mir_to_lir.h revision 3bf7c60a86d49bf8c05c5d2ac5ca8e9f80bd9824
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_storage.h"
25#include "dex/backend.h"
26#include "driver/compiler_driver.h"
27#include "leb128.h"
28#include "safe_map.h"
29#include "utils/arena_allocator.h"
30#include "utils/growable_array.h"
31
32namespace art {
33
34/*
35 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
36 * add type safety (see runtime/offsets.h).
37 */
38typedef uint32_t DexOffset;          // Dex offset in code units.
39typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
40typedef uint32_t CodeOffset;         // Native code offset in bytes.
41
42// Set to 1 to measure cost of suspend check.
43#define NO_SUSPEND 0
44
45#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
46#define IS_BRANCH            (1ULL << kIsBranch)
47#define IS_IT                (1ULL << kIsIT)
48#define IS_LOAD              (1ULL << kMemLoad)
49#define IS_QUAD_OP           (1ULL << kIsQuadOp)
50#define IS_QUIN_OP           (1ULL << kIsQuinOp)
51#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
52#define IS_STORE             (1ULL << kMemStore)
53#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
54#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
55#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
56#define NO_OPERAND           (1ULL << kNoOperand)
57#define REG_DEF0             (1ULL << kRegDef0)
58#define REG_DEF1             (1ULL << kRegDef1)
59#define REG_DEF2             (1ULL << kRegDef2)
60#define REG_DEFA             (1ULL << kRegDefA)
61#define REG_DEFD             (1ULL << kRegDefD)
62#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
63#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
64#define REG_DEF_LIST0        (1ULL << kRegDefList0)
65#define REG_DEF_LIST1        (1ULL << kRegDefList1)
66#define REG_DEF_LR           (1ULL << kRegDefLR)
67#define REG_DEF_SP           (1ULL << kRegDefSP)
68#define REG_USE0             (1ULL << kRegUse0)
69#define REG_USE1             (1ULL << kRegUse1)
70#define REG_USE2             (1ULL << kRegUse2)
71#define REG_USE3             (1ULL << kRegUse3)
72#define REG_USE4             (1ULL << kRegUse4)
73#define REG_USEA             (1ULL << kRegUseA)
74#define REG_USEC             (1ULL << kRegUseC)
75#define REG_USED             (1ULL << kRegUseD)
76#define REG_USEB             (1ULL << kRegUseB)
77#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
78#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
79#define REG_USE_LIST0        (1ULL << kRegUseList0)
80#define REG_USE_LIST1        (1ULL << kRegUseList1)
81#define REG_USE_LR           (1ULL << kRegUseLR)
82#define REG_USE_PC           (1ULL << kRegUsePC)
83#define REG_USE_SP           (1ULL << kRegUseSP)
84#define SETS_CCODES          (1ULL << kSetsCCodes)
85#define USES_CCODES          (1ULL << kUsesCCodes)
86#define USE_FP_STACK         (1ULL << kUseFpStack)
87#define REG_USE_LO           (1ULL << kUseLo)
88#define REG_USE_HI           (1ULL << kUseHi)
89#define REG_DEF_LO           (1ULL << kDefLo)
90#define REG_DEF_HI           (1ULL << kDefHi)
91
92// Common combo register usage patterns.
93#define REG_DEF01            (REG_DEF0 | REG_DEF1)
94#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
95#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
96#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
97#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
98#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
99#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
100#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
101#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
102#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
103#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
104#define REG_USE012           (REG_USE01 | REG_USE2)
105#define REG_USE014           (REG_USE01 | REG_USE4)
106#define REG_USE01            (REG_USE0 | REG_USE1)
107#define REG_USE02            (REG_USE0 | REG_USE2)
108#define REG_USE12            (REG_USE1 | REG_USE2)
109#define REG_USE23            (REG_USE2 | REG_USE3)
110#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
111
112// TODO: #includes need a cleanup
113#ifndef INVALID_SREG
114#define INVALID_SREG (-1)
115#endif
116
117struct BasicBlock;
118struct CallInfo;
119struct CompilationUnit;
120struct InlineMethod;
121struct MIR;
122struct LIR;
123struct RegLocation;
124struct RegisterInfo;
125class DexFileMethodInliner;
126class MIRGraph;
127class Mir2Lir;
128
129typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
130                            const MethodReference& target_method,
131                            uint32_t method_idx, uintptr_t direct_code,
132                            uintptr_t direct_method, InvokeType type);
133
134typedef std::vector<uint8_t> CodeBuffer;
135
136struct UseDefMasks {
137  uint64_t use_mask;        // Resource mask for use.
138  uint64_t def_mask;        // Resource mask for def.
139};
140
141struct AssemblyInfo {
142  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
143};
144
145struct LIR {
146  CodeOffset offset;             // Offset of this instruction.
147  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
148  int16_t opcode;
149  LIR* next;
150  LIR* prev;
151  LIR* target;
152  struct {
153    unsigned int alias_info:17;  // For Dalvik register disambiguation.
154    bool is_nop:1;               // LIR is optimized away.
155    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
156    bool use_def_invalid:1;      // If true, masks should not be used.
157    unsigned int generation:1;   // Used to track visitation state during fixup pass.
158    unsigned int fixup:8;        // Fixup kind.
159  } flags;
160  union {
161    UseDefMasks m;               // Use & Def masks used during optimization.
162    AssemblyInfo a;              // Instruction info used during assembly phase.
163  } u;
164  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
165};
166
167// Target-specific initialization.
168Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
169                          ArenaAllocator* const arena);
170Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
171                          ArenaAllocator* const arena);
172Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
173                          ArenaAllocator* const arena);
174
175// Utility macros to traverse the LIR list.
176#define NEXT_LIR(lir) (lir->next)
177#define PREV_LIR(lir) (lir->prev)
178
179// Defines for alias_info (tracks Dalvik register references).
180#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
181#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
182#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
183#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
184
185// Common resource macros.
186#define ENCODE_CCODE            (1ULL << kCCode)
187#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
188
189// Abstract memory locations.
190#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
191#define ENCODE_LITERAL          (1ULL << kLiteral)
192#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
193#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
194
195#define ENCODE_ALL              (~0ULL)
196#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
197                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
198
199#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
200#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
201  do { \
202    low_reg = both_regs & 0xff; \
203    high_reg = (both_regs >> 8) & 0xff; \
204  } while (false)
205
206// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
207#define STARTING_DOUBLE_SREG 0x10000
208
209// TODO: replace these macros
210#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
211#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
212#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
213#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
214#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
215
216class Mir2Lir : public Backend {
217  public:
218    /*
219     * Auxiliary information describing the location of data embedded in the Dalvik
220     * byte code stream.
221     */
222    struct EmbeddedData {
223      CodeOffset offset;        // Code offset of data block.
224      const uint16_t* table;      // Original dex data.
225      DexOffset vaddr;            // Dalvik offset of parent opcode.
226    };
227
228    struct FillArrayData : EmbeddedData {
229      int32_t size;
230    };
231
232    struct SwitchTable : EmbeddedData {
233      LIR* anchor;                // Reference instruction for relative offsets.
234      LIR** targets;              // Array of case targets.
235    };
236
237    /* Static register use counts */
238    struct RefCounts {
239      int count;
240      int s_reg;
241    };
242
243    /*
244     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
245     * and native register storage.  The primary purpose is to reuse previuosly
246     * loaded values, if possible, and otherwise to keep the value in register
247     * storage as long as possible.
248     *
249     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
250     * this register (or pair).  For example, a 64-bit register containing a 32-bit
251     * Dalvik value would have wide_value==false even though the storage container itself
252     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
253     * would have wide_value==true (and additionally would have its partner field set to the
254     * other half whose wide_value field would also be true.
255     *
256     * NOTE 2: In the case of a register pair, you can determine which of the partners
257     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
258     *
259     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
260     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
261     * value, and the s_reg of the high word is implied (s_reg + 1).
262     *
263     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
264     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
265     * If is_temp==true and live==false, no other fields have
266     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
267     * and def_end describe the relationship between the temp register/register pair and
268     * the Dalvik value[s] described by s_reg/s_reg+1.
269     *
270     * The fields used_storage, master_storage and storage_mask are used to track allocation
271     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
272     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
273     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
274     * change once initialized.  The "used_storage" field tracks current allocation status.
275     * Although each record contains this field, only the field from the largest member of
276     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
277     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
278     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
279     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
280     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
281     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
282     *
283     * For an X86 vector register example, storage_mask would be:
284     *    0x00000001 for 32-bit view of xmm1
285     *    0x00000003 for 64-bit view of xmm1
286     *    0x0000000f for 128-bit view of xmm1
287     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
288     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
289     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
290     *
291     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
292     * to treat xmm registers:
293     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
294     *         o This more closely matches reality, but means you'd need to be able to get
295     *           to the associated RegisterInfo struct to figure out how it's being used.
296     *         o This is how 64-bit core registers will be used - always 64 bits, but the
297     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
298     *     2. View the xmm registers based on contents.
299     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
300     *           be a k64BitVector.
301     *         o Note that the two uses above would be considered distinct registers (but with
302     *           the aliasing mechanism, we could detect interference).
303     *         o This is how aliased double and single float registers will be handled on
304     *           Arm and MIPS.
305     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
306     * mechanism 2 for aliased float registers and x86 vector registers.
307     */
308    class RegisterInfo {
309     public:
310      RegisterInfo(RegStorage r, uint64_t mask = ENCODE_ALL);
311      ~RegisterInfo() {}
312      static void* operator new(size_t size, ArenaAllocator* arena) {
313        return arena->Alloc(size, kArenaAllocRegAlloc);
314      }
315
316      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
317      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
318      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
319      RegStorage GetReg() { return reg_; }
320      void SetReg(RegStorage reg) { reg_ = reg; }
321      bool IsTemp() { return is_temp_; }
322      void SetIsTemp(bool val) { is_temp_ = val; }
323      bool IsWide() { return wide_value_; }
324      void SetIsWide(bool val) { wide_value_ = val; }
325      bool IsLive() { return live_; }
326      void SetIsLive(bool val) { live_ = val; }
327      bool IsDirty() { return dirty_; }
328      void SetIsDirty(bool val) { dirty_ = val; }
329      RegStorage Partner() { return partner_; }
330      void SetPartner(RegStorage partner) { partner_ = partner; }
331      int SReg() { return s_reg_; }
332      void SetSReg(int s_reg) { s_reg_ = s_reg; }
333      uint64_t DefUseMask() { return def_use_mask_; }
334      void SetDefUseMask(uint64_t def_use_mask) { def_use_mask_ = def_use_mask; }
335      RegisterInfo* Master() { return master_; }
336      void SetMaster(RegisterInfo* master) { master_ = master; }
337      uint32_t StorageMask() { return storage_mask_; }
338      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
339      LIR* DefStart() { return def_start_; }
340      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
341      LIR* DefEnd() { return def_end_; }
342      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
343      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
344
345
346     private:
347      RegStorage reg_;
348      bool is_temp_;               // Can allocate as temp?
349      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
350      bool live_;                  // Is there an associated SSA name?
351      bool dirty_;                 // If live, is it dirty?
352      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
353      int s_reg_;                  // Name of live value.
354      uint64_t def_use_mask_;      // Resources for this element.
355      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
356      RegisterInfo* master_;       // Pointer to controlling storage mask.
357      uint32_t storage_mask_;      // Track allocation of sub-units.
358      LIR *def_start_;             // Starting inst in last def sequence.
359      LIR *def_end_;               // Ending inst in last def sequence.
360    };
361
362    class RegisterPool {
363     public:
364      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena, const std::vector<RegStorage>& core_regs,
365                   const std::vector<RegStorage>& sp_regs, const std::vector<RegStorage>& dp_regs,
366                   const std::vector<RegStorage>& reserved_regs,
367                   const std::vector<RegStorage>& core_temps,
368                   const std::vector<RegStorage>& sp_temps,
369                   const std::vector<RegStorage>& dp_temps);
370      ~RegisterPool() {}
371      static void* operator new(size_t size, ArenaAllocator* arena) {
372        return arena->Alloc(size, kArenaAllocRegAlloc);
373      }
374      void ResetNextTemp() {
375        next_core_reg_ = 0;
376        next_sp_reg_ = 0;
377        next_dp_reg_ = 0;
378      }
379      GrowableArray<RegisterInfo*> core_regs_;
380      int next_core_reg_;
381      GrowableArray<RegisterInfo*> sp_regs_;    // Single precision float.
382      int next_sp_reg_;
383      GrowableArray<RegisterInfo*> dp_regs_;    // Double precision float.
384      int next_dp_reg_;
385
386     private:
387      Mir2Lir* const m2l_;
388    };
389
390    struct PromotionMap {
391      RegLocationType core_location:3;
392      uint8_t core_reg;
393      RegLocationType fp_location:3;
394      uint8_t FpReg;
395      bool first_in_pair;
396    };
397
398    //
399    // Slow paths.  This object is used generate a sequence of code that is executed in the
400    // slow path.  For example, resolving a string or class is slow as it will only be executed
401    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
402    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
403    // branch over them.
404    //
405    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
406    // the Compile() function that will be called near the end of the code generated by the
407    // method.
408    //
409    // The basic flow for a slow path is:
410    //
411    //     CMP reg, #value
412    //     BEQ fromfast
413    //   cont:
414    //     ...
415    //     fast path code
416    //     ...
417    //     more code
418    //     ...
419    //     RETURN
420    ///
421    //   fromfast:
422    //     ...
423    //     slow path code
424    //     ...
425    //     B cont
426    //
427    // So you see we need two labels and two branches.  The first branch (called fromfast) is
428    // the conditional branch to the slow path code.  The second label (called cont) is used
429    // as an unconditional branch target for getting back to the code after the slow path
430    // has completed.
431    //
432
433    class LIRSlowPath {
434     public:
435      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
436                  LIR* cont = nullptr) :
437        m2l_(m2l), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
438      }
439      virtual ~LIRSlowPath() {}
440      virtual void Compile() = 0;
441
442      static void* operator new(size_t size, ArenaAllocator* arena) {
443        return arena->Alloc(size, kArenaAllocData);
444      }
445
446     protected:
447      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
448
449      Mir2Lir* const m2l_;
450      const DexOffset current_dex_pc_;
451      LIR* const fromfast_;
452      LIR* const cont_;
453    };
454
455    virtual ~Mir2Lir() {}
456
457    int32_t s4FromSwitchData(const void* switch_data) {
458      return *reinterpret_cast<const int32_t*>(switch_data);
459    }
460
461    /*
462     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
463     * it was introduced, it was intended to be a quick best guess of type without having to
464     * take the time to do type analysis.  Currently, though, we have a much better idea of
465     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
466     * just use our knowledge of type to select the most appropriate register class?
467     */
468    RegisterClass RegClassBySize(OpSize size) {
469      return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
470              size == kSignedByte) ? kCoreReg : kAnyReg;
471    }
472
473    size_t CodeBufferSizeInBytes() {
474      return code_buffer_.size() / sizeof(code_buffer_[0]);
475    }
476
477    static bool IsPseudoLirOp(int opcode) {
478      return (opcode < 0);
479    }
480
481    /*
482     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
483     * instructions which require PC-relative fixups), we need the operands to carry
484     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
485     * hold that index in the operand array.
486     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
487     * may be worth conditionally-compiling a set of identity functions here.
488     */
489    uint32_t WrapPointer(void* pointer) {
490      uint32_t res = pointer_storage_.Size();
491      pointer_storage_.Insert(pointer);
492      return res;
493    }
494
495    void* UnwrapPointer(size_t index) {
496      return pointer_storage_.Get(index);
497    }
498
499    // strdup(), but allocates from the arena.
500    char* ArenaStrdup(const char* str) {
501      size_t len = strlen(str) + 1;
502      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
503      if (res != NULL) {
504        strncpy(res, str, len);
505      }
506      return res;
507    }
508
509    // Shared by all targets - implemented in codegen_util.cc
510    void AppendLIR(LIR* lir);
511    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
512    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
513
514    /**
515     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
516     * to place in a frame.
517     * @return Returns the maximum number of compiler temporaries.
518     */
519    size_t GetMaxPossibleCompilerTemps() const;
520
521    /**
522     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
523     * @return Returns the size in bytes for space needed for compiler temporary spill region.
524     */
525    size_t GetNumBytesForCompilerTempSpillRegion();
526
527    DexOffset GetCurrentDexPc() const {
528      return current_dalvik_offset_;
529    }
530
531    int ComputeFrameSize();
532    virtual void Materialize();
533    virtual CompiledMethod* GetCompiledMethod();
534    void MarkSafepointPC(LIR* inst);
535    void SetupResourceMasks(LIR* lir);
536    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
537    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
538    void SetupRegMask(uint64_t* mask, int reg);
539    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
540    void DumpPromotionMap();
541    void CodegenDump();
542    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
543                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
544    LIR* NewLIR0(int opcode);
545    LIR* NewLIR1(int opcode, int dest);
546    LIR* NewLIR2(int opcode, int dest, int src1);
547    LIR* NewLIR2NoDest(int opcode, int src, int info);
548    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
549    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
550    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
551    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
552    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
553    LIR* AddWordData(LIR* *constant_list_p, int value);
554    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
555    void ProcessSwitchTables();
556    void DumpSparseSwitchTable(const uint16_t* table);
557    void DumpPackedSwitchTable(const uint16_t* table);
558    void MarkBoundary(DexOffset offset, const char* inst_str);
559    void NopLIR(LIR* lir);
560    void UnlinkLIR(LIR* lir);
561    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
562    bool IsInexpensiveConstant(RegLocation rl_src);
563    ConditionCode FlipComparisonOrder(ConditionCode before);
564    ConditionCode NegateComparison(ConditionCode before);
565    virtual void InstallLiteralPools();
566    void InstallSwitchTables();
567    void InstallFillArrayData();
568    bool VerifyCatchEntries();
569    void CreateMappingTables();
570    void CreateNativeGcMap();
571    int AssignLiteralOffset(CodeOffset offset);
572    int AssignSwitchTablesOffset(CodeOffset offset);
573    int AssignFillArrayDataOffset(CodeOffset offset);
574    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
575    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
576    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
577    // Handle bookkeeping to convert a wide RegLocation to a narow RegLocation.  No code generated.
578    RegLocation NarrowRegLoc(RegLocation loc);
579
580    // Shared by all targets - implemented in local_optimizations.cc
581    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
582    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
583    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
584    void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
585
586    // Shared by all targets - implemented in ralloc_util.cc
587    int GetSRegHi(int lowSreg);
588    bool LiveOut(int s_reg);
589    void SimpleRegAlloc();
590    void ResetRegPool();
591    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
592    void DumpRegPool(GrowableArray<RegisterInfo*>* regs);
593    void DumpCoreRegPool();
594    void DumpFpRegPool();
595    void DumpRegPools();
596    /* Mark a temp register as dead.  Does not affect allocation state. */
597    void Clobber(RegStorage reg);
598    void ClobberSRegBody(GrowableArray<RegisterInfo*>* regs, int s_reg);
599    void ClobberSReg(int s_reg);
600    int SRegToPMap(int s_reg);
601    void RecordCorePromotion(RegStorage reg, int s_reg);
602    RegStorage AllocPreservedCoreReg(int s_reg);
603    void RecordSinglePromotion(RegStorage reg, int s_reg);
604    void RecordDoublePromotion(RegStorage reg, int s_reg);
605    RegStorage AllocPreservedSingle(int s_reg);
606    virtual RegStorage AllocPreservedDouble(int s_reg);
607    RegStorage AllocTempBody(GrowableArray<RegisterInfo*> &regs, int* next_temp, bool required);
608    RegStorage AllocFreeTemp();
609    RegStorage AllocTemp();
610    RegStorage AllocTempSingle();
611    RegStorage AllocTempDouble();
612    void FlushReg(RegStorage reg);
613    void FlushRegWide(RegStorage reg);
614    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
615    RegStorage FindLiveReg(GrowableArray<RegisterInfo*> &regs, int s_reg);
616    void FreeTemp(RegStorage reg);
617    bool IsLive(RegStorage reg);
618    bool IsTemp(RegStorage reg);
619    bool IsPromoted(RegStorage reg);
620    bool IsDirty(RegStorage reg);
621    void LockTemp(RegStorage reg);
622    void ResetDef(RegStorage reg);
623    void NullifyRange(RegStorage reg, int s_reg);
624    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
625    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
626    RegLocation WideToNarrow(RegLocation rl);
627    void ResetDefLoc(RegLocation rl);
628    void ResetDefLocWide(RegLocation rl);
629    void ResetDefTracking();
630    void ClobberAllRegs();
631    void FlushSpecificReg(RegisterInfo* info);
632    void FlushAllRegs();
633    bool RegClassMatches(int reg_class, RegStorage reg);
634    void MarkLive(RegLocation loc);
635    void MarkLiveReg(RegStorage reg, int s_reg);
636    void MarkTemp(RegStorage reg);
637    void UnmarkTemp(RegStorage reg);
638    void MarkWide(RegStorage reg);
639    void MarkClean(RegLocation loc);
640    void MarkDirty(RegLocation loc);
641    void MarkInUse(RegStorage reg);
642    bool CheckCorePoolSanity();
643    RegLocation UpdateLoc(RegLocation loc);
644    RegLocation UpdateLocWide(RegLocation loc);
645    RegLocation UpdateRawLoc(RegLocation loc);
646
647    /**
648     * @brief Used to load register location into a typed temporary or pair of temporaries.
649     * @see EvalLoc
650     * @param loc The register location to load from.
651     * @param reg_class Type of register needed.
652     * @param update Whether the liveness information should be updated.
653     * @return Returns the properly typed temporary in physical register pairs.
654     */
655    RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
656
657    /**
658     * @brief Used to load register location into a typed temporary.
659     * @param loc The register location to load from.
660     * @param reg_class Type of register needed.
661     * @param update Whether the liveness information should be updated.
662     * @return Returns the properly typed temporary in physical register.
663     */
664    RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
665
666    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
667    void DumpCounts(const RefCounts* arr, int size, const char* msg);
668    void DoPromotion();
669    int VRegOffset(int v_reg);
670    int SRegOffset(int s_reg);
671    RegLocation GetReturnWide(bool is_double);
672    RegLocation GetReturn(bool is_float);
673    RegisterInfo* GetRegInfo(RegStorage reg);
674
675    // Shared by all targets - implemented in gen_common.cc.
676    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
677    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
678                          RegLocation rl_src, RegLocation rl_dest, int lit);
679    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
680    void HandleSlowPaths();
681    void GenBarrier();
682    void GenDivZeroException();
683    // c_code holds condition code that's generated from testing divisor against 0.
684    void GenDivZeroCheck(ConditionCode c_code);
685    // reg holds divisor.
686    void GenDivZeroCheck(RegStorage reg);
687    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
688    void GenArrayBoundsCheck(int32_t index, RegStorage length);
689    LIR* GenNullCheck(RegStorage reg);
690    void MarkPossibleNullPointerException(int opt_flags);
691    void MarkPossibleStackOverflowException();
692    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
693    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
694    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
695    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
696    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
697                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
698    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
699                                 LIR* taken, LIR* fall_through);
700    void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
701    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
702                         RegLocation rl_src);
703    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
704                     RegLocation rl_src);
705    void GenFilledNewArray(CallInfo* info);
706    void GenSput(MIR* mir, RegLocation rl_src,
707                 bool is_long_or_double, bool is_object);
708    void GenSget(MIR* mir, RegLocation rl_dest,
709                 bool is_long_or_double, bool is_object);
710    void GenIGet(MIR* mir, int opt_flags, OpSize size,
711                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
712    void GenIPut(MIR* mir, int opt_flags, OpSize size,
713                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
714    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
715                        RegLocation rl_src);
716
717    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
718    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
719    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
720    void GenThrow(RegLocation rl_src);
721    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
722    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
723    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
724                      RegLocation rl_src1, RegLocation rl_src2);
725    void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
726                        RegLocation rl_src1, RegLocation rl_shift);
727    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
728                          RegLocation rl_src, int lit);
729    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
730                        RegLocation rl_src1, RegLocation rl_src2);
731    void GenConversionCall(ThreadOffset<4> func_offset, RegLocation rl_dest,
732                           RegLocation rl_src);
733    void GenSuspendTest(int opt_flags);
734    void GenSuspendTestAndBranch(int opt_flags, LIR* target);
735
736    // This will be overridden by x86 implementation.
737    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
738    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
739                       RegLocation rl_src1, RegLocation rl_src2);
740
741    // Shared by all targets - implemented in gen_invoke.cc.
742    LIR* CallHelper(RegStorage r_tgt, ThreadOffset<4> helper_offset, bool safepoint_pc,
743                    bool use_link = true);
744    RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
745    void CallRuntimeHelper(ThreadOffset<4> helper_offset, bool safepoint_pc);
746    void CallRuntimeHelperImm(ThreadOffset<4> helper_offset, int arg0, bool safepoint_pc);
747    void CallRuntimeHelperReg(ThreadOffset<4> helper_offset, RegStorage arg0, bool safepoint_pc);
748    void CallRuntimeHelperRegLocation(ThreadOffset<4> helper_offset, RegLocation arg0,
749                                      bool safepoint_pc);
750    void CallRuntimeHelperImmImm(ThreadOffset<4> helper_offset, int arg0, int arg1,
751                                 bool safepoint_pc);
752    void CallRuntimeHelperImmRegLocation(ThreadOffset<4> helper_offset, int arg0,
753                                         RegLocation arg1, bool safepoint_pc);
754    void CallRuntimeHelperRegLocationImm(ThreadOffset<4> helper_offset, RegLocation arg0,
755                                         int arg1, bool safepoint_pc);
756    void CallRuntimeHelperImmReg(ThreadOffset<4> helper_offset, int arg0, RegStorage arg1,
757                                 bool safepoint_pc);
758    void CallRuntimeHelperRegImm(ThreadOffset<4> helper_offset, RegStorage arg0, int arg1,
759                                 bool safepoint_pc);
760    void CallRuntimeHelperImmMethod(ThreadOffset<4> helper_offset, int arg0,
761                                    bool safepoint_pc);
762    void CallRuntimeHelperRegMethod(ThreadOffset<4> helper_offset, RegStorage arg0,
763                                    bool safepoint_pc);
764    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<4> helper_offset, RegStorage arg0,
765                                               RegLocation arg2, bool safepoint_pc);
766    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<4> helper_offset,
767                                                 RegLocation arg0, RegLocation arg1,
768                                                 bool safepoint_pc);
769    void CallRuntimeHelperRegReg(ThreadOffset<4> helper_offset, RegStorage arg0, RegStorage arg1,
770                                 bool safepoint_pc);
771    void CallRuntimeHelperRegRegImm(ThreadOffset<4> helper_offset, RegStorage arg0, RegStorage arg1,
772                                    int arg2, bool safepoint_pc);
773    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<4> helper_offset, int arg0,
774                                               RegLocation arg2, bool safepoint_pc);
775    void CallRuntimeHelperImmMethodImm(ThreadOffset<4> helper_offset, int arg0, int arg2,
776                                       bool safepoint_pc);
777    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<4> helper_offset,
778                                                    int arg0, RegLocation arg1, RegLocation arg2,
779                                                    bool safepoint_pc);
780    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<4> helper_offset,
781                                                            RegLocation arg0, RegLocation arg1,
782                                                            RegLocation arg2,
783                                                            bool safepoint_pc);
784    void GenInvoke(CallInfo* info);
785    void GenInvokeNoInline(CallInfo* info);
786    void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
787    int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
788                             NextCallInsn next_call_insn,
789                             const MethodReference& target_method,
790                             uint32_t vtable_idx,
791                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
792                             bool skip_this);
793    int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
794                           NextCallInsn next_call_insn,
795                           const MethodReference& target_method,
796                           uint32_t vtable_idx,
797                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
798                           bool skip_this);
799
800    /**
801     * @brief Used to determine the register location of destination.
802     * @details This is needed during generation of inline intrinsics because it finds destination
803     *  of return,
804     * either the physical register or the target of move-result.
805     * @param info Information about the invoke.
806     * @return Returns the destination location.
807     */
808    RegLocation InlineTarget(CallInfo* info);
809
810    /**
811     * @brief Used to determine the wide register location of destination.
812     * @see InlineTarget
813     * @param info Information about the invoke.
814     * @return Returns the destination location.
815     */
816    RegLocation InlineTargetWide(CallInfo* info);
817
818    bool GenInlinedCharAt(CallInfo* info);
819    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
820    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
821    bool GenInlinedAbsInt(CallInfo* info);
822    bool GenInlinedAbsLong(CallInfo* info);
823    bool GenInlinedAbsFloat(CallInfo* info);
824    bool GenInlinedAbsDouble(CallInfo* info);
825    bool GenInlinedFloatCvt(CallInfo* info);
826    bool GenInlinedDoubleCvt(CallInfo* info);
827    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
828    bool GenInlinedStringCompareTo(CallInfo* info);
829    bool GenInlinedCurrentThread(CallInfo* info);
830    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
831    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
832                             bool is_volatile, bool is_ordered);
833    int LoadArgRegs(CallInfo* info, int call_state,
834                    NextCallInsn next_call_insn,
835                    const MethodReference& target_method,
836                    uint32_t vtable_idx,
837                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
838                    bool skip_this);
839
840    // Shared by all targets - implemented in gen_loadstore.cc.
841    RegLocation LoadCurrMethod();
842    void LoadCurrMethodDirect(RegStorage r_tgt);
843    LIR* LoadConstant(RegStorage r_dest, int value);
844    // Natural word size.
845    LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
846      return LoadBaseDisp(r_base, displacement, r_dest, kWord);
847    }
848    // Load 32 bits, regardless of target.
849    LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
850      return LoadBaseDisp(r_base, displacement, r_dest, k32);
851    }
852    // Load a reference at base + displacement and decompress into register.
853    LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
854      return LoadBaseDisp(r_base, displacement, r_dest, kReference);
855    }
856    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
857    RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
858    // Load Dalvik value with 64-bit memory storage.
859    RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
860    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
861    void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
862    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
863    void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
864    // Load Dalvik value with 64-bit memory storage.
865    void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
866    // Load Dalvik value with 64-bit memory storage.
867    void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
868    // Store an item of natural word size.
869    LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
870      return StoreBaseDisp(r_base, displacement, r_src, kWord);
871    }
872    // Store an uncompressed reference into a compressed 32-bit container.
873    LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src) {
874      return StoreBaseDisp(r_base, displacement, r_src, kReference);
875    }
876    // Store 32 bits, regardless of target.
877    LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
878      return StoreBaseDisp(r_base, displacement, r_src, k32);
879    }
880
881    /**
882     * @brief Used to do the final store in the destination as per bytecode semantics.
883     * @param rl_dest The destination dalvik register location.
884     * @param rl_src The source register location. Can be either physical register or dalvik register.
885     */
886    void StoreValue(RegLocation rl_dest, RegLocation rl_src);
887
888    /**
889     * @brief Used to do the final store in a wide destination as per bytecode semantics.
890     * @see StoreValue
891     * @param rl_dest The destination dalvik register location.
892     * @param rl_src The source register location. Can be either physical register or dalvik
893     *  register.
894     */
895    void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
896
897    /**
898     * @brief Used to do the final store to a destination as per bytecode semantics.
899     * @see StoreValue
900     * @param rl_dest The destination dalvik register location.
901     * @param rl_src The source register location. It must be kLocPhysReg
902     *
903     * This is used for x86 two operand computations, where we have computed the correct
904     * register value that now needs to be properly registered.  This is used to avoid an
905     * extra register copy that would result if StoreValue was called.
906     */
907    void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
908
909    /**
910     * @brief Used to do the final store in a wide destination as per bytecode semantics.
911     * @see StoreValueWide
912     * @param rl_dest The destination dalvik register location.
913     * @param rl_src The source register location. It must be kLocPhysReg
914     *
915     * This is used for x86 two operand computations, where we have computed the correct
916     * register values that now need to be properly registered.  This is used to avoid an
917     * extra pair of register copies that would result if StoreValueWide was called.
918     */
919    void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
920
921    // Shared by all targets - implemented in mir_to_lir.cc.
922    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
923    void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
924    bool MethodBlockCodeGen(BasicBlock* bb);
925    bool SpecialMIR2LIR(const InlineMethod& special);
926    void MethodMIR2LIR();
927    // Update LIR for verbose listings.
928    void UpdateLIROffsets();
929
930    /*
931     * @brief Load the address of the dex method into the register.
932     * @param target_method The MethodReference of the method to be invoked.
933     * @param type How the method will be invoked.
934     * @param register that will contain the code address.
935     * @note register will be passed to TargetReg to get physical register.
936     */
937    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
938                         SpecialTargetRegister symbolic_reg);
939
940    /*
941     * @brief Load the Method* of a dex method into the register.
942     * @param target_method The MethodReference of the method to be invoked.
943     * @param type How the method will be invoked.
944     * @param register that will contain the code address.
945     * @note register will be passed to TargetReg to get physical register.
946     */
947    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
948                                   SpecialTargetRegister symbolic_reg);
949
950    /*
951     * @brief Load the Class* of a Dex Class type into the register.
952     * @param type How the method will be invoked.
953     * @param register that will contain the code address.
954     * @note register will be passed to TargetReg to get physical register.
955     */
956    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
957
958    // Routines that work for the generic case, but may be overriden by target.
959    /*
960     * @brief Compare memory to immediate, and branch if condition true.
961     * @param cond The condition code that when true will branch to the target.
962     * @param temp_reg A temporary register that can be used if compare to memory is not
963     * supported by the architecture.
964     * @param base_reg The register holding the base address.
965     * @param offset The offset from the base.
966     * @param check_value The immediate to compare to.
967     * @returns The branch instruction that was generated.
968     */
969    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
970                                   int offset, int check_value, LIR* target);
971
972    // Required for target - codegen helpers.
973    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
974                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
975    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
976    virtual LIR* CheckSuspendUsingLoad() = 0;
977    virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
978    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
979                              OpSize size) = 0;
980    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
981                                 int scale, OpSize size) = 0;
982    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
983                                     int displacement, RegStorage r_dest, OpSize size) = 0;
984    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
985    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
986    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
987                               OpSize size) = 0;
988    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
989                                  int scale, OpSize size) = 0;
990    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
991                                      int displacement, RegStorage r_src, OpSize size) = 0;
992    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
993
994    // Required for target - register utilities.
995    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class) = 0;
996    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class) = 0;
997    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
998    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
999    virtual RegLocation GetReturnAlt() = 0;
1000    virtual RegLocation GetReturnWideAlt() = 0;
1001    virtual RegLocation LocCReturn() = 0;
1002    virtual RegLocation LocCReturnDouble() = 0;
1003    virtual RegLocation LocCReturnFloat() = 0;
1004    virtual RegLocation LocCReturnWide() = 0;
1005    virtual uint64_t GetRegMaskCommon(RegStorage reg) = 0;
1006    virtual void AdjustSpillMask() = 0;
1007    virtual void ClobberCallerSave() = 0;
1008    virtual void FreeCallTemps() = 0;
1009    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) = 0;
1010    virtual void LockCallTemps() = 0;
1011    virtual void MarkPreservedSingle(int v_reg, RegStorage reg) = 0;
1012    virtual void MarkPreservedDouble(int v_reg, RegStorage reg) = 0;
1013    virtual void CompilerInitializeRegAlloc() = 0;
1014
1015    // Required for target - miscellaneous.
1016    virtual void AssembleLIR() = 0;
1017    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
1018    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
1019    virtual const char* GetTargetInstFmt(int opcode) = 0;
1020    virtual const char* GetTargetInstName(int opcode) = 0;
1021    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1022    virtual uint64_t GetPCUseDefEncoding() = 0;
1023    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1024    virtual int GetInsnSize(LIR* lir) = 0;
1025    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1026
1027    // Required for target - Dalvik-level generators.
1028    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1029                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
1030    virtual void GenMulLong(Instruction::Code,
1031                            RegLocation rl_dest, RegLocation rl_src1,
1032                            RegLocation rl_src2) = 0;
1033    virtual void GenAddLong(Instruction::Code,
1034                            RegLocation rl_dest, RegLocation rl_src1,
1035                            RegLocation rl_src2) = 0;
1036    virtual void GenAndLong(Instruction::Code,
1037                            RegLocation rl_dest, RegLocation rl_src1,
1038                            RegLocation rl_src2) = 0;
1039    virtual void GenArithOpDouble(Instruction::Code opcode,
1040                                  RegLocation rl_dest, RegLocation rl_src1,
1041                                  RegLocation rl_src2) = 0;
1042    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1043                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1044    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1045                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1046    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1047                               RegLocation rl_src) = 0;
1048    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1049
1050    /**
1051     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1052     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1053     * that applies on integers. The generated code will write the smallest or largest value
1054     * directly into the destination register as specified by the invoke information.
1055     * @param info Information about the invoke.
1056     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1057     * @return Returns true if successfully generated
1058     */
1059    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
1060
1061    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1062    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1063    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1064    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1065    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1066                           RegLocation rl_src2) = 0;
1067    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1068                            RegLocation rl_src2) = 0;
1069    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1070                            RegLocation rl_src2) = 0;
1071    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1072                                  bool is_div) = 0;
1073    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1074                                     bool is_div) = 0;
1075    /*
1076     * @brief Generate an integer div or rem operation by a literal.
1077     * @param rl_dest Destination Location.
1078     * @param rl_src1 Numerator Location.
1079     * @param rl_src2 Divisor Location.
1080     * @param is_div 'true' if this is a division, 'false' for a remainder.
1081     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
1082     */
1083    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1084                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
1085    /*
1086     * @brief Generate an integer div or rem operation by a literal.
1087     * @param rl_dest Destination Location.
1088     * @param rl_src Numerator Location.
1089     * @param lit Divisor.
1090     * @param is_div 'true' if this is a division, 'false' for a remainder.
1091     */
1092    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1093                                     bool is_div) = 0;
1094    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1095
1096    /**
1097     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1098     * @details This is used for generating DivideByZero checks when divisor is held in two
1099     *  separate registers.
1100     * @param reg The register holding the pair of 32-bit values.
1101     */
1102    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1103
1104    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1105    virtual void GenExitSequence() = 0;
1106    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
1107    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1108    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1109
1110    /**
1111     * @brief Lowers the kMirOpSelect MIR into LIR.
1112     * @param bb The basic block in which the MIR is from.
1113     * @param mir The MIR whose opcode is kMirOpSelect.
1114     */
1115    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1116
1117    /**
1118     * @brief Used to generate a memory barrier in an architecture specific way.
1119     * @details The last generated LIR will be considered for use as barrier. Namely,
1120     * if the last LIR can be updated in a way where it will serve the semantics of
1121     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1122     * that can keep the semantics.
1123     * @param barrier_kind The kind of memory barrier to generate.
1124     */
1125    virtual void GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1126
1127    virtual void GenMoveException(RegLocation rl_dest) = 0;
1128    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1129                                               int first_bit, int second_bit) = 0;
1130    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1131    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1132    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1133    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1134    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1135                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1136    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1137                             RegLocation rl_index, RegLocation rl_src, int scale,
1138                             bool card_mark) = 0;
1139    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1140                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1141
1142    // Required for target - single operation generators.
1143    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1144    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1145    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1146                                LIR* target) = 0;
1147    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1148    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1149    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1150    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1151    virtual void OpEndIT(LIR* it) = 0;
1152    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1153    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1154    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1155    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1156    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1157    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1158    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1159    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1160
1161    /**
1162     * @brief Used to generate an LIR that does a load from mem to reg.
1163     * @param r_dest The destination physical register.
1164     * @param r_base The base physical register for memory operand.
1165     * @param offset The displacement for memory operand.
1166     * @param move_type Specification on the move desired (size, alignment, register kind).
1167     * @return Returns the generate move LIR.
1168     */
1169    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1170                             MoveType move_type) = 0;
1171
1172    /**
1173     * @brief Used to generate an LIR that does a store from reg to mem.
1174     * @param r_base The base physical register for memory operand.
1175     * @param offset The displacement for memory operand.
1176     * @param r_src The destination physical register.
1177     * @param bytes_to_move The number of bytes to move.
1178     * @param is_aligned Whether the memory location is known to be aligned.
1179     * @return Returns the generate move LIR.
1180     */
1181    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1182                             MoveType move_type) = 0;
1183
1184    /**
1185     * @brief Used for generating a conditional register to register operation.
1186     * @param op The opcode kind.
1187     * @param cc The condition code that when true will perform the opcode.
1188     * @param r_dest The destination physical register.
1189     * @param r_src The source physical register.
1190     * @return Returns the newly created LIR or null in case of creation failure.
1191     */
1192    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1193
1194    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1195    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1196                             RegStorage r_src2) = 0;
1197    virtual LIR* OpTestSuspend(LIR* target) = 0;
1198    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
1199    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1200    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1201    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1202                       int offset) = 0;
1203    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1204    virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
1205    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1206    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1207    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1208    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1209
1210    // May be optimized by targets.
1211    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1212    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1213
1214    // Temp workaround
1215    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1216
1217  protected:
1218    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1219
1220    CompilationUnit* GetCompilationUnit() {
1221      return cu_;
1222    }
1223    /*
1224     * @brief Returns the index of the lowest set bit in 'x'.
1225     * @param x Value to be examined.
1226     * @returns The bit number of the lowest bit set in the value.
1227     */
1228    int32_t LowestSetBit(uint64_t x);
1229    /*
1230     * @brief Is this value a power of two?
1231     * @param x Value to be examined.
1232     * @returns 'true' if only 1 bit is set in the value.
1233     */
1234    bool IsPowerOfTwo(uint64_t x);
1235    /*
1236     * @brief Do these SRs overlap?
1237     * @param rl_op1 One RegLocation
1238     * @param rl_op2 The other RegLocation
1239     * @return 'true' if the VR pairs overlap
1240     *
1241     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1242     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1243     * dex, we'll want to make this case illegal.
1244     */
1245    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1246
1247    /*
1248     * @brief Force a location (in a register) into a temporary register
1249     * @param loc location of result
1250     * @returns update location
1251     */
1252    RegLocation ForceTemp(RegLocation loc);
1253
1254    /*
1255     * @brief Force a wide location (in registers) into temporary registers
1256     * @param loc location of result
1257     * @returns update location
1258     */
1259    RegLocation ForceTempWide(RegLocation loc);
1260
1261    static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) {
1262      return wide ? k64 : ref ? kReference : k32;
1263    }
1264
1265    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1266                                    RegLocation rl_dest, RegLocation rl_src);
1267
1268    void AddSlowPath(LIRSlowPath* slowpath);
1269
1270    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1271                                            bool type_known_abstract, bool use_declaring_class,
1272                                            bool can_assume_type_is_in_dex_cache,
1273                                            uint32_t type_idx, RegLocation rl_dest,
1274                                            RegLocation rl_src);
1275    /*
1276     * @brief Generate the debug_frame FDE information if possible.
1277     * @returns pointer to vector containg CFE information, or NULL.
1278     */
1279    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1280
1281    /**
1282     * @brief Used to insert marker that can be used to associate MIR with LIR.
1283     * @details Only inserts marker if verbosity is enabled.
1284     * @param mir The mir that is currently being generated.
1285     */
1286    void GenPrintLabel(MIR* mir);
1287
1288    /**
1289     * @brief Used to generate return sequence when there is no frame.
1290     * @details Assumes that the return registers have already been populated.
1291     */
1292    virtual void GenSpecialExitSequence() = 0;
1293
1294    /**
1295     * @brief Used to generate code for special methods that are known to be
1296     * small enough to work in frameless mode.
1297     * @param bb The basic block of the first MIR.
1298     * @param mir The first MIR of the special method.
1299     * @param special Information about the special method.
1300     * @return Returns whether or not this was handled successfully. Returns false
1301     * if caller should punt to normal MIR2LIR conversion.
1302     */
1303    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1304
1305  private:
1306    void ClobberBody(RegisterInfo* p);
1307    void SetCurrentDexPc(DexOffset dexpc) {
1308      current_dalvik_offset_ = dexpc;
1309    }
1310
1311    /**
1312     * @brief Used to lock register if argument at in_position was passed that way.
1313     * @details Does nothing if the argument is passed via stack.
1314     * @param in_position The argument number whose register to lock.
1315     * @param wide Whether the argument is wide.
1316     */
1317    void LockArg(int in_position, bool wide = false);
1318
1319    /**
1320     * @brief Used to load VR argument to a physical register.
1321     * @details The load is only done if the argument is not already in physical register.
1322     * LockArg must have been previously called.
1323     * @param in_position The argument number to load.
1324     * @param wide Whether the argument is 64-bit or not.
1325     * @return Returns the register (or register pair) for the loaded argument.
1326     */
1327    RegStorage LoadArg(int in_position, bool wide = false);
1328
1329    /**
1330     * @brief Used to load a VR argument directly to a specified register location.
1331     * @param in_position The argument number to place in register.
1332     * @param rl_dest The register location where to place argument.
1333     */
1334    void LoadArgDirect(int in_position, RegLocation rl_dest);
1335
1336    /**
1337     * @brief Used to generate LIR for special getter method.
1338     * @param mir The mir that represents the iget.
1339     * @param special Information about the special getter method.
1340     * @return Returns whether LIR was successfully generated.
1341     */
1342    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1343
1344    /**
1345     * @brief Used to generate LIR for special setter method.
1346     * @param mir The mir that represents the iput.
1347     * @param special Information about the special setter method.
1348     * @return Returns whether LIR was successfully generated.
1349     */
1350    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1351
1352    /**
1353     * @brief Used to generate LIR for special return-args method.
1354     * @param mir The mir that represents the return of argument.
1355     * @param special Information about the special return-args method.
1356     * @return Returns whether LIR was successfully generated.
1357     */
1358    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1359
1360    void AddDivZeroCheckSlowPath(LIR* branch);
1361
1362    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1363    // kArg2 as temp.
1364    void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1365
1366  public:
1367    // TODO: add accessors for these.
1368    LIR* literal_list_;                        // Constants.
1369    LIR* method_literal_list_;                 // Method literals requiring patching.
1370    LIR* class_literal_list_;                  // Class literals requiring patching.
1371    LIR* code_literal_list_;                   // Code literals requiring patching.
1372    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1373
1374  protected:
1375    CompilationUnit* const cu_;
1376    MIRGraph* const mir_graph_;
1377    GrowableArray<SwitchTable*> switch_tables_;
1378    GrowableArray<FillArrayData*> fill_array_data_;
1379    GrowableArray<RegisterInfo*> tempreg_info_;
1380    GrowableArray<RegisterInfo*> reginfo_map_;
1381    GrowableArray<void*> pointer_storage_;
1382    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1383    CodeOffset data_offset_;            // starting offset of literal pool.
1384    size_t total_size_;                   // header + code size.
1385    LIR* block_label_list_;
1386    PromotionMap* promotion_map_;
1387    /*
1388     * TODO: The code generation utilities don't have a built-in
1389     * mechanism to propagate the original Dalvik opcode address to the
1390     * associated generated instructions.  For the trace compiler, this wasn't
1391     * necessary because the interpreter handled all throws and debugging
1392     * requests.  For now we'll handle this by placing the Dalvik offset
1393     * in the CompilationUnit struct before codegen for each instruction.
1394     * The low-level LIR creation utilites will pull it from here.  Rework this.
1395     */
1396    DexOffset current_dalvik_offset_;
1397    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1398    RegisterPool* reg_pool_;
1399    /*
1400     * Sanity checking for the register temp tracking.  The same ssa
1401     * name should never be associated with one temp register per
1402     * instruction compilation.
1403     */
1404    int live_sreg_;
1405    CodeBuffer code_buffer_;
1406    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1407    std::vector<uint8_t> encoded_mapping_table_;
1408    std::vector<uint32_t> core_vmap_table_;
1409    std::vector<uint32_t> fp_vmap_table_;
1410    std::vector<uint8_t> native_gc_map_;
1411    int num_core_spills_;
1412    int num_fp_spills_;
1413    int frame_size_;
1414    unsigned int core_spill_mask_;
1415    unsigned int fp_spill_mask_;
1416    LIR* first_lir_insn_;
1417    LIR* last_lir_insn_;
1418
1419    GrowableArray<LIRSlowPath*> slow_paths_;
1420};  // Class Mir2Lir
1421
1422}  // namespace art
1423
1424#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1425