size_t pointer_size>
920    void CallRuntimeHelperRegReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
921                                 RegStorage arg1, bool safepoint_pc);
922    template <size_t pointer_size>
923    void CallRuntimeHelperRegRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
924                                    RegStorage arg1, int arg2, bool safepoint_pc);
925    template <size_t pointer_size>
926    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
927                                               RegLocation arg2, bool safepoint_pc);
928    template <size_t pointer_size>
929    void CallRuntimeHelperImmMethodImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg2,
930                                       bool safepoint_pc);
931    template <size_t pointer_size>
932    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
933                                                    int arg0, RegLocation arg1, RegLocation arg2,
934                                                    bool safepoint_pc);
935    template <size_t pointer_size>
936    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
937                                                            RegLocation arg0, RegLocation arg1,
938                                                            RegLocation arg2,
939                                                            bool safepoint_pc);
940    void GenInvoke(CallInfo* info);
941    void GenInvokeNoInline(CallInfo* info);
942    virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
943    virtual int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
944                             NextCallInsn next_call_insn,
945                             const MethodReference& target_method,
946                             uint32_t vtable_idx,
947                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
948                             bool skip_this);
949    virtual int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
950                           NextCallInsn next_call_insn,
951                           const MethodReference& target_method,
952                           uint32_t vtable_idx,
953                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
954                           bool skip_this);
955
956    /**
957     * @brief Used to determine the register location of destination.
958     * @details This is needed during generation of inline intrinsics because it finds destination
959     *  of return,
960     * either the physical register or the target of move-result.
961     * @param info Information about the invoke.
962     * @return Returns the destination location.
963     */
964    RegLocation InlineTarget(CallInfo* info);
965
966    /**
967     * @brief Used to determine the wide register location of destination.
968     * @see InlineTarget
969     * @param info Information about the invoke.
970     * @return Returns the destination location.
971     */
972    RegLocation InlineTargetWide(CallInfo* info);
973
974    bool GenInlinedGet(CallInfo* info);
975    bool GenInlinedCharAt(CallInfo* info);
976    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
977    virtual bool GenInlinedReverseBits(CallInfo* info, OpSize size);
978    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
979    bool GenInlinedAbsInt(CallInfo* info);
980    virtual bool GenInlinedAbsLong(CallInfo* info);
981    virtual bool GenInlinedAbsFloat(CallInfo* info) = 0;
982    virtual bool GenInlinedAbsDouble(CallInfo* info) = 0;
983    bool GenInlinedFloatCvt(CallInfo* info);
984    bool GenInlinedDoubleCvt(CallInfo* info);
985    virtual bool GenInlinedArrayCopyCharArray(CallInfo* info);
986    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
987    bool GenInlinedStringCompareTo(CallInfo* info);
988    bool GenInlinedCurrentThread(CallInfo* info);
989    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
990    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
991                             bool is_volatile, bool is_ordered);
992    virtual int LoadArgRegs(CallInfo* info, int call_state,
993                    NextCallInsn next_call_insn,
994                    const MethodReference& target_method,
995                    uint32_t vtable_idx,
996                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
997                    bool skip_this);
998
999    // Shared by all targets - implemented in gen_loadstore.cc.
1000    RegLocation LoadCurrMethod();
1001    void LoadCurrMethodDirect(RegStorage r_tgt);
1002    virtual LIR* LoadConstant(RegStorage r_dest, int value);
1003    // Natural word size.
1004    virtual LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
1005      return LoadBaseDisp(r_base, displacement, r_dest, kWord, kNotVolatile);
1006    }
1007    // Load 32 bits, regardless of target.
1008    virtual LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
1009      return LoadBaseDisp(r_base, displacement, r_dest, k32, kNotVolatile);
1010    }
1011    // Load a reference at base + displacement and decompress into register.
1012    virtual LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1013                             VolatileKind is_volatile) {
1014      return LoadBaseDisp(r_base, displacement, r_dest, kReference, is_volatile);
1015    }
1016    // Load a reference at base + index and decompress into register.
1017    virtual LIR* LoadRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1018                                int scale) {
1019      return LoadBaseIndexed(r_base, r_index, r_dest, scale, kReference);
1020    }
1021    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1022    virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
1023    // Same as above, but derive the target register class from the location record.
1024    virtual RegLocation LoadValue(RegLocation rl_src);
1025    // Load Dalvik value with 64-bit memory storage.
1026    virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
1027    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1028    virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
1029    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1030    virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
1031    // Load Dalvik value with 64-bit memory storage.
1032    virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
1033    // Load Dalvik value with 64-bit memory storage.
1034    virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
1035    // Store an item of natural word size.
1036    virtual LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
1037      return StoreBaseDisp(r_base, displacement, r_src, kWord, kNotVolatile);
1038    }
1039    // Store an uncompressed reference into a compressed 32-bit container.
1040    virtual LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src,
1041                              VolatileKind is_volatile) {
1042      return StoreBaseDisp(r_base, displacement, r_src, kReference, is_volatile);
1043    }
1044    // Store an uncompressed reference into a compressed 32-bit container by index.
1045    virtual LIR* StoreRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1046                                 int scale) {
1047      return StoreBaseIndexed(r_base, r_index, r_src, scale, kReference);
1048    }
1049    // Store 32 bits, regardless of target.
1050    virtual LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
1051      return StoreBaseDisp(r_base, displacement, r_src, k32, kNotVolatile);
1052    }
1053
1054    /**
1055     * @brief Used to do the final store in the destination as per bytecode semantics.
1056     * @param rl_dest The destination dalvik register location.
1057     * @param rl_src The source register location. Can be either physical register or dalvik register.
1058     */
1059    virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
1060
1061    /**
1062     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1063     * @see StoreValue
1064     * @param rl_dest The destination dalvik register location.
1065     * @param rl_src The source register location. Can be either physical register or dalvik
1066     *  register.
1067     */
1068    virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
1069
1070    /**
1071     * @brief Used to do the final store to a destination as per bytecode semantics.
1072     * @see StoreValue
1073     * @param rl_dest The destination dalvik register location.
1074     * @param rl_src The source register location. It must be kLocPhysReg
1075     *
1076     * This is used for x86 two operand computations, where we have computed the correct
1077     * register value that now needs to be properly registered.  This is used to avoid an
1078     * extra register copy that would result if StoreValue was called.
1079     */
1080    virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
1081
1082    /**
1083     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1084     * @see StoreValueWide
1085     * @param rl_dest The destination dalvik register location.
1086     * @param rl_src The source register location. It must be kLocPhysReg
1087     *
1088     * This is used for x86 two operand computations, where we have computed the correct
1089     * register values that now need to be properly registered.  This is used to avoid an
1090     * extra pair of register copies that would result if StoreValueWide was called.
1091     */
1092    virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
1093
1094    // Shared by all targets - implemented in mir_to_lir.cc.
1095    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
1096    virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1097    bool MethodBlockCodeGen(BasicBlock* bb);
1098    bool SpecialMIR2LIR(const InlineMethod& special);
1099    virtual void MethodMIR2LIR();
1100    // Update LIR for verbose listings.
1101    void UpdateLIROffsets();
1102
1103    /*
1104     * @brief Load the address of the dex method into the register.
1105     * @param target_method The MethodReference of the method to be invoked.
1106     * @param type How the method will be invoked.
1107     * @param register that will contain the code address.
1108     * @note register will be passed to TargetReg to get physical register.
1109     */
1110    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1111                         SpecialTargetRegister symbolic_reg);
1112
1113    /*
1114     * @brief Load the Method* of a dex method into the register.
1115     * @param target_method The MethodReference of the method to be invoked.
1116     * @param type How the method will be invoked.
1117     * @param register that will contain the code address.
1118     * @note register will be passed to TargetReg to get physical register.
1119     */
1120    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1121                                   SpecialTargetRegister symbolic_reg);
1122
1123    /*
1124     * @brief Load the Class* of a Dex Class type into the register.
1125     * @param type How the method will be invoked.
1126     * @param register that will contain the code address.
1127     * @note register will be passed to TargetReg to get physical register.
1128     */
1129    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
1130
1131    // Routines that work for the generic case, but may be overriden by target.
1132    /*
1133     * @brief Compare memory to immediate, and branch if condition true.
1134     * @param cond The condition code that when true will branch to the target.
1135     * @param temp_reg A temporary register that can be used if compare to memory is not
1136     * supported by the architecture.
1137     * @param base_reg The register holding the base address.
1138     * @param offset The offset from the base.
1139     * @param check_value The immediate to compare to.
1140     * @param target branch target (or nullptr)
1141     * @param compare output for getting LIR for comparison (or nullptr)
1142     * @returns The branch instruction that was generated.
1143     */
1144    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1145                                   int offset, int check_value, LIR* target, LIR** compare);
1146
1147    // Required for target - codegen helpers.
1148    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1149                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1150    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1151    virtual LIR* CheckSuspendUsingLoad() = 0;
1152
1153    virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
1154    virtual RegStorage LoadHelper(ThreadOffset<8> offset) = 0;
1155
1156    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1157                              OpSize size, VolatileKind is_volatile) = 0;
1158    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1159                                 int scale, OpSize size) = 0;
1160    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1161                                     int displacement, RegStorage r_dest, OpSize size) = 0;
1162    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1163    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1164    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1165                               OpSize size, VolatileKind is_volatile) = 0;
1166    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1167                                  int scale, OpSize size) = 0;
1168    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1169                                      int displacement, RegStorage r_src, OpSize size) = 0;
1170    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
1171
1172    // Required for target - register utilities.
1173
1174    bool IsSameReg(RegStorage reg1, RegStorage reg2) {
1175      RegisterInfo* info1 = GetRegInfo(reg1);
1176      RegisterInfo* info2 = GetRegInfo(reg2);
1177      return (info1->Master() == info2->Master() &&
1178             (info1->StorageMask() & info2->StorageMask()) != 0);
1179    }
1180
1181    /**
1182     * @brief Portable way of getting special registers from the backend.
1183     * @param reg Enumeration describing the purpose of the register.
1184     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1185     * @note This function is currently allowed to return any suitable view of the registers
1186     *   (e.g. this could be 64-bit solo or 32-bit solo for 64-bit backends).
1187     */
1188    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1189
1190    /**
1191     * @brief Portable way of getting special registers from the backend.
1192     * @param reg Enumeration describing the purpose of the register.
1193     * @param wide_kind What kind of view of the special register is required.
1194     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1195     *
1196     * Note: For 32b system, wide (kWide) views only make sense for the argument registers and the
1197     *       return. In that case, this function should return a pair where the first component of
1198     *       the result will be the indicated special register.
1199     */
1200    virtual RegStorage TargetReg(SpecialTargetRegister reg, WideKind wide_kind) {
1201      if (wide_kind == kWide) {
1202        DCHECK((kArg0 <= reg && reg < kArg7) || (kFArg0 <= reg && reg < kFArg7) || (kRet0 == reg));
1203        COMPILE_ASSERT((kArg1 == kArg0 + 1) && (kArg2 == kArg1 + 1) && (kArg3 == kArg2 + 1) &&
1204                       (kArg4 == kArg3 + 1) && (kArg5 == kArg4 + 1) && (kArg6 == kArg5 + 1) &&
1205                       (kArg7 == kArg6 + 1), kargs_range_unexpected);
1206        COMPILE_ASSERT((kFArg1 == kFArg0 + 1) && (kFArg2 == kFArg1 + 1) && (kFArg3 == kFArg2 + 1) &&
1207                       (kFArg4 == kFArg3 + 1) && (kFArg5 == kFArg4 + 1) && (kFArg6 == kFArg5 + 1) &&
1208                       (kFArg7 == kFArg6 + 1), kfargs_range_unexpected);
1209        COMPILE_ASSERT(kRet1 == kRet0 + 1, kret_range_unexpected);
1210        return RegStorage::MakeRegPair(TargetReg(reg),
1211                                       TargetReg(static_cast<SpecialTargetRegister>(reg + 1)));
1212      } else {
1213        return TargetReg(reg);
1214      }
1215    }
1216
1217    /**
1218     * @brief Portable way of getting a special register for storing a pointer.
1219     * @see TargetReg()
1220     */
1221    virtual RegStorage TargetPtrReg(SpecialTargetRegister reg) {
1222      return TargetReg(reg);
1223    }
1224
1225    // Get a reg storage corresponding to the wide & ref flags of the reg location.
1226    virtual RegStorage TargetReg(SpecialTargetRegister reg, RegLocation loc) {
1227      if (loc.ref) {
1228        return TargetReg(reg, kRef);
1229      } else {
1230        return TargetReg(reg, loc.wide ? kWide : kNotWide);
1231      }
1232    }
1233
1234    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
1235    virtual RegLocation GetReturnAlt() = 0;
1236    virtual RegLocation GetReturnWideAlt() = 0;
1237    virtual RegLocation LocCReturn() = 0;
1238    virtual RegLocation LocCReturnRef() = 0;
1239    virtual RegLocation LocCReturnDouble() = 0;
1240    virtual RegLocation LocCReturnFloat() = 0;
1241    virtual RegLocation LocCReturnWide() = 0;
1242    virtual ResourceMask GetRegMaskCommon(const RegStorage& reg) const = 0;
1243    virtual void AdjustSpillMask() = 0;
1244    virtual void ClobberCallerSave() = 0;
1245    virtual void FreeCallTemps() = 0;
1246    virtual void LockCallTemps() = 0;
1247    virtual void CompilerInitializeRegAlloc() = 0;
1248
1249    // Required for target - miscellaneous.
1250    virtual void AssembleLIR() = 0;
1251    virtual void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) = 0;
1252    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
1253                                          ResourceMask* use_mask, ResourceMask* def_mask) = 0;
1254    virtual const char* GetTargetInstFmt(int opcode) = 0;
1255    virtual const char* GetTargetInstName(int opcode) = 0;
1256    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1257
1258    // Note: This may return kEncodeNone on architectures that do not expose a PC. The caller must
1259    //       take care of this.
1260    virtual ResourceMask GetPCUseDefEncoding() const = 0;
1261    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1262    virtual size_t GetInsnSize(LIR* lir) = 0;
1263    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1264
1265    // Check support for volatile load/store of a given size.
1266    virtual bool SupportsVolatileLoadStore(OpSize size) = 0;
1267    // Get the register class for load/store of a field.
1268    virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
1269
1270    // Required for target - Dalvik-level generators.
1271    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1272                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
1273    virtual void GenMulLong(Instruction::Code,
1274                            RegLocation rl_dest, RegLocation rl_src1,
1275                            RegLocation rl_src2) = 0;
1276    virtual void GenAddLong(Instruction::Code,
1277                            RegLocation rl_dest, RegLocation rl_src1,
1278                            RegLocation rl_src2) = 0;
1279    virtual void GenAndLong(Instruction::Code,
1280                            RegLocation rl_dest, RegLocation rl_src1,
1281                            RegLocation rl_src2) = 0;
1282    virtual void GenArithOpDouble(Instruction::Code opcode,
1283                                  RegLocation rl_dest, RegLocation rl_src1,
1284                                  RegLocation rl_src2) = 0;
1285    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1286                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1287    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1288                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1289    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1290                               RegLocation rl_src) = 0;
1291    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1292
1293    /**
1294     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1295     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1296     * that applies on integers. The generated code will write the smallest or largest value
1297     * directly into the destination register as specified by the invoke information.
1298     * @param info Information about the invoke.
1299     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1300     * @param is_long If true the value value is Long. Otherwise the value is Int.
1301     * @return Returns true if successfully generated
1302     */
1303    virtual bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) = 0;
1304    virtual bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double);
1305
1306    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1307    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1308    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1309    virtual void GenNotLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1310    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1311    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1312                           RegLocation rl_src2) = 0;
1313    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1314                            RegLocation rl_src2) = 0;
1315    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1316                            RegLocation rl_src2) = 0;
1317    virtual void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1318                            RegLocation rl_src2, bool is_div) = 0;
1319    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1320                                  bool is_div) = 0;
1321    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1322                                     bool is_div) = 0;
1323    /*
1324     * @brief Generate an integer div or rem operation by a literal.
1325     * @param rl_dest Destination Location.
1326     * @param rl_src1 Numerator Location.
1327     * @param rl_src2 Divisor Location.
1328     * @param is_div 'true' if this is a division, 'false' for a remainder.
1329     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
1330     */
1331    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1332                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
1333    /*
1334     * @brief Generate an integer div or rem operation by a literal.
1335     * @param rl_dest Destination Location.
1336     * @param rl_src Numerator Location.
1337     * @param lit Divisor.
1338     * @param is_div 'true' if this is a division, 'false' for a remainder.
1339     */
1340    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1341                                     bool is_div) = 0;
1342    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1343
1344    /**
1345     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1346     * @details This is used for generating DivideByZero checks when divisor is held in two
1347     *  separate registers.
1348     * @param reg The register holding the pair of 32-bit values.
1349     */
1350    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1351
1352    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1353    virtual void GenExitSequence() = 0;
1354    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
1355    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1356    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1357
1358    /*
1359     * @brief Handle Machine Specific MIR Extended opcodes.
1360     * @param bb The basic block in which the MIR is from.
1361     * @param mir The MIR whose opcode is not standard extended MIR.
1362     * @note Base class implementation will abort for unknown opcodes.
1363     */
1364    virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1365
1366    /**
1367     * @brief Lowers the kMirOpSelect MIR into LIR.
1368     * @param bb The basic block in which the MIR is from.
1369     * @param mir The MIR whose opcode is kMirOpSelect.
1370     */
1371    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1372
1373    /**
1374     * @brief Used to generate a memory barrier in an architecture specific way.
1375     * @details The last generated LIR will be considered for use as barrier. Namely,
1376     * if the last LIR can be updated in a way where it will serve the semantics of
1377     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1378     * that can keep the semantics.
1379     * @param barrier_kind The kind of memory barrier to generate.
1380     * @return whether a new instruction was generated.
1381     */
1382    virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1383
1384    virtual void GenMoveException(RegLocation rl_dest) = 0;
1385    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1386                                               int first_bit, int second_bit) = 0;
1387    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1388    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1389    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1390    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1391    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1392                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1393    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1394                             RegLocation rl_index, RegLocation rl_src, int scale,
1395                             bool card_mark) = 0;
1396    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1397                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1398
1399    // Required for target - single operation generators.
1400    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1401    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1402    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1403                                LIR* target) = 0;
1404    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1405    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1406    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1407    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1408    virtual void OpEndIT(LIR* it) = 0;
1409    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1410    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1411    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1412    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1413    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1414    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1415    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1416    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1417
1418    /**
1419     * @brief Used to generate an LIR that does a load from mem to reg.
1420     * @param r_dest The destination physical register.
1421     * @param r_base The base physical register for memory operand.
1422     * @param offset The displacement for memory operand.
1423     * @param move_type Specification on the move desired (size, alignment, register kind).
1424     * @return Returns the generate move LIR.
1425     */
1426    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1427                             MoveType move_type) = 0;
1428
1429    /**
1430     * @brief Used to generate an LIR that does a store from reg to mem.
1431     * @param r_base The base physical register for memory operand.
1432     * @param offset The displacement for memory operand.
1433     * @param r_src The destination physical register.
1434     * @param bytes_to_move The number of bytes to move.
1435     * @param is_aligned Whether the memory location is known to be aligned.
1436     * @return Returns the generate move LIR.
1437     */
1438    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1439                             MoveType move_type) = 0;
1440
1441    /**
1442     * @brief Used for generating a conditional register to register operation.
1443     * @param op The opcode kind.
1444     * @param cc The condition code that when true will perform the opcode.
1445     * @param r_dest The destination physical register.
1446     * @param r_src The source physical register.
1447     * @return Returns the newly created LIR or null in case of creation failure.
1448     */
1449    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1450
1451    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1452    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1453                             RegStorage r_src2) = 0;
1454    virtual LIR* OpTestSuspend(LIR* target) = 0;
1455    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
1456    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) = 0;
1457    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1458    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1459    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1460                       int offset) = 0;
1461    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1462    virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
1463    virtual void OpTlsCmp(ThreadOffset<8> offset, int val) = 0;
1464    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1465    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1466    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1467    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1468
1469    // May be optimized by targets.
1470    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1471    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1472
1473    // Temp workaround
1474    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1475
1476  protected:
1477    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1478
1479    CompilationUnit* GetCompilationUnit() {
1480      return cu_;
1481    }
1482    /*
1483     * @brief Returns the index of the lowest set bit in 'x'.
1484     * @param x Value to be examined.
1485     * @returns The bit number of the lowest bit set in the value.
1486     */
1487    int32_t LowestSetBit(uint64_t x);
1488    /*
1489     * @brief Is this value a power of two?
1490     * @param x Value to be examined.
1491     * @returns 'true' if only 1 bit is set in the value.
1492     */
1493    bool IsPowerOfTwo(uint64_t x);
1494    /*
1495     * @brief Do these SRs overlap?
1496     * @param rl_op1 One RegLocation
1497     * @param rl_op2 The other RegLocation
1498     * @return 'true' if the VR pairs overlap
1499     *
1500     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1501     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1502     * dex, we'll want to make this case illegal.
1503     */
1504    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1505
1506    /*
1507     * @brief Force a location (in a register) into a temporary register
1508     * @param loc location of result
1509     * @returns update location
1510     */
1511    virtual RegLocation ForceTemp(RegLocation loc);
1512
1513    /*
1514     * @brief Force a wide location (in registers) into temporary registers
1515     * @param loc location of result
1516     * @returns update location
1517     */
1518    virtual RegLocation ForceTempWide(RegLocation loc);
1519
1520    static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) {
1521      return wide ? k64 : ref ? kReference : k32;
1522    }
1523
1524    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1525                                    RegLocation rl_dest, RegLocation rl_src);
1526
1527    void AddSlowPath(LIRSlowPath* slowpath);
1528
1529    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1530                                            bool type_known_abstract, bool use_declaring_class,
1531                                            bool can_assume_type_is_in_dex_cache,
1532                                            uint32_t type_idx, RegLocation rl_dest,
1533                                            RegLocation rl_src);
1534    /*
1535     * @brief Generate the debug_frame FDE information if possible.
1536     * @returns pointer to vector containg CFE information, or NULL.
1537     */
1538    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1539
1540    /**
1541     * @brief Used to insert marker that can be used to associate MIR with LIR.
1542     * @details Only inserts marker if verbosity is enabled.
1543     * @param mir The mir that is currently being generated.
1544     */
1545    void GenPrintLabel(MIR* mir);
1546
1547    /**
1548     * @brief Used to generate return sequence when there is no frame.
1549     * @details Assumes that the return registers have already been populated.
1550     */
1551    virtual void GenSpecialExitSequence() = 0;
1552
1553    /**
1554     * @brief Used to generate code for special methods that are known to be
1555     * small enough to work in frameless mode.
1556     * @param bb The basic block of the first MIR.
1557     * @param mir The first MIR of the special method.
1558     * @param special Information about the special method.
1559     * @return Returns whether or not this was handled successfully. Returns false
1560     * if caller should punt to normal MIR2LIR conversion.
1561     */
1562    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1563
1564  protected:
1565    void ClobberBody(RegisterInfo* p);
1566    void SetCurrentDexPc(DexOffset dexpc) {
1567      current_dalvik_offset_ = dexpc;
1568    }
1569
1570    /**
1571     * @brief Used to lock register if argument at in_position was passed that way.
1572     * @details Does nothing if the argument is passed via stack.
1573     * @param in_position The argument number whose register to lock.
1574     * @param wide Whether the argument is wide.
1575     */
1576    void LockArg(int in_position, bool wide = false);
1577
1578    /**
1579     * @brief Used to load VR argument to a physical register.
1580     * @details The load is only done if the argument is not already in physical register.
1581     * LockArg must have been previously called.
1582     * @param in_position The argument number to load.
1583     * @param wide Whether the argument is 64-bit or not.
1584     * @return Returns the register (or register pair) for the loaded argument.
1585     */
1586    RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false);
1587
1588    /**
1589     * @brief Used to load a VR argument directly to a specified register location.
1590     * @param in_position The argument number to place in register.
1591     * @param rl_dest The register location where to place argument.
1592     */
1593    void LoadArgDirect(int in_position, RegLocation rl_dest);
1594
1595    /**
1596     * @brief Used to generate LIR for special getter method.
1597     * @param mir The mir that represents the iget.
1598     * @param special Information about the special getter method.
1599     * @return Returns whether LIR was successfully generated.
1600     */
1601    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1602
1603    /**
1604     * @brief Used to generate LIR for special setter method.
1605     * @param mir The mir that represents the iput.
1606     * @param special Information about the special setter method.
1607     * @return Returns whether LIR was successfully generated.
1608     */
1609    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1610
1611    /**
1612     * @brief Used to generate LIR for special return-args method.
1613     * @param mir The mir that represents the return of argument.
1614     * @param special Information about the special return-args method.
1615     * @return Returns whether LIR was successfully generated.
1616     */
1617    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1618
1619    void AddDivZeroCheckSlowPath(LIR* branch);
1620
1621    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1622    // kArg2 as temp.
1623    virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1624
1625    /**
1626     * @brief Load Constant into RegLocation
1627     * @param rl_dest Destination RegLocation
1628     * @param value Constant value
1629     */
1630    virtual void GenConst(RegLocation rl_dest, int value);
1631
1632    /**
1633     * Returns true iff wide GPRs are just different views on the same physical register.
1634     */
1635    virtual bool WideGPRsAreAliases() = 0;
1636
1637    /**
1638     * Returns true iff wide FPRs are just different views on the same physical register.
1639     */
1640    virtual bool WideFPRsAreAliases() = 0;
1641
1642
1643    enum class WidenessCheck {  // private
1644      kIgnoreWide,
1645      kCheckWide,
1646      kCheckNotWide
1647    };
1648
1649    enum class RefCheck {  // private
1650      kIgnoreRef,
1651      kCheckRef,
1652      kCheckNotRef
1653    };
1654
1655    enum class FPCheck {  // private
1656      kIgnoreFP,
1657      kCheckFP,
1658      kCheckNotFP
1659    };
1660
1661    /**
1662     * Check whether a reg storage seems well-formed, that is, if a reg storage is valid,
1663     * that it has the expected form for the flags.
1664     * A flag value of 0 means ignore. A flag value of -1 means false. A flag value of 1 means true.
1665     */
1666    void CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail,
1667                             bool report)
1668        const;
1669
1670    /**
1671     * Check whether a reg location seems well-formed, that is, if a reg storage is encoded,
1672     * that it has the expected size.
1673     */
1674    void CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const;
1675
1676    // See CheckRegStorageImpl. Will print or fail depending on kFailOnSizeError and
1677    // kReportSizeError.
1678    void CheckRegStorage(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp) const;
1679    // See CheckRegLocationImpl.
1680    void CheckRegLocation(RegLocation rl) const;
1681
1682  public:
1683    // TODO: add accessors for these.
1684    LIR* literal_list_;                        // Constants.
1685    LIR* method_literal_list_;                 // Method literals requiring patching.
1686    LIR* class_literal_list_;                  // Class literals requiring patching.
1687    LIR* code_literal_list_;                   // Code literals requiring patching.
1688    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1689
1690  protected:
1691    CompilationUnit* const cu_;
1692    MIRGraph* const mir_graph_;
1693    GrowableArray<SwitchTable*> switch_tables_;
1694    GrowableArray<FillArrayData*> fill_array_data_;
1695    GrowableArray<RegisterInfo*> tempreg_info_;
1696    GrowableArray<RegisterInfo*> reginfo_map_;
1697    GrowableArray<void*> pointer_storage_;
1698    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1699    CodeOffset data_offset_;            // starting offset of literal pool.
1700    size_t total_size_;                   // header + code size.
1701    LIR* block_label_list_;
1702    PromotionMap* promotion_map_;
1703    /*
1704     * TODO: The code generation utilities don't have a built-in
1705     * mechanism to propagate the original Dalvik opcode address to the
1706     * associated generated instructions.  For the trace compiler, this wasn't
1707     * necessary because the interpreter handled all throws and debugging
1708     * requests.  For now we'll handle this by placing the Dalvik offset
1709     * in the CompilationUnit struct before codegen for each instruction.
1710     * The low-level LIR creation utilites will pull it from here.  Rework this.
1711     */
1712    DexOffset current_dalvik_offset_;
1713    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1714    RegisterPool* reg_pool_;
1715    /*
1716     * Sanity checking for the register temp tracking.  The same ssa
1717     * name should never be associated with one temp register per
1718     * instruction compilation.
1719     */
1720    int live_sreg_;
1721    CodeBuffer code_buffer_;
1722    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1723    std::vector<uint8_t> encoded_mapping_table_;
1724    std::vector<uint32_t> core_vmap_table_;
1725    std::vector<uint32_t> fp_vmap_table_;
1726    std::vector<uint8_t> native_gc_map_;
1727    int num_core_spills_;
1728    int num_fp_spills_;
1729    int frame_size_;
1730    unsigned int core_spill_mask_;
1731    unsigned int fp_spill_mask_;
1732    LIR* first_lir_insn_;
1733    LIR* last_lir_insn_;
1734
1735    GrowableArray<LIRSlowPath*> slow_paths_;
1736
1737    // The memory reference type for new LIRs.
1738    // NOTE: Passing this as an explicit parameter by all functions that directly or indirectly
1739    // invoke RawLIR() would clutter the code and reduce the readability.
1740    ResourceMask::ResourceBit mem_ref_type_;
1741
1742    // Each resource mask now takes 16-bytes, so having both use/def masks directly in a LIR
1743    // would consume 32 bytes per LIR. Instead, the LIR now holds only pointers to the masks
1744    // (i.e. 8 bytes on 32-bit arch, 16 bytes on 64-bit arch) and we use ResourceMaskCache
1745    // to deduplicate the masks.
1746    ResourceMaskCache mask_cache_;
1747};  // Class Mir2Lir
1748
1749}  // namespace art
1750
1751#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1752