mir_to_lir.h revision 2700f7e1edbcd2518f4978e4cd0e05a4149f91b6
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_storage.h"
25#include "dex/backend.h"
26#include "driver/compiler_driver.h"
27#include "leb128.h"
28#include "safe_map.h"
29#include "utils/arena_allocator.h"
30#include "utils/growable_array.h"
31
32namespace art {
33
34/*
35 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
36 * add type safety (see runtime/offsets.h).
37 */
38typedef uint32_t DexOffset;          // Dex offset in code units.
39typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
40typedef uint32_t CodeOffset;         // Native code offset in bytes.
41
42// Set to 1 to measure cost of suspend check.
43#define NO_SUSPEND 0
44
45#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
46#define IS_BRANCH            (1ULL << kIsBranch)
47#define IS_IT                (1ULL << kIsIT)
48#define IS_LOAD              (1ULL << kMemLoad)
49#define IS_QUAD_OP           (1ULL << kIsQuadOp)
50#define IS_QUIN_OP           (1ULL << kIsQuinOp)
51#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
52#define IS_STORE             (1ULL << kMemStore)
53#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
54#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
55#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
56#define NO_OPERAND           (1ULL << kNoOperand)
57#define REG_DEF0             (1ULL << kRegDef0)
58#define REG_DEF1             (1ULL << kRegDef1)
59#define REG_DEF2             (1ULL << kRegDef2)
60#define REG_DEFA             (1ULL << kRegDefA)
61#define REG_DEFD             (1ULL << kRegDefD)
62#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
63#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
64#define REG_DEF_LIST0        (1ULL << kRegDefList0)
65#define REG_DEF_LIST1        (1ULL << kRegDefList1)
66#define REG_DEF_LR           (1ULL << kRegDefLR)
67#define REG_DEF_SP           (1ULL << kRegDefSP)
68#define REG_USE0             (1ULL << kRegUse0)
69#define REG_USE1             (1ULL << kRegUse1)
70#define REG_USE2             (1ULL << kRegUse2)
71#define REG_USE3             (1ULL << kRegUse3)
72#define REG_USE4             (1ULL << kRegUse4)
73#define REG_USEA             (1ULL << kRegUseA)
74#define REG_USEC             (1ULL << kRegUseC)
75#define REG_USED             (1ULL << kRegUseD)
76#define REG_USEB             (1ULL << kRegUseB)
77#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
78#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
79#define REG_USE_LIST0        (1ULL << kRegUseList0)
80#define REG_USE_LIST1        (1ULL << kRegUseList1)
81#define REG_USE_LR           (1ULL << kRegUseLR)
82#define REG_USE_PC           (1ULL << kRegUsePC)
83#define REG_USE_SP           (1ULL << kRegUseSP)
84#define SETS_CCODES          (1ULL << kSetsCCodes)
85#define USES_CCODES          (1ULL << kUsesCCodes)
86#define USE_FP_STACK         (1ULL << kUseFpStack)
87
88// Common combo register usage patterns.
89#define REG_DEF01            (REG_DEF0 | REG_DEF1)
90#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
91#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
92#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
93#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
94#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
95#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
96#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
97#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
98#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
99#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
100#define REG_USE012           (REG_USE01 | REG_USE2)
101#define REG_USE014           (REG_USE01 | REG_USE4)
102#define REG_USE01            (REG_USE0 | REG_USE1)
103#define REG_USE02            (REG_USE0 | REG_USE2)
104#define REG_USE12            (REG_USE1 | REG_USE2)
105#define REG_USE23            (REG_USE2 | REG_USE3)
106#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
107
108struct BasicBlock;
109struct CallInfo;
110struct CompilationUnit;
111struct InlineMethod;
112struct MIR;
113struct LIR;
114struct RegLocation;
115struct RegisterInfo;
116class DexFileMethodInliner;
117class MIRGraph;
118class Mir2Lir;
119
120typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
121                            const MethodReference& target_method,
122                            uint32_t method_idx, uintptr_t direct_code,
123                            uintptr_t direct_method, InvokeType type);
124
125typedef std::vector<uint8_t> CodeBuffer;
126
127struct UseDefMasks {
128  uint64_t use_mask;        // Resource mask for use.
129  uint64_t def_mask;        // Resource mask for def.
130};
131
132struct AssemblyInfo {
133  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
134  uint8_t bytes[16];         // Encoded instruction bytes.
135};
136
137struct LIR {
138  CodeOffset offset;             // Offset of this instruction.
139  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
140  int16_t opcode;
141  LIR* next;
142  LIR* prev;
143  LIR* target;
144  struct {
145    unsigned int alias_info:17;  // For Dalvik register disambiguation.
146    bool is_nop:1;               // LIR is optimized away.
147    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
148    bool use_def_invalid:1;      // If true, masks should not be used.
149    unsigned int generation:1;   // Used to track visitation state during fixup pass.
150    unsigned int fixup:8;        // Fixup kind.
151  } flags;
152  union {
153    UseDefMasks m;               // Use & Def masks used during optimization.
154    AssemblyInfo a;              // Instruction encoding used during assembly phase.
155  } u;
156  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
157};
158
159// Target-specific initialization.
160Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
161                          ArenaAllocator* const arena);
162Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
163                          ArenaAllocator* const arena);
164Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
165                          ArenaAllocator* const arena);
166
167// Utility macros to traverse the LIR list.
168#define NEXT_LIR(lir) (lir->next)
169#define PREV_LIR(lir) (lir->prev)
170
171// Defines for alias_info (tracks Dalvik register references).
172#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
173#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
174#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
175#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
176
177// Common resource macros.
178#define ENCODE_CCODE            (1ULL << kCCode)
179#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
180
181// Abstract memory locations.
182#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
183#define ENCODE_LITERAL          (1ULL << kLiteral)
184#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
185#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
186
187#define ENCODE_ALL              (~0ULL)
188#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
189                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
190
191#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
192#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
193  do { \
194    low_reg = both_regs & 0xff; \
195    high_reg = (both_regs >> 8) & 0xff; \
196  } while (false)
197
198// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
199#define STARTING_DOUBLE_SREG 0x10000
200
201// TODO: replace these macros
202#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
203#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
204#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
205#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
206#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
207
208class Mir2Lir : public Backend {
209  public:
210    /*
211     * Auxiliary information describing the location of data embedded in the Dalvik
212     * byte code stream.
213     */
214    struct EmbeddedData {
215      CodeOffset offset;        // Code offset of data block.
216      const uint16_t* table;      // Original dex data.
217      DexOffset vaddr;            // Dalvik offset of parent opcode.
218    };
219
220    struct FillArrayData : EmbeddedData {
221      int32_t size;
222    };
223
224    struct SwitchTable : EmbeddedData {
225      LIR* anchor;                // Reference instruction for relative offsets.
226      LIR** targets;              // Array of case targets.
227    };
228
229    /* Static register use counts */
230    struct RefCounts {
231      int count;
232      int s_reg;
233    };
234
235    /*
236     * Data structure tracking the mapping between a Dalvik register (pair) and a
237     * native register (pair). The idea is to reuse the previously loaded value
238     * if possible, otherwise to keep the value in a native register as long as
239     * possible.
240     */
241    struct RegisterInfo {
242      int reg;                    // Reg number
243      bool in_use;                // Has it been allocated?
244      bool is_temp;               // Can allocate as temp?
245      bool pair;                  // Part of a register pair?
246      int partner;                // If pair, other reg of pair.
247      bool live;                  // Is there an associated SSA name?
248      bool dirty;                 // If live, is it dirty?
249      int s_reg;                  // Name of live value.
250      LIR *def_start;             // Starting inst in last def sequence.
251      LIR *def_end;               // Ending inst in last def sequence.
252    };
253
254    struct RegisterPool {
255       int num_core_regs;
256       RegisterInfo *core_regs;
257       int next_core_reg;
258       int num_fp_regs;
259       RegisterInfo *FPRegs;
260       int next_fp_reg;
261     };
262
263    struct PromotionMap {
264      RegLocationType core_location:3;
265      uint8_t core_reg;
266      RegLocationType fp_location:3;
267      uint8_t FpReg;
268      bool first_in_pair;
269    };
270
271    //
272    // Slow paths.  This object is used generate a sequence of code that is executed in the
273    // slow path.  For example, resolving a string or class is slow as it will only be executed
274    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
275    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
276    // branch over them.
277    //
278    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
279    // the Compile() function that will be called near the end of the code generated by the
280    // method.
281    //
282    // The basic flow for a slow path is:
283    //
284    //     CMP reg, #value
285    //     BEQ fromfast
286    //   cont:
287    //     ...
288    //     fast path code
289    //     ...
290    //     more code
291    //     ...
292    //     RETURN
293    ///
294    //   fromfast:
295    //     ...
296    //     slow path code
297    //     ...
298    //     B cont
299    //
300    // So you see we need two labels and two branches.  The first branch (called fromfast) is
301    // the conditional branch to the slow path code.  The second label (called cont) is used
302    // as an unconditional branch target for getting back to the code after the slow path
303    // has completed.
304    //
305
306    class LIRSlowPath {
307     public:
308      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
309                  LIR* cont = nullptr) :
310        m2l_(m2l), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
311      }
312      virtual ~LIRSlowPath() {}
313      virtual void Compile() = 0;
314
315      static void* operator new(size_t size, ArenaAllocator* arena) {
316        return arena->Alloc(size, kArenaAllocData);
317      }
318
319     protected:
320      LIR* GenerateTargetLabel();
321
322      Mir2Lir* const m2l_;
323      const DexOffset current_dex_pc_;
324      LIR* const fromfast_;
325      LIR* const cont_;
326    };
327
328    virtual ~Mir2Lir() {}
329
330    int32_t s4FromSwitchData(const void* switch_data) {
331      return *reinterpret_cast<const int32_t*>(switch_data);
332    }
333
334    RegisterClass oat_reg_class_by_size(OpSize size) {
335      return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
336              size == kSignedByte) ? kCoreReg : kAnyReg;
337    }
338
339    size_t CodeBufferSizeInBytes() {
340      return code_buffer_.size() / sizeof(code_buffer_[0]);
341    }
342
343    bool IsPseudoLirOp(int opcode) {
344      return (opcode < 0);
345    }
346
347    /*
348     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
349     * instructions which require PC-relative fixups), we need the operands to carry
350     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
351     * hold that index in the operand array.
352     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
353     * may be worth conditionally-compiling a set of identity functions here.
354     */
355    uint32_t WrapPointer(void* pointer) {
356      uint32_t res = pointer_storage_.Size();
357      pointer_storage_.Insert(pointer);
358      return res;
359    }
360
361    void* UnwrapPointer(size_t index) {
362      return pointer_storage_.Get(index);
363    }
364
365    // strdup(), but allocates from the arena.
366    char* ArenaStrdup(const char* str) {
367      size_t len = strlen(str) + 1;
368      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
369      if (res != NULL) {
370        strncpy(res, str, len);
371      }
372      return res;
373    }
374
375    // Shared by all targets - implemented in codegen_util.cc
376    void AppendLIR(LIR* lir);
377    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
378    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
379
380    /**
381     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
382     * to place in a frame.
383     * @return Returns the maximum number of compiler temporaries.
384     */
385    size_t GetMaxPossibleCompilerTemps() const;
386
387    /**
388     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
389     * @return Returns the size in bytes for space needed for compiler temporary spill region.
390     */
391    size_t GetNumBytesForCompilerTempSpillRegion();
392
393    DexOffset GetCurrentDexPc() const {
394      return current_dalvik_offset_;
395    }
396
397    int ComputeFrameSize();
398    virtual void Materialize();
399    virtual CompiledMethod* GetCompiledMethod();
400    void MarkSafepointPC(LIR* inst);
401    void SetupResourceMasks(LIR* lir);
402    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
403    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
404    void SetupRegMask(uint64_t* mask, int reg);
405    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
406    void DumpPromotionMap();
407    void CodegenDump();
408    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
409                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
410    LIR* NewLIR0(int opcode);
411    LIR* NewLIR1(int opcode, int dest);
412    LIR* NewLIR2(int opcode, int dest, int src1);
413    LIR* NewLIR2NoDest(int opcode, int src, int info);
414    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
415    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
416    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
417    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
418    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
419    LIR* AddWordData(LIR* *constant_list_p, int value);
420    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
421    void ProcessSwitchTables();
422    void DumpSparseSwitchTable(const uint16_t* table);
423    void DumpPackedSwitchTable(const uint16_t* table);
424    void MarkBoundary(DexOffset offset, const char* inst_str);
425    void NopLIR(LIR* lir);
426    void UnlinkLIR(LIR* lir);
427    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
428    bool IsInexpensiveConstant(RegLocation rl_src);
429    ConditionCode FlipComparisonOrder(ConditionCode before);
430    ConditionCode NegateComparison(ConditionCode before);
431    virtual void InstallLiteralPools();
432    void InstallSwitchTables();
433    void InstallFillArrayData();
434    bool VerifyCatchEntries();
435    void CreateMappingTables();
436    void CreateNativeGcMap();
437    int AssignLiteralOffset(CodeOffset offset);
438    int AssignSwitchTablesOffset(CodeOffset offset);
439    int AssignFillArrayDataOffset(CodeOffset offset);
440    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
441    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
442    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
443    // Handle bookkeeping to convert a wide RegLocation to a narow RegLocation.  No code generated.
444    RegLocation NarrowRegLoc(RegLocation loc);
445
446    // Shared by all targets - implemented in local_optimizations.cc
447    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
448    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
449    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
450    void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
451
452    // Shared by all targets - implemented in ralloc_util.cc
453    int GetSRegHi(int lowSreg);
454    bool oat_live_out(int s_reg);
455    int oatSSASrc(MIR* mir, int num);
456    void SimpleRegAlloc();
457    void ResetRegPool();
458    void CompilerInitPool(RegisterInfo* regs, int* reg_nums, int num);
459    void DumpRegPool(RegisterInfo* p, int num_regs);
460    void DumpCoreRegPool();
461    void DumpFpRegPool();
462    /* Mark a temp register as dead.  Does not affect allocation state. */
463    void Clobber(int reg) {
464      ClobberBody(GetRegInfo(reg));
465    }
466    void Clobber(RegStorage reg);
467    void ClobberSRegBody(RegisterInfo* p, int num_regs, int s_reg);
468    void ClobberSReg(int s_reg);
469    int SRegToPMap(int s_reg);
470    void RecordCorePromotion(RegStorage reg, int s_reg);
471    RegStorage AllocPreservedCoreReg(int s_reg);
472    void RecordFpPromotion(RegStorage reg, int s_reg);
473    RegStorage AllocPreservedSingle(int s_reg);
474    RegStorage AllocPreservedDouble(int s_reg);
475    RegStorage AllocTempBody(RegisterInfo* p, int num_regs, int* next_temp, bool required);
476    virtual RegStorage AllocTempDouble();
477    RegStorage AllocFreeTemp();
478    RegStorage AllocTemp();
479    RegStorage AllocTempFloat();
480    RegisterInfo* AllocLiveBody(RegisterInfo* p, int num_regs, int s_reg);
481    RegisterInfo* AllocLive(int s_reg, int reg_class);
482    void FreeTemp(int reg);
483    void FreeTemp(RegStorage reg);
484    RegisterInfo* IsLive(int reg);
485    RegisterInfo* IsLive(RegStorage reg);
486    RegisterInfo* IsTemp(int reg);
487    RegisterInfo* IsTemp(RegStorage reg);
488    RegisterInfo* IsPromoted(int reg);
489    RegisterInfo* IsPromoted(RegStorage reg);
490    bool IsDirty(int reg);
491    bool IsDirty(RegStorage reg);
492    void LockTemp(int reg);
493    void LockTemp(RegStorage reg);
494    void ResetDef(int reg);
495    void ResetDef(RegStorage reg);
496    void NullifyRange(LIR *start, LIR *finish, int s_reg1, int s_reg2);
497    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
498    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
499    RegLocation WideToNarrow(RegLocation rl);
500    void ResetDefLoc(RegLocation rl);
501    virtual void ResetDefLocWide(RegLocation rl);
502    void ResetDefTracking();
503    void ClobberAllRegs();
504    void FlushSpecificReg(RegisterInfo* info);
505    void FlushAllRegsBody(RegisterInfo* info, int num_regs);
506    void FlushAllRegs();
507    bool RegClassMatches(int reg_class, RegStorage reg);
508    void MarkLive(RegStorage reg, int s_reg);
509    void MarkTemp(int reg);
510    void MarkTemp(RegStorage reg);
511    void UnmarkTemp(int reg);
512    void UnmarkTemp(RegStorage reg);
513    void MarkPair(int low_reg, int high_reg);
514    void MarkClean(RegLocation loc);
515    void MarkDirty(RegLocation loc);
516    void MarkInUse(int reg);
517    void MarkInUse(RegStorage reg);
518    void CopyRegInfo(int new_reg, int old_reg);
519    void CopyRegInfo(RegStorage new_reg, RegStorage old_reg);
520    bool CheckCorePoolSanity();
521    RegLocation UpdateLoc(RegLocation loc);
522    virtual RegLocation UpdateLocWide(RegLocation loc);
523    RegLocation UpdateRawLoc(RegLocation loc);
524
525    /**
526     * @brief Used to load register location into a typed temporary or pair of temporaries.
527     * @see EvalLoc
528     * @param loc The register location to load from.
529     * @param reg_class Type of register needed.
530     * @param update Whether the liveness information should be updated.
531     * @return Returns the properly typed temporary in physical register pairs.
532     */
533    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
534
535    /**
536     * @brief Used to load register location into a typed temporary.
537     * @param loc The register location to load from.
538     * @param reg_class Type of register needed.
539     * @param update Whether the liveness information should be updated.
540     * @return Returns the properly typed temporary in physical register.
541     */
542    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
543
544    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
545    void DumpCounts(const RefCounts* arr, int size, const char* msg);
546    void DoPromotion();
547    int VRegOffset(int v_reg);
548    int SRegOffset(int s_reg);
549    RegLocation GetReturnWide(bool is_double);
550    RegLocation GetReturn(bool is_float);
551    RegisterInfo* GetRegInfo(int reg);
552
553    // Shared by all targets - implemented in gen_common.cc.
554    void AddIntrinsicLaunchpad(CallInfo* info, LIR* branch, LIR* resume = nullptr);
555    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
556                          RegLocation rl_src, RegLocation rl_dest, int lit);
557    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
558    void HandleSuspendLaunchPads();
559    void HandleThrowLaunchPads();
560    void HandleSlowPaths();
561    void GenBarrier();
562    LIR* GenCheck(ConditionCode c_code, ThrowKind kind);
563    void MarkPossibleNullPointerException(int opt_flags);
564    void MarkPossibleStackOverflowException();
565    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
566    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
567    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
568    LIR* GenRegRegCheck(ConditionCode c_code, RegStorage reg1, RegStorage reg2, ThrowKind kind);
569    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
570                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
571    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
572                                 LIR* taken, LIR* fall_through);
573    void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
574    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
575                         RegLocation rl_src);
576    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
577                     RegLocation rl_src);
578    void GenFilledNewArray(CallInfo* info);
579    void GenSput(MIR* mir, RegLocation rl_src,
580                 bool is_long_or_double, bool is_object);
581    void GenSget(MIR* mir, RegLocation rl_dest,
582                 bool is_long_or_double, bool is_object);
583    void GenIGet(MIR* mir, int opt_flags, OpSize size,
584                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
585    void GenIPut(MIR* mir, int opt_flags, OpSize size,
586                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
587    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
588                        RegLocation rl_src);
589
590    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
591    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
592    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
593    void GenThrow(RegLocation rl_src);
594    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
595    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
596    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
597                      RegLocation rl_src1, RegLocation rl_src2);
598    void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
599                        RegLocation rl_src1, RegLocation rl_shift);
600    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
601                          RegLocation rl_src, int lit);
602    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
603                        RegLocation rl_src1, RegLocation rl_src2);
604    void GenConversionCall(ThreadOffset func_offset, RegLocation rl_dest,
605                           RegLocation rl_src);
606    void GenSuspendTest(int opt_flags);
607    void GenSuspendTestAndBranch(int opt_flags, LIR* target);
608
609    // This will be overridden by x86 implementation.
610    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
611    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
612                       RegLocation rl_src1, RegLocation rl_src2);
613
614    // Shared by all targets - implemented in gen_invoke.cc.
615    LIR* CallHelper(RegStorage r_tgt, ThreadOffset helper_offset, bool safepoint_pc,
616                    bool use_link = true);
617    RegStorage CallHelperSetup(ThreadOffset helper_offset);
618    void CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
619    void CallRuntimeHelperReg(ThreadOffset helper_offset, RegStorage arg0, bool safepoint_pc);
620    void CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0,
621                                      bool safepoint_pc);
622    void CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1,
623                                 bool safepoint_pc);
624    void CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0,
625                                         RegLocation arg1, bool safepoint_pc);
626    void CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0,
627                                         int arg1, bool safepoint_pc);
628    void CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, RegStorage arg1,
629                                 bool safepoint_pc);
630    void CallRuntimeHelperRegImm(ThreadOffset helper_offset, RegStorage arg0, int arg1,
631                                 bool safepoint_pc);
632    void CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0,
633                                    bool safepoint_pc);
634    void CallRuntimeHelperRegMethod(ThreadOffset helper_offset, RegStorage arg0, bool safepoint_pc);
635    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset helper_offset, RegStorage arg0,
636                                               RegLocation arg2, bool safepoint_pc);
637    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset,
638                                                 RegLocation arg0, RegLocation arg1,
639                                                 bool safepoint_pc);
640    void CallRuntimeHelperRegReg(ThreadOffset helper_offset, RegStorage arg0, RegStorage arg1,
641                                 bool safepoint_pc);
642    void CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, RegStorage arg0, RegStorage arg1,
643                                    int arg2, bool safepoint_pc);
644    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset, int arg0,
645                                               RegLocation arg2, bool safepoint_pc);
646    void CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0, int arg2,
647                                       bool safepoint_pc);
648    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset,
649                                                    int arg0, RegLocation arg1, RegLocation arg2,
650                                                    bool safepoint_pc);
651    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset helper_offset,
652                                                            RegLocation arg0, RegLocation arg1,
653                                                            RegLocation arg2,
654                                                            bool safepoint_pc);
655    void GenInvoke(CallInfo* info);
656    void GenInvokeNoInline(CallInfo* info);
657    void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
658    int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
659                             NextCallInsn next_call_insn,
660                             const MethodReference& target_method,
661                             uint32_t vtable_idx,
662                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
663                             bool skip_this);
664    int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
665                           NextCallInsn next_call_insn,
666                           const MethodReference& target_method,
667                           uint32_t vtable_idx,
668                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
669                           bool skip_this);
670
671    /**
672     * @brief Used to determine the register location of destination.
673     * @details This is needed during generation of inline intrinsics because it finds destination of return,
674     * either the physical register or the target of move-result.
675     * @param info Information about the invoke.
676     * @return Returns the destination location.
677     */
678    RegLocation InlineTarget(CallInfo* info);
679
680    /**
681     * @brief Used to determine the wide register location of destination.
682     * @see InlineTarget
683     * @param info Information about the invoke.
684     * @return Returns the destination location.
685     */
686    RegLocation InlineTargetWide(CallInfo* info);
687
688    bool GenInlinedCharAt(CallInfo* info);
689    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
690    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
691    bool GenInlinedAbsInt(CallInfo* info);
692    bool GenInlinedAbsLong(CallInfo* info);
693    bool GenInlinedAbsFloat(CallInfo* info);
694    bool GenInlinedAbsDouble(CallInfo* info);
695    bool GenInlinedFloatCvt(CallInfo* info);
696    bool GenInlinedDoubleCvt(CallInfo* info);
697    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
698    bool GenInlinedStringCompareTo(CallInfo* info);
699    bool GenInlinedCurrentThread(CallInfo* info);
700    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
701    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
702                             bool is_volatile, bool is_ordered);
703    int LoadArgRegs(CallInfo* info, int call_state,
704                    NextCallInsn next_call_insn,
705                    const MethodReference& target_method,
706                    uint32_t vtable_idx,
707                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
708                    bool skip_this);
709
710    // Shared by all targets - implemented in gen_loadstore.cc.
711    RegLocation LoadCurrMethod();
712    void LoadCurrMethodDirect(RegStorage r_tgt);
713    LIR* LoadConstant(RegStorage r_dest, int value);
714    LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest);
715    RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
716    RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
717    void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
718    void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
719    void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
720    void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
721    LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src);
722
723    /**
724     * @brief Used to do the final store in the destination as per bytecode semantics.
725     * @param rl_dest The destination dalvik register location.
726     * @param rl_src The source register location. Can be either physical register or dalvik register.
727     */
728    void StoreValue(RegLocation rl_dest, RegLocation rl_src);
729
730    /**
731     * @brief Used to do the final store in a wide destination as per bytecode semantics.
732     * @see StoreValue
733     * @param rl_dest The destination dalvik register location.
734     * @param rl_src The source register location. Can be either physical register or dalvik register.
735     */
736    void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
737
738    /**
739     * @brief Used to do the final store to a destination as per bytecode semantics.
740     * @see StoreValue
741     * @param rl_dest The destination dalvik register location.
742     * @param rl_src The source register location. It must be kLocPhysReg
743     *
744     * This is used for x86 two operand computations, where we have computed the correct
745     * register value that now needs to be properly registered.  This is used to avoid an
746     * extra register copy that would result if StoreValue was called.
747     */
748    void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
749
750    /**
751     * @brief Used to do the final store in a wide destination as per bytecode semantics.
752     * @see StoreValueWide
753     * @param rl_dest The destination dalvik register location.
754     * @param rl_src The source register location. It must be kLocPhysReg
755     *
756     * This is used for x86 two operand computations, where we have computed the correct
757     * register values that now need to be properly registered.  This is used to avoid an
758     * extra pair of register copies that would result if StoreValueWide was called.
759     */
760    void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
761
762    // Shared by all targets - implemented in mir_to_lir.cc.
763    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
764    void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
765    bool MethodBlockCodeGen(BasicBlock* bb);
766    bool SpecialMIR2LIR(const InlineMethod& special);
767    void MethodMIR2LIR();
768
769    /*
770     * @brief Load the address of the dex method into the register.
771     * @param target_method The MethodReference of the method to be invoked.
772     * @param type How the method will be invoked.
773     * @param register that will contain the code address.
774     * @note register will be passed to TargetReg to get physical register.
775     */
776    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
777                         SpecialTargetRegister symbolic_reg);
778
779    /*
780     * @brief Load the Method* of a dex method into the register.
781     * @param target_method The MethodReference of the method to be invoked.
782     * @param type How the method will be invoked.
783     * @param register that will contain the code address.
784     * @note register will be passed to TargetReg to get physical register.
785     */
786    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
787                                   SpecialTargetRegister symbolic_reg);
788
789    /*
790     * @brief Load the Class* of a Dex Class type into the register.
791     * @param type How the method will be invoked.
792     * @param register that will contain the code address.
793     * @note register will be passed to TargetReg to get physical register.
794     */
795    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
796
797    // Routines that work for the generic case, but may be overriden by target.
798    /*
799     * @brief Compare memory to immediate, and branch if condition true.
800     * @param cond The condition code that when true will branch to the target.
801     * @param temp_reg A temporary register that can be used if compare to memory is not
802     * supported by the architecture.
803     * @param base_reg The register holding the base address.
804     * @param offset The offset from the base.
805     * @param check_value The immediate to compare to.
806     * @returns The branch instruction that was generated.
807     */
808    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
809                                   int offset, int check_value, LIR* target);
810
811    // Required for target - codegen helpers.
812    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
813                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
814    virtual LIR* CheckSuspendUsingLoad() = 0;
815    virtual RegStorage LoadHelper(ThreadOffset offset) = 0;
816    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest, OpSize size,
817                              int s_reg) = 0;
818    virtual LIR* LoadBaseDispWide(RegStorage r_base, int displacement, RegStorage r_dest,
819                                  int s_reg) = 0;
820    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
821                                 int scale, OpSize size) = 0;
822    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
823                                     int displacement, RegStorage r_dest, RegStorage r_dest_hi,
824                                     OpSize size, int s_reg) = 0;
825    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
826    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
827    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
828                               OpSize size) = 0;
829    virtual LIR* StoreBaseDispWide(RegStorage r_base, int displacement, RegStorage r_src) = 0;
830    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
831                                  int scale, OpSize size) = 0;
832    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
833                                      int displacement, RegStorage r_src, RegStorage r_src_hi,
834                                      OpSize size, int s_reg) = 0;
835    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
836
837    // Required for target - register utilities.
838    virtual bool IsFpReg(int reg) = 0;
839    virtual bool IsFpReg(RegStorage reg) = 0;
840    virtual bool SameRegType(int reg1, int reg2) = 0;
841    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class) = 0;
842    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class) = 0;
843    // TODO: elminate S2d.
844    virtual int S2d(int low_reg, int high_reg) = 0;
845    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
846    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
847    virtual RegLocation GetReturnAlt() = 0;
848    virtual RegLocation GetReturnWideAlt() = 0;
849    virtual RegLocation LocCReturn() = 0;
850    virtual RegLocation LocCReturnDouble() = 0;
851    virtual RegLocation LocCReturnFloat() = 0;
852    virtual RegLocation LocCReturnWide() = 0;
853    // TODO: use to reduce/eliminate xx_FPREG() macro use.
854    virtual uint32_t FpRegMask() = 0;
855    virtual uint64_t GetRegMaskCommon(int reg) = 0;
856    virtual void AdjustSpillMask() = 0;
857    virtual void ClobberCallerSave() = 0;
858    virtual void FlushReg(RegStorage reg) = 0;
859    virtual void FlushRegWide(RegStorage reg) = 0;
860    virtual void FreeCallTemps() = 0;
861    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) = 0;
862    virtual void LockCallTemps() = 0;
863    virtual void MarkPreservedSingle(int v_reg, int reg) = 0;
864    virtual void CompilerInitializeRegAlloc() = 0;
865
866    // Required for target - miscellaneous.
867    virtual void AssembleLIR() = 0;
868    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
869    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
870    virtual const char* GetTargetInstFmt(int opcode) = 0;
871    virtual const char* GetTargetInstName(int opcode) = 0;
872    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
873    virtual uint64_t GetPCUseDefEncoding() = 0;
874    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
875    virtual int GetInsnSize(LIR* lir) = 0;
876    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
877
878    // Required for target - Dalvik-level generators.
879    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
880                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
881    virtual void GenMulLong(Instruction::Code,
882                            RegLocation rl_dest, RegLocation rl_src1,
883                            RegLocation rl_src2) = 0;
884    virtual void GenAddLong(Instruction::Code,
885                            RegLocation rl_dest, RegLocation rl_src1,
886                            RegLocation rl_src2) = 0;
887    virtual void GenAndLong(Instruction::Code,
888                            RegLocation rl_dest, RegLocation rl_src1,
889                            RegLocation rl_src2) = 0;
890    virtual void GenArithOpDouble(Instruction::Code opcode,
891                                  RegLocation rl_dest, RegLocation rl_src1,
892                                  RegLocation rl_src2) = 0;
893    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
894                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
895    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
896                          RegLocation rl_src1, RegLocation rl_src2) = 0;
897    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
898                               RegLocation rl_src) = 0;
899    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
900
901    /**
902     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
903     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
904     * that applies on integers. The generated code will write the smallest or largest value
905     * directly into the destination register as specified by the invoke information.
906     * @param info Information about the invoke.
907     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
908     * @return Returns true if successfully generated
909     */
910    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
911
912    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
913    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
914    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
915    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
916    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
917                           RegLocation rl_src2) = 0;
918    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
919                            RegLocation rl_src2) = 0;
920    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
921                            RegLocation rl_src2) = 0;
922    virtual LIR* GenRegMemCheck(ConditionCode c_code, RegStorage reg1, RegStorage base,
923                                int offset, ThrowKind kind) = 0;
924    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
925                                  bool is_div) = 0;
926    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
927                                     bool is_div) = 0;
928    /*
929     * @brief Generate an integer div or rem operation by a literal.
930     * @param rl_dest Destination Location.
931     * @param rl_src1 Numerator Location.
932     * @param rl_src2 Divisor Location.
933     * @param is_div 'true' if this is a division, 'false' for a remainder.
934     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
935     */
936    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
937                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
938    /*
939     * @brief Generate an integer div or rem operation by a literal.
940     * @param rl_dest Destination Location.
941     * @param rl_src Numerator Location.
942     * @param lit Divisor.
943     * @param is_div 'true' if this is a division, 'false' for a remainder.
944     */
945    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
946                                     bool is_div) = 0;
947    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
948
949    /**
950     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
951     * @details This is used for generating DivideByZero checks when divisor is held in two separate registers.
952     * @param reg_lo The register holding the lower 32-bits.
953     * @param reg_hi The register holding the upper 32-bits.
954     */
955    virtual void GenDivZeroCheck(RegStorage reg) = 0;
956
957    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
958    virtual void GenExitSequence() = 0;
959    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
960    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
961    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
962
963    /**
964     * @brief Lowers the kMirOpSelect MIR into LIR.
965     * @param bb The basic block in which the MIR is from.
966     * @param mir The MIR whose opcode is kMirOpSelect.
967     */
968    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
969
970    /**
971     * @brief Used to generate a memory barrier in an architecture specific way.
972     * @details The last generated LIR will be considered for use as barrier. Namely,
973     * if the last LIR can be updated in a way where it will serve the semantics of
974     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
975     * that can keep the semantics.
976     * @param barrier_kind The kind of memory barrier to generate.
977     */
978    virtual void GenMemBarrier(MemBarrierKind barrier_kind) = 0;
979
980    virtual void GenMoveException(RegLocation rl_dest) = 0;
981    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
982                                               int first_bit, int second_bit) = 0;
983    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
984    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
985    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
986    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
987    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
988                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
989    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
990                             RegLocation rl_index, RegLocation rl_src, int scale,
991                             bool card_mark) = 0;
992    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
993                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
994
995    // Required for target - single operation generators.
996    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
997    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
998    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
999                                LIR* target) = 0;
1000    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1001    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1002    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1003    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1004    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1005    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1006    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1007    virtual LIR* OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1008    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1009    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1010    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1011    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1012
1013    /**
1014     * @brief Used to generate an LIR that does a load from mem to reg.
1015     * @param r_dest The destination physical register.
1016     * @param r_base The base physical register for memory operand.
1017     * @param offset The displacement for memory operand.
1018     * @param move_type Specification on the move desired (size, alignment, register kind).
1019     * @return Returns the generate move LIR.
1020     */
1021    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1022                             MoveType move_type) = 0;
1023
1024    /**
1025     * @brief Used to generate an LIR that does a store from reg to mem.
1026     * @param r_base The base physical register for memory operand.
1027     * @param offset The displacement for memory operand.
1028     * @param r_src The destination physical register.
1029     * @param bytes_to_move The number of bytes to move.
1030     * @param is_aligned Whether the memory location is known to be aligned.
1031     * @return Returns the generate move LIR.
1032     */
1033    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1034                             MoveType move_type) = 0;
1035
1036    /**
1037     * @brief Used for generating a conditional register to register operation.
1038     * @param op The opcode kind.
1039     * @param cc The condition code that when true will perform the opcode.
1040     * @param r_dest The destination physical register.
1041     * @param r_src The source physical register.
1042     * @return Returns the newly created LIR or null in case of creation failure.
1043     */
1044    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1045
1046    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1047    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1048                             RegStorage r_src2) = 0;
1049    virtual LIR* OpTestSuspend(LIR* target) = 0;
1050    virtual LIR* OpThreadMem(OpKind op, ThreadOffset thread_offset) = 0;
1051    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1052    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1053    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1054                       int offset) = 0;
1055    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1056    virtual void OpTlsCmp(ThreadOffset offset, int val) = 0;
1057    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1058    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1059    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1060    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1061
1062    // May be optimized by targets.
1063    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1064    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1065
1066    // Temp workaround
1067    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1068
1069  protected:
1070    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1071
1072    CompilationUnit* GetCompilationUnit() {
1073      return cu_;
1074    }
1075    /*
1076     * @brief Returns the index of the lowest set bit in 'x'.
1077     * @param x Value to be examined.
1078     * @returns The bit number of the lowest bit set in the value.
1079     */
1080    int32_t LowestSetBit(uint64_t x);
1081    /*
1082     * @brief Is this value a power of two?
1083     * @param x Value to be examined.
1084     * @returns 'true' if only 1 bit is set in the value.
1085     */
1086    bool IsPowerOfTwo(uint64_t x);
1087    /*
1088     * @brief Do these SRs overlap?
1089     * @param rl_op1 One RegLocation
1090     * @param rl_op2 The other RegLocation
1091     * @return 'true' if the VR pairs overlap
1092     *
1093     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1094     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1095     * dex, we'll want to make this case illegal.
1096     */
1097    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1098
1099    /*
1100     * @brief Force a location (in a register) into a temporary register
1101     * @param loc location of result
1102     * @returns update location
1103     */
1104    RegLocation ForceTemp(RegLocation loc);
1105
1106    /*
1107     * @brief Force a wide location (in registers) into temporary registers
1108     * @param loc location of result
1109     * @returns update location
1110     */
1111    RegLocation ForceTempWide(RegLocation loc);
1112
1113    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1114                                    RegLocation rl_dest, RegLocation rl_src);
1115
1116    void AddSlowPath(LIRSlowPath* slowpath);
1117
1118    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1119                                            bool type_known_abstract, bool use_declaring_class,
1120                                            bool can_assume_type_is_in_dex_cache,
1121                                            uint32_t type_idx, RegLocation rl_dest,
1122                                            RegLocation rl_src);
1123    /*
1124     * @brief Generate the debug_frame FDE information if possible.
1125     * @returns pointer to vector containg CFE information, or NULL.
1126     */
1127    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1128
1129    /**
1130     * @brief Used to insert marker that can be used to associate MIR with LIR.
1131     * @details Only inserts marker if verbosity is enabled.
1132     * @param mir The mir that is currently being generated.
1133     */
1134    void GenPrintLabel(MIR* mir);
1135
1136    /**
1137     * @brief Used to generate return sequence when there is no frame.
1138     * @details Assumes that the return registers have already been populated.
1139     */
1140    virtual void GenSpecialExitSequence() = 0;
1141
1142    /**
1143     * @brief Used to generate code for special methods that are known to be
1144     * small enough to work in frameless mode.
1145     * @param bb The basic block of the first MIR.
1146     * @param mir The first MIR of the special method.
1147     * @param special Information about the special method.
1148     * @return Returns whether or not this was handled successfully. Returns false
1149     * if caller should punt to normal MIR2LIR conversion.
1150     */
1151    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1152
1153  private:
1154    void ClobberBody(RegisterInfo* p);
1155    void ResetDefBody(RegisterInfo* p) {
1156      p->def_start = NULL;
1157      p->def_end = NULL;
1158    }
1159
1160    void SetCurrentDexPc(DexOffset dexpc) {
1161      current_dalvik_offset_ = dexpc;
1162    }
1163
1164    /**
1165     * @brief Used to lock register if argument at in_position was passed that way.
1166     * @details Does nothing if the argument is passed via stack.
1167     * @param in_position The argument number whose register to lock.
1168     * @param wide Whether the argument is wide.
1169     */
1170    void LockArg(int in_position, bool wide = false);
1171
1172    /**
1173     * @brief Used to load VR argument to a physical register.
1174     * @details The load is only done if the argument is not already in physical register.
1175     * LockArg must have been previously called.
1176     * @param in_position The argument number to load.
1177     * @param wide Whether the argument is 64-bit or not.
1178     * @return Returns the register (or register pair) for the loaded argument.
1179     */
1180    RegStorage LoadArg(int in_position, bool wide = false);
1181
1182    /**
1183     * @brief Used to load a VR argument directly to a specified register location.
1184     * @param in_position The argument number to place in register.
1185     * @param rl_dest The register location where to place argument.
1186     */
1187    void LoadArgDirect(int in_position, RegLocation rl_dest);
1188
1189    /**
1190     * @brief Used to generate LIR for special getter method.
1191     * @param mir The mir that represents the iget.
1192     * @param special Information about the special getter method.
1193     * @return Returns whether LIR was successfully generated.
1194     */
1195    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1196
1197    /**
1198     * @brief Used to generate LIR for special setter method.
1199     * @param mir The mir that represents the iput.
1200     * @param special Information about the special setter method.
1201     * @return Returns whether LIR was successfully generated.
1202     */
1203    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1204
1205    /**
1206     * @brief Used to generate LIR for special return-args method.
1207     * @param mir The mir that represents the return of argument.
1208     * @param special Information about the special return-args method.
1209     * @return Returns whether LIR was successfully generated.
1210     */
1211    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1212
1213
1214  public:
1215    // TODO: add accessors for these.
1216    LIR* literal_list_;                        // Constants.
1217    LIR* method_literal_list_;                 // Method literals requiring patching.
1218    LIR* class_literal_list_;                  // Class literals requiring patching.
1219    LIR* code_literal_list_;                   // Code literals requiring patching.
1220    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1221
1222  protected:
1223    CompilationUnit* const cu_;
1224    MIRGraph* const mir_graph_;
1225    GrowableArray<SwitchTable*> switch_tables_;
1226    GrowableArray<FillArrayData*> fill_array_data_;
1227    GrowableArray<LIR*> throw_launchpads_;
1228    GrowableArray<LIR*> suspend_launchpads_;
1229    GrowableArray<RegisterInfo*> tempreg_info_;
1230    GrowableArray<RegisterInfo*> reginfo_map_;
1231    GrowableArray<void*> pointer_storage_;
1232    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1233    CodeOffset data_offset_;            // starting offset of literal pool.
1234    size_t total_size_;                   // header + code size.
1235    LIR* block_label_list_;
1236    PromotionMap* promotion_map_;
1237    /*
1238     * TODO: The code generation utilities don't have a built-in
1239     * mechanism to propagate the original Dalvik opcode address to the
1240     * associated generated instructions.  For the trace compiler, this wasn't
1241     * necessary because the interpreter handled all throws and debugging
1242     * requests.  For now we'll handle this by placing the Dalvik offset
1243     * in the CompilationUnit struct before codegen for each instruction.
1244     * The low-level LIR creation utilites will pull it from here.  Rework this.
1245     */
1246    DexOffset current_dalvik_offset_;
1247    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1248    RegisterPool* reg_pool_;
1249    /*
1250     * Sanity checking for the register temp tracking.  The same ssa
1251     * name should never be associated with one temp register per
1252     * instruction compilation.
1253     */
1254    int live_sreg_;
1255    CodeBuffer code_buffer_;
1256    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1257    std::vector<uint8_t> encoded_mapping_table_;
1258    std::vector<uint32_t> core_vmap_table_;
1259    std::vector<uint32_t> fp_vmap_table_;
1260    std::vector<uint8_t> native_gc_map_;
1261    int num_core_spills_;
1262    int num_fp_spills_;
1263    int frame_size_;
1264    unsigned int core_spill_mask_;
1265    unsigned int fp_spill_mask_;
1266    LIR* first_lir_insn_;
1267    LIR* last_lir_insn_;
1268
1269    GrowableArray<LIRSlowPath*> slow_paths_;
1270};  // Class Mir2Lir
1271
1272}  // namespace art
1273
1274#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1275