mir_to_lir.h revision 3bc8615332b7848dec8c2297a40f7e4d176c0efb
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_storage.h"
25#include "dex/backend.h"
26#include "driver/compiler_driver.h"
27#include "leb128.h"
28#include "safe_map.h"
29#include "utils/arena_allocator.h"
30#include "utils/growable_array.h"
31
32namespace art {
33
34/*
35 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
36 * add type safety (see runtime/offsets.h).
37 */
38typedef uint32_t DexOffset;          // Dex offset in code units.
39typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
40typedef uint32_t CodeOffset;         // Native code offset in bytes.
41
42// Set to 1 to measure cost of suspend check.
43#define NO_SUSPEND 0
44
45#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
46#define IS_BRANCH            (1ULL << kIsBranch)
47#define IS_IT                (1ULL << kIsIT)
48#define IS_LOAD              (1ULL << kMemLoad)
49#define IS_QUAD_OP           (1ULL << kIsQuadOp)
50#define IS_QUIN_OP           (1ULL << kIsQuinOp)
51#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
52#define IS_STORE             (1ULL << kMemStore)
53#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
54#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
55#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
56#define NO_OPERAND           (1ULL << kNoOperand)
57#define REG_DEF0             (1ULL << kRegDef0)
58#define REG_DEF1             (1ULL << kRegDef1)
59#define REG_DEFA             (1ULL << kRegDefA)
60#define REG_DEFD             (1ULL << kRegDefD)
61#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
62#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
63#define REG_DEF_LIST0        (1ULL << kRegDefList0)
64#define REG_DEF_LIST1        (1ULL << kRegDefList1)
65#define REG_DEF_LR           (1ULL << kRegDefLR)
66#define REG_DEF_SP           (1ULL << kRegDefSP)
67#define REG_USE0             (1ULL << kRegUse0)
68#define REG_USE1             (1ULL << kRegUse1)
69#define REG_USE2             (1ULL << kRegUse2)
70#define REG_USE3             (1ULL << kRegUse3)
71#define REG_USE4             (1ULL << kRegUse4)
72#define REG_USEA             (1ULL << kRegUseA)
73#define REG_USEC             (1ULL << kRegUseC)
74#define REG_USED             (1ULL << kRegUseD)
75#define REG_USEB             (1ULL << kRegUseB)
76#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
77#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
78#define REG_USE_LIST0        (1ULL << kRegUseList0)
79#define REG_USE_LIST1        (1ULL << kRegUseList1)
80#define REG_USE_LR           (1ULL << kRegUseLR)
81#define REG_USE_PC           (1ULL << kRegUsePC)
82#define REG_USE_SP           (1ULL << kRegUseSP)
83#define SETS_CCODES          (1ULL << kSetsCCodes)
84#define USES_CCODES          (1ULL << kUsesCCodes)
85
86// Common combo register usage patterns.
87#define REG_DEF01            (REG_DEF0 | REG_DEF1)
88#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
89#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
90#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
91#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
92#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
93#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
94#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
95#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
96#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
97#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
98#define REG_USE012           (REG_USE01 | REG_USE2)
99#define REG_USE014           (REG_USE01 | REG_USE4)
100#define REG_USE01            (REG_USE0 | REG_USE1)
101#define REG_USE02            (REG_USE0 | REG_USE2)
102#define REG_USE12            (REG_USE1 | REG_USE2)
103#define REG_USE23            (REG_USE2 | REG_USE3)
104#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
105
106struct BasicBlock;
107struct CallInfo;
108struct CompilationUnit;
109struct InlineMethod;
110struct MIR;
111struct LIR;
112struct RegLocation;
113struct RegisterInfo;
114class DexFileMethodInliner;
115class MIRGraph;
116class Mir2Lir;
117
118typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
119                            const MethodReference& target_method,
120                            uint32_t method_idx, uintptr_t direct_code,
121                            uintptr_t direct_method, InvokeType type);
122
123typedef std::vector<uint8_t> CodeBuffer;
124
125struct UseDefMasks {
126  uint64_t use_mask;        // Resource mask for use.
127  uint64_t def_mask;        // Resource mask for def.
128};
129
130struct AssemblyInfo {
131  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
132  uint8_t bytes[16];         // Encoded instruction bytes.
133};
134
135struct LIR {
136  CodeOffset offset;             // Offset of this instruction.
137  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
138  int16_t opcode;
139  LIR* next;
140  LIR* prev;
141  LIR* target;
142  struct {
143    unsigned int alias_info:17;  // For Dalvik register disambiguation.
144    bool is_nop:1;               // LIR is optimized away.
145    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
146    bool use_def_invalid:1;      // If true, masks should not be used.
147    unsigned int generation:1;   // Used to track visitation state during fixup pass.
148    unsigned int fixup:8;        // Fixup kind.
149  } flags;
150  union {
151    UseDefMasks m;               // Use & Def masks used during optimization.
152    AssemblyInfo a;              // Instruction encoding used during assembly phase.
153  } u;
154  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
155};
156
157// Target-specific initialization.
158Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
159                          ArenaAllocator* const arena);
160Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
161                          ArenaAllocator* const arena);
162Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
163                          ArenaAllocator* const arena);
164
165// Utility macros to traverse the LIR list.
166#define NEXT_LIR(lir) (lir->next)
167#define PREV_LIR(lir) (lir->prev)
168
169// Defines for alias_info (tracks Dalvik register references).
170#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
171#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
172#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
173#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
174
175// Common resource macros.
176#define ENCODE_CCODE            (1ULL << kCCode)
177#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
178
179// Abstract memory locations.
180#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
181#define ENCODE_LITERAL          (1ULL << kLiteral)
182#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
183#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
184
185#define ENCODE_ALL              (~0ULL)
186#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
187                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
188
189#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
190#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
191  do { \
192    low_reg = both_regs & 0xff; \
193    high_reg = (both_regs >> 8) & 0xff; \
194  } while (false)
195
196// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
197#define STARTING_DOUBLE_SREG 0x10000
198
199// TODO: replace these macros
200#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
201#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
202#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
203#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
204#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
205
206class Mir2Lir : public Backend {
207  public:
208    /*
209     * Auxiliary information describing the location of data embedded in the Dalvik
210     * byte code stream.
211     */
212    struct EmbeddedData {
213      CodeOffset offset;        // Code offset of data block.
214      const uint16_t* table;      // Original dex data.
215      DexOffset vaddr;            // Dalvik offset of parent opcode.
216    };
217
218    struct FillArrayData : EmbeddedData {
219      int32_t size;
220    };
221
222    struct SwitchTable : EmbeddedData {
223      LIR* anchor;                // Reference instruction for relative offsets.
224      LIR** targets;              // Array of case targets.
225    };
226
227    /* Static register use counts */
228    struct RefCounts {
229      int count;
230      int s_reg;
231    };
232
233    /*
234     * Data structure tracking the mapping between a Dalvik register (pair) and a
235     * native register (pair). The idea is to reuse the previously loaded value
236     * if possible, otherwise to keep the value in a native register as long as
237     * possible.
238     */
239    struct RegisterInfo {
240      int reg;                    // Reg number
241      bool in_use;                // Has it been allocated?
242      bool is_temp;               // Can allocate as temp?
243      bool pair;                  // Part of a register pair?
244      int partner;                // If pair, other reg of pair.
245      bool live;                  // Is there an associated SSA name?
246      bool dirty;                 // If live, is it dirty?
247      int s_reg;                  // Name of live value.
248      LIR *def_start;             // Starting inst in last def sequence.
249      LIR *def_end;               // Ending inst in last def sequence.
250    };
251
252    struct RegisterPool {
253       int num_core_regs;
254       RegisterInfo *core_regs;
255       int next_core_reg;
256       int num_fp_regs;
257       RegisterInfo *FPRegs;
258       int next_fp_reg;
259     };
260
261    struct PromotionMap {
262      RegLocationType core_location:3;
263      uint8_t core_reg;
264      RegLocationType fp_location:3;
265      uint8_t FpReg;
266      bool first_in_pair;
267    };
268
269    //
270    // Slow paths.  This object is used generate a sequence of code that is executed in the
271    // slow path.  For example, resolving a string or class is slow as it will only be executed
272    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
273    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
274    // branch over them.
275    //
276    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
277    // the Compile() function that will be called near the end of the code generated by the
278    // method.
279    //
280    // The basic flow for a slow path is:
281    //
282    //     CMP reg, #value
283    //     BEQ fromfast
284    //   cont:
285    //     ...
286    //     fast path code
287    //     ...
288    //     more code
289    //     ...
290    //     RETURN
291    ///
292    //   fromfast:
293    //     ...
294    //     slow path code
295    //     ...
296    //     B cont
297    //
298    // So you see we need two labels and two branches.  The first branch (called fromfast) is
299    // the conditional branch to the slow path code.  The second label (called cont) is used
300    // as an unconditional branch target for getting back to the code after the slow path
301    // has completed.
302    //
303
304    class LIRSlowPath {
305     public:
306      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
307                  LIR* cont = nullptr) :
308        m2l_(m2l), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
309      }
310      virtual ~LIRSlowPath() {}
311      virtual void Compile() = 0;
312
313      static void* operator new(size_t size, ArenaAllocator* arena) {
314        return arena->Alloc(size, kArenaAllocData);
315      }
316
317     protected:
318      LIR* GenerateTargetLabel();
319
320      Mir2Lir* const m2l_;
321      const DexOffset current_dex_pc_;
322      LIR* const fromfast_;
323      LIR* const cont_;
324    };
325
326    virtual ~Mir2Lir() {}
327
328    int32_t s4FromSwitchData(const void* switch_data) {
329      return *reinterpret_cast<const int32_t*>(switch_data);
330    }
331
332    RegisterClass oat_reg_class_by_size(OpSize size) {
333      return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
334              size == kSignedByte) ? kCoreReg : kAnyReg;
335    }
336
337    size_t CodeBufferSizeInBytes() {
338      return code_buffer_.size() / sizeof(code_buffer_[0]);
339    }
340
341    bool IsPseudoLirOp(int opcode) {
342      return (opcode < 0);
343    }
344
345    /*
346     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
347     * instructions which require PC-relative fixups), we need the operands to carry
348     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
349     * hold that index in the operand array.
350     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
351     * may be worth conditionally-compiling a set of identity functions here.
352     */
353    uint32_t WrapPointer(void* pointer) {
354      uint32_t res = pointer_storage_.Size();
355      pointer_storage_.Insert(pointer);
356      return res;
357    }
358
359    void* UnwrapPointer(size_t index) {
360      return pointer_storage_.Get(index);
361    }
362
363    // strdup(), but allocates from the arena.
364    char* ArenaStrdup(const char* str) {
365      size_t len = strlen(str) + 1;
366      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
367      if (res != NULL) {
368        strncpy(res, str, len);
369      }
370      return res;
371    }
372
373    // Shared by all targets - implemented in codegen_util.cc
374    void AppendLIR(LIR* lir);
375    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
376    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
377
378    /**
379     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
380     * to place in a frame.
381     * @return Returns the maximum number of compiler temporaries.
382     */
383    size_t GetMaxPossibleCompilerTemps() const;
384
385    /**
386     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
387     * @return Returns the size in bytes for space needed for compiler temporary spill region.
388     */
389    size_t GetNumBytesForCompilerTempSpillRegion();
390
391    DexOffset GetCurrentDexPc() const {
392      return current_dalvik_offset_;
393    }
394
395    int ComputeFrameSize();
396    virtual void Materialize();
397    virtual CompiledMethod* GetCompiledMethod();
398    void MarkSafepointPC(LIR* inst);
399    void SetupResourceMasks(LIR* lir);
400    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
401    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
402    void SetupRegMask(uint64_t* mask, int reg);
403    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
404    void DumpPromotionMap();
405    void CodegenDump();
406    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
407                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
408    LIR* NewLIR0(int opcode);
409    LIR* NewLIR1(int opcode, int dest);
410    LIR* NewLIR2(int opcode, int dest, int src1);
411    LIR* NewLIR2NoDest(int opcode, int src, int info);
412    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
413    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
414    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
415    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
416    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
417    LIR* AddWordData(LIR* *constant_list_p, int value);
418    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
419    void ProcessSwitchTables();
420    void DumpSparseSwitchTable(const uint16_t* table);
421    void DumpPackedSwitchTable(const uint16_t* table);
422    void MarkBoundary(DexOffset offset, const char* inst_str);
423    void NopLIR(LIR* lir);
424    void UnlinkLIR(LIR* lir);
425    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
426    bool IsInexpensiveConstant(RegLocation rl_src);
427    ConditionCode FlipComparisonOrder(ConditionCode before);
428    ConditionCode NegateComparison(ConditionCode before);
429    virtual void InstallLiteralPools();
430    void InstallSwitchTables();
431    void InstallFillArrayData();
432    bool VerifyCatchEntries();
433    void CreateMappingTables();
434    void CreateNativeGcMap();
435    int AssignLiteralOffset(CodeOffset offset);
436    int AssignSwitchTablesOffset(CodeOffset offset);
437    int AssignFillArrayDataOffset(CodeOffset offset);
438    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
439    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
440    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
441
442    // Shared by all targets - implemented in local_optimizations.cc
443    void ConvertMemOpIntoMove(LIR* orig_lir, int dest, int src);
444    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
445    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
446    void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
447
448    // Shared by all targets - implemented in ralloc_util.cc
449    int GetSRegHi(int lowSreg);
450    bool oat_live_out(int s_reg);
451    int oatSSASrc(MIR* mir, int num);
452    void SimpleRegAlloc();
453    void ResetRegPool();
454    void CompilerInitPool(RegisterInfo* regs, int* reg_nums, int num);
455    void DumpRegPool(RegisterInfo* p, int num_regs);
456    void DumpCoreRegPool();
457    void DumpFpRegPool();
458    /* Mark a temp register as dead.  Does not affect allocation state. */
459    void Clobber(int reg) {
460      ClobberBody(GetRegInfo(reg));
461    }
462    void ClobberSRegBody(RegisterInfo* p, int num_regs, int s_reg);
463    void ClobberSReg(int s_reg);
464    int SRegToPMap(int s_reg);
465    void RecordCorePromotion(int reg, int s_reg);
466    int AllocPreservedCoreReg(int s_reg);
467    void RecordFpPromotion(int reg, int s_reg);
468    int AllocPreservedSingle(int s_reg);
469    int AllocPreservedDouble(int s_reg);
470    int AllocTempBody(RegisterInfo* p, int num_regs, int* next_temp, bool required);
471    virtual int AllocTempDouble();
472    int AllocFreeTemp();
473    int AllocTemp();
474    int AllocTempFloat();
475    RegisterInfo* AllocLiveBody(RegisterInfo* p, int num_regs, int s_reg);
476    RegisterInfo* AllocLive(int s_reg, int reg_class);
477    void FreeTemp(int reg);
478    RegisterInfo* IsLive(int reg);
479    RegisterInfo* IsTemp(int reg);
480    RegisterInfo* IsPromoted(int reg);
481    bool IsDirty(int reg);
482    void LockTemp(int reg);
483    void ResetDef(int reg);
484    void NullifyRange(LIR *start, LIR *finish, int s_reg1, int s_reg2);
485    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
486    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
487    RegLocation WideToNarrow(RegLocation rl);
488    void ResetDefLoc(RegLocation rl);
489    virtual void ResetDefLocWide(RegLocation rl);
490    void ResetDefTracking();
491    void ClobberAllRegs();
492    void FlushSpecificReg(RegisterInfo* info);
493    void FlushAllRegsBody(RegisterInfo* info, int num_regs);
494    void FlushAllRegs();
495    bool RegClassMatches(int reg_class, int reg);
496    void MarkLive(int reg, int s_reg);
497    void MarkTemp(int reg);
498    void UnmarkTemp(int reg);
499    void MarkPair(int low_reg, int high_reg);
500    void MarkClean(RegLocation loc);
501    void MarkDirty(RegLocation loc);
502    void MarkInUse(int reg);
503    void CopyRegInfo(int new_reg, int old_reg);
504    bool CheckCorePoolSanity();
505    RegLocation UpdateLoc(RegLocation loc);
506    virtual RegLocation UpdateLocWide(RegLocation loc);
507    RegLocation UpdateRawLoc(RegLocation loc);
508
509    /**
510     * @brief Used to load register location into a typed temporary or pair of temporaries.
511     * @see EvalLoc
512     * @param loc The register location to load from.
513     * @param reg_class Type of register needed.
514     * @param update Whether the liveness information should be updated.
515     * @return Returns the properly typed temporary in physical register pairs.
516     */
517    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
518
519    /**
520     * @brief Used to load register location into a typed temporary.
521     * @param loc The register location to load from.
522     * @param reg_class Type of register needed.
523     * @param update Whether the liveness information should be updated.
524     * @return Returns the properly typed temporary in physical register.
525     */
526    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
527
528    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
529    void DumpCounts(const RefCounts* arr, int size, const char* msg);
530    void DoPromotion();
531    int VRegOffset(int v_reg);
532    int SRegOffset(int s_reg);
533    RegLocation GetReturnWide(bool is_double);
534    RegLocation GetReturn(bool is_float);
535    RegisterInfo* GetRegInfo(int reg);
536
537    // Shared by all targets - implemented in gen_common.cc.
538    void AddIntrinsicLaunchpad(CallInfo* info, LIR* branch, LIR* resume = nullptr);
539    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
540                          RegLocation rl_src, RegLocation rl_dest, int lit);
541    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
542    void HandleSuspendLaunchPads();
543    void HandleThrowLaunchPads();
544    void HandleSlowPaths();
545    void GenBarrier();
546    LIR* GenCheck(ConditionCode c_code, ThrowKind kind);
547    LIR* GenImmedCheck(ConditionCode c_code, int reg, int imm_val,
548                       ThrowKind kind);
549    LIR* GenNullCheck(int s_reg, int m_reg, int opt_flags);
550    LIR* GenRegRegCheck(ConditionCode c_code, int reg1, int reg2,
551                        ThrowKind kind);
552    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
553                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
554    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
555                                 LIR* taken, LIR* fall_through);
556    void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
557    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
558                         RegLocation rl_src);
559    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
560                     RegLocation rl_src);
561    void GenFilledNewArray(CallInfo* info);
562    void GenSput(MIR* mir, RegLocation rl_src,
563                 bool is_long_or_double, bool is_object);
564    void GenSget(MIR* mir, RegLocation rl_dest,
565                 bool is_long_or_double, bool is_object);
566    void GenIGet(MIR* mir, int opt_flags, OpSize size,
567                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
568    void GenIPut(MIR* mir, int opt_flags, OpSize size,
569                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
570    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
571                        RegLocation rl_src);
572
573    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
574    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
575    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
576    void GenThrow(RegLocation rl_src);
577    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest,
578                       RegLocation rl_src);
579    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx,
580                      RegLocation rl_src);
581    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
582                      RegLocation rl_src1, RegLocation rl_src2);
583    void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
584                        RegLocation rl_src1, RegLocation rl_shift);
585    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
586                          RegLocation rl_src, int lit);
587    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
588                        RegLocation rl_src1, RegLocation rl_src2);
589    void GenConversionCall(ThreadOffset func_offset, RegLocation rl_dest,
590                           RegLocation rl_src);
591    void GenSuspendTest(int opt_flags);
592    void GenSuspendTestAndBranch(int opt_flags, LIR* target);
593
594    // This will be overridden by x86 implementation.
595    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
596    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
597                       RegLocation rl_src1, RegLocation rl_src2);
598
599    // Shared by all targets - implemented in gen_invoke.cc.
600    int CallHelperSetup(ThreadOffset helper_offset);
601    LIR* CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc);
602    void CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
603    void CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
604    void CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0,
605                                      bool safepoint_pc);
606    void CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1,
607                                 bool safepoint_pc);
608    void CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0,
609                                         RegLocation arg1, bool safepoint_pc);
610    void CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0,
611                                         int arg1, bool safepoint_pc);
612    void CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1,
613                                 bool safepoint_pc);
614    void CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1,
615                                 bool safepoint_pc);
616    void CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0,
617                                    bool safepoint_pc);
618    void CallRuntimeHelperRegMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
619    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset helper_offset, int arg0,
620                                               RegLocation arg2, bool safepoint_pc);
621    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset,
622                                                 RegLocation arg0, RegLocation arg1,
623                                                 bool safepoint_pc);
624    void CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1,
625                                 bool safepoint_pc);
626    void CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1,
627                                    int arg2, bool safepoint_pc);
628    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset, int arg0,
629                                               RegLocation arg2, bool safepoint_pc);
630    void CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0, int arg2,
631                                       bool safepoint_pc);
632    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset,
633                                                    int arg0, RegLocation arg1, RegLocation arg2,
634                                                    bool safepoint_pc);
635    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset helper_offset,
636                                                            RegLocation arg0, RegLocation arg1,
637                                                            RegLocation arg2,
638                                                            bool safepoint_pc);
639    void GenInvoke(CallInfo* info);
640    void GenInvokeNoInline(CallInfo* info);
641    void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
642    int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
643                             NextCallInsn next_call_insn,
644                             const MethodReference& target_method,
645                             uint32_t vtable_idx,
646                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
647                             bool skip_this);
648    int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
649                           NextCallInsn next_call_insn,
650                           const MethodReference& target_method,
651                           uint32_t vtable_idx,
652                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
653                           bool skip_this);
654
655    /**
656     * @brief Used to determine the register location of destination.
657     * @details This is needed during generation of inline intrinsics because it finds destination of return,
658     * either the physical register or the target of move-result.
659     * @param info Information about the invoke.
660     * @return Returns the destination location.
661     */
662    RegLocation InlineTarget(CallInfo* info);
663
664    /**
665     * @brief Used to determine the wide register location of destination.
666     * @see InlineTarget
667     * @param info Information about the invoke.
668     * @return Returns the destination location.
669     */
670    RegLocation InlineTargetWide(CallInfo* info);
671
672    bool GenInlinedCharAt(CallInfo* info);
673    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
674    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
675    bool GenInlinedAbsInt(CallInfo* info);
676    bool GenInlinedAbsLong(CallInfo* info);
677    bool GenInlinedAbsFloat(CallInfo* info);
678    bool GenInlinedAbsDouble(CallInfo* info);
679    bool GenInlinedFloatCvt(CallInfo* info);
680    bool GenInlinedDoubleCvt(CallInfo* info);
681    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
682    bool GenInlinedStringCompareTo(CallInfo* info);
683    bool GenInlinedCurrentThread(CallInfo* info);
684    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
685    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
686                             bool is_volatile, bool is_ordered);
687    int LoadArgRegs(CallInfo* info, int call_state,
688                    NextCallInsn next_call_insn,
689                    const MethodReference& target_method,
690                    uint32_t vtable_idx,
691                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
692                    bool skip_this);
693
694    // Shared by all targets - implemented in gen_loadstore.cc.
695    RegLocation LoadCurrMethod();
696    void LoadCurrMethodDirect(int r_tgt);
697    LIR* LoadConstant(int r_dest, int value);
698    LIR* LoadWordDisp(int rBase, int displacement, int r_dest);
699    RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
700    RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
701    void LoadValueDirect(RegLocation rl_src, int r_dest);
702    void LoadValueDirectFixed(RegLocation rl_src, int r_dest);
703    void LoadValueDirectWide(RegLocation rl_src, int reg_lo, int reg_hi);
704    void LoadValueDirectWideFixed(RegLocation rl_src, int reg_lo, int reg_hi);
705    LIR* StoreWordDisp(int rBase, int displacement, int r_src);
706
707    /**
708     * @brief Used to do the final store in the destination as per bytecode semantics.
709     * @param rl_dest The destination dalvik register location.
710     * @param rl_src The source register location. Can be either physical register or dalvik register.
711     */
712    void StoreValue(RegLocation rl_dest, RegLocation rl_src);
713
714    /**
715     * @brief Used to do the final store in a wide destination as per bytecode semantics.
716     * @see StoreValue
717     * @param rl_dest The destination dalvik register location.
718     * @param rl_src The source register location. Can be either physical register or dalvik register.
719     */
720    void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
721
722    /**
723     * @brief Used to do the final store to a destination as per bytecode semantics.
724     * @see StoreValue
725     * @param rl_dest The destination dalvik register location.
726     * @param rl_src The source register location. It must be kLocPhysReg
727     *
728     * This is used for x86 two operand computations, where we have computed the correct
729     * register value that now needs to be properly registered.  This is used to avoid an
730     * extra register copy that would result if StoreValue was called.
731     */
732    void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
733
734    /**
735     * @brief Used to do the final store in a wide destination as per bytecode semantics.
736     * @see StoreValueWide
737     * @param rl_dest The destination dalvik register location.
738     * @param rl_src The source register location. It must be kLocPhysReg
739     *
740     * This is used for x86 two operand computations, where we have computed the correct
741     * register values that now need to be properly registered.  This is used to avoid an
742     * extra pair of register copies that would result if StoreValueWide was called.
743     */
744    void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
745
746    // Shared by all targets - implemented in mir_to_lir.cc.
747    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
748    void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
749    bool MethodBlockCodeGen(BasicBlock* bb);
750    bool SpecialMIR2LIR(const InlineMethod& special);
751    void MethodMIR2LIR();
752
753    /*
754     * @brief Load the address of the dex method into the register.
755     * @param dex_method_index The index of the method to be invoked.
756     * @param type How the method will be invoked.
757     * @param register that will contain the code address.
758     * @note register will be passed to TargetReg to get physical register.
759     */
760    void LoadCodeAddress(int dex_method_index, InvokeType type,
761                         SpecialTargetRegister symbolic_reg);
762
763    /*
764     * @brief Load the Method* of a dex method into the register.
765     * @param dex_method_index The index of the method to be invoked.
766     * @param type How the method will be invoked.
767     * @param register that will contain the code address.
768     * @note register will be passed to TargetReg to get physical register.
769     */
770    virtual void LoadMethodAddress(int dex_method_index, InvokeType type,
771                                   SpecialTargetRegister symbolic_reg);
772
773    /*
774     * @brief Load the Class* of a Dex Class type into the register.
775     * @param type How the method will be invoked.
776     * @param register that will contain the code address.
777     * @note register will be passed to TargetReg to get physical register.
778     */
779    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
780
781    // Routines that work for the generic case, but may be overriden by target.
782    /*
783     * @brief Compare memory to immediate, and branch if condition true.
784     * @param cond The condition code that when true will branch to the target.
785     * @param temp_reg A temporary register that can be used if compare to memory is not
786     * supported by the architecture.
787     * @param base_reg The register holding the base address.
788     * @param offset The offset from the base.
789     * @param check_value The immediate to compare to.
790     * @returns The branch instruction that was generated.
791     */
792    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, int temp_reg, int base_reg,
793                                   int offset, int check_value, LIR* target);
794
795    // Required for target - codegen helpers.
796    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
797                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
798    virtual int LoadHelper(ThreadOffset offset) = 0;
799    virtual LIR* LoadBaseDisp(int rBase, int displacement, int r_dest, OpSize size, int s_reg) = 0;
800    virtual LIR* LoadBaseDispWide(int rBase, int displacement, int r_dest_lo, int r_dest_hi,
801                                  int s_reg) = 0;
802    virtual LIR* LoadBaseIndexed(int rBase, int r_index, int r_dest, int scale, OpSize size) = 0;
803    virtual LIR* LoadBaseIndexedDisp(int rBase, int r_index, int scale, int displacement,
804                                     int r_dest, int r_dest_hi, OpSize size, int s_reg) = 0;
805    virtual LIR* LoadConstantNoClobber(int r_dest, int value) = 0;
806    virtual LIR* LoadConstantWide(int r_dest_lo, int r_dest_hi, int64_t value) = 0;
807    virtual LIR* StoreBaseDisp(int rBase, int displacement, int r_src, OpSize size) = 0;
808    virtual LIR* StoreBaseDispWide(int rBase, int displacement, int r_src_lo, int r_src_hi) = 0;
809    virtual LIR* StoreBaseIndexed(int rBase, int r_index, int r_src, int scale, OpSize size) = 0;
810    virtual LIR* StoreBaseIndexedDisp(int rBase, int r_index, int scale, int displacement,
811                                      int r_src, int r_src_hi, OpSize size, int s_reg) = 0;
812    virtual void MarkGCCard(int val_reg, int tgt_addr_reg) = 0;
813
814    // Required for target - register utilities.
815    virtual bool IsFpReg(int reg) = 0;
816    virtual bool SameRegType(int reg1, int reg2) = 0;
817    virtual int AllocTypedTemp(bool fp_hint, int reg_class) = 0;
818    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class) = 0;
819    virtual int S2d(int low_reg, int high_reg) = 0;
820    virtual int TargetReg(SpecialTargetRegister reg) = 0;
821    virtual int GetArgMappingToPhysicalReg(int arg_num) = 0;
822    virtual RegLocation GetReturnAlt() = 0;
823    virtual RegLocation GetReturnWideAlt() = 0;
824    virtual RegLocation LocCReturn() = 0;
825    virtual RegLocation LocCReturnDouble() = 0;
826    virtual RegLocation LocCReturnFloat() = 0;
827    virtual RegLocation LocCReturnWide() = 0;
828    virtual uint32_t FpRegMask() = 0;
829    virtual uint64_t GetRegMaskCommon(int reg) = 0;
830    virtual void AdjustSpillMask() = 0;
831    virtual void ClobberCallerSave() = 0;
832    virtual void FlushReg(int reg) = 0;
833    virtual void FlushRegWide(int reg1, int reg2) = 0;
834    virtual void FreeCallTemps() = 0;
835    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) = 0;
836    virtual void LockCallTemps() = 0;
837    virtual void MarkPreservedSingle(int v_reg, int reg) = 0;
838    virtual void CompilerInitializeRegAlloc() = 0;
839
840    // Required for target - miscellaneous.
841    virtual void AssembleLIR() = 0;
842    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
843    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
844    virtual const char* GetTargetInstFmt(int opcode) = 0;
845    virtual const char* GetTargetInstName(int opcode) = 0;
846    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
847    virtual uint64_t GetPCUseDefEncoding() = 0;
848    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
849    virtual int GetInsnSize(LIR* lir) = 0;
850    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
851
852    // Required for target - Dalvik-level generators.
853    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
854                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
855    virtual void GenMulLong(Instruction::Code,
856                            RegLocation rl_dest, RegLocation rl_src1,
857                            RegLocation rl_src2) = 0;
858    virtual void GenAddLong(Instruction::Code,
859                            RegLocation rl_dest, RegLocation rl_src1,
860                            RegLocation rl_src2) = 0;
861    virtual void GenAndLong(Instruction::Code,
862                            RegLocation rl_dest, RegLocation rl_src1,
863                            RegLocation rl_src2) = 0;
864    virtual void GenArithOpDouble(Instruction::Code opcode,
865                                  RegLocation rl_dest, RegLocation rl_src1,
866                                  RegLocation rl_src2) = 0;
867    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
868                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
869    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
870                          RegLocation rl_src1, RegLocation rl_src2) = 0;
871    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
872                               RegLocation rl_src) = 0;
873    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
874
875    /**
876     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
877     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
878     * that applies on integers. The generated code will write the smallest or largest value
879     * directly into the destination register as specified by the invoke information.
880     * @param info Information about the invoke.
881     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
882     * @return Returns true if successfully generated
883     */
884    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
885
886    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
887    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
888    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
889    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
890    virtual void GenOrLong(Instruction::Code,
891                           RegLocation rl_dest, RegLocation rl_src1,
892                           RegLocation rl_src2) = 0;
893    virtual void GenSubLong(Instruction::Code,
894                            RegLocation rl_dest, RegLocation rl_src1,
895                            RegLocation rl_src2) = 0;
896    virtual void GenXorLong(Instruction::Code,
897                            RegLocation rl_dest, RegLocation rl_src1,
898                            RegLocation rl_src2) = 0;
899    virtual LIR* GenRegMemCheck(ConditionCode c_code, int reg1, int base,
900                                int offset, ThrowKind kind) = 0;
901    virtual RegLocation GenDivRem(RegLocation rl_dest, int reg_lo, int reg_hi,
902                                  bool is_div) = 0;
903    virtual RegLocation GenDivRemLit(RegLocation rl_dest, int reg_lo, int lit,
904                                     bool is_div) = 0;
905    /*
906     * @brief Generate an integer div or rem operation by a literal.
907     * @param rl_dest Destination Location.
908     * @param rl_src1 Numerator Location.
909     * @param rl_src2 Divisor Location.
910     * @param is_div 'true' if this is a division, 'false' for a remainder.
911     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
912     */
913    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
914                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
915    /*
916     * @brief Generate an integer div or rem operation by a literal.
917     * @param rl_dest Destination Location.
918     * @param rl_src Numerator Location.
919     * @param lit Divisor.
920     * @param is_div 'true' if this is a division, 'false' for a remainder.
921     */
922    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1,
923                                     int lit, bool is_div) = 0;
924    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
925                            RegLocation rl_src2) = 0;
926
927    /**
928     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
929     * @details This is used for generating DivideByZero checks when divisor is held in two separate registers.
930     * @param reg_lo The register holding the lower 32-bits.
931     * @param reg_hi The register holding the upper 32-bits.
932     */
933    virtual void GenDivZeroCheck(int reg_lo, int reg_hi) = 0;
934
935    virtual void GenEntrySequence(RegLocation* ArgLocs,
936                                  RegLocation rl_method) = 0;
937    virtual void GenExitSequence() = 0;
938    virtual void GenFillArrayData(DexOffset table_offset,
939                                  RegLocation rl_src) = 0;
940    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias,
941                                     bool is_double) = 0;
942    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
943
944    /**
945     * @brief Lowers the kMirOpSelect MIR into LIR.
946     * @param bb The basic block in which the MIR is from.
947     * @param mir The MIR whose opcode is kMirOpSelect.
948     */
949    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
950
951    virtual void GenMemBarrier(MemBarrierKind barrier_kind) = 0;
952    virtual void GenMoveException(RegLocation rl_dest) = 0;
953    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
954                                               RegLocation rl_result, int lit, int first_bit,
955                                               int second_bit) = 0;
956    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
957    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
958    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset,
959                                 RegLocation rl_src) = 0;
960    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset,
961                                 RegLocation rl_src) = 0;
962    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
963                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
964    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
965                             RegLocation rl_index, RegLocation rl_src, int scale,
966                             bool card_mark) = 0;
967    virtual void GenShiftImmOpLong(Instruction::Code opcode,
968                                   RegLocation rl_dest, RegLocation rl_src1,
969                                   RegLocation rl_shift) = 0;
970
971    // Required for target - single operation generators.
972    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
973    virtual LIR* OpCmpBranch(ConditionCode cond, int src1, int src2, LIR* target) = 0;
974    virtual LIR* OpCmpImmBranch(ConditionCode cond, int reg, int check_value, LIR* target) = 0;
975    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
976    virtual LIR* OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) = 0;
977    virtual LIR* OpFpRegCopy(int r_dest, int r_src) = 0;
978    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
979    virtual LIR* OpMem(OpKind op, int rBase, int disp) = 0;
980    virtual LIR* OpPcRelLoad(int reg, LIR* target) = 0;
981    virtual LIR* OpReg(OpKind op, int r_dest_src) = 0;
982    virtual LIR* OpRegCopy(int r_dest, int r_src) = 0;
983    virtual LIR* OpRegCopyNoInsert(int r_dest, int r_src) = 0;
984    virtual LIR* OpRegImm(OpKind op, int r_dest_src1, int value) = 0;
985    virtual LIR* OpRegMem(OpKind op, int r_dest, int rBase, int offset) = 0;
986    virtual LIR* OpRegReg(OpKind op, int r_dest_src1, int r_src2) = 0;
987
988    /**
989     * @brief Used to generate an LIR that does a load from mem to reg.
990     * @param r_dest The destination physical register.
991     * @param r_base The base physical register for memory operand.
992     * @param offset The displacement for memory operand.
993     * @param move_type Specification on the move desired (size, alignment, register kind).
994     * @return Returns the generate move LIR.
995     */
996    virtual LIR* OpMovRegMem(int r_dest, int r_base, int offset, MoveType move_type) = 0;
997
998    /**
999     * @brief Used to generate an LIR that does a store from reg to mem.
1000     * @param r_base The base physical register for memory operand.
1001     * @param offset The displacement for memory operand.
1002     * @param r_src The destination physical register.
1003     * @param bytes_to_move The number of bytes to move.
1004     * @param is_aligned Whether the memory location is known to be aligned.
1005     * @return Returns the generate move LIR.
1006     */
1007    virtual LIR* OpMovMemReg(int r_base, int offset, int r_src, MoveType move_type) = 0;
1008
1009    /**
1010     * @brief Used for generating a conditional register to register operation.
1011     * @param op The opcode kind.
1012     * @param cc The condition code that when true will perform the opcode.
1013     * @param r_dest The destination physical register.
1014     * @param r_src The source physical register.
1015     * @return Returns the newly created LIR or null in case of creation failure.
1016     */
1017    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, int r_dest, int r_src) = 0;
1018
1019    virtual LIR* OpRegRegImm(OpKind op, int r_dest, int r_src1, int value) = 0;
1020    virtual LIR* OpRegRegReg(OpKind op, int r_dest, int r_src1, int r_src2) = 0;
1021    virtual LIR* OpTestSuspend(LIR* target) = 0;
1022    virtual LIR* OpThreadMem(OpKind op, ThreadOffset thread_offset) = 0;
1023    virtual LIR* OpVldm(int rBase, int count) = 0;
1024    virtual LIR* OpVstm(int rBase, int count) = 0;
1025    virtual void OpLea(int rBase, int reg1, int reg2, int scale, int offset) = 0;
1026    virtual void OpRegCopyWide(int dest_lo, int dest_hi, int src_lo, int src_hi) = 0;
1027    virtual void OpTlsCmp(ThreadOffset offset, int val) = 0;
1028    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1029    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1030    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1031    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1032
1033    // May be optimized by targets.
1034    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1035    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1036
1037    // Temp workaround
1038    void Workaround7250540(RegLocation rl_dest, int value);
1039
1040  protected:
1041    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1042
1043    CompilationUnit* GetCompilationUnit() {
1044      return cu_;
1045    }
1046    /*
1047     * @brief Returns the index of the lowest set bit in 'x'.
1048     * @param x Value to be examined.
1049     * @returns The bit number of the lowest bit set in the value.
1050     */
1051    int32_t LowestSetBit(uint64_t x);
1052    /*
1053     * @brief Is this value a power of two?
1054     * @param x Value to be examined.
1055     * @returns 'true' if only 1 bit is set in the value.
1056     */
1057    bool IsPowerOfTwo(uint64_t x);
1058    /*
1059     * @brief Do these SRs overlap?
1060     * @param rl_op1 One RegLocation
1061     * @param rl_op2 The other RegLocation
1062     * @return 'true' if the VR pairs overlap
1063     *
1064     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1065     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1066     * dex, we'll want to make this case illegal.
1067     */
1068    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1069
1070    /*
1071     * @brief Force a location (in a register) into a temporary register
1072     * @param loc location of result
1073     * @returns update location
1074     */
1075    RegLocation ForceTemp(RegLocation loc);
1076
1077    /*
1078     * @brief Force a wide location (in registers) into temporary registers
1079     * @param loc location of result
1080     * @returns update location
1081     */
1082    RegLocation ForceTempWide(RegLocation loc);
1083
1084    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1085                                    RegLocation rl_dest, RegLocation rl_src);
1086
1087    void AddSlowPath(LIRSlowPath* slowpath);
1088
1089    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1090                                            bool type_known_abstract, bool use_declaring_class,
1091                                            bool can_assume_type_is_in_dex_cache,
1092                                            uint32_t type_idx, RegLocation rl_dest,
1093                                            RegLocation rl_src);
1094    /*
1095     * @brief Generate the debug_frame FDE information if possible.
1096     * @returns pointer to vector containg CFE information, or NULL.
1097     */
1098    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1099
1100    /**
1101     * @brief Used to insert marker that can be used to associate MIR with LIR.
1102     * @details Only inserts marker if verbosity is enabled.
1103     * @param mir The mir that is currently being generated.
1104     */
1105    void GenPrintLabel(MIR* mir);
1106
1107    /**
1108     * @brief Used to generate return sequence when there is no frame.
1109     * @details Assumes that the return registers have already been populated.
1110     */
1111    virtual void GenSpecialExitSequence() = 0;
1112
1113    /**
1114     * @brief Used to generate code for special methods that are known to be
1115     * small enough to work in frameless mode.
1116     * @param bb The basic block of the first MIR.
1117     * @param mir The first MIR of the special method.
1118     * @param special Information about the special method.
1119     * @return Returns whether or not this was handled successfully. Returns false
1120     * if caller should punt to normal MIR2LIR conversion.
1121     */
1122    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1123
1124  private:
1125    void ClobberBody(RegisterInfo* p);
1126    void ResetDefBody(RegisterInfo* p) {
1127      p->def_start = NULL;
1128      p->def_end = NULL;
1129    }
1130
1131    void SetCurrentDexPc(DexOffset dexpc) {
1132      current_dalvik_offset_ = dexpc;
1133    }
1134
1135    /**
1136     * @brief Used to lock register if argument at in_position was passed that way.
1137     * @details Does nothing if the argument is passed via stack.
1138     * @param in_position The argument number whose register to lock.
1139     * @param wide Whether the argument is wide.
1140     */
1141    void LockArg(int in_position, bool wide = false);
1142
1143    /**
1144     * @brief Used to load VR argument to a physical register.
1145     * @details The load is only done if the argument is not already in physical register.
1146     * LockArg must have been previously called.
1147     * @param in_position The argument number to load.
1148     * @param wide Whether the argument is 64-bit or not.
1149     * @return Returns the register (or register pair) for the loaded argument.
1150     */
1151    int LoadArg(int in_position, bool wide = false);
1152
1153    /**
1154     * @brief Used to load a VR argument directly to a specified register location.
1155     * @param in_position The argument number to place in register.
1156     * @param rl_dest The register location where to place argument.
1157     */
1158    void LoadArgDirect(int in_position, RegLocation rl_dest);
1159
1160    /**
1161     * @brief Used to generate LIR for special getter method.
1162     * @param mir The mir that represents the iget.
1163     * @param special Information about the special getter method.
1164     * @return Returns whether LIR was successfully generated.
1165     */
1166    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1167
1168    /**
1169     * @brief Used to generate LIR for special setter method.
1170     * @param mir The mir that represents the iput.
1171     * @param special Information about the special setter method.
1172     * @return Returns whether LIR was successfully generated.
1173     */
1174    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1175
1176    /**
1177     * @brief Used to generate LIR for special return-args method.
1178     * @param mir The mir that represents the return of argument.
1179     * @param special Information about the special return-args method.
1180     * @return Returns whether LIR was successfully generated.
1181     */
1182    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1183
1184
1185  public:
1186    // TODO: add accessors for these.
1187    LIR* literal_list_;                        // Constants.
1188    LIR* method_literal_list_;                 // Method literals requiring patching.
1189    LIR* class_literal_list_;                  // Class literals requiring patching.
1190    LIR* code_literal_list_;                   // Code literals requiring patching.
1191    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1192
1193  protected:
1194    CompilationUnit* const cu_;
1195    MIRGraph* const mir_graph_;
1196    GrowableArray<SwitchTable*> switch_tables_;
1197    GrowableArray<FillArrayData*> fill_array_data_;
1198    GrowableArray<LIR*> throw_launchpads_;
1199    GrowableArray<LIR*> suspend_launchpads_;
1200    GrowableArray<RegisterInfo*> tempreg_info_;
1201    GrowableArray<RegisterInfo*> reginfo_map_;
1202    GrowableArray<void*> pointer_storage_;
1203    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1204    CodeOffset data_offset_;            // starting offset of literal pool.
1205    size_t total_size_;                   // header + code size.
1206    LIR* block_label_list_;
1207    PromotionMap* promotion_map_;
1208    /*
1209     * TODO: The code generation utilities don't have a built-in
1210     * mechanism to propagate the original Dalvik opcode address to the
1211     * associated generated instructions.  For the trace compiler, this wasn't
1212     * necessary because the interpreter handled all throws and debugging
1213     * requests.  For now we'll handle this by placing the Dalvik offset
1214     * in the CompilationUnit struct before codegen for each instruction.
1215     * The low-level LIR creation utilites will pull it from here.  Rework this.
1216     */
1217    DexOffset current_dalvik_offset_;
1218    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1219    RegisterPool* reg_pool_;
1220    /*
1221     * Sanity checking for the register temp tracking.  The same ssa
1222     * name should never be associated with one temp register per
1223     * instruction compilation.
1224     */
1225    int live_sreg_;
1226    CodeBuffer code_buffer_;
1227    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1228    std::vector<uint8_t> encoded_mapping_table_;
1229    std::vector<uint32_t> core_vmap_table_;
1230    std::vector<uint32_t> fp_vmap_table_;
1231    std::vector<uint8_t> native_gc_map_;
1232    int num_core_spills_;
1233    int num_fp_spills_;
1234    int frame_size_;
1235    unsigned int core_spill_mask_;
1236    unsigned int fp_spill_mask_;
1237    LIR* first_lir_insn_;
1238    LIR* last_lir_insn_;
1239
1240    GrowableArray<LIRSlowPath*> slow_paths_;
1241};  // Class Mir2Lir
1242
1243}  // namespace art
1244
1245#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1246