mir_to_lir.h revision 6607d97166984ce578817269f9775c15b9044190
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/backend.h"
25#include "dex/growable_array.h"
26#include "dex/arena_allocator.h"
27#include "driver/compiler_driver.h"
28#include "leb128_encoder.h"
29#include "safe_map.h"
30
31namespace art {
32
33/*
34 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
35 * add type safety (see runtime/offsets.h).
36 */
37typedef uint32_t DexOffset;          // Dex offset in code units.
38typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
39typedef uint32_t CodeOffset;         // Native code offset in bytes.
40
41// Set to 1 to measure cost of suspend check.
42#define NO_SUSPEND 0
43
44#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
45#define IS_BRANCH            (1ULL << kIsBranch)
46#define IS_IT                (1ULL << kIsIT)
47#define IS_LOAD              (1ULL << kMemLoad)
48#define IS_QUAD_OP           (1ULL << kIsQuadOp)
49#define IS_QUIN_OP           (1ULL << kIsQuinOp)
50#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
51#define IS_STORE             (1ULL << kMemStore)
52#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
53#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
54#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
55#define NO_OPERAND           (1ULL << kNoOperand)
56#define REG_DEF0             (1ULL << kRegDef0)
57#define REG_DEF1             (1ULL << kRegDef1)
58#define REG_DEFA             (1ULL << kRegDefA)
59#define REG_DEFD             (1ULL << kRegDefD)
60#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
61#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
62#define REG_DEF_LIST0        (1ULL << kRegDefList0)
63#define REG_DEF_LIST1        (1ULL << kRegDefList1)
64#define REG_DEF_LR           (1ULL << kRegDefLR)
65#define REG_DEF_SP           (1ULL << kRegDefSP)
66#define REG_USE0             (1ULL << kRegUse0)
67#define REG_USE1             (1ULL << kRegUse1)
68#define REG_USE2             (1ULL << kRegUse2)
69#define REG_USE3             (1ULL << kRegUse3)
70#define REG_USE4             (1ULL << kRegUse4)
71#define REG_USEA             (1ULL << kRegUseA)
72#define REG_USEC             (1ULL << kRegUseC)
73#define REG_USED             (1ULL << kRegUseD)
74#define REG_USEB             (1ULL << kRegUseB)
75#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
76#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
77#define REG_USE_LIST0        (1ULL << kRegUseList0)
78#define REG_USE_LIST1        (1ULL << kRegUseList1)
79#define REG_USE_LR           (1ULL << kRegUseLR)
80#define REG_USE_PC           (1ULL << kRegUsePC)
81#define REG_USE_SP           (1ULL << kRegUseSP)
82#define SETS_CCODES          (1ULL << kSetsCCodes)
83#define USES_CCODES          (1ULL << kUsesCCodes)
84
85// Common combo register usage patterns.
86#define REG_DEF01            (REG_DEF0 | REG_DEF1)
87#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
88#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
89#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
90#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
91#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
92#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
93#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
94#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
95#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
96#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
97#define REG_USE012           (REG_USE01 | REG_USE2)
98#define REG_USE014           (REG_USE01 | REG_USE4)
99#define REG_USE01            (REG_USE0 | REG_USE1)
100#define REG_USE02            (REG_USE0 | REG_USE2)
101#define REG_USE12            (REG_USE1 | REG_USE2)
102#define REG_USE23            (REG_USE2 | REG_USE3)
103#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
104
105struct BasicBlock;
106struct CallInfo;
107struct CompilationUnit;
108struct InlineMethod;
109struct MIR;
110struct LIR;
111struct RegLocation;
112struct RegisterInfo;
113class DexFileMethodInliner;
114class MIRGraph;
115class Mir2Lir;
116
117typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
118                            const MethodReference& target_method,
119                            uint32_t method_idx, uintptr_t direct_code,
120                            uintptr_t direct_method, InvokeType type);
121
122typedef std::vector<uint8_t> CodeBuffer;
123
124struct UseDefMasks {
125  uint64_t use_mask;        // Resource mask for use.
126  uint64_t def_mask;        // Resource mask for def.
127};
128
129struct AssemblyInfo {
130  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
131  uint8_t bytes[16];         // Encoded instruction bytes.
132};
133
134struct LIR {
135  CodeOffset offset;             // Offset of this instruction.
136  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
137  int16_t opcode;
138  LIR* next;
139  LIR* prev;
140  LIR* target;
141  struct {
142    unsigned int alias_info:17;  // For Dalvik register disambiguation.
143    bool is_nop:1;               // LIR is optimized away.
144    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
145    bool use_def_invalid:1;      // If true, masks should not be used.
146    unsigned int generation:1;   // Used to track visitation state during fixup pass.
147    unsigned int fixup:8;        // Fixup kind.
148  } flags;
149  union {
150    UseDefMasks m;               // Use & Def masks used during optimization.
151    AssemblyInfo a;              // Instruction encoding used during assembly phase.
152  } u;
153  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
154};
155
156// Target-specific initialization.
157Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
158                          ArenaAllocator* const arena);
159Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
160                          ArenaAllocator* const arena);
161Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
162                          ArenaAllocator* const arena);
163
164// Utility macros to traverse the LIR list.
165#define NEXT_LIR(lir) (lir->next)
166#define PREV_LIR(lir) (lir->prev)
167
168// Defines for alias_info (tracks Dalvik register references).
169#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
170#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
171#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
172#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
173
174// Common resource macros.
175#define ENCODE_CCODE            (1ULL << kCCode)
176#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
177
178// Abstract memory locations.
179#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
180#define ENCODE_LITERAL          (1ULL << kLiteral)
181#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
182#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
183
184#define ENCODE_ALL              (~0ULL)
185#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
186                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
187
188// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
189#define STARTING_DOUBLE_SREG 0x10000
190
191// TODO: replace these macros
192#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
193#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
194#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
195#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
196#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
197
198class Mir2Lir : public Backend {
199  public:
200    /*
201     * Auxiliary information describing the location of data embedded in the Dalvik
202     * byte code stream.
203     */
204    struct EmbeddedData {
205      CodeOffset offset;        // Code offset of data block.
206      const uint16_t* table;      // Original dex data.
207      DexOffset vaddr;            // Dalvik offset of parent opcode.
208    };
209
210    struct FillArrayData : EmbeddedData {
211      int32_t size;
212    };
213
214    struct SwitchTable : EmbeddedData {
215      LIR* anchor;                // Reference instruction for relative offsets.
216      LIR** targets;              // Array of case targets.
217    };
218
219    /* Static register use counts */
220    struct RefCounts {
221      int count;
222      int s_reg;
223    };
224
225    /*
226     * Data structure tracking the mapping between a Dalvik register (pair) and a
227     * native register (pair). The idea is to reuse the previously loaded value
228     * if possible, otherwise to keep the value in a native register as long as
229     * possible.
230     */
231    struct RegisterInfo {
232      int reg;                    // Reg number
233      bool in_use;                // Has it been allocated?
234      bool is_temp;               // Can allocate as temp?
235      bool pair;                  // Part of a register pair?
236      int partner;                // If pair, other reg of pair.
237      bool live;                  // Is there an associated SSA name?
238      bool dirty;                 // If live, is it dirty?
239      int s_reg;                  // Name of live value.
240      LIR *def_start;             // Starting inst in last def sequence.
241      LIR *def_end;               // Ending inst in last def sequence.
242    };
243
244    struct RegisterPool {
245       int num_core_regs;
246       RegisterInfo *core_regs;
247       int next_core_reg;
248       int num_fp_regs;
249       RegisterInfo *FPRegs;
250       int next_fp_reg;
251     };
252
253    struct PromotionMap {
254      RegLocationType core_location:3;
255      uint8_t core_reg;
256      RegLocationType fp_location:3;
257      uint8_t FpReg;
258      bool first_in_pair;
259    };
260
261    //
262    // Slow paths.  This object is used generate a sequence of code that is executed in the
263    // slow path.  For example, resolving a string or class is slow as it will only be executed
264    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
265    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
266    // branch over them.
267    //
268    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
269    // the Compile() function that will be called near the end of the code generated by the
270    // method.
271    //
272    // The basic flow for a slow path is:
273    //
274    //     CMP reg, #value
275    //     BEQ fromfast
276    //   cont:
277    //     ...
278    //     fast path code
279    //     ...
280    //     more code
281    //     ...
282    //     RETURN
283    ///
284    //   fromfast:
285    //     ...
286    //     slow path code
287    //     ...
288    //     B cont
289    //
290    // So you see we need two labels and two branches.  The first branch (called fromfast) is
291    // the conditional branch to the slow path code.  The second label (called cont) is used
292    // as an unconditional branch target for getting back to the code after the slow path
293    // has completed.
294    //
295
296    class LIRSlowPath {
297     public:
298      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
299                  LIR* cont = nullptr) :
300        m2l_(m2l), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
301      }
302      virtual ~LIRSlowPath() {}
303      virtual void Compile() = 0;
304
305      static void* operator new(size_t size, ArenaAllocator* arena) {
306        return arena->Alloc(size, ArenaAllocator::kAllocData);
307      }
308
309     protected:
310      LIR* GenerateTargetLabel();
311
312      Mir2Lir* const m2l_;
313      const DexOffset current_dex_pc_;
314      LIR* const fromfast_;
315      LIR* const cont_;
316    };
317
318    virtual ~Mir2Lir() {}
319
320    int32_t s4FromSwitchData(const void* switch_data) {
321      return *reinterpret_cast<const int32_t*>(switch_data);
322    }
323
324    RegisterClass oat_reg_class_by_size(OpSize size) {
325      return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
326              size == kSignedByte) ? kCoreReg : kAnyReg;
327    }
328
329    size_t CodeBufferSizeInBytes() {
330      return code_buffer_.size() / sizeof(code_buffer_[0]);
331    }
332
333    bool IsPseudoLirOp(int opcode) {
334      return (opcode < 0);
335    }
336
337    /*
338     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
339     * instructions which require PC-relative fixups), we need the operands to carry
340     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
341     * hold that index in the operand array.
342     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
343     * may be worth conditionally-compiling a set of identity functions here.
344     */
345    uint32_t WrapPointer(void* pointer) {
346      uint32_t res = pointer_storage_.Size();
347      pointer_storage_.Insert(pointer);
348      return res;
349    }
350
351    void* UnwrapPointer(size_t index) {
352      return pointer_storage_.Get(index);
353    }
354
355    // strdup(), but allocates from the arena.
356    char* ArenaStrdup(const char* str) {
357      size_t len = strlen(str) + 1;
358      char* res = reinterpret_cast<char*>(arena_->Alloc(len, ArenaAllocator::kAllocMisc));
359      if (res != NULL) {
360        strncpy(res, str, len);
361      }
362      return res;
363    }
364
365    // Shared by all targets - implemented in codegen_util.cc
366    void AppendLIR(LIR* lir);
367    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
368    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
369
370    /**
371     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
372     * to place in a frame.
373     * @return Returns the maximum number of compiler temporaries.
374     */
375    size_t GetMaxPossibleCompilerTemps() const;
376
377    /**
378     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
379     * @return Returns the size in bytes for space needed for compiler temporary spill region.
380     */
381    size_t GetNumBytesForCompilerTempSpillRegion();
382
383    DexOffset GetCurrentDexPc() const {
384      return current_dalvik_offset_;
385    }
386
387    int ComputeFrameSize();
388    virtual void Materialize();
389    virtual CompiledMethod* GetCompiledMethod();
390    void MarkSafepointPC(LIR* inst);
391    bool FastInstance(uint32_t field_idx, bool is_put, int* field_offset, bool* is_volatile);
392    void SetupResourceMasks(LIR* lir);
393    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
394    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
395    void SetupRegMask(uint64_t* mask, int reg);
396    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
397    void DumpPromotionMap();
398    void CodegenDump();
399    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
400                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
401    LIR* NewLIR0(int opcode);
402    LIR* NewLIR1(int opcode, int dest);
403    LIR* NewLIR2(int opcode, int dest, int src1);
404    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
405    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
406    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
407    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
408    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
409    LIR* AddWordData(LIR* *constant_list_p, int value);
410    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
411    void ProcessSwitchTables();
412    void DumpSparseSwitchTable(const uint16_t* table);
413    void DumpPackedSwitchTable(const uint16_t* table);
414    void MarkBoundary(DexOffset offset, const char* inst_str);
415    void NopLIR(LIR* lir);
416    void UnlinkLIR(LIR* lir);
417    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
418    bool IsInexpensiveConstant(RegLocation rl_src);
419    ConditionCode FlipComparisonOrder(ConditionCode before);
420    void InstallLiteralPools();
421    void InstallSwitchTables();
422    void InstallFillArrayData();
423    bool VerifyCatchEntries();
424    void CreateMappingTables();
425    void CreateNativeGcMap();
426    int AssignLiteralOffset(CodeOffset offset);
427    int AssignSwitchTablesOffset(CodeOffset offset);
428    int AssignFillArrayDataOffset(CodeOffset offset);
429    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
430    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
431    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
432
433    // Shared by all targets - implemented in local_optimizations.cc
434    void ConvertMemOpIntoMove(LIR* orig_lir, int dest, int src);
435    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
436    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
437    void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
438
439    // Shared by all targets - implemented in ralloc_util.cc
440    int GetSRegHi(int lowSreg);
441    bool oat_live_out(int s_reg);
442    int oatSSASrc(MIR* mir, int num);
443    void SimpleRegAlloc();
444    void ResetRegPool();
445    void CompilerInitPool(RegisterInfo* regs, int* reg_nums, int num);
446    void DumpRegPool(RegisterInfo* p, int num_regs);
447    void DumpCoreRegPool();
448    void DumpFpRegPool();
449    /* Mark a temp register as dead.  Does not affect allocation state. */
450    void Clobber(int reg) {
451      ClobberBody(GetRegInfo(reg));
452    }
453    void ClobberSRegBody(RegisterInfo* p, int num_regs, int s_reg);
454    void ClobberSReg(int s_reg);
455    int SRegToPMap(int s_reg);
456    void RecordCorePromotion(int reg, int s_reg);
457    int AllocPreservedCoreReg(int s_reg);
458    void RecordFpPromotion(int reg, int s_reg);
459    int AllocPreservedSingle(int s_reg);
460    int AllocPreservedDouble(int s_reg);
461    int AllocTempBody(RegisterInfo* p, int num_regs, int* next_temp, bool required);
462    virtual int AllocTempDouble();
463    int AllocFreeTemp();
464    int AllocTemp();
465    int AllocTempFloat();
466    RegisterInfo* AllocLiveBody(RegisterInfo* p, int num_regs, int s_reg);
467    RegisterInfo* AllocLive(int s_reg, int reg_class);
468    void FreeTemp(int reg);
469    RegisterInfo* IsLive(int reg);
470    RegisterInfo* IsTemp(int reg);
471    RegisterInfo* IsPromoted(int reg);
472    bool IsDirty(int reg);
473    void LockTemp(int reg);
474    void ResetDef(int reg);
475    void NullifyRange(LIR *start, LIR *finish, int s_reg1, int s_reg2);
476    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
477    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
478    RegLocation WideToNarrow(RegLocation rl);
479    void ResetDefLoc(RegLocation rl);
480    virtual void ResetDefLocWide(RegLocation rl);
481    void ResetDefTracking();
482    void ClobberAllRegs();
483    void FlushAllRegsBody(RegisterInfo* info, int num_regs);
484    void FlushAllRegs();
485    bool RegClassMatches(int reg_class, int reg);
486    void MarkLive(int reg, int s_reg);
487    void MarkTemp(int reg);
488    void UnmarkTemp(int reg);
489    void MarkPair(int low_reg, int high_reg);
490    void MarkClean(RegLocation loc);
491    void MarkDirty(RegLocation loc);
492    void MarkInUse(int reg);
493    void CopyRegInfo(int new_reg, int old_reg);
494    bool CheckCorePoolSanity();
495    RegLocation UpdateLoc(RegLocation loc);
496    virtual RegLocation UpdateLocWide(RegLocation loc);
497    RegLocation UpdateRawLoc(RegLocation loc);
498
499    /**
500     * @brief Used to load register location into a typed temporary or pair of temporaries.
501     * @see EvalLoc
502     * @param loc The register location to load from.
503     * @param reg_class Type of register needed.
504     * @param update Whether the liveness information should be updated.
505     * @return Returns the properly typed temporary in physical register pairs.
506     */
507    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
508
509    /**
510     * @brief Used to load register location into a typed temporary.
511     * @param loc The register location to load from.
512     * @param reg_class Type of register needed.
513     * @param update Whether the liveness information should be updated.
514     * @return Returns the properly typed temporary in physical register.
515     */
516    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
517
518    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
519    void DumpCounts(const RefCounts* arr, int size, const char* msg);
520    void DoPromotion();
521    int VRegOffset(int v_reg);
522    int SRegOffset(int s_reg);
523    RegLocation GetReturnWide(bool is_double);
524    RegLocation GetReturn(bool is_float);
525    RegisterInfo* GetRegInfo(int reg);
526
527    // Shared by all targets - implemented in gen_common.cc.
528    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
529                          RegLocation rl_src, RegLocation rl_dest, int lit);
530    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
531    void HandleSuspendLaunchPads();
532    void HandleIntrinsicLaunchPads();
533    void HandleThrowLaunchPads();
534    void HandleSlowPaths();
535    void GenBarrier();
536    LIR* GenCheck(ConditionCode c_code, ThrowKind kind);
537    LIR* GenImmedCheck(ConditionCode c_code, int reg, int imm_val,
538                       ThrowKind kind);
539    LIR* GenNullCheck(int s_reg, int m_reg, int opt_flags);
540    LIR* GenRegRegCheck(ConditionCode c_code, int reg1, int reg2,
541                        ThrowKind kind);
542    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
543                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
544    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
545                                 LIR* taken, LIR* fall_through);
546    void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
547    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
548                         RegLocation rl_src);
549    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
550                     RegLocation rl_src);
551    void GenFilledNewArray(CallInfo* info);
552    void GenSput(uint32_t field_idx, RegLocation rl_src,
553                 bool is_long_or_double, bool is_object);
554    void GenSget(uint32_t field_idx, RegLocation rl_dest,
555                 bool is_long_or_double, bool is_object);
556    void GenIGet(uint32_t field_idx, int opt_flags, OpSize size,
557                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
558    void GenIPut(uint32_t field_idx, int opt_flags, OpSize size,
559                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
560    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
561                        RegLocation rl_src);
562
563    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
564    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
565    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
566    void GenThrow(RegLocation rl_src);
567    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest,
568                       RegLocation rl_src);
569    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx,
570                      RegLocation rl_src);
571    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
572                      RegLocation rl_src1, RegLocation rl_src2);
573    void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
574                        RegLocation rl_src1, RegLocation rl_shift);
575    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
576                          RegLocation rl_src, int lit);
577    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
578                        RegLocation rl_src1, RegLocation rl_src2);
579    void GenConversionCall(ThreadOffset func_offset, RegLocation rl_dest,
580                           RegLocation rl_src);
581    void GenSuspendTest(int opt_flags);
582    void GenSuspendTestAndBranch(int opt_flags, LIR* target);
583
584    // This will be overridden by x86 implementation.
585    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
586    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
587                       RegLocation rl_src1, RegLocation rl_src2);
588
589    // Shared by all targets - implemented in gen_invoke.cc.
590    int CallHelperSetup(ThreadOffset helper_offset);
591    LIR* CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc);
592    void CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
593    void CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
594    void CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0,
595                                      bool safepoint_pc);
596    void CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1,
597                                 bool safepoint_pc);
598    void CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0,
599                                         RegLocation arg1, bool safepoint_pc);
600    void CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0,
601                                         int arg1, bool safepoint_pc);
602    void CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1,
603                                 bool safepoint_pc);
604    void CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1,
605                                 bool safepoint_pc);
606    void CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0,
607                                    bool safepoint_pc);
608    void CallRuntimeHelperRegMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
609    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset helper_offset, int arg0,
610                                               RegLocation arg2, bool safepoint_pc);
611    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset,
612                                                 RegLocation arg0, RegLocation arg1,
613                                                 bool safepoint_pc);
614    void CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1,
615                                 bool safepoint_pc);
616    void CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1,
617                                    int arg2, bool safepoint_pc);
618    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset, int arg0,
619                                               RegLocation arg2, bool safepoint_pc);
620    void CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0, int arg2,
621                                       bool safepoint_pc);
622    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset,
623                                                    int arg0, RegLocation arg1, RegLocation arg2,
624                                                    bool safepoint_pc);
625    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset helper_offset,
626                                                            RegLocation arg0, RegLocation arg1,
627                                                            RegLocation arg2,
628                                                            bool safepoint_pc);
629    void GenInvoke(CallInfo* info);
630    void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
631    int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
632                             NextCallInsn next_call_insn,
633                             const MethodReference& target_method,
634                             uint32_t vtable_idx,
635                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
636                             bool skip_this);
637    int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
638                           NextCallInsn next_call_insn,
639                           const MethodReference& target_method,
640                           uint32_t vtable_idx,
641                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
642                           bool skip_this);
643
644    /**
645     * @brief Used to determine the register location of destination.
646     * @details This is needed during generation of inline intrinsics because it finds destination of return,
647     * either the physical register or the target of move-result.
648     * @param info Information about the invoke.
649     * @return Returns the destination location.
650     */
651    RegLocation InlineTarget(CallInfo* info);
652
653    /**
654     * @brief Used to determine the wide register location of destination.
655     * @see InlineTarget
656     * @param info Information about the invoke.
657     * @return Returns the destination location.
658     */
659    RegLocation InlineTargetWide(CallInfo* info);
660
661    bool GenInlinedCharAt(CallInfo* info);
662    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
663    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
664    bool GenInlinedAbsInt(CallInfo* info);
665    bool GenInlinedAbsLong(CallInfo* info);
666    bool GenInlinedFloatCvt(CallInfo* info);
667    bool GenInlinedDoubleCvt(CallInfo* info);
668    bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
669    bool GenInlinedStringCompareTo(CallInfo* info);
670    bool GenInlinedCurrentThread(CallInfo* info);
671    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
672    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
673                             bool is_volatile, bool is_ordered);
674    int LoadArgRegs(CallInfo* info, int call_state,
675                    NextCallInsn next_call_insn,
676                    const MethodReference& target_method,
677                    uint32_t vtable_idx,
678                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
679                    bool skip_this);
680
681    // Shared by all targets - implemented in gen_loadstore.cc.
682    RegLocation LoadCurrMethod();
683    void LoadCurrMethodDirect(int r_tgt);
684    LIR* LoadConstant(int r_dest, int value);
685    LIR* LoadWordDisp(int rBase, int displacement, int r_dest);
686    RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
687    RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
688    void LoadValueDirect(RegLocation rl_src, int r_dest);
689    void LoadValueDirectFixed(RegLocation rl_src, int r_dest);
690    void LoadValueDirectWide(RegLocation rl_src, int reg_lo, int reg_hi);
691    void LoadValueDirectWideFixed(RegLocation rl_src, int reg_lo, int reg_hi);
692    LIR* StoreWordDisp(int rBase, int displacement, int r_src);
693
694    /**
695     * @brief Used to do the final store in the destination as per bytecode semantics.
696     * @param rl_dest The destination dalvik register location.
697     * @param rl_src The source register location. Can be either physical register or dalvik register.
698     */
699    void StoreValue(RegLocation rl_dest, RegLocation rl_src);
700
701    /**
702     * @brief Used to do the final store in a wide destination as per bytecode semantics.
703     * @see StoreValue
704     * @param rl_dest The destination dalvik register location.
705     * @param rl_src The source register location. Can be either physical register or dalvik register.
706     */
707    void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
708
709    /**
710     * @brief Used to do the final store to a destination as per bytecode semantics.
711     * @see StoreValue
712     * @param rl_dest The destination dalvik register location.
713     * @param rl_src The source register location. It must be kLocPhysReg
714     *
715     * This is used for x86 two operand computations, where we have computed the correct
716     * register value that now needs to be properly registered.  This is used to avoid an
717     * extra register copy that would result if StoreValue was called.
718     */
719    void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
720
721    /**
722     * @brief Used to do the final store in a wide destination as per bytecode semantics.
723     * @see StoreValueWide
724     * @param rl_dest The destination dalvik register location.
725     * @param rl_src The source register location. It must be kLocPhysReg
726     *
727     * This is used for x86 two operand computations, where we have computed the correct
728     * register values that now need to be properly registered.  This is used to avoid an
729     * extra pair of register copies that would result if StoreValueWide was called.
730     */
731    void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
732
733    // Shared by all targets - implemented in mir_to_lir.cc.
734    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
735    void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
736    bool MethodBlockCodeGen(BasicBlock* bb);
737    void SpecialMIR2LIR(const InlineMethod& special);
738    void MethodMIR2LIR();
739
740    // Routines that work for the generic case, but may be overriden by target.
741    /*
742     * @brief Compare memory to immediate, and branch if condition true.
743     * @param cond The condition code that when true will branch to the target.
744     * @param temp_reg A temporary register that can be used if compare to memory is not
745     * supported by the architecture.
746     * @param base_reg The register holding the base address.
747     * @param offset The offset from the base.
748     * @param check_value The immediate to compare to.
749     * @returns The branch instruction that was generated.
750     */
751    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, int temp_reg, int base_reg,
752                                   int offset, int check_value, LIR* target);
753
754    // Required for target - codegen helpers.
755    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
756                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
757    virtual int LoadHelper(ThreadOffset offset) = 0;
758    virtual LIR* LoadBaseDisp(int rBase, int displacement, int r_dest, OpSize size, int s_reg) = 0;
759    virtual LIR* LoadBaseDispWide(int rBase, int displacement, int r_dest_lo, int r_dest_hi,
760                                  int s_reg) = 0;
761    virtual LIR* LoadBaseIndexed(int rBase, int r_index, int r_dest, int scale, OpSize size) = 0;
762    virtual LIR* LoadBaseIndexedDisp(int rBase, int r_index, int scale, int displacement,
763                                     int r_dest, int r_dest_hi, OpSize size, int s_reg) = 0;
764    virtual LIR* LoadConstantNoClobber(int r_dest, int value) = 0;
765    virtual LIR* LoadConstantWide(int r_dest_lo, int r_dest_hi, int64_t value) = 0;
766    virtual LIR* StoreBaseDisp(int rBase, int displacement, int r_src, OpSize size) = 0;
767    virtual LIR* StoreBaseDispWide(int rBase, int displacement, int r_src_lo, int r_src_hi) = 0;
768    virtual LIR* StoreBaseIndexed(int rBase, int r_index, int r_src, int scale, OpSize size) = 0;
769    virtual LIR* StoreBaseIndexedDisp(int rBase, int r_index, int scale, int displacement,
770                                      int r_src, int r_src_hi, OpSize size, int s_reg) = 0;
771    virtual void MarkGCCard(int val_reg, int tgt_addr_reg) = 0;
772
773    // Required for target - register utilities.
774    virtual bool IsFpReg(int reg) = 0;
775    virtual bool SameRegType(int reg1, int reg2) = 0;
776    virtual int AllocTypedTemp(bool fp_hint, int reg_class) = 0;
777    virtual int AllocTypedTempPair(bool fp_hint, int reg_class) = 0;
778    virtual int S2d(int low_reg, int high_reg) = 0;
779    virtual int TargetReg(SpecialTargetRegister reg) = 0;
780    virtual RegLocation GetReturnAlt() = 0;
781    virtual RegLocation GetReturnWideAlt() = 0;
782    virtual RegLocation LocCReturn() = 0;
783    virtual RegLocation LocCReturnDouble() = 0;
784    virtual RegLocation LocCReturnFloat() = 0;
785    virtual RegLocation LocCReturnWide() = 0;
786    virtual uint32_t FpRegMask() = 0;
787    virtual uint64_t GetRegMaskCommon(int reg) = 0;
788    virtual void AdjustSpillMask() = 0;
789    virtual void ClobberCallerSave() = 0;
790    virtual void FlushReg(int reg) = 0;
791    virtual void FlushRegWide(int reg1, int reg2) = 0;
792    virtual void FreeCallTemps() = 0;
793    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) = 0;
794    virtual void LockCallTemps() = 0;
795    virtual void MarkPreservedSingle(int v_reg, int reg) = 0;
796    virtual void CompilerInitializeRegAlloc() = 0;
797
798    // Required for target - miscellaneous.
799    virtual void AssembleLIR() = 0;
800    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
801    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
802    virtual const char* GetTargetInstFmt(int opcode) = 0;
803    virtual const char* GetTargetInstName(int opcode) = 0;
804    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
805    virtual uint64_t GetPCUseDefEncoding() = 0;
806    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
807    virtual int GetInsnSize(LIR* lir) = 0;
808    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
809
810    // Required for target - Dalvik-level generators.
811    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
812                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
813    virtual void GenMulLong(Instruction::Code,
814                            RegLocation rl_dest, RegLocation rl_src1,
815                            RegLocation rl_src2) = 0;
816    virtual void GenAddLong(Instruction::Code,
817                            RegLocation rl_dest, RegLocation rl_src1,
818                            RegLocation rl_src2) = 0;
819    virtual void GenAndLong(Instruction::Code,
820                            RegLocation rl_dest, RegLocation rl_src1,
821                            RegLocation rl_src2) = 0;
822    virtual void GenArithOpDouble(Instruction::Code opcode,
823                                  RegLocation rl_dest, RegLocation rl_src1,
824                                  RegLocation rl_src2) = 0;
825    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
826                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
827    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
828                          RegLocation rl_src1, RegLocation rl_src2) = 0;
829    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
830                               RegLocation rl_src) = 0;
831    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
832
833    /**
834     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
835     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
836     * that applies on integers. The generated code will write the smallest or largest value
837     * directly into the destination register as specified by the invoke information.
838     * @param info Information about the invoke.
839     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
840     * @return Returns true if successfully generated
841     */
842    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
843
844    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
845    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
846    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
847    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
848    virtual void GenOrLong(Instruction::Code,
849                           RegLocation rl_dest, RegLocation rl_src1,
850                           RegLocation rl_src2) = 0;
851    virtual void GenSubLong(Instruction::Code,
852                            RegLocation rl_dest, RegLocation rl_src1,
853                            RegLocation rl_src2) = 0;
854    virtual void GenXorLong(Instruction::Code,
855                            RegLocation rl_dest, RegLocation rl_src1,
856                            RegLocation rl_src2) = 0;
857    virtual LIR* GenRegMemCheck(ConditionCode c_code, int reg1, int base,
858                                int offset, ThrowKind kind) = 0;
859    virtual RegLocation GenDivRem(RegLocation rl_dest, int reg_lo, int reg_hi,
860                                  bool is_div) = 0;
861    virtual RegLocation GenDivRemLit(RegLocation rl_dest, int reg_lo, int lit,
862                                     bool is_div) = 0;
863    /*
864     * @brief Generate an integer div or rem operation by a literal.
865     * @param rl_dest Destination Location.
866     * @param rl_src1 Numerator Location.
867     * @param rl_src2 Divisor Location.
868     * @param is_div 'true' if this is a division, 'false' for a remainder.
869     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
870     */
871    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
872                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
873    /*
874     * @brief Generate an integer div or rem operation by a literal.
875     * @param rl_dest Destination Location.
876     * @param rl_src Numerator Location.
877     * @param lit Divisor.
878     * @param is_div 'true' if this is a division, 'false' for a remainder.
879     */
880    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1,
881                                     int lit, bool is_div) = 0;
882    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
883                            RegLocation rl_src2) = 0;
884
885    /**
886     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
887     * @details This is used for generating DivideByZero checks when divisor is held in two separate registers.
888     * @param reg_lo The register holding the lower 32-bits.
889     * @param reg_hi The register holding the upper 32-bits.
890     */
891    virtual void GenDivZeroCheck(int reg_lo, int reg_hi) = 0;
892
893    virtual void GenEntrySequence(RegLocation* ArgLocs,
894                                  RegLocation rl_method) = 0;
895    virtual void GenExitSequence() = 0;
896    virtual void GenFillArrayData(DexOffset table_offset,
897                                  RegLocation rl_src) = 0;
898    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias,
899                                     bool is_double) = 0;
900    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
901
902    /**
903     * @brief Lowers the kMirOpSelect MIR into LIR.
904     * @param bb The basic block in which the MIR is from.
905     * @param mir The MIR whose opcode is kMirOpSelect.
906     */
907    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
908
909    virtual void GenMemBarrier(MemBarrierKind barrier_kind) = 0;
910    virtual void GenMoveException(RegLocation rl_dest) = 0;
911    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
912                                               RegLocation rl_result, int lit, int first_bit,
913                                               int second_bit) = 0;
914    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
915    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
916    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset,
917                                 RegLocation rl_src) = 0;
918    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset,
919                                 RegLocation rl_src) = 0;
920    virtual void GenSpecialCase(BasicBlock* bb, MIR* mir,
921                                const InlineMethod& special) = 0;
922    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
923                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
924    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
925                             RegLocation rl_index, RegLocation rl_src, int scale,
926                             bool card_mark) = 0;
927    virtual void GenShiftImmOpLong(Instruction::Code opcode,
928                                   RegLocation rl_dest, RegLocation rl_src1,
929                                   RegLocation rl_shift) = 0;
930
931    // Required for target - single operation generators.
932    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
933    virtual LIR* OpCmpBranch(ConditionCode cond, int src1, int src2, LIR* target) = 0;
934    virtual LIR* OpCmpImmBranch(ConditionCode cond, int reg, int check_value, LIR* target) = 0;
935    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
936    virtual LIR* OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) = 0;
937    virtual LIR* OpFpRegCopy(int r_dest, int r_src) = 0;
938    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
939    virtual LIR* OpMem(OpKind op, int rBase, int disp) = 0;
940    virtual LIR* OpPcRelLoad(int reg, LIR* target) = 0;
941    virtual LIR* OpReg(OpKind op, int r_dest_src) = 0;
942    virtual LIR* OpRegCopy(int r_dest, int r_src) = 0;
943    virtual LIR* OpRegCopyNoInsert(int r_dest, int r_src) = 0;
944    virtual LIR* OpRegImm(OpKind op, int r_dest_src1, int value) = 0;
945    virtual LIR* OpRegMem(OpKind op, int r_dest, int rBase, int offset) = 0;
946    virtual LIR* OpRegReg(OpKind op, int r_dest_src1, int r_src2) = 0;
947
948    /**
949     * @brief Used to generate an LIR that does a load from mem to reg.
950     * @param r_dest The destination physical register.
951     * @param r_base The base physical register for memory operand.
952     * @param offset The displacement for memory operand.
953     * @param move_type Specification on the move desired (size, alignment, register kind).
954     * @return Returns the generate move LIR.
955     */
956    virtual LIR* OpMovRegMem(int r_dest, int r_base, int offset, MoveType move_type) = 0;
957
958    /**
959     * @brief Used to generate an LIR that does a store from reg to mem.
960     * @param r_base The base physical register for memory operand.
961     * @param offset The displacement for memory operand.
962     * @param r_src The destination physical register.
963     * @param bytes_to_move The number of bytes to move.
964     * @param is_aligned Whether the memory location is known to be aligned.
965     * @return Returns the generate move LIR.
966     */
967    virtual LIR* OpMovMemReg(int r_base, int offset, int r_src, MoveType move_type) = 0;
968
969    /**
970     * @brief Used for generating a conditional register to register operation.
971     * @param op The opcode kind.
972     * @param cc The condition code that when true will perform the opcode.
973     * @param r_dest The destination physical register.
974     * @param r_src The source physical register.
975     * @return Returns the newly created LIR or null in case of creation failure.
976     */
977    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, int r_dest, int r_src) = 0;
978
979    virtual LIR* OpRegRegImm(OpKind op, int r_dest, int r_src1, int value) = 0;
980    virtual LIR* OpRegRegReg(OpKind op, int r_dest, int r_src1, int r_src2) = 0;
981    virtual LIR* OpTestSuspend(LIR* target) = 0;
982    virtual LIR* OpThreadMem(OpKind op, ThreadOffset thread_offset) = 0;
983    virtual LIR* OpVldm(int rBase, int count) = 0;
984    virtual LIR* OpVstm(int rBase, int count) = 0;
985    virtual void OpLea(int rBase, int reg1, int reg2, int scale, int offset) = 0;
986    virtual void OpRegCopyWide(int dest_lo, int dest_hi, int src_lo, int src_hi) = 0;
987    virtual void OpTlsCmp(ThreadOffset offset, int val) = 0;
988    virtual bool InexpensiveConstantInt(int32_t value) = 0;
989    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
990    virtual bool InexpensiveConstantLong(int64_t value) = 0;
991    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
992
993    // May be optimized by targets.
994    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
995    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
996
997    // Temp workaround
998    void Workaround7250540(RegLocation rl_dest, int value);
999
1000  protected:
1001    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1002
1003    CompilationUnit* GetCompilationUnit() {
1004      return cu_;
1005    }
1006    /*
1007     * @brief Returns the index of the lowest set bit in 'x'.
1008     * @param x Value to be examined.
1009     * @returns The bit number of the lowest bit set in the value.
1010     */
1011    int32_t LowestSetBit(uint64_t x);
1012    /*
1013     * @brief Is this value a power of two?
1014     * @param x Value to be examined.
1015     * @returns 'true' if only 1 bit is set in the value.
1016     */
1017    bool IsPowerOfTwo(uint64_t x);
1018    /*
1019     * @brief Do these SRs overlap?
1020     * @param rl_op1 One RegLocation
1021     * @param rl_op2 The other RegLocation
1022     * @return 'true' if the VR pairs overlap
1023     *
1024     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1025     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1026     * dex, we'll want to make this case illegal.
1027     */
1028    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1029
1030    /*
1031     * @brief Force a location (in a register) into a temporary register
1032     * @param loc location of result
1033     * @returns update location
1034     */
1035    RegLocation ForceTemp(RegLocation loc);
1036
1037    /*
1038     * @brief Force a wide location (in registers) into temporary registers
1039     * @param loc location of result
1040     * @returns update location
1041     */
1042    RegLocation ForceTempWide(RegLocation loc);
1043
1044    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1045                                    RegLocation rl_dest, RegLocation rl_src);
1046
1047    void AddSlowPath(LIRSlowPath* slowpath);
1048
1049    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1050                                            bool type_known_abstract, bool use_declaring_class,
1051                                            bool can_assume_type_is_in_dex_cache,
1052                                            uint32_t type_idx, RegLocation rl_dest,
1053                                            RegLocation rl_src);
1054
1055  private:
1056    void ClobberBody(RegisterInfo* p);
1057    void ResetDefBody(RegisterInfo* p) {
1058      p->def_start = NULL;
1059      p->def_end = NULL;
1060    }
1061
1062    void SetCurrentDexPc(DexOffset dexpc) {
1063      current_dalvik_offset_ = dexpc;
1064    }
1065
1066
1067  public:
1068    // TODO: add accessors for these.
1069    LIR* literal_list_;                        // Constants.
1070    LIR* method_literal_list_;                 // Method literals requiring patching.
1071    LIR* class_literal_list_;                  // Class literals requiring patching.
1072    LIR* code_literal_list_;                   // Code literals requiring patching.
1073    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1074
1075  protected:
1076    CompilationUnit* const cu_;
1077    MIRGraph* const mir_graph_;
1078    GrowableArray<SwitchTable*> switch_tables_;
1079    GrowableArray<FillArrayData*> fill_array_data_;
1080    GrowableArray<LIR*> throw_launchpads_;
1081    GrowableArray<LIR*> suspend_launchpads_;
1082    GrowableArray<LIR*> intrinsic_launchpads_;
1083    GrowableArray<RegisterInfo*> tempreg_info_;
1084    GrowableArray<RegisterInfo*> reginfo_map_;
1085    GrowableArray<void*> pointer_storage_;
1086    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1087    CodeOffset data_offset_;            // starting offset of literal pool.
1088    size_t total_size_;                   // header + code size.
1089    LIR* block_label_list_;
1090    PromotionMap* promotion_map_;
1091    /*
1092     * TODO: The code generation utilities don't have a built-in
1093     * mechanism to propagate the original Dalvik opcode address to the
1094     * associated generated instructions.  For the trace compiler, this wasn't
1095     * necessary because the interpreter handled all throws and debugging
1096     * requests.  For now we'll handle this by placing the Dalvik offset
1097     * in the CompilationUnit struct before codegen for each instruction.
1098     * The low-level LIR creation utilites will pull it from here.  Rework this.
1099     */
1100    DexOffset current_dalvik_offset_;
1101    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1102    RegisterPool* reg_pool_;
1103    /*
1104     * Sanity checking for the register temp tracking.  The same ssa
1105     * name should never be associated with one temp register per
1106     * instruction compilation.
1107     */
1108    int live_sreg_;
1109    CodeBuffer code_buffer_;
1110    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1111    std::vector<uint8_t> encoded_mapping_table_;
1112    std::vector<uint32_t> core_vmap_table_;
1113    std::vector<uint32_t> fp_vmap_table_;
1114    std::vector<uint8_t> native_gc_map_;
1115    int num_core_spills_;
1116    int num_fp_spills_;
1117    int frame_size_;
1118    unsigned int core_spill_mask_;
1119    unsigned int fp_spill_mask_;
1120    LIR* first_lir_insn_;
1121    LIR* last_lir_insn_;
1122
1123    GrowableArray<LIRSlowPath*> slow_paths_;
1124};  // Class Mir2Lir
1125
1126}  // namespace art
1127
1128#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1129