mir_to_lir.h revision 69dfe51b684dd9d510dbcb63295fe180f998efde
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_location.h"
25#include "dex/reg_storage.h"
26#include "dex/backend.h"
27#include "dex/quick/resource_mask.h"
28#include "driver/compiler_driver.h"
29#include "instruction_set.h"
30#include "leb128.h"
31#include "safe_map.h"
32#include "utils/array_ref.h"
33#include "utils/arena_allocator.h"
34#include "utils/growable_array.h"
35
36namespace art {
37
38/*
39 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
40 * add type safety (see runtime/offsets.h).
41 */
42typedef uint32_t DexOffset;          // Dex offset in code units.
43typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
44typedef uint32_t CodeOffset;         // Native code offset in bytes.
45
46// Set to 1 to measure cost of suspend check.
47#define NO_SUSPEND 0
48
49#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
50#define IS_BRANCH            (1ULL << kIsBranch)
51#define IS_IT                (1ULL << kIsIT)
52#define IS_LOAD              (1ULL << kMemLoad)
53#define IS_QUAD_OP           (1ULL << kIsQuadOp)
54#define IS_QUIN_OP           (1ULL << kIsQuinOp)
55#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
56#define IS_STORE             (1ULL << kMemStore)
57#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
58#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
59#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
60#define NO_OPERAND           (1ULL << kNoOperand)
61#define REG_DEF0             (1ULL << kRegDef0)
62#define REG_DEF1             (1ULL << kRegDef1)
63#define REG_DEF2             (1ULL << kRegDef2)
64#define REG_DEFA             (1ULL << kRegDefA)
65#define REG_DEFD             (1ULL << kRegDefD)
66#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
67#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
68#define REG_DEF_LIST0        (1ULL << kRegDefList0)
69#define REG_DEF_LIST1        (1ULL << kRegDefList1)
70#define REG_DEF_LR           (1ULL << kRegDefLR)
71#define REG_DEF_SP           (1ULL << kRegDefSP)
72#define REG_USE0             (1ULL << kRegUse0)
73#define REG_USE1             (1ULL << kRegUse1)
74#define REG_USE2             (1ULL << kRegUse2)
75#define REG_USE3             (1ULL << kRegUse3)
76#define REG_USE4             (1ULL << kRegUse4)
77#define REG_USEA             (1ULL << kRegUseA)
78#define REG_USEC             (1ULL << kRegUseC)
79#define REG_USED             (1ULL << kRegUseD)
80#define REG_USEB             (1ULL << kRegUseB)
81#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
82#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
83#define REG_USE_LIST0        (1ULL << kRegUseList0)
84#define REG_USE_LIST1        (1ULL << kRegUseList1)
85#define REG_USE_LR           (1ULL << kRegUseLR)
86#define REG_USE_PC           (1ULL << kRegUsePC)
87#define REG_USE_SP           (1ULL << kRegUseSP)
88#define SETS_CCODES          (1ULL << kSetsCCodes)
89#define USES_CCODES          (1ULL << kUsesCCodes)
90#define USE_FP_STACK         (1ULL << kUseFpStack)
91#define REG_USE_LO           (1ULL << kUseLo)
92#define REG_USE_HI           (1ULL << kUseHi)
93#define REG_DEF_LO           (1ULL << kDefLo)
94#define REG_DEF_HI           (1ULL << kDefHi)
95
96// Common combo register usage patterns.
97#define REG_DEF01            (REG_DEF0 | REG_DEF1)
98#define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
99#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
100#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
101#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
102#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
103#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
104#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
105#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
106#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
107#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
108#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
109#define REG_USE012           (REG_USE01 | REG_USE2)
110#define REG_USE014           (REG_USE01 | REG_USE4)
111#define REG_USE01            (REG_USE0 | REG_USE1)
112#define REG_USE02            (REG_USE0 | REG_USE2)
113#define REG_USE12            (REG_USE1 | REG_USE2)
114#define REG_USE23            (REG_USE2 | REG_USE3)
115#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
116
117// TODO: #includes need a cleanup
118#ifndef INVALID_SREG
119#define INVALID_SREG (-1)
120#endif
121
122struct BasicBlock;
123struct CallInfo;
124struct CompilationUnit;
125struct InlineMethod;
126struct MIR;
127struct LIR;
128struct RegisterInfo;
129class DexFileMethodInliner;
130class MIRGraph;
131class Mir2Lir;
132
133typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
134                            const MethodReference& target_method,
135                            uint32_t method_idx, uintptr_t direct_code,
136                            uintptr_t direct_method, InvokeType type);
137
138typedef std::vector<uint8_t> CodeBuffer;
139
140struct UseDefMasks {
141  const ResourceMask* use_mask;        // Resource mask for use.
142  const ResourceMask* def_mask;        // Resource mask for def.
143};
144
145struct AssemblyInfo {
146  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
147};
148
149struct LIR {
150  CodeOffset offset;             // Offset of this instruction.
151  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
152  int16_t opcode;
153  LIR* next;
154  LIR* prev;
155  LIR* target;
156  struct {
157    unsigned int alias_info:17;  // For Dalvik register disambiguation.
158    bool is_nop:1;               // LIR is optimized away.
159    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
160    bool use_def_invalid:1;      // If true, masks should not be used.
161    unsigned int generation:1;   // Used to track visitation state during fixup pass.
162    unsigned int fixup:8;        // Fixup kind.
163  } flags;
164  union {
165    UseDefMasks m;               // Use & Def masks used during optimization.
166    AssemblyInfo a;              // Instruction info used during assembly phase.
167  } u;
168  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
169};
170
171// Target-specific initialization.
172Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
173                          ArenaAllocator* const arena);
174Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
175                            ArenaAllocator* const arena);
176Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
177                          ArenaAllocator* const arena);
178Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
179                          ArenaAllocator* const arena);
180
181// Utility macros to traverse the LIR list.
182#define NEXT_LIR(lir) (lir->next)
183#define PREV_LIR(lir) (lir->prev)
184
185// Defines for alias_info (tracks Dalvik register references).
186#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
187#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
188#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
189#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
190
191#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
192#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
193  do { \
194    low_reg = both_regs & 0xff; \
195    high_reg = (both_regs >> 8) & 0xff; \
196  } while (false)
197
198// Mask to denote sreg as the start of a 64-bit item.  Must not interfere with low 16 bits.
199#define STARTING_WIDE_SREG 0x10000
200
201// TODO: replace these macros
202#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
203#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
204#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
205#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
206#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
207
208// Size of a frame that we definitely consider large. Anything larger than this should
209// definitely get a stack overflow check.
210static constexpr size_t kLargeFrameSize = 2 * KB;
211
212// Size of a frame that should be small. Anything leaf method smaller than this should run
213// without a stack overflow check.
214// The constant is from experience with frameworks code.
215static constexpr size_t kSmallFrameSize = 1 * KB;
216
217// Determine whether a frame is small or large, used in the decision on whether to elide a
218// stack overflow check on method entry.
219//
220// A frame is considered large when it's either above kLargeFrameSize, or a quarter of the
221// overflow-usable stack space.
222static constexpr bool IsLargeFrame(size_t size, InstructionSet isa) {
223  return size >= kLargeFrameSize || size >= GetStackOverflowReservedBytes(isa) / 4;
224}
225
226// We want to ensure that on all systems kSmallFrameSize will lead to false in IsLargeFrame.
227COMPILE_ASSERT(!IsLargeFrame(kSmallFrameSize, kArm),
228               kSmallFrameSize_is_not_a_small_frame_arm);
229COMPILE_ASSERT(!IsLargeFrame(kSmallFrameSize, kArm64),
230               kSmallFrameSize_is_not_a_small_frame_arm64);
231COMPILE_ASSERT(!IsLargeFrame(kSmallFrameSize, kMips),
232               kSmallFrameSize_is_not_a_small_frame_mips);
233COMPILE_ASSERT(!IsLargeFrame(kSmallFrameSize, kX86),
234               kSmallFrameSize_is_not_a_small_frame_x86);
235COMPILE_ASSERT(!IsLargeFrame(kSmallFrameSize, kX86_64),
236               kSmallFrameSize_is_not_a_small_frame_x64_64);
237
238class Mir2Lir : public Backend {
239  public:
240    static constexpr bool kFailOnSizeError = true && kIsDebugBuild;
241    static constexpr bool kReportSizeError = true && kIsDebugBuild;
242
243    /*
244     * Auxiliary information describing the location of data embedded in the Dalvik
245     * byte code stream.
246     */
247    struct EmbeddedData {
248      CodeOffset offset;        // Code offset of data block.
249      const uint16_t* table;      // Original dex data.
250      DexOffset vaddr;            // Dalvik offset of parent opcode.
251    };
252
253    struct FillArrayData : EmbeddedData {
254      int32_t size;
255    };
256
257    struct SwitchTable : EmbeddedData {
258      LIR* anchor;                // Reference instruction for relative offsets.
259      LIR** targets;              // Array of case targets.
260    };
261
262    /* Static register use counts */
263    struct RefCounts {
264      int count;
265      int s_reg;
266    };
267
268    /*
269     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
270     * and native register storage.  The primary purpose is to reuse previuosly
271     * loaded values, if possible, and otherwise to keep the value in register
272     * storage as long as possible.
273     *
274     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
275     * this register (or pair).  For example, a 64-bit register containing a 32-bit
276     * Dalvik value would have wide_value==false even though the storage container itself
277     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
278     * would have wide_value==true (and additionally would have its partner field set to the
279     * other half whose wide_value field would also be true.
280     *
281     * NOTE 2: In the case of a register pair, you can determine which of the partners
282     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
283     *
284     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
285     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
286     * value, and the s_reg of the high word is implied (s_reg + 1).
287     *
288     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
289     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
290     * If is_temp==true and live==false, no other fields have
291     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
292     * and def_end describe the relationship between the temp register/register pair and
293     * the Dalvik value[s] described by s_reg/s_reg+1.
294     *
295     * The fields used_storage, master_storage and storage_mask are used to track allocation
296     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
297     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
298     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
299     * change once initialized.  The "used_storage" field tracks current allocation status.
300     * Although each record contains this field, only the field from the largest member of
301     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
302     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
303     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
304     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
305     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
306     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
307     *
308     * For an X86 vector register example, storage_mask would be:
309     *    0x00000001 for 32-bit view of xmm1
310     *    0x00000003 for 64-bit view of xmm1
311     *    0x0000000f for 128-bit view of xmm1
312     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
313     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
314     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
315     *
316     * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
317     * held in the widest member of an aliased set.  Note, though, that for a temp register to
318     * reused as live, it must both be marked live and the associated SReg() must match the
319     * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
320     * members of an aliased set will share the same liveness flags, but each will individually
321     * maintain s_reg_.  In this way we can know that at least one member of an
322     * aliased set is live, but will only fully match on the appropriate alias view.  For example,
323     * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
324     * because it is wide), its aliases s2 and s3 will show as live, but will have
325     * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
326     * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
327     * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
328     * report that v9 is currently not live as a single (which is what we want).
329     *
330     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
331     * to treat xmm registers:
332     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
333     *         o This more closely matches reality, but means you'd need to be able to get
334     *           to the associated RegisterInfo struct to figure out how it's being used.
335     *         o This is how 64-bit core registers will be used - always 64 bits, but the
336     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
337     *     2. View the xmm registers based on contents.
338     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
339     *           be a k64BitVector.
340     *         o Note that the two uses above would be considered distinct registers (but with
341     *           the aliasing mechanism, we could detect interference).
342     *         o This is how aliased double and single float registers will be handled on
343     *           Arm and MIPS.
344     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
345     * mechanism 2 for aliased float registers and x86 vector registers.
346     */
347    class RegisterInfo {
348     public:
349      RegisterInfo(RegStorage r, const ResourceMask& mask = kEncodeAll);
350      ~RegisterInfo() {}
351      static void* operator new(size_t size, ArenaAllocator* arena) {
352        return arena->Alloc(size, kArenaAllocRegAlloc);
353      }
354
355      static const uint32_t k32SoloStorageMask     = 0x00000001;
356      static const uint32_t kLowSingleStorageMask  = 0x00000001;
357      static const uint32_t kHighSingleStorageMask = 0x00000002;
358      static const uint32_t k64SoloStorageMask     = 0x00000003;
359      static const uint32_t k128SoloStorageMask    = 0x0000000f;
360      static const uint32_t k256SoloStorageMask    = 0x000000ff;
361      static const uint32_t k512SoloStorageMask    = 0x0000ffff;
362      static const uint32_t k1024SoloStorageMask   = 0xffffffff;
363
364      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
365      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
366      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
367      // No part of the containing storage is live in this view.
368      bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
369      // Liveness of this view matches.  Note: not equivalent to !IsDead().
370      bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
371      void MarkLive(int s_reg) {
372        // TODO: Anything useful to assert here?
373        s_reg_ = s_reg;
374        master_->liveness_ |= storage_mask_;
375      }
376      void MarkDead() {
377        if (SReg() != INVALID_SREG) {
378          s_reg_ = INVALID_SREG;
379          master_->liveness_ &= ~storage_mask_;
380          ResetDefBody();
381        }
382      }
383      RegStorage GetReg() { return reg_; }
384      void SetReg(RegStorage reg) { reg_ = reg; }
385      bool IsTemp() { return is_temp_; }
386      void SetIsTemp(bool val) { is_temp_ = val; }
387      bool IsWide() { return wide_value_; }
388      void SetIsWide(bool val) {
389        wide_value_ = val;
390        if (!val) {
391          // If not wide, reset partner to self.
392          SetPartner(GetReg());
393        }
394      }
395      bool IsDirty() { return dirty_; }
396      void SetIsDirty(bool val) { dirty_ = val; }
397      RegStorage Partner() { return partner_; }
398      void SetPartner(RegStorage partner) { partner_ = partner; }
399      int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
400      const ResourceMask& DefUseMask() { return def_use_mask_; }
401      void SetDefUseMask(const ResourceMask& def_use_mask) { def_use_mask_ = def_use_mask; }
402      RegisterInfo* Master() { return master_; }
403      void SetMaster(RegisterInfo* master) {
404        master_ = master;
405        if (master != this) {
406          master_->aliased_ = true;
407          DCHECK(alias_chain_ == nullptr);
408          alias_chain_ = master_->alias_chain_;
409          master_->alias_chain_ = this;
410        }
411      }
412      bool IsAliased() { return aliased_; }
413      RegisterInfo* GetAliasChain() { return alias_chain_; }
414      uint32_t StorageMask() { return storage_mask_; }
415      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
416      LIR* DefStart() { return def_start_; }
417      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
418      LIR* DefEnd() { return def_end_; }
419      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
420      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
421      // Find member of aliased set matching storage_used; return nullptr if none.
422      RegisterInfo* FindMatchingView(uint32_t storage_used) {
423        RegisterInfo* res = Master();
424        for (; res != nullptr; res = res->GetAliasChain()) {
425          if (res->StorageMask() == storage_used)
426            break;
427        }
428        return res;
429      }
430
431     private:
432      RegStorage reg_;
433      bool is_temp_;               // Can allocate as temp?
434      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
435      bool dirty_;                 // If live, is it dirty?
436      bool aliased_;               // Is this the master for other aliased RegisterInfo's?
437      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
438      int s_reg_;                  // Name of live value.
439      ResourceMask def_use_mask_;  // Resources for this element.
440      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
441      uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
442      RegisterInfo* master_;       // Pointer to controlling storage mask.
443      uint32_t storage_mask_;      // Track allocation of sub-units.
444      LIR *def_start_;             // Starting inst in last def sequence.
445      LIR *def_end_;               // Ending inst in last def sequence.
446      RegisterInfo* alias_chain_;  // Chain of aliased registers.
447    };
448
449    class RegisterPool {
450     public:
451      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
452                   const ArrayRef<const RegStorage>& core_regs,
453                   const ArrayRef<const RegStorage>& core64_regs,
454                   const ArrayRef<const RegStorage>& sp_regs,
455                   const ArrayRef<const RegStorage>& dp_regs,
456                   const ArrayRef<const RegStorage>& reserved_regs,
457                   const ArrayRef<const RegStorage>& reserved64_regs,
458                   const ArrayRef<const RegStorage>& core_temps,
459                   const ArrayRef<const RegStorage>& core64_temps,
460                   const ArrayRef<const RegStorage>& sp_temps,
461                   const ArrayRef<const RegStorage>& dp_temps);
462      ~RegisterPool() {}
463      static void* operator new(size_t size, ArenaAllocator* arena) {
464        return arena->Alloc(size, kArenaAllocRegAlloc);
465      }
466      void ResetNextTemp() {
467        next_core_reg_ = 0;
468        next_sp_reg_ = 0;
469        next_dp_reg_ = 0;
470      }
471      GrowableArray<RegisterInfo*> core_regs_;
472      int next_core_reg_;
473      GrowableArray<RegisterInfo*> core64_regs_;
474      int next_core64_reg_;
475      GrowableArray<RegisterInfo*> sp_regs_;    // Single precision float.
476      int next_sp_reg_;
477      GrowableArray<RegisterInfo*> dp_regs_;    // Double precision float.
478      int next_dp_reg_;
479      GrowableArray<RegisterInfo*>* ref_regs_;  // Points to core_regs_ or core64_regs_
480      int* next_ref_reg_;
481
482     private:
483      Mir2Lir* const m2l_;
484    };
485
486    struct PromotionMap {
487      RegLocationType core_location:3;
488      uint8_t core_reg;
489      RegLocationType fp_location:3;
490      uint8_t fp_reg;
491      bool first_in_pair;
492    };
493
494    //
495    // Slow paths.  This object is used generate a sequence of code that is executed in the
496    // slow path.  For example, resolving a string or class is slow as it will only be executed
497    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
498    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
499    // branch over them.
500    //
501    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
502    // the Compile() function that will be called near the end of the code generated by the
503    // method.
504    //
505    // The basic flow for a slow path is:
506    //
507    //     CMP reg, #value
508    //     BEQ fromfast
509    //   cont:
510    //     ...
511    //     fast path code
512    //     ...
513    //     more code
514    //     ...
515    //     RETURN
516    ///
517    //   fromfast:
518    //     ...
519    //     slow path code
520    //     ...
521    //     B cont
522    //
523    // So you see we need two labels and two branches.  The first branch (called fromfast) is
524    // the conditional branch to the slow path code.  The second label (called cont) is used
525    // as an unconditional branch target for getting back to the code after the slow path
526    // has completed.
527    //
528
529    class LIRSlowPath {
530     public:
531      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
532                  LIR* cont = nullptr) :
533        m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
534          m2l->StartSlowPath(this);
535      }
536      virtual ~LIRSlowPath() {}
537      virtual void Compile() = 0;
538
539      static void* operator new(size_t size, ArenaAllocator* arena) {
540        return arena->Alloc(size, kArenaAllocData);
541      }
542
543      LIR *GetContinuationLabel() {
544        return cont_;
545      }
546
547      LIR *GetFromFast() {
548        return fromfast_;
549      }
550
551     protected:
552      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
553
554      Mir2Lir* const m2l_;
555      CompilationUnit* const cu_;
556      const DexOffset current_dex_pc_;
557      LIR* const fromfast_;
558      LIR* const cont_;
559    };
560
561    // Helper class for changing mem_ref_type_ until the end of current scope. See mem_ref_type_.
562    class ScopedMemRefType {
563     public:
564      ScopedMemRefType(Mir2Lir* m2l, ResourceMask::ResourceBit new_mem_ref_type)
565          : m2l_(m2l),
566            old_mem_ref_type_(m2l->mem_ref_type_) {
567        m2l_->mem_ref_type_ = new_mem_ref_type;
568      }
569
570      ~ScopedMemRefType() {
571        m2l_->mem_ref_type_ = old_mem_ref_type_;
572      }
573
574     private:
575      Mir2Lir* const m2l_;
576      ResourceMask::ResourceBit old_mem_ref_type_;
577
578      DISALLOW_COPY_AND_ASSIGN(ScopedMemRefType);
579    };
580
581    virtual ~Mir2Lir() {}
582
583    int32_t s4FromSwitchData(const void* switch_data) {
584      return *reinterpret_cast<const int32_t*>(switch_data);
585    }
586
587    /*
588     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
589     * it was introduced, it was intended to be a quick best guess of type without having to
590     * take the time to do type analysis.  Currently, though, we have a much better idea of
591     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
592     * just use our knowledge of type to select the most appropriate register class?
593     */
594    RegisterClass RegClassBySize(OpSize size) {
595      if (size == kReference) {
596        return kRefReg;
597      } else {
598        return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
599                size == kSignedByte) ? kCoreReg : kAnyReg;
600      }
601    }
602
603    size_t CodeBufferSizeInBytes() {
604      return code_buffer_.size() / sizeof(code_buffer_[0]);
605    }
606
607    static bool IsPseudoLirOp(int opcode) {
608      return (opcode < 0);
609    }
610
611    /*
612     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
613     * instructions which require PC-relative fixups), we need the operands to carry
614     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
615     * hold that index in the operand array.
616     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
617     * may be worth conditionally-compiling a set of identity functions here.
618     */
619    uint32_t WrapPointer(void* pointer) {
620      uint32_t res = pointer_storage_.Size();
621      pointer_storage_.Insert(pointer);
622      return res;
623    }
624
625    void* UnwrapPointer(size_t index) {
626      return pointer_storage_.Get(index);
627    }
628
629    // strdup(), but allocates from the arena.
630    char* ArenaStrdup(const char* str) {
631      size_t len = strlen(str) + 1;
632      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
633      if (res != NULL) {
634        strncpy(res, str, len);
635      }
636      return res;
637    }
638
639    // Shared by all targets - implemented in codegen_util.cc
640    void AppendLIR(LIR* lir);
641    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
642    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
643
644    /**
645     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
646     * to place in a frame.
647     * @return Returns the maximum number of compiler temporaries.
648     */
649    size_t GetMaxPossibleCompilerTemps() const;
650
651    /**
652     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
653     * @return Returns the size in bytes for space needed for compiler temporary spill region.
654     */
655    size_t GetNumBytesForCompilerTempSpillRegion();
656
657    DexOffset GetCurrentDexPc() const {
658      return current_dalvik_offset_;
659    }
660
661    RegisterClass ShortyToRegClass(char shorty_type);
662    RegisterClass LocToRegClass(RegLocation loc);
663    int ComputeFrameSize();
664    virtual void Materialize();
665    virtual CompiledMethod* GetCompiledMethod();
666    void MarkSafepointPC(LIR* inst);
667    void MarkSafepointPCAfter(LIR* after);
668    void SetupResourceMasks(LIR* lir);
669    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
670    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
671    void SetupRegMask(ResourceMask* mask, int reg);
672    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
673    void DumpPromotionMap();
674    void CodegenDump();
675    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
676                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
677    LIR* NewLIR0(int opcode);
678    LIR* NewLIR1(int opcode, int dest);
679    LIR* NewLIR2(int opcode, int dest, int src1);
680    LIR* NewLIR2NoDest(int opcode, int src, int info);
681    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
682    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
683    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
684    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
685    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
686    LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
687    LIR* AddWordData(LIR* *constant_list_p, int value);
688    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
689    void ProcessSwitchTables();
690    void DumpSparseSwitchTable(const uint16_t* table);
691    void DumpPackedSwitchTable(const uint16_t* table);
692    void MarkBoundary(DexOffset offset, const char* inst_str);
693    void NopLIR(LIR* lir);
694    void UnlinkLIR(LIR* lir);
695    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
696    bool IsInexpensiveConstant(RegLocation rl_src);
697    ConditionCode FlipComparisonOrder(ConditionCode before);
698    ConditionCode NegateComparison(ConditionCode before);
699    virtual void InstallLiteralPools();
700    void InstallSwitchTables();
701    void InstallFillArrayData();
702    bool VerifyCatchEntries();
703    void CreateMappingTables();
704    void CreateNativeGcMap();
705    int AssignLiteralOffset(CodeOffset offset);
706    int AssignSwitchTablesOffset(CodeOffset offset);
707    int AssignFillArrayDataOffset(CodeOffset offset);
708    virtual LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
709    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
710    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
711
712    virtual void StartSlowPath(LIRSlowPath* slowpath) {}
713    virtual void BeginInvoke(CallInfo* info) {}
714    virtual void EndInvoke(CallInfo* info) {}
715
716
717    // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation.  No code generated.
718    virtual RegLocation NarrowRegLoc(RegLocation loc);
719
720    // Shared by all targets - implemented in local_optimizations.cc
721    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
722    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
723    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
724    virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
725
726    // Shared by all targets - implemented in ralloc_util.cc
727    int GetSRegHi(int lowSreg);
728    bool LiveOut(int s_reg);
729    void SimpleRegAlloc();
730    void ResetRegPool();
731    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
732    void DumpRegPool(GrowableArray<RegisterInfo*>* regs);
733    void DumpCoreRegPool();
734    void DumpFpRegPool();
735    void DumpRegPools();
736    /* Mark a temp register as dead.  Does not affect allocation state. */
737    void Clobber(RegStorage reg);
738    void ClobberSReg(int s_reg);
739    void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
740    int SRegToPMap(int s_reg);
741    void RecordCorePromotion(RegStorage reg, int s_reg);
742    RegStorage AllocPreservedCoreReg(int s_reg);
743    void RecordFpPromotion(RegStorage reg, int s_reg);
744    RegStorage AllocPreservedFpReg(int s_reg);
745    virtual RegStorage AllocPreservedSingle(int s_reg);
746    virtual RegStorage AllocPreservedDouble(int s_reg);
747    RegStorage AllocTempBody(GrowableArray<RegisterInfo*> &regs, int* next_temp, bool required);
748    virtual RegStorage AllocFreeTemp();
749    virtual RegStorage AllocTemp();
750    virtual RegStorage AllocTempWide();
751    virtual RegStorage AllocTempRef();
752    virtual RegStorage AllocTempSingle();
753    virtual RegStorage AllocTempDouble();
754    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class);
755    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class);
756    void FlushReg(RegStorage reg);
757    void FlushRegWide(RegStorage reg);
758    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
759    RegStorage FindLiveReg(GrowableArray<RegisterInfo*> &regs, int s_reg);
760    virtual void FreeTemp(RegStorage reg);
761    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
762    virtual bool IsLive(RegStorage reg);
763    virtual bool IsTemp(RegStorage reg);
764    bool IsPromoted(RegStorage reg);
765    bool IsDirty(RegStorage reg);
766    virtual void LockTemp(RegStorage reg);
767    void ResetDef(RegStorage reg);
768    void NullifyRange(RegStorage reg, int s_reg);
769    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
770    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
771    void ResetDefLoc(RegLocation rl);
772    void ResetDefLocWide(RegLocation rl);
773    void ResetDefTracking();
774    void ClobberAllTemps();
775    void FlushSpecificReg(RegisterInfo* info);
776    void FlushAllRegs();
777    bool RegClassMatches(int reg_class, RegStorage reg);
778    void MarkLive(RegLocation loc);
779    void MarkTemp(RegStorage reg);
780    void UnmarkTemp(RegStorage reg);
781    void MarkWide(RegStorage reg);
782    void MarkNarrow(RegStorage reg);
783    void MarkClean(RegLocation loc);
784    void MarkDirty(RegLocation loc);
785    void MarkInUse(RegStorage reg);
786    bool CheckCorePoolSanity();
787    virtual RegLocation UpdateLoc(RegLocation loc);
788    virtual RegLocation UpdateLocWide(RegLocation loc);
789    RegLocation UpdateRawLoc(RegLocation loc);
790
791    /**
792     * @brief Used to prepare a register location to receive a wide value.
793     * @see EvalLoc
794     * @param loc the location where the value will be stored.
795     * @param reg_class Type of register needed.
796     * @param update Whether the liveness information should be updated.
797     * @return Returns the properly typed temporary in physical register pairs.
798     */
799    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
800
801    /**
802     * @brief Used to prepare a register location to receive a value.
803     * @param loc the location where the value will be stored.
804     * @param reg_class Type of register needed.
805     * @param update Whether the liveness information should be updated.
806     * @return Returns the properly typed temporary in physical register.
807     */
808    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
809
810    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
811    void DumpCounts(const RefCounts* arr, int size, const char* msg);
812    void DoPromotion();
813    int VRegOffset(int v_reg);
814    int SRegOffset(int s_reg);
815    RegLocation GetReturnWide(RegisterClass reg_class);
816    RegLocation GetReturn(RegisterClass reg_class);
817    RegisterInfo* GetRegInfo(RegStorage reg);
818
819    // Shared by all targets - implemented in gen_common.cc.
820    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
821    virtual bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
822                                  RegLocation rl_src, RegLocation rl_dest, int lit);
823    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
824    virtual void HandleSlowPaths();
825    void GenBarrier();
826    void GenDivZeroException();
827    // c_code holds condition code that's generated from testing divisor against 0.
828    void GenDivZeroCheck(ConditionCode c_code);
829    // reg holds divisor.
830    void GenDivZeroCheck(RegStorage reg);
831    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
832    void GenArrayBoundsCheck(int32_t index, RegStorage length);
833    LIR* GenNullCheck(RegStorage reg);
834    void MarkPossibleNullPointerException(int opt_flags);
835    void MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after);
836    void MarkPossibleStackOverflowException();
837    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
838    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
839    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
840    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
841    virtual void GenImplicitNullCheck(RegStorage reg, int opt_flags);
842    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
843                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
844    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
845                                 LIR* taken, LIR* fall_through);
846    virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
847    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
848                         RegLocation rl_src);
849    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
850                     RegLocation rl_src);
851    void GenFilledNewArray(CallInfo* info);
852    void GenSput(MIR* mir, RegLocation rl_src,
853                 bool is_long_or_double, bool is_object);
854    void GenSget(MIR* mir, RegLocation rl_dest,
855                 bool is_long_or_double, bool is_object);
856    void GenIGet(MIR* mir, int opt_flags, OpSize size,
857                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
858    void GenIPut(MIR* mir, int opt_flags, OpSize size,
859                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
860    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
861                        RegLocation rl_src);
862
863    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
864    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
865    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
866    void GenThrow(RegLocation rl_src);
867    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
868    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
869    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
870                      RegLocation rl_src1, RegLocation rl_src2);
871    virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
872                        RegLocation rl_src1, RegLocation rl_shift);
873    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
874                          RegLocation rl_src, int lit);
875    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
876                        RegLocation rl_src1, RegLocation rl_src2);
877    template <size_t pointer_size>
878    void GenConversionCall(ThreadOffset<pointer_size> func_offset, RegLocation rl_dest,
879                           RegLocation rl_src);
880    virtual void GenSuspendTest(int opt_flags);
881    virtual void GenSuspendTestAndBranch(int opt_flags, LIR* target);
882
883    // This will be overridden by x86 implementation.
884    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
885    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
886                       RegLocation rl_src1, RegLocation rl_src2);
887
888    // Shared by all targets - implemented in gen_invoke.cc.
889    template <size_t pointer_size>
890    LIR* CallHelper(RegStorage r_tgt, ThreadOffset<pointer_size> helper_offset, bool safepoint_pc,
891                    bool use_link = true);
892    RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
893    RegStorage CallHelperSetup(ThreadOffset<8> helper_offset);
894    template <size_t pointer_size>
895    void CallRuntimeHelper(ThreadOffset<pointer_size> helper_offset, bool safepoint_pc);
896    template <size_t pointer_size>
897    void CallRuntimeHelperImm(ThreadOffset<pointer_size> helper_offset, int arg0, bool safepoint_pc);
898    template <size_t pointer_size>
899    void CallRuntimeHelperReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, bool safepoint_pc);
900    template <size_t pointer_size>
901    void CallRuntimeHelperRegLocation(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
902                                      bool safepoint_pc);
903    template <size_t pointer_size>
904    void CallRuntimeHelperImmImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg1,
905                                 bool safepoint_pc);
906    template <size_t pointer_size>
907    void CallRuntimeHelperImmRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
908                                         RegLocation arg1, bool safepoint_pc);
909    template <size_t pointer_size>
910    void CallRuntimeHelperRegLocationImm(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
911                                         int arg1, bool safepoint_pc);
912    template <size_t pointer_size>
913    void CallRuntimeHelperImmReg(ThreadOffset<pointer_size> helper_offset, int arg0, RegStorage arg1,
914                                 bool safepoint_pc);
915    template <size_t pointer_size>
916    void CallRuntimeHelperRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, int arg1,
917                                 bool safepoint_pc);
918    template <size_t pointer_size>
919    void CallRuntimeHelperImmMethod(ThreadOffset<pointer_size> helper_offset, int arg0,
920                                    bool safepoint_pc);
921    template <size_t pointer_size>
922    void CallRuntimeHelperRegMethod(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
923                                    bool safepoint_pc);
924    template <size_t pointer_size>
925    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<pointer_size> helper_offset,
926                                               RegStorage arg0, RegLocation arg2, bool safepoint_pc);
927    template <size_t pointer_size>
928    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
929                                                 RegLocation arg0, RegLocation arg1,
930                                                 bool safepoint_pc);
931    template <size_t pointer_size>
932    void CallRuntimeHelperRegReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
933                                 RegStorage arg1, bool safepoint_pc);
934    template <size_t pointer_size>
935    void CallRuntimeHelperRegRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
936                                    RegStorage arg1, int arg2, bool safepoint_pc);
937    template <size_t pointer_size>
938    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
939                                               RegLocation arg2, bool safepoint_pc);
940    template <size_t pointer_size>
941    void CallRuntimeHelperImmMethodImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg2,
942                                       bool safepoint_pc);
943    template <size_t pointer_size>
944    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
945                                                    int arg0, RegLocation arg1, RegLocation arg2,
946                                                    bool safepoint_pc);
947    template <size_t pointer_size>
948    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
949                                                            RegLocation arg0, RegLocation arg1,
950                                                            RegLocation arg2,
951                                                            bool safepoint_pc);
952    void GenInvoke(CallInfo* info);
953    void GenInvokeNoInline(CallInfo* info);
954    virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
955    virtual int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
956                             NextCallInsn next_call_insn,
957                             const MethodReference& target_method,
958                             uint32_t vtable_idx,
959                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
960                             bool skip_this);
961    virtual int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
962                           NextCallInsn next_call_insn,
963                           const MethodReference& target_method,
964                           uint32_t vtable_idx,
965                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
966                           bool skip_this);
967
968    /**
969     * @brief Used to determine the register location of destination.
970     * @details This is needed during generation of inline intrinsics because it finds destination
971     *  of return,
972     * either the physical register or the target of move-result.
973     * @param info Information about the invoke.
974     * @return Returns the destination location.
975     */
976    RegLocation InlineTarget(CallInfo* info);
977
978    /**
979     * @brief Used to determine the wide register location of destination.
980     * @see InlineTarget
981     * @param info Information about the invoke.
982     * @return Returns the destination location.
983     */
984    RegLocation InlineTargetWide(CallInfo* info);
985
986    bool GenInlinedGet(CallInfo* info);
987    bool GenInlinedCharAt(CallInfo* info);
988    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
989    virtual bool GenInlinedReverseBits(CallInfo* info, OpSize size);
990    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
991    bool GenInlinedAbsInt(CallInfo* info);
992    virtual bool GenInlinedAbsLong(CallInfo* info);
993    virtual bool GenInlinedAbsFloat(CallInfo* info);
994    virtual bool GenInlinedAbsDouble(CallInfo* info);
995    bool GenInlinedFloatCvt(CallInfo* info);
996    bool GenInlinedDoubleCvt(CallInfo* info);
997    virtual bool GenInlinedArrayCopyCharArray(CallInfo* info);
998    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
999    bool GenInlinedStringCompareTo(CallInfo* info);
1000    bool GenInlinedCurrentThread(CallInfo* info);
1001    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
1002    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
1003                             bool is_volatile, bool is_ordered);
1004    virtual int LoadArgRegs(CallInfo* info, int call_state,
1005                    NextCallInsn next_call_insn,
1006                    const MethodReference& target_method,
1007                    uint32_t vtable_idx,
1008                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
1009                    bool skip_this);
1010
1011    // Shared by all targets - implemented in gen_loadstore.cc.
1012    RegLocation LoadCurrMethod();
1013    void LoadCurrMethodDirect(RegStorage r_tgt);
1014    virtual LIR* LoadConstant(RegStorage r_dest, int value);
1015    // Natural word size.
1016    virtual LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
1017      return LoadBaseDisp(r_base, displacement, r_dest, kWord, kNotVolatile);
1018    }
1019    // Load 32 bits, regardless of target.
1020    virtual LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
1021      return LoadBaseDisp(r_base, displacement, r_dest, k32, kNotVolatile);
1022    }
1023    // Load a reference at base + displacement and decompress into register.
1024    virtual LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1025                             VolatileKind is_volatile) {
1026      return LoadBaseDisp(r_base, displacement, r_dest, kReference, is_volatile);
1027    }
1028    // Load a reference at base + index and decompress into register.
1029    virtual LIR* LoadRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1030                                int scale) {
1031      return LoadBaseIndexed(r_base, r_index, r_dest, scale, kReference);
1032    }
1033    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1034    virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
1035    // Same as above, but derive the target register class from the location record.
1036    virtual RegLocation LoadValue(RegLocation rl_src);
1037    // Load Dalvik value with 64-bit memory storage.
1038    virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
1039    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1040    virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
1041    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1042    virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
1043    // Load Dalvik value with 64-bit memory storage.
1044    virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
1045    // Load Dalvik value with 64-bit memory storage.
1046    virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
1047    // Store an item of natural word size.
1048    virtual LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
1049      return StoreBaseDisp(r_base, displacement, r_src, kWord, kNotVolatile);
1050    }
1051    // Store an uncompressed reference into a compressed 32-bit container.
1052    virtual LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src,
1053                              VolatileKind is_volatile) {
1054      return StoreBaseDisp(r_base, displacement, r_src, kReference, is_volatile);
1055    }
1056    // Store an uncompressed reference into a compressed 32-bit container by index.
1057    virtual LIR* StoreRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1058                                 int scale) {
1059      return StoreBaseIndexed(r_base, r_index, r_src, scale, kReference);
1060    }
1061    // Store 32 bits, regardless of target.
1062    virtual LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
1063      return StoreBaseDisp(r_base, displacement, r_src, k32, kNotVolatile);
1064    }
1065
1066    /**
1067     * @brief Used to do the final store in the destination as per bytecode semantics.
1068     * @param rl_dest The destination dalvik register location.
1069     * @param rl_src The source register location. Can be either physical register or dalvik register.
1070     */
1071    virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
1072
1073    /**
1074     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1075     * @see StoreValue
1076     * @param rl_dest The destination dalvik register location.
1077     * @param rl_src The source register location. Can be either physical register or dalvik
1078     *  register.
1079     */
1080    virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
1081
1082    /**
1083     * @brief Used to do the final store to a destination as per bytecode semantics.
1084     * @see StoreValue
1085     * @param rl_dest The destination dalvik register location.
1086     * @param rl_src The source register location. It must be kLocPhysReg
1087     *
1088     * This is used for x86 two operand computations, where we have computed the correct
1089     * register value that now needs to be properly registered.  This is used to avoid an
1090     * extra register copy that would result if StoreValue was called.
1091     */
1092    virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
1093
1094    /**
1095     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1096     * @see StoreValueWide
1097     * @param rl_dest The destination dalvik register location.
1098     * @param rl_src The source register location. It must be kLocPhysReg
1099     *
1100     * This is used for x86 two operand computations, where we have computed the correct
1101     * register values that now need to be properly registered.  This is used to avoid an
1102     * extra pair of register copies that would result if StoreValueWide was called.
1103     */
1104    virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
1105
1106    // Shared by all targets - implemented in mir_to_lir.cc.
1107    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
1108    virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1109    bool MethodBlockCodeGen(BasicBlock* bb);
1110    bool SpecialMIR2LIR(const InlineMethod& special);
1111    virtual void MethodMIR2LIR();
1112    // Update LIR for verbose listings.
1113    void UpdateLIROffsets();
1114
1115    /*
1116     * @brief Load the address of the dex method into the register.
1117     * @param target_method The MethodReference of the method to be invoked.
1118     * @param type How the method will be invoked.
1119     * @param register that will contain the code address.
1120     * @note register will be passed to TargetReg to get physical register.
1121     */
1122    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1123                         SpecialTargetRegister symbolic_reg);
1124
1125    /*
1126     * @brief Load the Method* of a dex method into the register.
1127     * @param target_method The MethodReference of the method to be invoked.
1128     * @param type How the method will be invoked.
1129     * @param register that will contain the code address.
1130     * @note register will be passed to TargetReg to get physical register.
1131     */
1132    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1133                                   SpecialTargetRegister symbolic_reg);
1134
1135    /*
1136     * @brief Load the Class* of a Dex Class type into the register.
1137     * @param type How the method will be invoked.
1138     * @param register that will contain the code address.
1139     * @note register will be passed to TargetReg to get physical register.
1140     */
1141    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
1142
1143    // Routines that work for the generic case, but may be overriden by target.
1144    /*
1145     * @brief Compare memory to immediate, and branch if condition true.
1146     * @param cond The condition code that when true will branch to the target.
1147     * @param temp_reg A temporary register that can be used if compare to memory is not
1148     * supported by the architecture.
1149     * @param base_reg The register holding the base address.
1150     * @param offset The offset from the base.
1151     * @param check_value The immediate to compare to.
1152     * @param target branch target (or nullptr)
1153     * @param compare output for getting LIR for comparison (or nullptr)
1154     * @returns The branch instruction that was generated.
1155     */
1156    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1157                                   int offset, int check_value, LIR* target, LIR** compare);
1158
1159    // Required for target - codegen helpers.
1160    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1161                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1162    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1163    virtual LIR* CheckSuspendUsingLoad() = 0;
1164
1165    virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
1166    virtual RegStorage LoadHelper(ThreadOffset<8> offset) = 0;
1167
1168    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1169                              OpSize size, VolatileKind is_volatile) = 0;
1170    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1171                                 int scale, OpSize size) = 0;
1172    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1173                                     int displacement, RegStorage r_dest, OpSize size) = 0;
1174    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1175    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1176    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1177                               OpSize size, VolatileKind is_volatile) = 0;
1178    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1179                                  int scale, OpSize size) = 0;
1180    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1181                                      int displacement, RegStorage r_src, OpSize size) = 0;
1182    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
1183
1184    // Required for target - register utilities.
1185
1186    bool IsSameReg(RegStorage reg1, RegStorage reg2) {
1187      RegisterInfo* info1 = GetRegInfo(reg1);
1188      RegisterInfo* info2 = GetRegInfo(reg2);
1189      return (info1->Master() == info2->Master() &&
1190             (info1->StorageMask() & info2->StorageMask()) != 0);
1191    }
1192
1193    /**
1194     * @brief Portable way of getting special registers from the backend.
1195     * @param reg Enumeration describing the purpose of the register.
1196     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1197     * @note This function is currently allowed to return any suitable view of the registers
1198     *   (e.g. this could be 64-bit solo or 32-bit solo for 64-bit backends).
1199     */
1200    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1201
1202    /**
1203     * @brief Portable way of getting special registers from the backend.
1204     * @param reg Enumeration describing the purpose of the register.
1205     * @param wide_kind What kind of view of the special register is required.
1206     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1207     *
1208     * @note For 32b system, wide (kWide) views only make sense for the argument registers and the
1209     *       return. In that case, this function should return a pair where the first component of
1210     *       the result will be the indicated special register.
1211     */
1212    virtual RegStorage TargetReg(SpecialTargetRegister reg, WideKind wide_kind) {
1213      if (wide_kind == kWide) {
1214        DCHECK((kArg0 <= reg && reg < kArg7) || (kFArg0 <= reg && reg < kFArg7) || (kRet0 == reg));
1215        COMPILE_ASSERT((kArg1 == kArg0 + 1) && (kArg2 == kArg1 + 1) && (kArg3 == kArg2 + 1) &&
1216                       (kArg4 == kArg3 + 1) && (kArg5 == kArg4 + 1) && (kArg6 == kArg5 + 1) &&
1217                       (kArg7 == kArg6 + 1), kargs_range_unexpected);
1218        COMPILE_ASSERT((kFArg1 == kFArg0 + 1) && (kFArg2 == kFArg1 + 1) && (kFArg3 == kFArg2 + 1) &&
1219                       (kFArg4 == kFArg3 + 1) && (kFArg5 == kFArg4 + 1) && (kFArg6 == kFArg5 + 1) &&
1220                       (kFArg7 == kFArg6 + 1), kfargs_range_unexpected);
1221        COMPILE_ASSERT(kRet1 == kRet0 + 1, kret_range_unexpected);
1222        return RegStorage::MakeRegPair(TargetReg(reg),
1223                                       TargetReg(static_cast<SpecialTargetRegister>(reg + 1)));
1224      } else {
1225        return TargetReg(reg);
1226      }
1227    }
1228
1229    /**
1230     * @brief Portable way of getting a special register for storing a pointer.
1231     * @see TargetReg()
1232     */
1233    virtual RegStorage TargetPtrReg(SpecialTargetRegister reg) {
1234      return TargetReg(reg);
1235    }
1236
1237    // Get a reg storage corresponding to the wide & ref flags of the reg location.
1238    virtual RegStorage TargetReg(SpecialTargetRegister reg, RegLocation loc) {
1239      if (loc.ref) {
1240        return TargetReg(reg, kRef);
1241      } else {
1242        return TargetReg(reg, loc.wide ? kWide : kNotWide);
1243      }
1244    }
1245
1246    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
1247    virtual RegLocation GetReturnAlt() = 0;
1248    virtual RegLocation GetReturnWideAlt() = 0;
1249    virtual RegLocation LocCReturn() = 0;
1250    virtual RegLocation LocCReturnRef() = 0;
1251    virtual RegLocation LocCReturnDouble() = 0;
1252    virtual RegLocation LocCReturnFloat() = 0;
1253    virtual RegLocation LocCReturnWide() = 0;
1254    virtual ResourceMask GetRegMaskCommon(const RegStorage& reg) const = 0;
1255    virtual void AdjustSpillMask() = 0;
1256    virtual void ClobberCallerSave() = 0;
1257    virtual void FreeCallTemps() = 0;
1258    virtual void LockCallTemps() = 0;
1259    virtual void CompilerInitializeRegAlloc() = 0;
1260
1261    // Required for target - miscellaneous.
1262    virtual void AssembleLIR() = 0;
1263    virtual void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) = 0;
1264    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
1265                                          ResourceMask* use_mask, ResourceMask* def_mask) = 0;
1266    virtual const char* GetTargetInstFmt(int opcode) = 0;
1267    virtual const char* GetTargetInstName(int opcode) = 0;
1268    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1269
1270    // Note: This may return kEncodeNone on architectures that do not expose a PC. The caller must
1271    //       take care of this.
1272    virtual ResourceMask GetPCUseDefEncoding() const = 0;
1273    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1274    virtual size_t GetInsnSize(LIR* lir) = 0;
1275    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1276
1277    // Check support for volatile load/store of a given size.
1278    virtual bool SupportsVolatileLoadStore(OpSize size) = 0;
1279    // Get the register class for load/store of a field.
1280    virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
1281
1282    // Required for target - Dalvik-level generators.
1283    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1284                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
1285    virtual void GenMulLong(Instruction::Code,
1286                            RegLocation rl_dest, RegLocation rl_src1,
1287                            RegLocation rl_src2) = 0;
1288    virtual void GenAddLong(Instruction::Code,
1289                            RegLocation rl_dest, RegLocation rl_src1,
1290                            RegLocation rl_src2) = 0;
1291    virtual void GenAndLong(Instruction::Code,
1292                            RegLocation rl_dest, RegLocation rl_src1,
1293                            RegLocation rl_src2) = 0;
1294    virtual void GenArithOpDouble(Instruction::Code opcode,
1295                                  RegLocation rl_dest, RegLocation rl_src1,
1296                                  RegLocation rl_src2) = 0;
1297    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1298                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1299    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1300                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1301    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1302                               RegLocation rl_src) = 0;
1303    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1304
1305    /**
1306     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1307     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1308     * that applies on integers. The generated code will write the smallest or largest value
1309     * directly into the destination register as specified by the invoke information.
1310     * @param info Information about the invoke.
1311     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1312     * @param is_long If true the value value is Long. Otherwise the value is Int.
1313     * @return Returns true if successfully generated
1314     */
1315    virtual bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) = 0;
1316    virtual bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double);
1317
1318    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1319    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1320    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1321    virtual void GenNotLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1322    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1323    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1324                           RegLocation rl_src2) = 0;
1325    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1326                            RegLocation rl_src2) = 0;
1327    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1328                            RegLocation rl_src2) = 0;
1329    virtual void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1330                            RegLocation rl_src2, bool is_div) = 0;
1331    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1332                                  bool is_div) = 0;
1333    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1334                                     bool is_div) = 0;
1335    /*
1336     * @brief Generate an integer div or rem operation by a literal.
1337     * @param rl_dest Destination Location.
1338     * @param rl_src1 Numerator Location.
1339     * @param rl_src2 Divisor Location.
1340     * @param is_div 'true' if this is a division, 'false' for a remainder.
1341     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
1342     */
1343    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1344                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
1345    /*
1346     * @brief Generate an integer div or rem operation by a literal.
1347     * @param rl_dest Destination Location.
1348     * @param rl_src Numerator Location.
1349     * @param lit Divisor.
1350     * @param is_div 'true' if this is a division, 'false' for a remainder.
1351     */
1352    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1353                                     bool is_div) = 0;
1354    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1355
1356    /**
1357     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1358     * @details This is used for generating DivideByZero checks when divisor is held in two
1359     *  separate registers.
1360     * @param reg The register holding the pair of 32-bit values.
1361     */
1362    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1363
1364    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1365    virtual void GenExitSequence() = 0;
1366    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
1367    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1368    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1369
1370    /*
1371     * @brief Handle Machine Specific MIR Extended opcodes.
1372     * @param bb The basic block in which the MIR is from.
1373     * @param mir The MIR whose opcode is not standard extended MIR.
1374     * @note Base class implementation will abort for unknown opcodes.
1375     */
1376    virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1377
1378    /**
1379     * @brief Lowers the kMirOpSelect MIR into LIR.
1380     * @param bb The basic block in which the MIR is from.
1381     * @param mir The MIR whose opcode is kMirOpSelect.
1382     */
1383    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1384
1385    /**
1386     * @brief Used to generate a memory barrier in an architecture specific way.
1387     * @details The last generated LIR will be considered for use as barrier. Namely,
1388     * if the last LIR can be updated in a way where it will serve the semantics of
1389     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1390     * that can keep the semantics.
1391     * @param barrier_kind The kind of memory barrier to generate.
1392     * @return whether a new instruction was generated.
1393     */
1394    virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1395
1396    virtual void GenMoveException(RegLocation rl_dest) = 0;
1397    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1398                                               int first_bit, int second_bit) = 0;
1399    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1400    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1401    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1402    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1403    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1404                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1405    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1406                             RegLocation rl_index, RegLocation rl_src, int scale,
1407                             bool card_mark) = 0;
1408    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1409                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1410
1411    // Required for target - single operation generators.
1412    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1413    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1414    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1415                                LIR* target) = 0;
1416    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1417    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1418    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1419    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1420    virtual void OpEndIT(LIR* it) = 0;
1421    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1422    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1423    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1424    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1425    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1426    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1427    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1428    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1429
1430    /**
1431     * @brief Used to generate an LIR that does a load from mem to reg.
1432     * @param r_dest The destination physical register.
1433     * @param r_base The base physical register for memory operand.
1434     * @param offset The displacement for memory operand.
1435     * @param move_type Specification on the move desired (size, alignment, register kind).
1436     * @return Returns the generate move LIR.
1437     */
1438    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1439                             MoveType move_type) = 0;
1440
1441    /**
1442     * @brief Used to generate an LIR that does a store from reg to mem.
1443     * @param r_base The base physical register for memory operand.
1444     * @param offset The displacement for memory operand.
1445     * @param r_src The destination physical register.
1446     * @param bytes_to_move The number of bytes to move.
1447     * @param is_aligned Whether the memory location is known to be aligned.
1448     * @return Returns the generate move LIR.
1449     */
1450    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1451                             MoveType move_type) = 0;
1452
1453    /**
1454     * @brief Used for generating a conditional register to register operation.
1455     * @param op The opcode kind.
1456     * @param cc The condition code that when true will perform the opcode.
1457     * @param r_dest The destination physical register.
1458     * @param r_src The source physical register.
1459     * @return Returns the newly created LIR or null in case of creation failure.
1460     */
1461    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1462
1463    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1464    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1465                             RegStorage r_src2) = 0;
1466    virtual LIR* OpTestSuspend(LIR* target) = 0;
1467    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
1468    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) = 0;
1469    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1470    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1471    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1472                       int offset) = 0;
1473    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1474    virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
1475    virtual void OpTlsCmp(ThreadOffset<8> offset, int val) = 0;
1476    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1477    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1478    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1479    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1480
1481    // May be optimized by targets.
1482    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1483    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1484
1485    // Temp workaround
1486    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1487
1488  protected:
1489    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1490
1491    CompilationUnit* GetCompilationUnit() {
1492      return cu_;
1493    }
1494    /*
1495     * @brief Returns the index of the lowest set bit in 'x'.
1496     * @param x Value to be examined.
1497     * @returns The bit number of the lowest bit set in the value.
1498     */
1499    int32_t LowestSetBit(uint64_t x);
1500    /*
1501     * @brief Is this value a power of two?
1502     * @param x Value to be examined.
1503     * @returns 'true' if only 1 bit is set in the value.
1504     */
1505    bool IsPowerOfTwo(uint64_t x);
1506    /*
1507     * @brief Do these SRs overlap?
1508     * @param rl_op1 One RegLocation
1509     * @param rl_op2 The other RegLocation
1510     * @return 'true' if the VR pairs overlap
1511     *
1512     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1513     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1514     * dex, we'll want to make this case illegal.
1515     */
1516    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1517
1518    /*
1519     * @brief Force a location (in a register) into a temporary register
1520     * @param loc location of result
1521     * @returns update location
1522     */
1523    virtual RegLocation ForceTemp(RegLocation loc);
1524
1525    /*
1526     * @brief Force a wide location (in registers) into temporary registers
1527     * @param loc location of result
1528     * @returns update location
1529     */
1530    virtual RegLocation ForceTempWide(RegLocation loc);
1531
1532    static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) {
1533      return wide ? k64 : ref ? kReference : k32;
1534    }
1535
1536    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1537                                    RegLocation rl_dest, RegLocation rl_src);
1538
1539    void AddSlowPath(LIRSlowPath* slowpath);
1540
1541    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1542                                            bool type_known_abstract, bool use_declaring_class,
1543                                            bool can_assume_type_is_in_dex_cache,
1544                                            uint32_t type_idx, RegLocation rl_dest,
1545                                            RegLocation rl_src);
1546    /*
1547     * @brief Generate the debug_frame FDE information if possible.
1548     * @returns pointer to vector containg CFE information, or NULL.
1549     */
1550    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1551
1552    /**
1553     * @brief Used to insert marker that can be used to associate MIR with LIR.
1554     * @details Only inserts marker if verbosity is enabled.
1555     * @param mir The mir that is currently being generated.
1556     */
1557    void GenPrintLabel(MIR* mir);
1558
1559    /**
1560     * @brief Used to generate return sequence when there is no frame.
1561     * @details Assumes that the return registers have already been populated.
1562     */
1563    virtual void GenSpecialExitSequence() = 0;
1564
1565    /**
1566     * @brief Used to generate code for special methods that are known to be
1567     * small enough to work in frameless mode.
1568     * @param bb The basic block of the first MIR.
1569     * @param mir The first MIR of the special method.
1570     * @param special Information about the special method.
1571     * @return Returns whether or not this was handled successfully. Returns false
1572     * if caller should punt to normal MIR2LIR conversion.
1573     */
1574    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1575
1576  protected:
1577    void ClobberBody(RegisterInfo* p);
1578    void SetCurrentDexPc(DexOffset dexpc) {
1579      current_dalvik_offset_ = dexpc;
1580    }
1581
1582    /**
1583     * @brief Used to lock register if argument at in_position was passed that way.
1584     * @details Does nothing if the argument is passed via stack.
1585     * @param in_position The argument number whose register to lock.
1586     * @param wide Whether the argument is wide.
1587     */
1588    void LockArg(int in_position, bool wide = false);
1589
1590    /**
1591     * @brief Used to load VR argument to a physical register.
1592     * @details The load is only done if the argument is not already in physical register.
1593     * LockArg must have been previously called.
1594     * @param in_position The argument number to load.
1595     * @param wide Whether the argument is 64-bit or not.
1596     * @return Returns the register (or register pair) for the loaded argument.
1597     */
1598    RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false);
1599
1600    /**
1601     * @brief Used to load a VR argument directly to a specified register location.
1602     * @param in_position The argument number to place in register.
1603     * @param rl_dest The register location where to place argument.
1604     */
1605    void LoadArgDirect(int in_position, RegLocation rl_dest);
1606
1607    /**
1608     * @brief Used to generate LIR for special getter method.
1609     * @param mir The mir that represents the iget.
1610     * @param special Information about the special getter method.
1611     * @return Returns whether LIR was successfully generated.
1612     */
1613    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1614
1615    /**
1616     * @brief Used to generate LIR for special setter method.
1617     * @param mir The mir that represents the iput.
1618     * @param special Information about the special setter method.
1619     * @return Returns whether LIR was successfully generated.
1620     */
1621    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1622
1623    /**
1624     * @brief Used to generate LIR for special return-args method.
1625     * @param mir The mir that represents the return of argument.
1626     * @param special Information about the special return-args method.
1627     * @return Returns whether LIR was successfully generated.
1628     */
1629    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1630
1631    void AddDivZeroCheckSlowPath(LIR* branch);
1632
1633    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1634    // kArg2 as temp.
1635    virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1636
1637    /**
1638     * @brief Load Constant into RegLocation
1639     * @param rl_dest Destination RegLocation
1640     * @param value Constant value
1641     */
1642    virtual void GenConst(RegLocation rl_dest, int value);
1643
1644    /**
1645     * Returns true iff wide GPRs are just different views on the same physical register.
1646     */
1647    virtual bool WideGPRsAreAliases() = 0;
1648
1649    /**
1650     * Returns true iff wide FPRs are just different views on the same physical register.
1651     */
1652    virtual bool WideFPRsAreAliases() = 0;
1653
1654
1655    enum class WidenessCheck {  // private
1656      kIgnoreWide,
1657      kCheckWide,
1658      kCheckNotWide
1659    };
1660
1661    enum class RefCheck {  // private
1662      kIgnoreRef,
1663      kCheckRef,
1664      kCheckNotRef
1665    };
1666
1667    enum class FPCheck {  // private
1668      kIgnoreFP,
1669      kCheckFP,
1670      kCheckNotFP
1671    };
1672
1673    /**
1674     * Check whether a reg storage seems well-formed, that is, if a reg storage is valid,
1675     * that it has the expected form for the flags.
1676     * A flag value of 0 means ignore. A flag value of -1 means false. A flag value of 1 means true.
1677     */
1678    void CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail,
1679                             bool report)
1680        const;
1681
1682    /**
1683     * Check whether a reg location seems well-formed, that is, if a reg storage is encoded,
1684     * that it has the expected size.
1685     */
1686    void CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const;
1687
1688    // See CheckRegStorageImpl. Will print or fail depending on kFailOnSizeError and
1689    // kReportSizeError.
1690    void CheckRegStorage(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp) const;
1691    // See CheckRegLocationImpl.
1692    void CheckRegLocation(RegLocation rl) const;
1693
1694  public:
1695    // TODO: add accessors for these.
1696    LIR* literal_list_;                        // Constants.
1697    LIR* method_literal_list_;                 // Method literals requiring patching.
1698    LIR* class_literal_list_;                  // Class literals requiring patching.
1699    LIR* code_literal_list_;                   // Code literals requiring patching.
1700    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1701
1702  protected:
1703    CompilationUnit* const cu_;
1704    MIRGraph* const mir_graph_;
1705    GrowableArray<SwitchTable*> switch_tables_;
1706    GrowableArray<FillArrayData*> fill_array_data_;
1707    GrowableArray<RegisterInfo*> tempreg_info_;
1708    GrowableArray<RegisterInfo*> reginfo_map_;
1709    GrowableArray<void*> pointer_storage_;
1710    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1711    CodeOffset data_offset_;            // starting offset of literal pool.
1712    size_t total_size_;                   // header + code size.
1713    LIR* block_label_list_;
1714    PromotionMap* promotion_map_;
1715    /*
1716     * TODO: The code generation utilities don't have a built-in
1717     * mechanism to propagate the original Dalvik opcode address to the
1718     * associated generated instructions.  For the trace compiler, this wasn't
1719     * necessary because the interpreter handled all throws and debugging
1720     * requests.  For now we'll handle this by placing the Dalvik offset
1721     * in the CompilationUnit struct before codegen for each instruction.
1722     * The low-level LIR creation utilites will pull it from here.  Rework this.
1723     */
1724    DexOffset current_dalvik_offset_;
1725    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1726    RegisterPool* reg_pool_;
1727    /*
1728     * Sanity checking for the register temp tracking.  The same ssa
1729     * name should never be associated with one temp register per
1730     * instruction compilation.
1731     */
1732    int live_sreg_;
1733    CodeBuffer code_buffer_;
1734    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1735    std::vector<uint8_t> encoded_mapping_table_;
1736    std::vector<uint32_t> core_vmap_table_;
1737    std::vector<uint32_t> fp_vmap_table_;
1738    std::vector<uint8_t> native_gc_map_;
1739    int num_core_spills_;
1740    int num_fp_spills_;
1741    int frame_size_;
1742    unsigned int core_spill_mask_;
1743    unsigned int fp_spill_mask_;
1744    LIR* first_lir_insn_;
1745    LIR* last_lir_insn_;
1746
1747    GrowableArray<LIRSlowPath*> slow_paths_;
1748
1749    // The memory reference type for new LIRs.
1750    // NOTE: Passing this as an explicit parameter by all functions that directly or indirectly
1751    // invoke RawLIR() would clutter the code and reduce the readability.
1752    ResourceMask::ResourceBit mem_ref_type_;
1753
1754    // Each resource mask now takes 16-bytes, so having both use/def masks directly in a LIR
1755    // would consume 32 bytes per LIR. Instead, the LIR now holds only pointers to the masks
1756    // (i.e. 8 bytes on 32-bit arch, 16 bytes on 64-bit arch) and we use ResourceMaskCache
1757    // to deduplicate the masks.
1758    ResourceMaskCache mask_cache_;
1759};  // Class Mir2Lir
1760
1761}  // namespace art
1762
1763#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1764