mir_to_lir.h revision 85089dd28a39dd20f42ac258398b2a08668f9ef1
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_storage.h"
25#include "dex/backend.h"
26#include "driver/compiler_driver.h"
27#include "leb128.h"
28#include "safe_map.h"
29#include "utils/arena_allocator.h"
30#include "utils/growable_array.h"
31
32namespace art {
33
34/*
35 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
36 * add type safety (see runtime/offsets.h).
37 */
38typedef uint32_t DexOffset;          // Dex offset in code units.
39typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
40typedef uint32_t CodeOffset;         // Native code offset in bytes.
41
42// Set to 1 to measure cost of suspend check.
43#define NO_SUSPEND 0
44
45#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
46#define IS_BRANCH            (1ULL << kIsBranch)
47#define IS_IT                (1ULL << kIsIT)
48#define IS_LOAD              (1ULL << kMemLoad)
49#define IS_QUAD_OP           (1ULL << kIsQuadOp)
50#define IS_QUIN_OP           (1ULL << kIsQuinOp)
51#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
52#define IS_STORE             (1ULL << kMemStore)
53#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
54#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
55#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
56#define NO_OPERAND           (1ULL << kNoOperand)
57#define REG_DEF0             (1ULL << kRegDef0)
58#define REG_DEF1             (1ULL << kRegDef1)
59#define REG_DEF2             (1ULL << kRegDef2)
60#define REG_DEFA             (1ULL << kRegDefA)
61#define REG_DEFD             (1ULL << kRegDefD)
62#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
63#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
64#define REG_DEF_LIST0        (1ULL << kRegDefList0)
65#define REG_DEF_LIST1        (1ULL << kRegDefList1)
66#define REG_DEF_LR           (1ULL << kRegDefLR)
67#define REG_DEF_SP           (1ULL << kRegDefSP)
68#define REG_USE0             (1ULL << kRegUse0)
69#define REG_USE1             (1ULL << kRegUse1)
70#define REG_USE2             (1ULL << kRegUse2)
71#define REG_USE3             (1ULL << kRegUse3)
72#define REG_USE4             (1ULL << kRegUse4)
73#define REG_USEA             (1ULL << kRegUseA)
74#define REG_USEC             (1ULL << kRegUseC)
75#define REG_USED             (1ULL << kRegUseD)
76#define REG_USEB             (1ULL << kRegUseB)
77#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
78#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
79#define REG_USE_LIST0        (1ULL << kRegUseList0)
80#define REG_USE_LIST1        (1ULL << kRegUseList1)
81#define REG_USE_LR           (1ULL << kRegUseLR)
82#define REG_USE_PC           (1ULL << kRegUsePC)
83#define REG_USE_SP           (1ULL << kRegUseSP)
84#define SETS_CCODES          (1ULL << kSetsCCodes)
85#define USES_CCODES          (1ULL << kUsesCCodes)
86#define USE_FP_STACK         (1ULL << kUseFpStack)
87#define REG_USE_LO           (1ULL << kUseLo)
88#define REG_USE_HI           (1ULL << kUseHi)
89#define REG_DEF_LO           (1ULL << kDefLo)
90#define REG_DEF_HI           (1ULL << kDefHi)
91
92// Common combo register usage patterns.
93#define REG_DEF01            (REG_DEF0 | REG_DEF1)
94#define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
95#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
96#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
97#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
98#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
99#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
100#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
101#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
102#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
103#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
104#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
105#define REG_USE012           (REG_USE01 | REG_USE2)
106#define REG_USE014           (REG_USE01 | REG_USE4)
107#define REG_USE01            (REG_USE0 | REG_USE1)
108#define REG_USE02            (REG_USE0 | REG_USE2)
109#define REG_USE12            (REG_USE1 | REG_USE2)
110#define REG_USE23            (REG_USE2 | REG_USE3)
111#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
112
113// TODO: #includes need a cleanup
114#ifndef INVALID_SREG
115#define INVALID_SREG (-1)
116#endif
117
118struct BasicBlock;
119struct CallInfo;
120struct CompilationUnit;
121struct InlineMethod;
122struct MIR;
123struct LIR;
124struct RegLocation;
125struct RegisterInfo;
126class DexFileMethodInliner;
127class MIRGraph;
128class Mir2Lir;
129
130typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
131                            const MethodReference& target_method,
132                            uint32_t method_idx, uintptr_t direct_code,
133                            uintptr_t direct_method, InvokeType type);
134
135typedef std::vector<uint8_t> CodeBuffer;
136
137struct UseDefMasks {
138  uint64_t use_mask;        // Resource mask for use.
139  uint64_t def_mask;        // Resource mask for def.
140};
141
142struct AssemblyInfo {
143  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
144};
145
146struct LIR {
147  CodeOffset offset;             // Offset of this instruction.
148  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
149  int16_t opcode;
150  LIR* next;
151  LIR* prev;
152  LIR* target;
153  struct {
154    unsigned int alias_info:17;  // For Dalvik register disambiguation.
155    bool is_nop:1;               // LIR is optimized away.
156    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
157    bool use_def_invalid:1;      // If true, masks should not be used.
158    unsigned int generation:1;   // Used to track visitation state during fixup pass.
159    unsigned int fixup:8;        // Fixup kind.
160  } flags;
161  union {
162    UseDefMasks m;               // Use & Def masks used during optimization.
163    AssemblyInfo a;              // Instruction info used during assembly phase.
164  } u;
165  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
166};
167
168// Target-specific initialization.
169Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
170                          ArenaAllocator* const arena);
171Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
172                            ArenaAllocator* const arena);
173Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
174                          ArenaAllocator* const arena);
175Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
176                          ArenaAllocator* const arena);
177Mir2Lir* X86_64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
178                          ArenaAllocator* const arena);
179
180// Utility macros to traverse the LIR list.
181#define NEXT_LIR(lir) (lir->next)
182#define PREV_LIR(lir) (lir->prev)
183
184// Defines for alias_info (tracks Dalvik register references).
185#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
186#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
187#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
188#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
189
190// Common resource macros.
191#define ENCODE_CCODE            (1ULL << kCCode)
192#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
193
194// Abstract memory locations.
195#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
196#define ENCODE_LITERAL          (1ULL << kLiteral)
197#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
198#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
199
200#define ENCODE_ALL              (~0ULL)
201#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
202                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
203
204#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
205#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
206  do { \
207    low_reg = both_regs & 0xff; \
208    high_reg = (both_regs >> 8) & 0xff; \
209  } while (false)
210
211// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
212#define STARTING_DOUBLE_SREG 0x10000
213
214// TODO: replace these macros
215#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
216#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
217#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
218#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
219#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
220
221class Mir2Lir : public Backend {
222  public:
223    /*
224     * Auxiliary information describing the location of data embedded in the Dalvik
225     * byte code stream.
226     */
227    struct EmbeddedData {
228      CodeOffset offset;        // Code offset of data block.
229      const uint16_t* table;      // Original dex data.
230      DexOffset vaddr;            // Dalvik offset of parent opcode.
231    };
232
233    struct FillArrayData : EmbeddedData {
234      int32_t size;
235    };
236
237    struct SwitchTable : EmbeddedData {
238      LIR* anchor;                // Reference instruction for relative offsets.
239      LIR** targets;              // Array of case targets.
240    };
241
242    /* Static register use counts */
243    struct RefCounts {
244      int count;
245      int s_reg;
246    };
247
248    /*
249     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
250     * and native register storage.  The primary purpose is to reuse previuosly
251     * loaded values, if possible, and otherwise to keep the value in register
252     * storage as long as possible.
253     *
254     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
255     * this register (or pair).  For example, a 64-bit register containing a 32-bit
256     * Dalvik value would have wide_value==false even though the storage container itself
257     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
258     * would have wide_value==true (and additionally would have its partner field set to the
259     * other half whose wide_value field would also be true.
260     *
261     * NOTE 2: In the case of a register pair, you can determine which of the partners
262     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
263     *
264     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
265     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
266     * value, and the s_reg of the high word is implied (s_reg + 1).
267     *
268     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
269     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
270     * If is_temp==true and live==false, no other fields have
271     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
272     * and def_end describe the relationship between the temp register/register pair and
273     * the Dalvik value[s] described by s_reg/s_reg+1.
274     *
275     * The fields used_storage, master_storage and storage_mask are used to track allocation
276     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
277     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
278     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
279     * change once initialized.  The "used_storage" field tracks current allocation status.
280     * Although each record contains this field, only the field from the largest member of
281     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
282     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
283     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
284     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
285     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
286     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
287     *
288     * For an X86 vector register example, storage_mask would be:
289     *    0x00000001 for 32-bit view of xmm1
290     *    0x00000003 for 64-bit view of xmm1
291     *    0x0000000f for 128-bit view of xmm1
292     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
293     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
294     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
295     *
296     * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
297     * held in the widest member of an aliased set.  Note, though, that for a temp register to
298     * reused as live, it must both be marked live and the associated SReg() must match the
299     * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
300     * members of an aliased set will share the same liveness flags, but each will individually
301     * maintain s_reg_.  In this way we can know that at least one member of an
302     * aliased set is live, but will only fully match on the appropriate alias view.  For example,
303     * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
304     * because it is wide), its aliases s2 and s3 will show as live, but will have
305     * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
306     * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
307     * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
308     * report that v9 is currently not live as a single (which is what we want).
309     *
310     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
311     * to treat xmm registers:
312     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
313     *         o This more closely matches reality, but means you'd need to be able to get
314     *           to the associated RegisterInfo struct to figure out how it's being used.
315     *         o This is how 64-bit core registers will be used - always 64 bits, but the
316     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
317     *     2. View the xmm registers based on contents.
318     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
319     *           be a k64BitVector.
320     *         o Note that the two uses above would be considered distinct registers (but with
321     *           the aliasing mechanism, we could detect interference).
322     *         o This is how aliased double and single float registers will be handled on
323     *           Arm and MIPS.
324     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
325     * mechanism 2 for aliased float registers and x86 vector registers.
326     */
327    class RegisterInfo {
328     public:
329      RegisterInfo(RegStorage r, uint64_t mask = ENCODE_ALL);
330      ~RegisterInfo() {}
331      static void* operator new(size_t size, ArenaAllocator* arena) {
332        return arena->Alloc(size, kArenaAllocRegAlloc);
333      }
334
335      static const uint32_t k32SoloStorageMask     = 0x00000001;
336      static const uint32_t kLowSingleStorageMask  = 0x00000001;
337      static const uint32_t kHighSingleStorageMask = 0x00000002;
338      static const uint32_t k64SoloStorageMask     = 0x00000003;
339      static const uint32_t k128SoloStorageMask    = 0x0000000f;
340      static const uint32_t k256SoloStorageMask    = 0x000000ff;
341      static const uint32_t k512SoloStorageMask    = 0x0000ffff;
342      static const uint32_t k1024SoloStorageMask   = 0xffffffff;
343
344      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
345      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
346      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
347      // No part of the containing storage is live in this view.
348      bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
349      // Liveness of this view matches.  Note: not equivalent to !IsDead().
350      bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
351      void MarkLive(int s_reg) {
352        // TODO: Anything useful to assert here?
353        s_reg_ = s_reg;
354        master_->liveness_ |= storage_mask_;
355      }
356      void MarkDead() {
357        if (SReg() != INVALID_SREG) {
358          s_reg_ = INVALID_SREG;
359          master_->liveness_ &= ~storage_mask_;
360          ResetDefBody();
361        }
362      }
363      RegStorage GetReg() { return reg_; }
364      void SetReg(RegStorage reg) { reg_ = reg; }
365      bool IsTemp() { return is_temp_; }
366      void SetIsTemp(bool val) { is_temp_ = val; }
367      bool IsWide() { return wide_value_; }
368      void SetIsWide(bool val) {
369        wide_value_ = val;
370        if (!val) {
371          // If not wide, reset partner to self.
372          SetPartner(GetReg());
373        }
374      }
375      bool IsDirty() { return dirty_; }
376      void SetIsDirty(bool val) { dirty_ = val; }
377      RegStorage Partner() { return partner_; }
378      void SetPartner(RegStorage partner) { partner_ = partner; }
379      int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
380      uint64_t DefUseMask() { return def_use_mask_; }
381      void SetDefUseMask(uint64_t def_use_mask) { def_use_mask_ = def_use_mask; }
382      RegisterInfo* Master() { return master_; }
383      void SetMaster(RegisterInfo* master) {
384        master_ = master;
385        if (master != this) {
386          master_->aliased_ = true;
387          DCHECK(alias_chain_ == nullptr);
388          alias_chain_ = master_->alias_chain_;
389          master_->alias_chain_ = this;
390        }
391      }
392      bool IsAliased() { return aliased_; }
393      RegisterInfo* GetAliasChain() { return alias_chain_; }
394      uint32_t StorageMask() { return storage_mask_; }
395      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
396      LIR* DefStart() { return def_start_; }
397      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
398      LIR* DefEnd() { return def_end_; }
399      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
400      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
401      // Find member of aliased set matching storage_used; return nullptr if none.
402      RegisterInfo* FindMatchingView(uint32_t storage_used) {
403        RegisterInfo* res = Master();
404        for (; res != nullptr; res = res->GetAliasChain()) {
405          if (res->StorageMask() == storage_used)
406            break;
407        }
408        return res;
409      }
410
411     private:
412      RegStorage reg_;
413      bool is_temp_;               // Can allocate as temp?
414      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
415      bool dirty_;                 // If live, is it dirty?
416      bool aliased_;               // Is this the master for other aliased RegisterInfo's?
417      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
418      int s_reg_;                  // Name of live value.
419      uint64_t def_use_mask_;      // Resources for this element.
420      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
421      uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
422      RegisterInfo* master_;       // Pointer to controlling storage mask.
423      uint32_t storage_mask_;      // Track allocation of sub-units.
424      LIR *def_start_;             // Starting inst in last def sequence.
425      LIR *def_end_;               // Ending inst in last def sequence.
426      RegisterInfo* alias_chain_;  // Chain of aliased registers.
427    };
428
429    class RegisterPool {
430     public:
431      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
432                   const std::vector<RegStorage>& core_regs,
433                   const std::vector<RegStorage>& core64_regs,
434                   const std::vector<RegStorage>& sp_regs,
435                   const std::vector<RegStorage>& dp_regs,
436                   const std::vector<RegStorage>& reserved_regs,
437                   const std::vector<RegStorage>& reserved64_regs,
438                   const std::vector<RegStorage>& core_temps,
439                   const std::vector<RegStorage>& core64_temps,
440                   const std::vector<RegStorage>& sp_temps,
441                   const std::vector<RegStorage>& dp_temps);
442      ~RegisterPool() {}
443      static void* operator new(size_t size, ArenaAllocator* arena) {
444        return arena->Alloc(size, kArenaAllocRegAlloc);
445      }
446      void ResetNextTemp() {
447        next_core_reg_ = 0;
448        next_sp_reg_ = 0;
449        next_dp_reg_ = 0;
450      }
451      GrowableArray<RegisterInfo*> core_regs_;
452      int next_core_reg_;
453      GrowableArray<RegisterInfo*> core64_regs_;
454      int next_core64_reg_;
455      GrowableArray<RegisterInfo*> sp_regs_;    // Single precision float.
456      int next_sp_reg_;
457      GrowableArray<RegisterInfo*> dp_regs_;    // Double precision float.
458      int next_dp_reg_;
459
460     private:
461      Mir2Lir* const m2l_;
462    };
463
464    struct PromotionMap {
465      RegLocationType core_location:3;
466      uint8_t core_reg;
467      RegLocationType fp_location:3;
468      uint8_t FpReg;
469      bool first_in_pair;
470    };
471
472    //
473    // Slow paths.  This object is used generate a sequence of code that is executed in the
474    // slow path.  For example, resolving a string or class is slow as it will only be executed
475    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
476    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
477    // branch over them.
478    //
479    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
480    // the Compile() function that will be called near the end of the code generated by the
481    // method.
482    //
483    // The basic flow for a slow path is:
484    //
485    //     CMP reg, #value
486    //     BEQ fromfast
487    //   cont:
488    //     ...
489    //     fast path code
490    //     ...
491    //     more code
492    //     ...
493    //     RETURN
494    ///
495    //   fromfast:
496    //     ...
497    //     slow path code
498    //     ...
499    //     B cont
500    //
501    // So you see we need two labels and two branches.  The first branch (called fromfast) is
502    // the conditional branch to the slow path code.  The second label (called cont) is used
503    // as an unconditional branch target for getting back to the code after the slow path
504    // has completed.
505    //
506
507    class LIRSlowPath {
508     public:
509      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
510                  LIR* cont = nullptr) :
511        m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
512          m2l->StartSlowPath(cont);
513      }
514      virtual ~LIRSlowPath() {}
515      virtual void Compile() = 0;
516
517      static void* operator new(size_t size, ArenaAllocator* arena) {
518        return arena->Alloc(size, kArenaAllocData);
519      }
520
521      LIR *GetContinuationLabel() {
522        return cont_;
523      }
524
525      LIR *GetFromFast() {
526        return fromfast_;
527      }
528
529     protected:
530      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
531
532      Mir2Lir* const m2l_;
533      CompilationUnit* const cu_;
534      const DexOffset current_dex_pc_;
535      LIR* const fromfast_;
536      LIR* const cont_;
537    };
538
539    virtual ~Mir2Lir() {}
540
541    int32_t s4FromSwitchData(const void* switch_data) {
542      return *reinterpret_cast<const int32_t*>(switch_data);
543    }
544
545    /*
546     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
547     * it was introduced, it was intended to be a quick best guess of type without having to
548     * take the time to do type analysis.  Currently, though, we have a much better idea of
549     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
550     * just use our knowledge of type to select the most appropriate register class?
551     */
552    RegisterClass RegClassBySize(OpSize size) {
553      return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
554              size == kSignedByte) ? kCoreReg : kAnyReg;
555    }
556
557    size_t CodeBufferSizeInBytes() {
558      return code_buffer_.size() / sizeof(code_buffer_[0]);
559    }
560
561    static bool IsPseudoLirOp(int opcode) {
562      return (opcode < 0);
563    }
564
565    /*
566     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
567     * instructions which require PC-relative fixups), we need the operands to carry
568     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
569     * hold that index in the operand array.
570     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
571     * may be worth conditionally-compiling a set of identity functions here.
572     */
573    uint32_t WrapPointer(void* pointer) {
574      uint32_t res = pointer_storage_.Size();
575      pointer_storage_.Insert(pointer);
576      return res;
577    }
578
579    void* UnwrapPointer(size_t index) {
580      return pointer_storage_.Get(index);
581    }
582
583    // strdup(), but allocates from the arena.
584    char* ArenaStrdup(const char* str) {
585      size_t len = strlen(str) + 1;
586      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
587      if (res != NULL) {
588        strncpy(res, str, len);
589      }
590      return res;
591    }
592
593    // Shared by all targets - implemented in codegen_util.cc
594    void AppendLIR(LIR* lir);
595    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
596    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
597
598    /**
599     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
600     * to place in a frame.
601     * @return Returns the maximum number of compiler temporaries.
602     */
603    size_t GetMaxPossibleCompilerTemps() const;
604
605    /**
606     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
607     * @return Returns the size in bytes for space needed for compiler temporary spill region.
608     */
609    size_t GetNumBytesForCompilerTempSpillRegion();
610
611    DexOffset GetCurrentDexPc() const {
612      return current_dalvik_offset_;
613    }
614
615    int ComputeFrameSize();
616    virtual void Materialize();
617    virtual CompiledMethod* GetCompiledMethod();
618    void MarkSafepointPC(LIR* inst);
619    void SetupResourceMasks(LIR* lir, bool leave_mem_ref = false);
620    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
621    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
622    void SetupRegMask(uint64_t* mask, int reg);
623    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
624    void DumpPromotionMap();
625    void CodegenDump();
626    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
627                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
628    LIR* NewLIR0(int opcode);
629    LIR* NewLIR1(int opcode, int dest);
630    LIR* NewLIR2(int opcode, int dest, int src1);
631    LIR* NewLIR2NoDest(int opcode, int src, int info);
632    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
633    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
634    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
635    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
636    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
637    LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
638    LIR* AddWordData(LIR* *constant_list_p, int value);
639    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
640    void ProcessSwitchTables();
641    void DumpSparseSwitchTable(const uint16_t* table);
642    void DumpPackedSwitchTable(const uint16_t* table);
643    void MarkBoundary(DexOffset offset, const char* inst_str);
644    void NopLIR(LIR* lir);
645    void UnlinkLIR(LIR* lir);
646    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
647    bool IsInexpensiveConstant(RegLocation rl_src);
648    ConditionCode FlipComparisonOrder(ConditionCode before);
649    ConditionCode NegateComparison(ConditionCode before);
650    virtual void InstallLiteralPools();
651    void InstallSwitchTables();
652    void InstallFillArrayData();
653    bool VerifyCatchEntries();
654    void CreateMappingTables();
655    void CreateNativeGcMap();
656    int AssignLiteralOffset(CodeOffset offset);
657    int AssignSwitchTablesOffset(CodeOffset offset);
658    int AssignFillArrayDataOffset(CodeOffset offset);
659    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
660    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
661    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
662
663    virtual void StartSlowPath(LIR *label) {}
664    virtual void BeginInvoke(CallInfo* info) {}
665    virtual void EndInvoke(CallInfo* info) {}
666
667
668    // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation.  No code generated.
669    RegLocation NarrowRegLoc(RegLocation loc);
670
671    // Shared by all targets - implemented in local_optimizations.cc
672    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
673    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
674    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
675    virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
676
677    // Shared by all targets - implemented in ralloc_util.cc
678    int GetSRegHi(int lowSreg);
679    bool LiveOut(int s_reg);
680    void SimpleRegAlloc();
681    void ResetRegPool();
682    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
683    void DumpRegPool(GrowableArray<RegisterInfo*>* regs);
684    void DumpCoreRegPool();
685    void DumpFpRegPool();
686    void DumpRegPools();
687    /* Mark a temp register as dead.  Does not affect allocation state. */
688    void Clobber(RegStorage reg);
689    void ClobberSReg(int s_reg);
690    void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
691    int SRegToPMap(int s_reg);
692    void RecordCorePromotion(RegStorage reg, int s_reg);
693    RegStorage AllocPreservedCoreReg(int s_reg);
694    void RecordSinglePromotion(RegStorage reg, int s_reg);
695    void RecordDoublePromotion(RegStorage reg, int s_reg);
696    RegStorage AllocPreservedSingle(int s_reg);
697    virtual RegStorage AllocPreservedDouble(int s_reg);
698    RegStorage AllocTempBody(GrowableArray<RegisterInfo*> &regs, int* next_temp, bool required);
699    virtual RegStorage AllocFreeTemp();
700    virtual RegStorage AllocTemp();
701    virtual RegStorage AllocTempWide();
702    virtual RegStorage AllocTempSingle();
703    virtual RegStorage AllocTempDouble();
704    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class);
705    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class);
706    void FlushReg(RegStorage reg);
707    void FlushRegWide(RegStorage reg);
708    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
709    RegStorage FindLiveReg(GrowableArray<RegisterInfo*> &regs, int s_reg);
710    virtual void FreeTemp(RegStorage reg);
711    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
712    virtual bool IsLive(RegStorage reg);
713    virtual bool IsTemp(RegStorage reg);
714    bool IsPromoted(RegStorage reg);
715    bool IsDirty(RegStorage reg);
716    void LockTemp(RegStorage reg);
717    void ResetDef(RegStorage reg);
718    void NullifyRange(RegStorage reg, int s_reg);
719    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
720    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
721    virtual RegLocation WideToNarrow(RegLocation rl);
722    void ResetDefLoc(RegLocation rl);
723    void ResetDefLocWide(RegLocation rl);
724    void ResetDefTracking();
725    void ClobberAllTemps();
726    void FlushSpecificReg(RegisterInfo* info);
727    void FlushAllRegs();
728    bool RegClassMatches(int reg_class, RegStorage reg);
729    void MarkLive(RegLocation loc);
730    void MarkTemp(RegStorage reg);
731    void UnmarkTemp(RegStorage reg);
732    void MarkWide(RegStorage reg);
733    void MarkNarrow(RegStorage reg);
734    void MarkClean(RegLocation loc);
735    void MarkDirty(RegLocation loc);
736    void MarkInUse(RegStorage reg);
737    bool CheckCorePoolSanity();
738    virtual RegLocation UpdateLoc(RegLocation loc);
739    virtual RegLocation UpdateLocWide(RegLocation loc);
740    RegLocation UpdateRawLoc(RegLocation loc);
741
742    /**
743     * @brief Used to prepare a register location to receive a wide value.
744     * @see EvalLoc
745     * @param loc the location where the value will be stored.
746     * @param reg_class Type of register needed.
747     * @param update Whether the liveness information should be updated.
748     * @return Returns the properly typed temporary in physical register pairs.
749     */
750    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
751
752    /**
753     * @brief Used to prepare a register location to receive a value.
754     * @param loc the location where the value will be stored.
755     * @param reg_class Type of register needed.
756     * @param update Whether the liveness information should be updated.
757     * @return Returns the properly typed temporary in physical register.
758     */
759    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
760
761    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
762    void DumpCounts(const RefCounts* arr, int size, const char* msg);
763    void DoPromotion();
764    int VRegOffset(int v_reg);
765    int SRegOffset(int s_reg);
766    RegLocation GetReturnWide(bool is_double);
767    RegLocation GetReturn(bool is_float);
768    RegisterInfo* GetRegInfo(RegStorage reg);
769
770    // Shared by all targets - implemented in gen_common.cc.
771    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
772    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
773                          RegLocation rl_src, RegLocation rl_dest, int lit);
774    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
775    virtual void HandleSlowPaths();
776    void GenBarrier();
777    void GenDivZeroException();
778    // c_code holds condition code that's generated from testing divisor against 0.
779    void GenDivZeroCheck(ConditionCode c_code);
780    // reg holds divisor.
781    void GenDivZeroCheck(RegStorage reg);
782    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
783    void GenArrayBoundsCheck(int32_t index, RegStorage length);
784    LIR* GenNullCheck(RegStorage reg);
785    void MarkPossibleNullPointerException(int opt_flags);
786    void MarkPossibleStackOverflowException();
787    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
788    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
789    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
790    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
791    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
792                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
793    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
794                                 LIR* taken, LIR* fall_through);
795    virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
796    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
797                         RegLocation rl_src);
798    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
799                     RegLocation rl_src);
800    void GenFilledNewArray(CallInfo* info);
801    void GenSput(MIR* mir, RegLocation rl_src,
802                 bool is_long_or_double, bool is_object);
803    void GenSget(MIR* mir, RegLocation rl_dest,
804                 bool is_long_or_double, bool is_object);
805    void GenIGet(MIR* mir, int opt_flags, OpSize size,
806                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
807    void GenIPut(MIR* mir, int opt_flags, OpSize size,
808                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
809    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
810                        RegLocation rl_src);
811
812    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
813    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
814    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
815    void GenThrow(RegLocation rl_src);
816    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
817    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
818    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
819                      RegLocation rl_src1, RegLocation rl_src2);
820    virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
821                        RegLocation rl_src1, RegLocation rl_shift);
822    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
823                          RegLocation rl_src, int lit);
824    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
825                        RegLocation rl_src1, RegLocation rl_src2);
826    template <size_t pointer_size>
827    void GenConversionCall(ThreadOffset<pointer_size> func_offset, RegLocation rl_dest,
828                           RegLocation rl_src);
829    virtual void GenSuspendTest(int opt_flags);
830    virtual void GenSuspendTestAndBranch(int opt_flags, LIR* target);
831
832    // This will be overridden by x86 implementation.
833    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
834    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
835                       RegLocation rl_src1, RegLocation rl_src2);
836
837    // Shared by all targets - implemented in gen_invoke.cc.
838    template <size_t pointer_size>
839    LIR* CallHelper(RegStorage r_tgt, ThreadOffset<pointer_size> helper_offset, bool safepoint_pc,
840                    bool use_link = true);
841    RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
842    RegStorage CallHelperSetup(ThreadOffset<8> helper_offset);
843    template <size_t pointer_size>
844    void CallRuntimeHelper(ThreadOffset<pointer_size> helper_offset, bool safepoint_pc);
845    template <size_t pointer_size>
846    void CallRuntimeHelperImm(ThreadOffset<pointer_size> helper_offset, int arg0, bool safepoint_pc);
847    template <size_t pointer_size>
848    void CallRuntimeHelperReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, bool safepoint_pc);
849    template <size_t pointer_size>
850    void CallRuntimeHelperRegLocation(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
851                                      bool safepoint_pc);
852    template <size_t pointer_size>
853    void CallRuntimeHelperImmImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg1,
854                                 bool safepoint_pc);
855    template <size_t pointer_size>
856    void CallRuntimeHelperImmRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
857                                         RegLocation arg1, bool safepoint_pc);
858    template <size_t pointer_size>
859    void CallRuntimeHelperRegLocationImm(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
860                                         int arg1, bool safepoint_pc);
861    template <size_t pointer_size>
862    void CallRuntimeHelperImmReg(ThreadOffset<pointer_size> helper_offset, int arg0, RegStorage arg1,
863                                 bool safepoint_pc);
864    template <size_t pointer_size>
865    void CallRuntimeHelperRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, int arg1,
866                                 bool safepoint_pc);
867    template <size_t pointer_size>
868    void CallRuntimeHelperImmMethod(ThreadOffset<pointer_size> helper_offset, int arg0,
869                                    bool safepoint_pc);
870    template <size_t pointer_size>
871    void CallRuntimeHelperRegMethod(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
872                                    bool safepoint_pc);
873    template <size_t pointer_size>
874    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<pointer_size> helper_offset,
875                                               RegStorage arg0, RegLocation arg2, bool safepoint_pc);
876    template <size_t pointer_size>
877    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
878                                                 RegLocation arg0, RegLocation arg1,
879                                                 bool safepoint_pc);
880    template <size_t pointer_size>
881    void CallRuntimeHelperRegReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
882                                 RegStorage arg1, bool safepoint_pc);
883    template <size_t pointer_size>
884    void CallRuntimeHelperRegRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
885                                    RegStorage arg1, int arg2, bool safepoint_pc);
886    template <size_t pointer_size>
887    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
888                                               RegLocation arg2, bool safepoint_pc);
889    template <size_t pointer_size>
890    void CallRuntimeHelperImmMethodImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg2,
891                                       bool safepoint_pc);
892    template <size_t pointer_size>
893    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
894                                                    int arg0, RegLocation arg1, RegLocation arg2,
895                                                    bool safepoint_pc);
896    template <size_t pointer_size>
897    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
898                                                            RegLocation arg0, RegLocation arg1,
899                                                            RegLocation arg2,
900                                                            bool safepoint_pc);
901    void GenInvoke(CallInfo* info);
902    void GenInvokeNoInline(CallInfo* info);
903    virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
904    int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
905                             NextCallInsn next_call_insn,
906                             const MethodReference& target_method,
907                             uint32_t vtable_idx,
908                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
909                             bool skip_this);
910    int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
911                           NextCallInsn next_call_insn,
912                           const MethodReference& target_method,
913                           uint32_t vtable_idx,
914                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
915                           bool skip_this);
916
917    /**
918     * @brief Used to determine the register location of destination.
919     * @details This is needed during generation of inline intrinsics because it finds destination
920     *  of return,
921     * either the physical register or the target of move-result.
922     * @param info Information about the invoke.
923     * @return Returns the destination location.
924     */
925    RegLocation InlineTarget(CallInfo* info);
926
927    /**
928     * @brief Used to determine the wide register location of destination.
929     * @see InlineTarget
930     * @param info Information about the invoke.
931     * @return Returns the destination location.
932     */
933    RegLocation InlineTargetWide(CallInfo* info);
934
935    bool GenInlinedCharAt(CallInfo* info);
936    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
937    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
938    bool GenInlinedAbsInt(CallInfo* info);
939    bool GenInlinedAbsLong(CallInfo* info);
940    bool GenInlinedAbsFloat(CallInfo* info);
941    bool GenInlinedAbsDouble(CallInfo* info);
942    bool GenInlinedFloatCvt(CallInfo* info);
943    bool GenInlinedDoubleCvt(CallInfo* info);
944    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
945    bool GenInlinedStringCompareTo(CallInfo* info);
946    bool GenInlinedCurrentThread(CallInfo* info);
947    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
948    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
949                             bool is_volatile, bool is_ordered);
950    virtual int LoadArgRegs(CallInfo* info, int call_state,
951                    NextCallInsn next_call_insn,
952                    const MethodReference& target_method,
953                    uint32_t vtable_idx,
954                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
955                    bool skip_this);
956
957    // Shared by all targets - implemented in gen_loadstore.cc.
958    RegLocation LoadCurrMethod();
959    void LoadCurrMethodDirect(RegStorage r_tgt);
960    virtual LIR* LoadConstant(RegStorage r_dest, int value);
961    // Natural word size.
962    virtual LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
963      return LoadBaseDisp(r_base, displacement, r_dest, kWord);
964    }
965    // Load 32 bits, regardless of target.
966    virtual LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
967      return LoadBaseDisp(r_base, displacement, r_dest, k32);
968    }
969    // Load a reference at base + displacement and decompress into register.
970    virtual LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
971      return LoadBaseDisp(r_base, displacement, r_dest, kReference);
972    }
973    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
974    virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
975    // Load Dalvik value with 64-bit memory storage.
976    virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
977    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
978    virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
979    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
980    virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
981    // Load Dalvik value with 64-bit memory storage.
982    virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
983    // Load Dalvik value with 64-bit memory storage.
984    virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
985    // Store an item of natural word size.
986    virtual LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
987      return StoreBaseDisp(r_base, displacement, r_src, kWord);
988    }
989    // Store an uncompressed reference into a compressed 32-bit container.
990    virtual LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src) {
991      return StoreBaseDisp(r_base, displacement, r_src, kReference);
992    }
993    // Store 32 bits, regardless of target.
994    virtual LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
995      return StoreBaseDisp(r_base, displacement, r_src, k32);
996    }
997
998    /**
999     * @brief Used to do the final store in the destination as per bytecode semantics.
1000     * @param rl_dest The destination dalvik register location.
1001     * @param rl_src The source register location. Can be either physical register or dalvik register.
1002     */
1003    virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
1004
1005    /**
1006     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1007     * @see StoreValue
1008     * @param rl_dest The destination dalvik register location.
1009     * @param rl_src The source register location. Can be either physical register or dalvik
1010     *  register.
1011     */
1012    virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
1013
1014    /**
1015     * @brief Used to do the final store to a destination as per bytecode semantics.
1016     * @see StoreValue
1017     * @param rl_dest The destination dalvik register location.
1018     * @param rl_src The source register location. It must be kLocPhysReg
1019     *
1020     * This is used for x86 two operand computations, where we have computed the correct
1021     * register value that now needs to be properly registered.  This is used to avoid an
1022     * extra register copy that would result if StoreValue was called.
1023     */
1024    virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
1025
1026    /**
1027     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1028     * @see StoreValueWide
1029     * @param rl_dest The destination dalvik register location.
1030     * @param rl_src The source register location. It must be kLocPhysReg
1031     *
1032     * This is used for x86 two operand computations, where we have computed the correct
1033     * register values that now need to be properly registered.  This is used to avoid an
1034     * extra pair of register copies that would result if StoreValueWide was called.
1035     */
1036    virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
1037
1038    // Shared by all targets - implemented in mir_to_lir.cc.
1039    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
1040    virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1041    bool MethodBlockCodeGen(BasicBlock* bb);
1042    bool SpecialMIR2LIR(const InlineMethod& special);
1043    virtual void MethodMIR2LIR();
1044    // Update LIR for verbose listings.
1045    void UpdateLIROffsets();
1046
1047    /*
1048     * @brief Load the address of the dex method into the register.
1049     * @param target_method The MethodReference of the method to be invoked.
1050     * @param type How the method will be invoked.
1051     * @param register that will contain the code address.
1052     * @note register will be passed to TargetReg to get physical register.
1053     */
1054    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1055                         SpecialTargetRegister symbolic_reg);
1056
1057    /*
1058     * @brief Load the Method* of a dex method into the register.
1059     * @param target_method The MethodReference of the method to be invoked.
1060     * @param type How the method will be invoked.
1061     * @param register that will contain the code address.
1062     * @note register will be passed to TargetReg to get physical register.
1063     */
1064    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1065                                   SpecialTargetRegister symbolic_reg);
1066
1067    /*
1068     * @brief Load the Class* of a Dex Class type into the register.
1069     * @param type How the method will be invoked.
1070     * @param register that will contain the code address.
1071     * @note register will be passed to TargetReg to get physical register.
1072     */
1073    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
1074
1075    // Routines that work for the generic case, but may be overriden by target.
1076    /*
1077     * @brief Compare memory to immediate, and branch if condition true.
1078     * @param cond The condition code that when true will branch to the target.
1079     * @param temp_reg A temporary register that can be used if compare to memory is not
1080     * supported by the architecture.
1081     * @param base_reg The register holding the base address.
1082     * @param offset The offset from the base.
1083     * @param check_value The immediate to compare to.
1084     * @returns The branch instruction that was generated.
1085     */
1086    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1087                                   int offset, int check_value, LIR* target);
1088
1089    // Required for target - codegen helpers.
1090    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1091                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1092    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1093    virtual LIR* CheckSuspendUsingLoad() = 0;
1094
1095    virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
1096    virtual RegStorage LoadHelper(ThreadOffset<8> offset) = 0;
1097
1098    virtual LIR* LoadBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_dest,
1099                                      OpSize size) = 0;
1100    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1101                              OpSize size) = 0;
1102    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1103                                 int scale, OpSize size) = 0;
1104    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1105                                     int displacement, RegStorage r_dest, OpSize size) = 0;
1106    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1107    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1108    virtual LIR* StoreBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_src,
1109                                       OpSize size) = 0;
1110    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1111                               OpSize size) = 0;
1112    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1113                                  int scale, OpSize size) = 0;
1114    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1115                                      int displacement, RegStorage r_src, OpSize size) = 0;
1116    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
1117
1118    // Required for target - register utilities.
1119    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1120    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
1121    virtual RegLocation GetReturnAlt() = 0;
1122    virtual RegLocation GetReturnWideAlt() = 0;
1123    virtual RegLocation LocCReturn() = 0;
1124    virtual RegLocation LocCReturnDouble() = 0;
1125    virtual RegLocation LocCReturnFloat() = 0;
1126    virtual RegLocation LocCReturnWide() = 0;
1127    virtual uint64_t GetRegMaskCommon(RegStorage reg) = 0;
1128    virtual void AdjustSpillMask() = 0;
1129    virtual void ClobberCallerSave() = 0;
1130    virtual void FreeCallTemps() = 0;
1131    virtual void LockCallTemps() = 0;
1132    virtual void MarkPreservedSingle(int v_reg, RegStorage reg) = 0;
1133    virtual void MarkPreservedDouble(int v_reg, RegStorage reg) = 0;
1134    virtual void CompilerInitializeRegAlloc() = 0;
1135
1136    // Required for target - miscellaneous.
1137    virtual void AssembleLIR() = 0;
1138    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
1139    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
1140    virtual const char* GetTargetInstFmt(int opcode) = 0;
1141    virtual const char* GetTargetInstName(int opcode) = 0;
1142    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1143    virtual uint64_t GetPCUseDefEncoding() = 0;
1144    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1145    virtual int GetInsnSize(LIR* lir) = 0;
1146    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1147
1148    // Check support for volatile load/store of a given size.
1149    virtual bool SupportsVolatileLoadStore(OpSize size) = 0;
1150    // Get the register class for load/store of a field.
1151    virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
1152
1153    // Required for target - Dalvik-level generators.
1154    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1155                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
1156    virtual void GenMulLong(Instruction::Code,
1157                            RegLocation rl_dest, RegLocation rl_src1,
1158                            RegLocation rl_src2) = 0;
1159    virtual void GenAddLong(Instruction::Code,
1160                            RegLocation rl_dest, RegLocation rl_src1,
1161                            RegLocation rl_src2) = 0;
1162    virtual void GenAndLong(Instruction::Code,
1163                            RegLocation rl_dest, RegLocation rl_src1,
1164                            RegLocation rl_src2) = 0;
1165    virtual void GenArithOpDouble(Instruction::Code opcode,
1166                                  RegLocation rl_dest, RegLocation rl_src1,
1167                                  RegLocation rl_src2) = 0;
1168    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1169                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1170    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1171                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1172    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1173                               RegLocation rl_src) = 0;
1174    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1175
1176    /**
1177     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1178     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1179     * that applies on integers. The generated code will write the smallest or largest value
1180     * directly into the destination register as specified by the invoke information.
1181     * @param info Information about the invoke.
1182     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1183     * @return Returns true if successfully generated
1184     */
1185    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
1186
1187    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1188    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1189    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1190    virtual void GenNotLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1191    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1192    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1193                           RegLocation rl_src2) = 0;
1194    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1195                            RegLocation rl_src2) = 0;
1196    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1197                            RegLocation rl_src2) = 0;
1198    virtual void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1199                            RegLocation rl_src2, bool is_div) = 0;
1200    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1201                                  bool is_div) = 0;
1202    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1203                                     bool is_div) = 0;
1204    /*
1205     * @brief Generate an integer div or rem operation by a literal.
1206     * @param rl_dest Destination Location.
1207     * @param rl_src1 Numerator Location.
1208     * @param rl_src2 Divisor Location.
1209     * @param is_div 'true' if this is a division, 'false' for a remainder.
1210     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
1211     */
1212    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1213                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
1214    /*
1215     * @brief Generate an integer div or rem operation by a literal.
1216     * @param rl_dest Destination Location.
1217     * @param rl_src Numerator Location.
1218     * @param lit Divisor.
1219     * @param is_div 'true' if this is a division, 'false' for a remainder.
1220     */
1221    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1222                                     bool is_div) = 0;
1223    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1224
1225    /**
1226     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1227     * @details This is used for generating DivideByZero checks when divisor is held in two
1228     *  separate registers.
1229     * @param reg The register holding the pair of 32-bit values.
1230     */
1231    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1232
1233    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1234    virtual void GenExitSequence() = 0;
1235    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
1236    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1237    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1238
1239    /*
1240     * @brief Handle Machine Specific MIR Extended opcodes.
1241     * @param bb The basic block in which the MIR is from.
1242     * @param mir The MIR whose opcode is not standard extended MIR.
1243     * @note Base class implementation will abort for unknown opcodes.
1244     */
1245    virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1246
1247    /**
1248     * @brief Lowers the kMirOpSelect MIR into LIR.
1249     * @param bb The basic block in which the MIR is from.
1250     * @param mir The MIR whose opcode is kMirOpSelect.
1251     */
1252    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1253
1254    /**
1255     * @brief Used to generate a memory barrier in an architecture specific way.
1256     * @details The last generated LIR will be considered for use as barrier. Namely,
1257     * if the last LIR can be updated in a way where it will serve the semantics of
1258     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1259     * that can keep the semantics.
1260     * @param barrier_kind The kind of memory barrier to generate.
1261     * @return whether a new instruction was generated.
1262     */
1263    virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1264
1265    virtual void GenMoveException(RegLocation rl_dest) = 0;
1266    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1267                                               int first_bit, int second_bit) = 0;
1268    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1269    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1270    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1271    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1272    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1273                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1274    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1275                             RegLocation rl_index, RegLocation rl_src, int scale,
1276                             bool card_mark) = 0;
1277    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1278                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1279
1280    // Required for target - single operation generators.
1281    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1282    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1283    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1284                                LIR* target) = 0;
1285    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1286    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1287    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1288    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1289    virtual void OpEndIT(LIR* it) = 0;
1290    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1291    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1292    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1293    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1294    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1295    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1296    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1297    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1298
1299    /**
1300     * @brief Used to generate an LIR that does a load from mem to reg.
1301     * @param r_dest The destination physical register.
1302     * @param r_base The base physical register for memory operand.
1303     * @param offset The displacement for memory operand.
1304     * @param move_type Specification on the move desired (size, alignment, register kind).
1305     * @return Returns the generate move LIR.
1306     */
1307    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1308                             MoveType move_type) = 0;
1309
1310    /**
1311     * @brief Used to generate an LIR that does a store from reg to mem.
1312     * @param r_base The base physical register for memory operand.
1313     * @param offset The displacement for memory operand.
1314     * @param r_src The destination physical register.
1315     * @param bytes_to_move The number of bytes to move.
1316     * @param is_aligned Whether the memory location is known to be aligned.
1317     * @return Returns the generate move LIR.
1318     */
1319    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1320                             MoveType move_type) = 0;
1321
1322    /**
1323     * @brief Used for generating a conditional register to register operation.
1324     * @param op The opcode kind.
1325     * @param cc The condition code that when true will perform the opcode.
1326     * @param r_dest The destination physical register.
1327     * @param r_src The source physical register.
1328     * @return Returns the newly created LIR or null in case of creation failure.
1329     */
1330    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1331
1332    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1333    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1334                             RegStorage r_src2) = 0;
1335    virtual LIR* OpTestSuspend(LIR* target) = 0;
1336    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
1337    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) = 0;
1338    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1339    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1340    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1341                       int offset) = 0;
1342    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1343    virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
1344    virtual void OpTlsCmp(ThreadOffset<8> offset, int val) = 0;
1345    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1346    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1347    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1348    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1349
1350    // May be optimized by targets.
1351    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1352    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1353
1354    // Temp workaround
1355    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1356
1357  protected:
1358    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1359
1360    CompilationUnit* GetCompilationUnit() {
1361      return cu_;
1362    }
1363    /*
1364     * @brief Returns the index of the lowest set bit in 'x'.
1365     * @param x Value to be examined.
1366     * @returns The bit number of the lowest bit set in the value.
1367     */
1368    int32_t LowestSetBit(uint64_t x);
1369    /*
1370     * @brief Is this value a power of two?
1371     * @param x Value to be examined.
1372     * @returns 'true' if only 1 bit is set in the value.
1373     */
1374    bool IsPowerOfTwo(uint64_t x);
1375    /*
1376     * @brief Do these SRs overlap?
1377     * @param rl_op1 One RegLocation
1378     * @param rl_op2 The other RegLocation
1379     * @return 'true' if the VR pairs overlap
1380     *
1381     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1382     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1383     * dex, we'll want to make this case illegal.
1384     */
1385    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1386
1387    /*
1388     * @brief Force a location (in a register) into a temporary register
1389     * @param loc location of result
1390     * @returns update location
1391     */
1392    virtual RegLocation ForceTemp(RegLocation loc);
1393
1394    /*
1395     * @brief Force a wide location (in registers) into temporary registers
1396     * @param loc location of result
1397     * @returns update location
1398     */
1399    virtual RegLocation ForceTempWide(RegLocation loc);
1400
1401    static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) {
1402      return wide ? k64 : ref ? kReference : k32;
1403    }
1404
1405    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1406                                    RegLocation rl_dest, RegLocation rl_src);
1407
1408    void AddSlowPath(LIRSlowPath* slowpath);
1409
1410    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1411                                            bool type_known_abstract, bool use_declaring_class,
1412                                            bool can_assume_type_is_in_dex_cache,
1413                                            uint32_t type_idx, RegLocation rl_dest,
1414                                            RegLocation rl_src);
1415    /*
1416     * @brief Generate the debug_frame FDE information if possible.
1417     * @returns pointer to vector containg CFE information, or NULL.
1418     */
1419    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1420
1421    /**
1422     * @brief Used to insert marker that can be used to associate MIR with LIR.
1423     * @details Only inserts marker if verbosity is enabled.
1424     * @param mir The mir that is currently being generated.
1425     */
1426    void GenPrintLabel(MIR* mir);
1427
1428    /**
1429     * @brief Used to generate return sequence when there is no frame.
1430     * @details Assumes that the return registers have already been populated.
1431     */
1432    virtual void GenSpecialExitSequence() = 0;
1433
1434    /**
1435     * @brief Used to generate code for special methods that are known to be
1436     * small enough to work in frameless mode.
1437     * @param bb The basic block of the first MIR.
1438     * @param mir The first MIR of the special method.
1439     * @param special Information about the special method.
1440     * @return Returns whether or not this was handled successfully. Returns false
1441     * if caller should punt to normal MIR2LIR conversion.
1442     */
1443    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1444
1445  protected:
1446    void ClobberBody(RegisterInfo* p);
1447    void SetCurrentDexPc(DexOffset dexpc) {
1448      current_dalvik_offset_ = dexpc;
1449    }
1450
1451    /**
1452     * @brief Used to lock register if argument at in_position was passed that way.
1453     * @details Does nothing if the argument is passed via stack.
1454     * @param in_position The argument number whose register to lock.
1455     * @param wide Whether the argument is wide.
1456     */
1457    void LockArg(int in_position, bool wide = false);
1458
1459    /**
1460     * @brief Used to load VR argument to a physical register.
1461     * @details The load is only done if the argument is not already in physical register.
1462     * LockArg must have been previously called.
1463     * @param in_position The argument number to load.
1464     * @param wide Whether the argument is 64-bit or not.
1465     * @return Returns the register (or register pair) for the loaded argument.
1466     */
1467    RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false);
1468
1469    /**
1470     * @brief Used to load a VR argument directly to a specified register location.
1471     * @param in_position The argument number to place in register.
1472     * @param rl_dest The register location where to place argument.
1473     */
1474    void LoadArgDirect(int in_position, RegLocation rl_dest);
1475
1476    /**
1477     * @brief Used to generate LIR for special getter method.
1478     * @param mir The mir that represents the iget.
1479     * @param special Information about the special getter method.
1480     * @return Returns whether LIR was successfully generated.
1481     */
1482    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1483
1484    /**
1485     * @brief Used to generate LIR for special setter method.
1486     * @param mir The mir that represents the iput.
1487     * @param special Information about the special setter method.
1488     * @return Returns whether LIR was successfully generated.
1489     */
1490    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1491
1492    /**
1493     * @brief Used to generate LIR for special return-args method.
1494     * @param mir The mir that represents the return of argument.
1495     * @param special Information about the special return-args method.
1496     * @return Returns whether LIR was successfully generated.
1497     */
1498    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1499
1500    void AddDivZeroCheckSlowPath(LIR* branch);
1501
1502    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1503    // kArg2 as temp.
1504    virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1505
1506    /**
1507     * @brief Load Constant into RegLocation
1508     * @param rl_dest Destination RegLocation
1509     * @param value Constant value
1510     */
1511    virtual void GenConst(RegLocation rl_dest, int value);
1512
1513  public:
1514    // TODO: add accessors for these.
1515    LIR* literal_list_;                        // Constants.
1516    LIR* method_literal_list_;                 // Method literals requiring patching.
1517    LIR* class_literal_list_;                  // Class literals requiring patching.
1518    LIR* code_literal_list_;                   // Code literals requiring patching.
1519    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1520
1521  protected:
1522    CompilationUnit* const cu_;
1523    MIRGraph* const mir_graph_;
1524    GrowableArray<SwitchTable*> switch_tables_;
1525    GrowableArray<FillArrayData*> fill_array_data_;
1526    GrowableArray<RegisterInfo*> tempreg_info_;
1527    GrowableArray<RegisterInfo*> reginfo_map_;
1528    GrowableArray<void*> pointer_storage_;
1529    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1530    CodeOffset data_offset_;            // starting offset of literal pool.
1531    size_t total_size_;                   // header + code size.
1532    LIR* block_label_list_;
1533    PromotionMap* promotion_map_;
1534    /*
1535     * TODO: The code generation utilities don't have a built-in
1536     * mechanism to propagate the original Dalvik opcode address to the
1537     * associated generated instructions.  For the trace compiler, this wasn't
1538     * necessary because the interpreter handled all throws and debugging
1539     * requests.  For now we'll handle this by placing the Dalvik offset
1540     * in the CompilationUnit struct before codegen for each instruction.
1541     * The low-level LIR creation utilites will pull it from here.  Rework this.
1542     */
1543    DexOffset current_dalvik_offset_;
1544    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1545    RegisterPool* reg_pool_;
1546    /*
1547     * Sanity checking for the register temp tracking.  The same ssa
1548     * name should never be associated with one temp register per
1549     * instruction compilation.
1550     */
1551    int live_sreg_;
1552    CodeBuffer code_buffer_;
1553    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1554    std::vector<uint8_t> encoded_mapping_table_;
1555    std::vector<uint32_t> core_vmap_table_;
1556    std::vector<uint32_t> fp_vmap_table_;
1557    std::vector<uint8_t> native_gc_map_;
1558    int num_core_spills_;
1559    int num_fp_spills_;
1560    int frame_size_;
1561    unsigned int core_spill_mask_;
1562    unsigned int fp_spill_mask_;
1563    LIR* first_lir_insn_;
1564    LIR* last_lir_insn_;
1565
1566    GrowableArray<LIRSlowPath*> slow_paths_;
1567};  // Class Mir2Lir
1568
1569}  // namespace art
1570
1571#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1572