mir_to_lir.h revision 2eba1fa7e9e5f91e18ae3778d529520bd2c78d55
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_location.h"
25#include "dex/reg_storage.h"
26#include "dex/backend.h"
27#include "dex/quick/resource_mask.h"
28#include "driver/compiler_driver.h"
29#include "instruction_set.h"
30#include "leb128.h"
31#include "entrypoints/quick/quick_entrypoints_enum.h"
32#include "safe_map.h"
33#include "utils/array_ref.h"
34#include "utils/arena_allocator.h"
35#include "utils/growable_array.h"
36#include "utils/stack_checks.h"
37
38namespace art {
39
40/*
41 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
42 * add type safety (see runtime/offsets.h).
43 */
44typedef uint32_t DexOffset;          // Dex offset in code units.
45typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
46typedef uint32_t CodeOffset;         // Native code offset in bytes.
47
48// Set to 1 to measure cost of suspend check.
49#define NO_SUSPEND 0
50
51#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
52#define IS_BRANCH            (1ULL << kIsBranch)
53#define IS_IT                (1ULL << kIsIT)
54#define IS_MOVE              (1ULL << kIsMoveOp)
55#define IS_LOAD              (1ULL << kMemLoad)
56#define IS_QUAD_OP           (1ULL << kIsQuadOp)
57#define IS_QUIN_OP           (1ULL << kIsQuinOp)
58#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
59#define IS_STORE             (1ULL << kMemStore)
60#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
61#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
62#define IS_VOLATILE          (1ULL << kMemVolatile)
63#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
64#define NO_OPERAND           (1ULL << kNoOperand)
65#define REG_DEF0             (1ULL << kRegDef0)
66#define REG_DEF1             (1ULL << kRegDef1)
67#define REG_DEF2             (1ULL << kRegDef2)
68#define REG_DEFA             (1ULL << kRegDefA)
69#define REG_DEFD             (1ULL << kRegDefD)
70#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
71#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
72#define REG_DEF_LIST0        (1ULL << kRegDefList0)
73#define REG_DEF_LIST1        (1ULL << kRegDefList1)
74#define REG_DEF_LR           (1ULL << kRegDefLR)
75#define REG_DEF_SP           (1ULL << kRegDefSP)
76#define REG_USE0             (1ULL << kRegUse0)
77#define REG_USE1             (1ULL << kRegUse1)
78#define REG_USE2             (1ULL << kRegUse2)
79#define REG_USE3             (1ULL << kRegUse3)
80#define REG_USE4             (1ULL << kRegUse4)
81#define REG_USEA             (1ULL << kRegUseA)
82#define REG_USEC             (1ULL << kRegUseC)
83#define REG_USED             (1ULL << kRegUseD)
84#define REG_USEB             (1ULL << kRegUseB)
85#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
86#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
87#define REG_USE_LIST0        (1ULL << kRegUseList0)
88#define REG_USE_LIST1        (1ULL << kRegUseList1)
89#define REG_USE_LR           (1ULL << kRegUseLR)
90#define REG_USE_PC           (1ULL << kRegUsePC)
91#define REG_USE_SP           (1ULL << kRegUseSP)
92#define SETS_CCODES          (1ULL << kSetsCCodes)
93#define USES_CCODES          (1ULL << kUsesCCodes)
94#define USE_FP_STACK         (1ULL << kUseFpStack)
95#define REG_USE_LO           (1ULL << kUseLo)
96#define REG_USE_HI           (1ULL << kUseHi)
97#define REG_DEF_LO           (1ULL << kDefLo)
98#define REG_DEF_HI           (1ULL << kDefHi)
99#define SCALED_OFFSET_X0     (1ULL << kMemScaledx0)
100#define SCALED_OFFSET_X2     (1ULL << kMemScaledx2)
101#define SCALED_OFFSET_X4     (1ULL << kMemScaledx4)
102
103// Special load/stores
104#define IS_LOADX             (IS_LOAD | IS_VOLATILE)
105#define IS_LOAD_OFF          (IS_LOAD | SCALED_OFFSET_X0)
106#define IS_LOAD_OFF2         (IS_LOAD | SCALED_OFFSET_X2)
107#define IS_LOAD_OFF4         (IS_LOAD | SCALED_OFFSET_X4)
108
109#define IS_STOREX            (IS_STORE | IS_VOLATILE)
110#define IS_STORE_OFF         (IS_STORE | SCALED_OFFSET_X0)
111#define IS_STORE_OFF2        (IS_STORE | SCALED_OFFSET_X2)
112#define IS_STORE_OFF4        (IS_STORE | SCALED_OFFSET_X4)
113
114// Common combo register usage patterns.
115#define REG_DEF01            (REG_DEF0 | REG_DEF1)
116#define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
117#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
118#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
119#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
120#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
121#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
122#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
123#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
124#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
125#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
126#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
127#define REG_USE012           (REG_USE01 | REG_USE2)
128#define REG_USE014           (REG_USE01 | REG_USE4)
129#define REG_USE01            (REG_USE0 | REG_USE1)
130#define REG_USE02            (REG_USE0 | REG_USE2)
131#define REG_USE12            (REG_USE1 | REG_USE2)
132#define REG_USE23            (REG_USE2 | REG_USE3)
133#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
134
135// TODO: #includes need a cleanup
136#ifndef INVALID_SREG
137#define INVALID_SREG (-1)
138#endif
139
140struct BasicBlock;
141struct CallInfo;
142struct CompilationUnit;
143struct InlineMethod;
144struct MIR;
145struct LIR;
146struct RegisterInfo;
147class DexFileMethodInliner;
148class MIRGraph;
149class Mir2Lir;
150
151typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
152                            const MethodReference& target_method,
153                            uint32_t method_idx, uintptr_t direct_code,
154                            uintptr_t direct_method, InvokeType type);
155
156typedef std::vector<uint8_t> CodeBuffer;
157
158struct UseDefMasks {
159  const ResourceMask* use_mask;        // Resource mask for use.
160  const ResourceMask* def_mask;        // Resource mask for def.
161};
162
163struct AssemblyInfo {
164  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
165};
166
167struct LIR {
168  CodeOffset offset;             // Offset of this instruction.
169  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
170  int16_t opcode;
171  LIR* next;
172  LIR* prev;
173  LIR* target;
174  struct {
175    unsigned int alias_info:17;  // For Dalvik register disambiguation.
176    bool is_nop:1;               // LIR is optimized away.
177    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
178    bool use_def_invalid:1;      // If true, masks should not be used.
179    unsigned int generation:1;   // Used to track visitation state during fixup pass.
180    unsigned int fixup:8;        // Fixup kind.
181  } flags;
182  union {
183    UseDefMasks m;               // Use & Def masks used during optimization.
184    AssemblyInfo a;              // Instruction info used during assembly phase.
185  } u;
186  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
187};
188
189// Target-specific initialization.
190Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
191                          ArenaAllocator* const arena);
192Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
193                            ArenaAllocator* const arena);
194Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
195                          ArenaAllocator* const arena);
196Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
197                          ArenaAllocator* const arena);
198
199// Utility macros to traverse the LIR list.
200#define NEXT_LIR(lir) (lir->next)
201#define PREV_LIR(lir) (lir->prev)
202
203// Defines for alias_info (tracks Dalvik register references).
204#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
205#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
206#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
207#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
208
209#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
210#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
211  do { \
212    low_reg = both_regs & 0xff; \
213    high_reg = (both_regs >> 8) & 0xff; \
214  } while (false)
215
216// Mask to denote sreg as the start of a 64-bit item.  Must not interfere with low 16 bits.
217#define STARTING_WIDE_SREG 0x10000
218
219// TODO: replace these macros
220#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
221#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
222#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
223#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
224#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
225
226class Mir2Lir : public Backend {
227  public:
228    static constexpr bool kFailOnSizeError = true && kIsDebugBuild;
229    static constexpr bool kReportSizeError = true && kIsDebugBuild;
230
231    /*
232     * Auxiliary information describing the location of data embedded in the Dalvik
233     * byte code stream.
234     */
235    struct EmbeddedData {
236      CodeOffset offset;        // Code offset of data block.
237      const uint16_t* table;      // Original dex data.
238      DexOffset vaddr;            // Dalvik offset of parent opcode.
239    };
240
241    struct FillArrayData : EmbeddedData {
242      int32_t size;
243    };
244
245    struct SwitchTable : EmbeddedData {
246      LIR* anchor;                // Reference instruction for relative offsets.
247      LIR** targets;              // Array of case targets.
248    };
249
250    /* Static register use counts */
251    struct RefCounts {
252      int count;
253      int s_reg;
254    };
255
256    /*
257     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
258     * and native register storage.  The primary purpose is to reuse previuosly
259     * loaded values, if possible, and otherwise to keep the value in register
260     * storage as long as possible.
261     *
262     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
263     * this register (or pair).  For example, a 64-bit register containing a 32-bit
264     * Dalvik value would have wide_value==false even though the storage container itself
265     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
266     * would have wide_value==true (and additionally would have its partner field set to the
267     * other half whose wide_value field would also be true.
268     *
269     * NOTE 2: In the case of a register pair, you can determine which of the partners
270     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
271     *
272     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
273     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
274     * value, and the s_reg of the high word is implied (s_reg + 1).
275     *
276     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
277     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
278     * If is_temp==true and live==false, no other fields have
279     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
280     * and def_end describe the relationship between the temp register/register pair and
281     * the Dalvik value[s] described by s_reg/s_reg+1.
282     *
283     * The fields used_storage, master_storage and storage_mask are used to track allocation
284     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
285     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
286     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
287     * change once initialized.  The "used_storage" field tracks current allocation status.
288     * Although each record contains this field, only the field from the largest member of
289     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
290     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
291     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
292     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
293     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
294     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
295     *
296     * For an X86 vector register example, storage_mask would be:
297     *    0x00000001 for 32-bit view of xmm1
298     *    0x00000003 for 64-bit view of xmm1
299     *    0x0000000f for 128-bit view of xmm1
300     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
301     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
302     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
303     *
304     * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
305     * held in the widest member of an aliased set.  Note, though, that for a temp register to
306     * reused as live, it must both be marked live and the associated SReg() must match the
307     * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
308     * members of an aliased set will share the same liveness flags, but each will individually
309     * maintain s_reg_.  In this way we can know that at least one member of an
310     * aliased set is live, but will only fully match on the appropriate alias view.  For example,
311     * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
312     * because it is wide), its aliases s2 and s3 will show as live, but will have
313     * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
314     * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
315     * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
316     * report that v9 is currently not live as a single (which is what we want).
317     *
318     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
319     * to treat xmm registers:
320     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
321     *         o This more closely matches reality, but means you'd need to be able to get
322     *           to the associated RegisterInfo struct to figure out how it's being used.
323     *         o This is how 64-bit core registers will be used - always 64 bits, but the
324     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
325     *     2. View the xmm registers based on contents.
326     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
327     *           be a k64BitVector.
328     *         o Note that the two uses above would be considered distinct registers (but with
329     *           the aliasing mechanism, we could detect interference).
330     *         o This is how aliased double and single float registers will be handled on
331     *           Arm and MIPS.
332     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
333     * mechanism 2 for aliased float registers and x86 vector registers.
334     */
335    class RegisterInfo {
336     public:
337      RegisterInfo(RegStorage r, const ResourceMask& mask = kEncodeAll);
338      ~RegisterInfo() {}
339      static void* operator new(size_t size, ArenaAllocator* arena) {
340        return arena->Alloc(size, kArenaAllocRegAlloc);
341      }
342
343      static const uint32_t k32SoloStorageMask     = 0x00000001;
344      static const uint32_t kLowSingleStorageMask  = 0x00000001;
345      static const uint32_t kHighSingleStorageMask = 0x00000002;
346      static const uint32_t k64SoloStorageMask     = 0x00000003;
347      static const uint32_t k128SoloStorageMask    = 0x0000000f;
348      static const uint32_t k256SoloStorageMask    = 0x000000ff;
349      static const uint32_t k512SoloStorageMask    = 0x0000ffff;
350      static const uint32_t k1024SoloStorageMask   = 0xffffffff;
351
352      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
353      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
354      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
355      // No part of the containing storage is live in this view.
356      bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
357      // Liveness of this view matches.  Note: not equivalent to !IsDead().
358      bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
359      void MarkLive(int s_reg) {
360        // TODO: Anything useful to assert here?
361        s_reg_ = s_reg;
362        master_->liveness_ |= storage_mask_;
363      }
364      void MarkDead() {
365        if (SReg() != INVALID_SREG) {
366          s_reg_ = INVALID_SREG;
367          master_->liveness_ &= ~storage_mask_;
368          ResetDefBody();
369        }
370      }
371      RegStorage GetReg() { return reg_; }
372      void SetReg(RegStorage reg) { reg_ = reg; }
373      bool IsTemp() { return is_temp_; }
374      void SetIsTemp(bool val) { is_temp_ = val; }
375      bool IsWide() { return wide_value_; }
376      void SetIsWide(bool val) {
377        wide_value_ = val;
378        if (!val) {
379          // If not wide, reset partner to self.
380          SetPartner(GetReg());
381        }
382      }
383      bool IsDirty() { return dirty_; }
384      void SetIsDirty(bool val) { dirty_ = val; }
385      RegStorage Partner() { return partner_; }
386      void SetPartner(RegStorage partner) { partner_ = partner; }
387      int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
388      const ResourceMask& DefUseMask() { return def_use_mask_; }
389      void SetDefUseMask(const ResourceMask& def_use_mask) { def_use_mask_ = def_use_mask; }
390      RegisterInfo* Master() { return master_; }
391      void SetMaster(RegisterInfo* master) {
392        master_ = master;
393        if (master != this) {
394          master_->aliased_ = true;
395          DCHECK(alias_chain_ == nullptr);
396          alias_chain_ = master_->alias_chain_;
397          master_->alias_chain_ = this;
398        }
399      }
400      bool IsAliased() { return aliased_; }
401      RegisterInfo* GetAliasChain() { return alias_chain_; }
402      uint32_t StorageMask() { return storage_mask_; }
403      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
404      LIR* DefStart() { return def_start_; }
405      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
406      LIR* DefEnd() { return def_end_; }
407      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
408      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
409      // Find member of aliased set matching storage_used; return nullptr if none.
410      RegisterInfo* FindMatchingView(uint32_t storage_used) {
411        RegisterInfo* res = Master();
412        for (; res != nullptr; res = res->GetAliasChain()) {
413          if (res->StorageMask() == storage_used)
414            break;
415        }
416        return res;
417      }
418
419     private:
420      RegStorage reg_;
421      bool is_temp_;               // Can allocate as temp?
422      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
423      bool dirty_;                 // If live, is it dirty?
424      bool aliased_;               // Is this the master for other aliased RegisterInfo's?
425      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
426      int s_reg_;                  // Name of live value.
427      ResourceMask def_use_mask_;  // Resources for this element.
428      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
429      uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
430      RegisterInfo* master_;       // Pointer to controlling storage mask.
431      uint32_t storage_mask_;      // Track allocation of sub-units.
432      LIR *def_start_;             // Starting inst in last def sequence.
433      LIR *def_end_;               // Ending inst in last def sequence.
434      RegisterInfo* alias_chain_;  // Chain of aliased registers.
435    };
436
437    class RegisterPool {
438     public:
439      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
440                   const ArrayRef<const RegStorage>& core_regs,
441                   const ArrayRef<const RegStorage>& core64_regs,
442                   const ArrayRef<const RegStorage>& sp_regs,
443                   const ArrayRef<const RegStorage>& dp_regs,
444                   const ArrayRef<const RegStorage>& reserved_regs,
445                   const ArrayRef<const RegStorage>& reserved64_regs,
446                   const ArrayRef<const RegStorage>& core_temps,
447                   const ArrayRef<const RegStorage>& core64_temps,
448                   const ArrayRef<const RegStorage>& sp_temps,
449                   const ArrayRef<const RegStorage>& dp_temps);
450      ~RegisterPool() {}
451      static void* operator new(size_t size, ArenaAllocator* arena) {
452        return arena->Alloc(size, kArenaAllocRegAlloc);
453      }
454      void ResetNextTemp() {
455        next_core_reg_ = 0;
456        next_sp_reg_ = 0;
457        next_dp_reg_ = 0;
458      }
459      GrowableArray<RegisterInfo*> core_regs_;
460      int next_core_reg_;
461      GrowableArray<RegisterInfo*> core64_regs_;
462      int next_core64_reg_;
463      GrowableArray<RegisterInfo*> sp_regs_;    // Single precision float.
464      int next_sp_reg_;
465      GrowableArray<RegisterInfo*> dp_regs_;    // Double precision float.
466      int next_dp_reg_;
467      GrowableArray<RegisterInfo*>* ref_regs_;  // Points to core_regs_ or core64_regs_
468      int* next_ref_reg_;
469
470     private:
471      Mir2Lir* const m2l_;
472    };
473
474    struct PromotionMap {
475      RegLocationType core_location:3;
476      uint8_t core_reg;
477      RegLocationType fp_location:3;
478      uint8_t fp_reg;
479      bool first_in_pair;
480    };
481
482    //
483    // Slow paths.  This object is used generate a sequence of code that is executed in the
484    // slow path.  For example, resolving a string or class is slow as it will only be executed
485    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
486    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
487    // branch over them.
488    //
489    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
490    // the Compile() function that will be called near the end of the code generated by the
491    // method.
492    //
493    // The basic flow for a slow path is:
494    //
495    //     CMP reg, #value
496    //     BEQ fromfast
497    //   cont:
498    //     ...
499    //     fast path code
500    //     ...
501    //     more code
502    //     ...
503    //     RETURN
504    ///
505    //   fromfast:
506    //     ...
507    //     slow path code
508    //     ...
509    //     B cont
510    //
511    // So you see we need two labels and two branches.  The first branch (called fromfast) is
512    // the conditional branch to the slow path code.  The second label (called cont) is used
513    // as an unconditional branch target for getting back to the code after the slow path
514    // has completed.
515    //
516
517    class LIRSlowPath {
518     public:
519      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
520                  LIR* cont = nullptr) :
521        m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
522          m2l->StartSlowPath(this);
523      }
524      virtual ~LIRSlowPath() {}
525      virtual void Compile() = 0;
526
527      static void* operator new(size_t size, ArenaAllocator* arena) {
528        return arena->Alloc(size, kArenaAllocData);
529      }
530
531      LIR *GetContinuationLabel() {
532        return cont_;
533      }
534
535      LIR *GetFromFast() {
536        return fromfast_;
537      }
538
539     protected:
540      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
541
542      Mir2Lir* const m2l_;
543      CompilationUnit* const cu_;
544      const DexOffset current_dex_pc_;
545      LIR* const fromfast_;
546      LIR* const cont_;
547    };
548
549    // Helper class for changing mem_ref_type_ until the end of current scope. See mem_ref_type_.
550    class ScopedMemRefType {
551     public:
552      ScopedMemRefType(Mir2Lir* m2l, ResourceMask::ResourceBit new_mem_ref_type)
553          : m2l_(m2l),
554            old_mem_ref_type_(m2l->mem_ref_type_) {
555        m2l_->mem_ref_type_ = new_mem_ref_type;
556      }
557
558      ~ScopedMemRefType() {
559        m2l_->mem_ref_type_ = old_mem_ref_type_;
560      }
561
562     private:
563      Mir2Lir* const m2l_;
564      ResourceMask::ResourceBit old_mem_ref_type_;
565
566      DISALLOW_COPY_AND_ASSIGN(ScopedMemRefType);
567    };
568
569    virtual ~Mir2Lir() {}
570
571    /**
572     * @brief Decodes the LIR offset.
573     * @return Returns the scaled offset of LIR.
574     */
575    virtual size_t GetInstructionOffset(LIR* lir);
576
577    int32_t s4FromSwitchData(const void* switch_data) {
578      return *reinterpret_cast<const int32_t*>(switch_data);
579    }
580
581    /*
582     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
583     * it was introduced, it was intended to be a quick best guess of type without having to
584     * take the time to do type analysis.  Currently, though, we have a much better idea of
585     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
586     * just use our knowledge of type to select the most appropriate register class?
587     */
588    RegisterClass RegClassBySize(OpSize size) {
589      if (size == kReference) {
590        return kRefReg;
591      } else {
592        return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
593                size == kSignedByte) ? kCoreReg : kAnyReg;
594      }
595    }
596
597    size_t CodeBufferSizeInBytes() {
598      return code_buffer_.size() / sizeof(code_buffer_[0]);
599    }
600
601    static bool IsPseudoLirOp(int opcode) {
602      return (opcode < 0);
603    }
604
605    /*
606     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
607     * instructions which require PC-relative fixups), we need the operands to carry
608     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
609     * hold that index in the operand array.
610     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
611     * may be worth conditionally-compiling a set of identity functions here.
612     */
613    uint32_t WrapPointer(void* pointer) {
614      uint32_t res = pointer_storage_.Size();
615      pointer_storage_.Insert(pointer);
616      return res;
617    }
618
619    void* UnwrapPointer(size_t index) {
620      return pointer_storage_.Get(index);
621    }
622
623    // strdup(), but allocates from the arena.
624    char* ArenaStrdup(const char* str) {
625      size_t len = strlen(str) + 1;
626      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
627      if (res != NULL) {
628        strncpy(res, str, len);
629      }
630      return res;
631    }
632
633    // Shared by all targets - implemented in codegen_util.cc
634    void AppendLIR(LIR* lir);
635    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
636    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
637
638    /**
639     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
640     * to place in a frame.
641     * @return Returns the maximum number of compiler temporaries.
642     */
643    size_t GetMaxPossibleCompilerTemps() const;
644
645    /**
646     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
647     * @return Returns the size in bytes for space needed for compiler temporary spill region.
648     */
649    size_t GetNumBytesForCompilerTempSpillRegion();
650
651    DexOffset GetCurrentDexPc() const {
652      return current_dalvik_offset_;
653    }
654
655    RegisterClass ShortyToRegClass(char shorty_type);
656    RegisterClass LocToRegClass(RegLocation loc);
657    int ComputeFrameSize();
658    virtual void Materialize();
659    virtual CompiledMethod* GetCompiledMethod();
660    void MarkSafepointPC(LIR* inst);
661    void MarkSafepointPCAfter(LIR* after);
662    void SetupResourceMasks(LIR* lir);
663    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
664    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
665    void SetupRegMask(ResourceMask* mask, int reg);
666    void ClearRegMask(ResourceMask* mask, int reg);
667    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
668    void EliminateLoad(LIR* lir, int reg_id);
669    void DumpDependentInsnPair(LIR* check_lir, LIR* this_lir, const char* type);
670    void DumpPromotionMap();
671    void CodegenDump();
672    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
673                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
674    LIR* NewLIR0(int opcode);
675    LIR* NewLIR1(int opcode, int dest);
676    LIR* NewLIR2(int opcode, int dest, int src1);
677    LIR* NewLIR2NoDest(int opcode, int src, int info);
678    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
679    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
680    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
681    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
682    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
683    LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
684    LIR* AddWordData(LIR* *constant_list_p, int value);
685    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
686    void ProcessSwitchTables();
687    void DumpSparseSwitchTable(const uint16_t* table);
688    void DumpPackedSwitchTable(const uint16_t* table);
689    void MarkBoundary(DexOffset offset, const char* inst_str);
690    void NopLIR(LIR* lir);
691    void UnlinkLIR(LIR* lir);
692    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
693    bool IsInexpensiveConstant(RegLocation rl_src);
694    ConditionCode FlipComparisonOrder(ConditionCode before);
695    ConditionCode NegateComparison(ConditionCode before);
696    virtual void InstallLiteralPools();
697    void InstallSwitchTables();
698    void InstallFillArrayData();
699    bool VerifyCatchEntries();
700    void CreateMappingTables();
701    void CreateNativeGcMap();
702    int AssignLiteralOffset(CodeOffset offset);
703    int AssignSwitchTablesOffset(CodeOffset offset);
704    int AssignFillArrayDataOffset(CodeOffset offset);
705    virtual LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
706    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
707    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
708
709    virtual void StartSlowPath(LIRSlowPath* slowpath) {}
710    virtual void BeginInvoke(CallInfo* info) {}
711    virtual void EndInvoke(CallInfo* info) {}
712
713
714    // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation.  No code generated.
715    virtual RegLocation NarrowRegLoc(RegLocation loc);
716
717    // Shared by all targets - implemented in local_optimizations.cc
718    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
719    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
720    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
721    virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
722
723    // Shared by all targets - implemented in ralloc_util.cc
724    int GetSRegHi(int lowSreg);
725    bool LiveOut(int s_reg);
726    void SimpleRegAlloc();
727    void ResetRegPool();
728    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
729    void DumpRegPool(GrowableArray<RegisterInfo*>* regs);
730    void DumpCoreRegPool();
731    void DumpFpRegPool();
732    void DumpRegPools();
733    /* Mark a temp register as dead.  Does not affect allocation state. */
734    void Clobber(RegStorage reg);
735    void ClobberSReg(int s_reg);
736    void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
737    int SRegToPMap(int s_reg);
738    void RecordCorePromotion(RegStorage reg, int s_reg);
739    RegStorage AllocPreservedCoreReg(int s_reg);
740    void RecordFpPromotion(RegStorage reg, int s_reg);
741    RegStorage AllocPreservedFpReg(int s_reg);
742    virtual RegStorage AllocPreservedSingle(int s_reg);
743    virtual RegStorage AllocPreservedDouble(int s_reg);
744    RegStorage AllocTempBody(GrowableArray<RegisterInfo*> &regs, int* next_temp, bool required);
745    virtual RegStorage AllocTemp(bool required = true);
746    virtual RegStorage AllocTempWide(bool required = true);
747    virtual RegStorage AllocTempRef(bool required = true);
748    virtual RegStorage AllocTempSingle(bool required = true);
749    virtual RegStorage AllocTempDouble(bool required = true);
750    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class, bool required = true);
751    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class, bool required = true);
752    void FlushReg(RegStorage reg);
753    void FlushRegWide(RegStorage reg);
754    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
755    RegStorage FindLiveReg(GrowableArray<RegisterInfo*> &regs, int s_reg);
756    virtual void FreeTemp(RegStorage reg);
757    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
758    virtual bool IsLive(RegStorage reg);
759    virtual bool IsTemp(RegStorage reg);
760    bool IsPromoted(RegStorage reg);
761    bool IsDirty(RegStorage reg);
762    virtual void LockTemp(RegStorage reg);
763    void ResetDef(RegStorage reg);
764    void NullifyRange(RegStorage reg, int s_reg);
765    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
766    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
767    void ResetDefLoc(RegLocation rl);
768    void ResetDefLocWide(RegLocation rl);
769    void ResetDefTracking();
770    void ClobberAllTemps();
771    void FlushSpecificReg(RegisterInfo* info);
772    void FlushAllRegs();
773    bool RegClassMatches(int reg_class, RegStorage reg);
774    void MarkLive(RegLocation loc);
775    void MarkTemp(RegStorage reg);
776    void UnmarkTemp(RegStorage reg);
777    void MarkWide(RegStorage reg);
778    void MarkNarrow(RegStorage reg);
779    void MarkClean(RegLocation loc);
780    void MarkDirty(RegLocation loc);
781    void MarkInUse(RegStorage reg);
782    bool CheckCorePoolSanity();
783    virtual RegLocation UpdateLoc(RegLocation loc);
784    virtual RegLocation UpdateLocWide(RegLocation loc);
785    RegLocation UpdateRawLoc(RegLocation loc);
786
787    /**
788     * @brief Used to prepare a register location to receive a wide value.
789     * @see EvalLoc
790     * @param loc the location where the value will be stored.
791     * @param reg_class Type of register needed.
792     * @param update Whether the liveness information should be updated.
793     * @return Returns the properly typed temporary in physical register pairs.
794     */
795    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
796
797    /**
798     * @brief Used to prepare a register location to receive a value.
799     * @param loc the location where the value will be stored.
800     * @param reg_class Type of register needed.
801     * @param update Whether the liveness information should be updated.
802     * @return Returns the properly typed temporary in physical register.
803     */
804    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
805
806    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
807    void DumpCounts(const RefCounts* arr, int size, const char* msg);
808    void DoPromotion();
809    int VRegOffset(int v_reg);
810    int SRegOffset(int s_reg);
811    RegLocation GetReturnWide(RegisterClass reg_class);
812    RegLocation GetReturn(RegisterClass reg_class);
813    RegisterInfo* GetRegInfo(RegStorage reg);
814
815    // Shared by all targets - implemented in gen_common.cc.
816    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
817    virtual bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
818                                  RegLocation rl_src, RegLocation rl_dest, int lit);
819    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
820    virtual void HandleSlowPaths();
821    void GenBarrier();
822    void GenDivZeroException();
823    // c_code holds condition code that's generated from testing divisor against 0.
824    void GenDivZeroCheck(ConditionCode c_code);
825    // reg holds divisor.
826    void GenDivZeroCheck(RegStorage reg);
827    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
828    void GenArrayBoundsCheck(int32_t index, RegStorage length);
829    LIR* GenNullCheck(RegStorage reg);
830    void MarkPossibleNullPointerException(int opt_flags);
831    void MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after);
832    void MarkPossibleStackOverflowException();
833    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
834    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
835    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
836    virtual void GenImplicitNullCheck(RegStorage reg, int opt_flags);
837    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
838                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
839    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
840                                 LIR* taken, LIR* fall_through);
841    virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
842    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
843                         RegLocation rl_src);
844    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
845                     RegLocation rl_src);
846    void GenFilledNewArray(CallInfo* info);
847    void GenSput(MIR* mir, RegLocation rl_src,
848                 bool is_long_or_double, bool is_object);
849    void GenSget(MIR* mir, RegLocation rl_dest,
850                 bool is_long_or_double, bool is_object);
851    void GenIGet(MIR* mir, int opt_flags, OpSize size,
852                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
853    void GenIPut(MIR* mir, int opt_flags, OpSize size,
854                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
855    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
856                        RegLocation rl_src);
857
858    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
859    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
860    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
861    void GenThrow(RegLocation rl_src);
862    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
863    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
864    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
865                      RegLocation rl_src1, RegLocation rl_src2);
866    virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
867                        RegLocation rl_src1, RegLocation rl_shift);
868    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
869                          RegLocation rl_src, int lit);
870    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
871                        RegLocation rl_src1, RegLocation rl_src2);
872    void GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest, RegLocation rl_src);
873    virtual void GenSuspendTest(int opt_flags);
874    virtual void GenSuspendTestAndBranch(int opt_flags, LIR* target);
875
876    // This will be overridden by x86 implementation.
877    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
878    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
879                       RegLocation rl_src1, RegLocation rl_src2);
880
881    // Shared by all targets - implemented in gen_invoke.cc.
882    LIR* CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
883                    bool use_link = true);
884    RegStorage CallHelperSetup(QuickEntrypointEnum trampoline);
885
886    void CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc);
887    void CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc);
888    void CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0, bool safepoint_pc);
889    void CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
890                                      bool safepoint_pc);
891    void CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
892                                 bool safepoint_pc);
893    void CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0, RegLocation arg1,
894                                         bool safepoint_pc);
895    void CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0, int arg1,
896                                         bool safepoint_pc);
897    void CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
898                                 bool safepoint_pc);
899    void CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
900                                 bool safepoint_pc);
901    void CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc);
902    void CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
903                                    bool safepoint_pc);
904    void CallRuntimeHelperRegMethodRegLocation(QuickEntrypointEnum trampoline, RegStorage arg0,
905                                               RegLocation arg2, bool safepoint_pc);
906    void CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
907                                                 RegLocation arg1, bool safepoint_pc);
908    void CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0, RegStorage arg1,
909                                 bool safepoint_pc);
910    void CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
911                                    RegStorage arg1, int arg2, bool safepoint_pc);
912    void CallRuntimeHelperImmMethodRegLocation(QuickEntrypointEnum trampoline, int arg0,
913                                               RegLocation arg2, bool safepoint_pc);
914    void CallRuntimeHelperImmMethodImm(QuickEntrypointEnum trampoline, int arg0, int arg2,
915                                       bool safepoint_pc);
916    void CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
917                                                    RegLocation arg1, RegLocation arg2,
918                                                    bool safepoint_pc);
919    void CallRuntimeHelperRegLocationRegLocationRegLocation(QuickEntrypointEnum trampoline,
920                                                            RegLocation arg0, RegLocation arg1,
921                                                            RegLocation arg2,
922                                                            bool safepoint_pc);
923    void GenInvoke(CallInfo* info);
924    void GenInvokeNoInline(CallInfo* info);
925    virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
926    virtual int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
927                             NextCallInsn next_call_insn,
928                             const MethodReference& target_method,
929                             uint32_t vtable_idx,
930                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
931                             bool skip_this);
932    virtual int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
933                           NextCallInsn next_call_insn,
934                           const MethodReference& target_method,
935                           uint32_t vtable_idx,
936                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
937                           bool skip_this);
938
939    /**
940     * @brief Used to determine the register location of destination.
941     * @details This is needed during generation of inline intrinsics because it finds destination
942     *  of return,
943     * either the physical register or the target of move-result.
944     * @param info Information about the invoke.
945     * @return Returns the destination location.
946     */
947    RegLocation InlineTarget(CallInfo* info);
948
949    /**
950     * @brief Used to determine the wide register location of destination.
951     * @see InlineTarget
952     * @param info Information about the invoke.
953     * @return Returns the destination location.
954     */
955    RegLocation InlineTargetWide(CallInfo* info);
956
957    bool GenInlinedGet(CallInfo* info);
958    virtual bool GenInlinedCharAt(CallInfo* info);
959    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
960    virtual bool GenInlinedReverseBits(CallInfo* info, OpSize size);
961    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
962    bool GenInlinedAbsInt(CallInfo* info);
963    virtual bool GenInlinedAbsLong(CallInfo* info);
964    virtual bool GenInlinedAbsFloat(CallInfo* info) = 0;
965    virtual bool GenInlinedAbsDouble(CallInfo* info) = 0;
966    bool GenInlinedFloatCvt(CallInfo* info);
967    bool GenInlinedDoubleCvt(CallInfo* info);
968    virtual bool GenInlinedCeil(CallInfo* info);
969    virtual bool GenInlinedFloor(CallInfo* info);
970    virtual bool GenInlinedRint(CallInfo* info);
971    virtual bool GenInlinedRound(CallInfo* info, bool is_double);
972    virtual bool GenInlinedArrayCopyCharArray(CallInfo* info);
973    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
974    bool GenInlinedStringCompareTo(CallInfo* info);
975    virtual bool GenInlinedCurrentThread(CallInfo* info);
976    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
977    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
978                             bool is_volatile, bool is_ordered);
979    virtual int LoadArgRegs(CallInfo* info, int call_state,
980                    NextCallInsn next_call_insn,
981                    const MethodReference& target_method,
982                    uint32_t vtable_idx,
983                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
984                    bool skip_this);
985
986    // Shared by all targets - implemented in gen_loadstore.cc.
987    RegLocation LoadCurrMethod();
988    void LoadCurrMethodDirect(RegStorage r_tgt);
989    virtual LIR* LoadConstant(RegStorage r_dest, int value);
990    // Natural word size.
991    virtual LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
992      return LoadBaseDisp(r_base, displacement, r_dest, kWord, kNotVolatile);
993    }
994    // Load 32 bits, regardless of target.
995    virtual LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
996      return LoadBaseDisp(r_base, displacement, r_dest, k32, kNotVolatile);
997    }
998    // Load a reference at base + displacement and decompress into register.
999    virtual LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1000                             VolatileKind is_volatile) {
1001      return LoadBaseDisp(r_base, displacement, r_dest, kReference, is_volatile);
1002    }
1003    // Load a reference at base + index and decompress into register.
1004    virtual LIR* LoadRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1005                                int scale) {
1006      return LoadBaseIndexed(r_base, r_index, r_dest, scale, kReference);
1007    }
1008    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1009    virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
1010    // Same as above, but derive the target register class from the location record.
1011    virtual RegLocation LoadValue(RegLocation rl_src);
1012    // Load Dalvik value with 64-bit memory storage.
1013    virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
1014    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1015    virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
1016    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1017    virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
1018    // Load Dalvik value with 64-bit memory storage.
1019    virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
1020    // Load Dalvik value with 64-bit memory storage.
1021    virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
1022    // Store an item of natural word size.
1023    virtual LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
1024      return StoreBaseDisp(r_base, displacement, r_src, kWord, kNotVolatile);
1025    }
1026    // Store an uncompressed reference into a compressed 32-bit container.
1027    virtual LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src,
1028                              VolatileKind is_volatile) {
1029      return StoreBaseDisp(r_base, displacement, r_src, kReference, is_volatile);
1030    }
1031    // Store an uncompressed reference into a compressed 32-bit container by index.
1032    virtual LIR* StoreRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1033                                 int scale) {
1034      return StoreBaseIndexed(r_base, r_index, r_src, scale, kReference);
1035    }
1036    // Store 32 bits, regardless of target.
1037    virtual LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
1038      return StoreBaseDisp(r_base, displacement, r_src, k32, kNotVolatile);
1039    }
1040
1041    /**
1042     * @brief Used to do the final store in the destination as per bytecode semantics.
1043     * @param rl_dest The destination dalvik register location.
1044     * @param rl_src The source register location. Can be either physical register or dalvik register.
1045     */
1046    virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
1047
1048    /**
1049     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1050     * @see StoreValue
1051     * @param rl_dest The destination dalvik register location.
1052     * @param rl_src The source register location. Can be either physical register or dalvik
1053     *  register.
1054     */
1055    virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
1056
1057    /**
1058     * @brief Used to do the final store to a destination as per bytecode semantics.
1059     * @see StoreValue
1060     * @param rl_dest The destination dalvik register location.
1061     * @param rl_src The source register location. It must be kLocPhysReg
1062     *
1063     * This is used for x86 two operand computations, where we have computed the correct
1064     * register value that now needs to be properly registered.  This is used to avoid an
1065     * extra register copy that would result if StoreValue was called.
1066     */
1067    virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
1068
1069    /**
1070     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1071     * @see StoreValueWide
1072     * @param rl_dest The destination dalvik register location.
1073     * @param rl_src The source register location. It must be kLocPhysReg
1074     *
1075     * This is used for x86 two operand computations, where we have computed the correct
1076     * register values that now need to be properly registered.  This is used to avoid an
1077     * extra pair of register copies that would result if StoreValueWide was called.
1078     */
1079    virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
1080
1081    // Shared by all targets - implemented in mir_to_lir.cc.
1082    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
1083    virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1084    bool MethodBlockCodeGen(BasicBlock* bb);
1085    bool SpecialMIR2LIR(const InlineMethod& special);
1086    virtual void MethodMIR2LIR();
1087    // Update LIR for verbose listings.
1088    void UpdateLIROffsets();
1089
1090    /*
1091     * @brief Load the address of the dex method into the register.
1092     * @param target_method The MethodReference of the method to be invoked.
1093     * @param type How the method will be invoked.
1094     * @param register that will contain the code address.
1095     * @note register will be passed to TargetReg to get physical register.
1096     */
1097    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1098                         SpecialTargetRegister symbolic_reg);
1099
1100    /*
1101     * @brief Load the Method* of a dex method into the register.
1102     * @param target_method The MethodReference of the method to be invoked.
1103     * @param type How the method will be invoked.
1104     * @param register that will contain the code address.
1105     * @note register will be passed to TargetReg to get physical register.
1106     */
1107    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1108                                   SpecialTargetRegister symbolic_reg);
1109
1110    /*
1111     * @brief Load the Class* of a Dex Class type into the register.
1112     * @param type How the method will be invoked.
1113     * @param register that will contain the code address.
1114     * @note register will be passed to TargetReg to get physical register.
1115     */
1116    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
1117
1118    // Routines that work for the generic case, but may be overriden by target.
1119    /*
1120     * @brief Compare memory to immediate, and branch if condition true.
1121     * @param cond The condition code that when true will branch to the target.
1122     * @param temp_reg A temporary register that can be used if compare to memory is not
1123     * supported by the architecture.
1124     * @param base_reg The register holding the base address.
1125     * @param offset The offset from the base.
1126     * @param check_value The immediate to compare to.
1127     * @param target branch target (or nullptr)
1128     * @param compare output for getting LIR for comparison (or nullptr)
1129     * @returns The branch instruction that was generated.
1130     */
1131    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1132                                   int offset, int check_value, LIR* target, LIR** compare);
1133
1134    // Required for target - codegen helpers.
1135    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1136                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1137    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1138    virtual LIR* CheckSuspendUsingLoad() = 0;
1139
1140    virtual RegStorage LoadHelper(QuickEntrypointEnum trampoline) = 0;
1141
1142    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1143                              OpSize size, VolatileKind is_volatile) = 0;
1144    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1145                                 int scale, OpSize size) = 0;
1146    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1147    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1148    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1149                               OpSize size, VolatileKind is_volatile) = 0;
1150    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1151                                  int scale, OpSize size) = 0;
1152    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
1153
1154    // Required for target - register utilities.
1155
1156    bool IsSameReg(RegStorage reg1, RegStorage reg2) {
1157      RegisterInfo* info1 = GetRegInfo(reg1);
1158      RegisterInfo* info2 = GetRegInfo(reg2);
1159      return (info1->Master() == info2->Master() &&
1160             (info1->StorageMask() & info2->StorageMask()) != 0);
1161    }
1162
1163    /**
1164     * @brief Portable way of getting special registers from the backend.
1165     * @param reg Enumeration describing the purpose of the register.
1166     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1167     * @note This function is currently allowed to return any suitable view of the registers
1168     *   (e.g. this could be 64-bit solo or 32-bit solo for 64-bit backends).
1169     */
1170    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1171
1172    /**
1173     * @brief Portable way of getting special registers from the backend.
1174     * @param reg Enumeration describing the purpose of the register.
1175     * @param wide_kind What kind of view of the special register is required.
1176     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1177     *
1178     * @note For 32b system, wide (kWide) views only make sense for the argument registers and the
1179     *       return. In that case, this function should return a pair where the first component of
1180     *       the result will be the indicated special register.
1181     */
1182    virtual RegStorage TargetReg(SpecialTargetRegister reg, WideKind wide_kind) {
1183      if (wide_kind == kWide) {
1184        DCHECK((kArg0 <= reg && reg < kArg7) || (kFArg0 <= reg && reg < kFArg7) || (kRet0 == reg));
1185        COMPILE_ASSERT((kArg1 == kArg0 + 1) && (kArg2 == kArg1 + 1) && (kArg3 == kArg2 + 1) &&
1186                       (kArg4 == kArg3 + 1) && (kArg5 == kArg4 + 1) && (kArg6 == kArg5 + 1) &&
1187                       (kArg7 == kArg6 + 1), kargs_range_unexpected);
1188        COMPILE_ASSERT((kFArg1 == kFArg0 + 1) && (kFArg2 == kFArg1 + 1) && (kFArg3 == kFArg2 + 1) &&
1189                       (kFArg4 == kFArg3 + 1) && (kFArg5 == kFArg4 + 1) && (kFArg6 == kFArg5 + 1) &&
1190                       (kFArg7 == kFArg6 + 1), kfargs_range_unexpected);
1191        COMPILE_ASSERT(kRet1 == kRet0 + 1, kret_range_unexpected);
1192        return RegStorage::MakeRegPair(TargetReg(reg),
1193                                       TargetReg(static_cast<SpecialTargetRegister>(reg + 1)));
1194      } else {
1195        return TargetReg(reg);
1196      }
1197    }
1198
1199    /**
1200     * @brief Portable way of getting a special register for storing a pointer.
1201     * @see TargetReg()
1202     */
1203    virtual RegStorage TargetPtrReg(SpecialTargetRegister reg) {
1204      return TargetReg(reg);
1205    }
1206
1207    // Get a reg storage corresponding to the wide & ref flags of the reg location.
1208    virtual RegStorage TargetReg(SpecialTargetRegister reg, RegLocation loc) {
1209      if (loc.ref) {
1210        return TargetReg(reg, kRef);
1211      } else {
1212        return TargetReg(reg, loc.wide ? kWide : kNotWide);
1213      }
1214    }
1215
1216    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
1217    virtual RegLocation GetReturnAlt() = 0;
1218    virtual RegLocation GetReturnWideAlt() = 0;
1219    virtual RegLocation LocCReturn() = 0;
1220    virtual RegLocation LocCReturnRef() = 0;
1221    virtual RegLocation LocCReturnDouble() = 0;
1222    virtual RegLocation LocCReturnFloat() = 0;
1223    virtual RegLocation LocCReturnWide() = 0;
1224    virtual ResourceMask GetRegMaskCommon(const RegStorage& reg) const = 0;
1225    virtual void AdjustSpillMask() = 0;
1226    virtual void ClobberCallerSave() = 0;
1227    virtual void FreeCallTemps() = 0;
1228    virtual void LockCallTemps() = 0;
1229    virtual void CompilerInitializeRegAlloc() = 0;
1230
1231    // Required for target - miscellaneous.
1232    virtual void AssembleLIR() = 0;
1233    virtual void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) = 0;
1234    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
1235                                          ResourceMask* use_mask, ResourceMask* def_mask) = 0;
1236    virtual const char* GetTargetInstFmt(int opcode) = 0;
1237    virtual const char* GetTargetInstName(int opcode) = 0;
1238    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1239
1240    // Note: This may return kEncodeNone on architectures that do not expose a PC. The caller must
1241    //       take care of this.
1242    virtual ResourceMask GetPCUseDefEncoding() const = 0;
1243    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1244    virtual size_t GetInsnSize(LIR* lir) = 0;
1245    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1246
1247    // Get the register class for load/store of a field.
1248    virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
1249
1250    // Required for target - Dalvik-level generators.
1251    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1252                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
1253    virtual void GenMulLong(Instruction::Code,
1254                            RegLocation rl_dest, RegLocation rl_src1,
1255                            RegLocation rl_src2) = 0;
1256    virtual void GenAddLong(Instruction::Code,
1257                            RegLocation rl_dest, RegLocation rl_src1,
1258                            RegLocation rl_src2) = 0;
1259    virtual void GenAndLong(Instruction::Code,
1260                            RegLocation rl_dest, RegLocation rl_src1,
1261                            RegLocation rl_src2) = 0;
1262    virtual void GenArithOpDouble(Instruction::Code opcode,
1263                                  RegLocation rl_dest, RegLocation rl_src1,
1264                                  RegLocation rl_src2) = 0;
1265    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1266                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1267    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1268                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1269    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1270                               RegLocation rl_src) = 0;
1271    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1272
1273    /**
1274     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1275     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1276     * that applies on integers. The generated code will write the smallest or largest value
1277     * directly into the destination register as specified by the invoke information.
1278     * @param info Information about the invoke.
1279     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1280     * @param is_long If true the value value is Long. Otherwise the value is Int.
1281     * @return Returns true if successfully generated
1282     */
1283    virtual bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) = 0;
1284    virtual bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double);
1285
1286    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1287    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1288    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1289    virtual void GenNotLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1290    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1291    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1292                           RegLocation rl_src2) = 0;
1293    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1294                            RegLocation rl_src2) = 0;
1295    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1296                            RegLocation rl_src2) = 0;
1297    virtual void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1298                            RegLocation rl_src2, bool is_div) = 0;
1299    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1300                                  bool is_div) = 0;
1301    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1302                                     bool is_div) = 0;
1303    /*
1304     * @brief Generate an integer div or rem operation by a literal.
1305     * @param rl_dest Destination Location.
1306     * @param rl_src1 Numerator Location.
1307     * @param rl_src2 Divisor Location.
1308     * @param is_div 'true' if this is a division, 'false' for a remainder.
1309     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
1310     */
1311    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1312                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
1313    /*
1314     * @brief Generate an integer div or rem operation by a literal.
1315     * @param rl_dest Destination Location.
1316     * @param rl_src Numerator Location.
1317     * @param lit Divisor.
1318     * @param is_div 'true' if this is a division, 'false' for a remainder.
1319     */
1320    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1321                                     bool is_div) = 0;
1322    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1323
1324    /**
1325     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1326     * @details This is used for generating DivideByZero checks when divisor is held in two
1327     *  separate registers.
1328     * @param reg The register holding the pair of 32-bit values.
1329     */
1330    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1331
1332    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1333    virtual void GenExitSequence() = 0;
1334    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
1335    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1336    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1337
1338    /*
1339     * @brief Handle Machine Specific MIR Extended opcodes.
1340     * @param bb The basic block in which the MIR is from.
1341     * @param mir The MIR whose opcode is not standard extended MIR.
1342     * @note Base class implementation will abort for unknown opcodes.
1343     */
1344    virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1345
1346    /**
1347     * @brief Lowers the kMirOpSelect MIR into LIR.
1348     * @param bb The basic block in which the MIR is from.
1349     * @param mir The MIR whose opcode is kMirOpSelect.
1350     */
1351    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1352
1353    /**
1354     * @brief Generates code to select one of the given constants depending on the given opcode.
1355     */
1356    virtual void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
1357                                  int32_t true_val, int32_t false_val, RegStorage rs_dest,
1358                                  int dest_reg_class) = 0;
1359
1360    /**
1361     * @brief Used to generate a memory barrier in an architecture specific way.
1362     * @details The last generated LIR will be considered for use as barrier. Namely,
1363     * if the last LIR can be updated in a way where it will serve the semantics of
1364     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1365     * that can keep the semantics.
1366     * @param barrier_kind The kind of memory barrier to generate.
1367     * @return whether a new instruction was generated.
1368     */
1369    virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1370
1371    virtual void GenMoveException(RegLocation rl_dest) = 0;
1372    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1373                                               int first_bit, int second_bit) = 0;
1374    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1375    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1376    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1377    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1378    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1379                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1380    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1381                             RegLocation rl_index, RegLocation rl_src, int scale,
1382                             bool card_mark) = 0;
1383    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1384                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1385
1386    // Required for target - single operation generators.
1387    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1388    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1389    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1390                                LIR* target) = 0;
1391    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1392    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1393    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1394    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1395    virtual void OpEndIT(LIR* it) = 0;
1396    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1397    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1398    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1399    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1400    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1401    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1402    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1403
1404    /**
1405     * @brief Used to generate an LIR that does a load from mem to reg.
1406     * @param r_dest The destination physical register.
1407     * @param r_base The base physical register for memory operand.
1408     * @param offset The displacement for memory operand.
1409     * @param move_type Specification on the move desired (size, alignment, register kind).
1410     * @return Returns the generate move LIR.
1411     */
1412    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1413                             MoveType move_type) = 0;
1414
1415    /**
1416     * @brief Used to generate an LIR that does a store from reg to mem.
1417     * @param r_base The base physical register for memory operand.
1418     * @param offset The displacement for memory operand.
1419     * @param r_src The destination physical register.
1420     * @param bytes_to_move The number of bytes to move.
1421     * @param is_aligned Whether the memory location is known to be aligned.
1422     * @return Returns the generate move LIR.
1423     */
1424    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1425                             MoveType move_type) = 0;
1426
1427    /**
1428     * @brief Used for generating a conditional register to register operation.
1429     * @param op The opcode kind.
1430     * @param cc The condition code that when true will perform the opcode.
1431     * @param r_dest The destination physical register.
1432     * @param r_src The source physical register.
1433     * @return Returns the newly created LIR or null in case of creation failure.
1434     */
1435    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1436
1437    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1438    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1439                             RegStorage r_src2) = 0;
1440    virtual LIR* OpTestSuspend(LIR* target) = 0;
1441    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1442    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1443    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1444    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1445    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1446    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1447    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1448
1449    // May be optimized by targets.
1450    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1451    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1452
1453    // Temp workaround
1454    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1455
1456    virtual LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) = 0;
1457
1458  protected:
1459    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1460
1461    CompilationUnit* GetCompilationUnit() {
1462      return cu_;
1463    }
1464    /*
1465     * @brief Returns the index of the lowest set bit in 'x'.
1466     * @param x Value to be examined.
1467     * @returns The bit number of the lowest bit set in the value.
1468     */
1469    int32_t LowestSetBit(uint64_t x);
1470    /*
1471     * @brief Is this value a power of two?
1472     * @param x Value to be examined.
1473     * @returns 'true' if only 1 bit is set in the value.
1474     */
1475    bool IsPowerOfTwo(uint64_t x);
1476    /*
1477     * @brief Do these SRs overlap?
1478     * @param rl_op1 One RegLocation
1479     * @param rl_op2 The other RegLocation
1480     * @return 'true' if the VR pairs overlap
1481     *
1482     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1483     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1484     * dex, we'll want to make this case illegal.
1485     */
1486    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1487
1488    /*
1489     * @brief Force a location (in a register) into a temporary register
1490     * @param loc location of result
1491     * @returns update location
1492     */
1493    virtual RegLocation ForceTemp(RegLocation loc);
1494
1495    /*
1496     * @brief Force a wide location (in registers) into temporary registers
1497     * @param loc location of result
1498     * @returns update location
1499     */
1500    virtual RegLocation ForceTempWide(RegLocation loc);
1501
1502    static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) {
1503      return wide ? k64 : ref ? kReference : k32;
1504    }
1505
1506    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1507                                    RegLocation rl_dest, RegLocation rl_src);
1508
1509    void AddSlowPath(LIRSlowPath* slowpath);
1510
1511    /*
1512     *
1513     * @brief Implement Set up instanceof a class.
1514     * @param needs_access_check 'true' if we must check the access.
1515     * @param type_known_final 'true' if the type is known to be a final class.
1516     * @param type_known_abstract 'true' if the type is known to be an abstract class.
1517     * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
1518     * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
1519     * @param type_idx Type index to use if use_declaring_class is 'false'.
1520     * @param rl_dest Result to be set to 0 or 1.
1521     * @param rl_src Object to be tested.
1522     */
1523    void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1524                                    bool type_known_abstract, bool use_declaring_class,
1525                                    bool can_assume_type_is_in_dex_cache,
1526                                    uint32_t type_idx, RegLocation rl_dest,
1527                                    RegLocation rl_src);
1528    /*
1529     * @brief Generate the debug_frame FDE information if possible.
1530     * @returns pointer to vector containg CFE information, or NULL.
1531     */
1532    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1533
1534    /**
1535     * @brief Used to insert marker that can be used to associate MIR with LIR.
1536     * @details Only inserts marker if verbosity is enabled.
1537     * @param mir The mir that is currently being generated.
1538     */
1539    void GenPrintLabel(MIR* mir);
1540
1541    /**
1542     * @brief Used to generate return sequence when there is no frame.
1543     * @details Assumes that the return registers have already been populated.
1544     */
1545    virtual void GenSpecialExitSequence() = 0;
1546
1547    /**
1548     * @brief Used to generate code for special methods that are known to be
1549     * small enough to work in frameless mode.
1550     * @param bb The basic block of the first MIR.
1551     * @param mir The first MIR of the special method.
1552     * @param special Information about the special method.
1553     * @return Returns whether or not this was handled successfully. Returns false
1554     * if caller should punt to normal MIR2LIR conversion.
1555     */
1556    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1557
1558  protected:
1559    void ClobberBody(RegisterInfo* p);
1560    void SetCurrentDexPc(DexOffset dexpc) {
1561      current_dalvik_offset_ = dexpc;
1562    }
1563
1564    /**
1565     * @brief Used to lock register if argument at in_position was passed that way.
1566     * @details Does nothing if the argument is passed via stack.
1567     * @param in_position The argument number whose register to lock.
1568     * @param wide Whether the argument is wide.
1569     */
1570    void LockArg(int in_position, bool wide = false);
1571
1572    /**
1573     * @brief Used to load VR argument to a physical register.
1574     * @details The load is only done if the argument is not already in physical register.
1575     * LockArg must have been previously called.
1576     * @param in_position The argument number to load.
1577     * @param wide Whether the argument is 64-bit or not.
1578     * @return Returns the register (or register pair) for the loaded argument.
1579     */
1580    RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false);
1581
1582    /**
1583     * @brief Used to load a VR argument directly to a specified register location.
1584     * @param in_position The argument number to place in register.
1585     * @param rl_dest The register location where to place argument.
1586     */
1587    void LoadArgDirect(int in_position, RegLocation rl_dest);
1588
1589    /**
1590     * @brief Used to generate LIR for special getter method.
1591     * @param mir The mir that represents the iget.
1592     * @param special Information about the special getter method.
1593     * @return Returns whether LIR was successfully generated.
1594     */
1595    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1596
1597    /**
1598     * @brief Used to generate LIR for special setter method.
1599     * @param mir The mir that represents the iput.
1600     * @param special Information about the special setter method.
1601     * @return Returns whether LIR was successfully generated.
1602     */
1603    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1604
1605    /**
1606     * @brief Used to generate LIR for special return-args method.
1607     * @param mir The mir that represents the return of argument.
1608     * @param special Information about the special return-args method.
1609     * @return Returns whether LIR was successfully generated.
1610     */
1611    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1612
1613    void AddDivZeroCheckSlowPath(LIR* branch);
1614
1615    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1616    // kArg2 as temp.
1617    virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1618
1619    /**
1620     * @brief Load Constant into RegLocation
1621     * @param rl_dest Destination RegLocation
1622     * @param value Constant value
1623     */
1624    virtual void GenConst(RegLocation rl_dest, int value);
1625
1626    /**
1627     * Returns true iff wide GPRs are just different views on the same physical register.
1628     */
1629    virtual bool WideGPRsAreAliases() = 0;
1630
1631    /**
1632     * Returns true iff wide FPRs are just different views on the same physical register.
1633     */
1634    virtual bool WideFPRsAreAliases() = 0;
1635
1636
1637    enum class WidenessCheck {  // private
1638      kIgnoreWide,
1639      kCheckWide,
1640      kCheckNotWide
1641    };
1642
1643    enum class RefCheck {  // private
1644      kIgnoreRef,
1645      kCheckRef,
1646      kCheckNotRef
1647    };
1648
1649    enum class FPCheck {  // private
1650      kIgnoreFP,
1651      kCheckFP,
1652      kCheckNotFP
1653    };
1654
1655    /**
1656     * Check whether a reg storage seems well-formed, that is, if a reg storage is valid,
1657     * that it has the expected form for the flags.
1658     * A flag value of 0 means ignore. A flag value of -1 means false. A flag value of 1 means true.
1659     */
1660    void CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail,
1661                             bool report)
1662        const;
1663
1664    /**
1665     * Check whether a reg location seems well-formed, that is, if a reg storage is encoded,
1666     * that it has the expected size.
1667     */
1668    void CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const;
1669
1670    // See CheckRegStorageImpl. Will print or fail depending on kFailOnSizeError and
1671    // kReportSizeError.
1672    void CheckRegStorage(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp) const;
1673    // See CheckRegLocationImpl.
1674    void CheckRegLocation(RegLocation rl) const;
1675
1676  public:
1677    // TODO: add accessors for these.
1678    LIR* literal_list_;                        // Constants.
1679    LIR* method_literal_list_;                 // Method literals requiring patching.
1680    LIR* class_literal_list_;                  // Class literals requiring patching.
1681    LIR* code_literal_list_;                   // Code literals requiring patching.
1682    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1683
1684  protected:
1685    CompilationUnit* const cu_;
1686    MIRGraph* const mir_graph_;
1687    GrowableArray<SwitchTable*> switch_tables_;
1688    GrowableArray<FillArrayData*> fill_array_data_;
1689    GrowableArray<RegisterInfo*> tempreg_info_;
1690    GrowableArray<RegisterInfo*> reginfo_map_;
1691    GrowableArray<void*> pointer_storage_;
1692    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1693    CodeOffset data_offset_;            // starting offset of literal pool.
1694    size_t total_size_;                   // header + code size.
1695    LIR* block_label_list_;
1696    PromotionMap* promotion_map_;
1697    /*
1698     * TODO: The code generation utilities don't have a built-in
1699     * mechanism to propagate the original Dalvik opcode address to the
1700     * associated generated instructions.  For the trace compiler, this wasn't
1701     * necessary because the interpreter handled all throws and debugging
1702     * requests.  For now we'll handle this by placing the Dalvik offset
1703     * in the CompilationUnit struct before codegen for each instruction.
1704     * The low-level LIR creation utilites will pull it from here.  Rework this.
1705     */
1706    DexOffset current_dalvik_offset_;
1707    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1708    RegisterPool* reg_pool_;
1709    /*
1710     * Sanity checking for the register temp tracking.  The same ssa
1711     * name should never be associated with one temp register per
1712     * instruction compilation.
1713     */
1714    int live_sreg_;
1715    CodeBuffer code_buffer_;
1716    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1717    std::vector<uint8_t> encoded_mapping_table_;
1718    std::vector<uint32_t> core_vmap_table_;
1719    std::vector<uint32_t> fp_vmap_table_;
1720    std::vector<uint8_t> native_gc_map_;
1721    int num_core_spills_;
1722    int num_fp_spills_;
1723    int frame_size_;
1724    unsigned int core_spill_mask_;
1725    unsigned int fp_spill_mask_;
1726    LIR* first_lir_insn_;
1727    LIR* last_lir_insn_;
1728
1729    GrowableArray<LIRSlowPath*> slow_paths_;
1730
1731    // The memory reference type for new LIRs.
1732    // NOTE: Passing this as an explicit parameter by all functions that directly or indirectly
1733    // invoke RawLIR() would clutter the code and reduce the readability.
1734    ResourceMask::ResourceBit mem_ref_type_;
1735
1736    // Each resource mask now takes 16-bytes, so having both use/def masks directly in a LIR
1737    // would consume 32 bytes per LIR. Instead, the LIR now holds only pointers to the masks
1738    // (i.e. 8 bytes on 32-bit arch, 16 bytes on 64-bit arch) and we use ResourceMaskCache
1739    // to deduplicate the masks.
1740    ResourceMaskCache mask_cache_;
1741};  // Class Mir2Lir
1742
1743}  // namespace art
1744
1745#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1746